Photocatalytic Three-component Reaction for Synthesis of Dithiocarbamates

Xin-Yu Mei^{a, §}, Hui-Ling Lu^{a, §}, Shi-Long Zhong^a, Bo-Jiang Chen^{a,b}, Zi-Wei Xi^{a,b*}, Qiliang Yuan^{d*}, Yong-Miao Shen^{a,b,c*}

^a School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China, E-mail: shenym@zstu.edu.cn
^b Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China.

[°]Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China.

^d Zhejiang Zhongxin Fluoride Materials Co., Ltd., Shaoxing 312369, PR China.

Table of Contents

1.	General Information	2
2.	General Procedures for the Synthesis of Products 4a	3
3.	General Procedures A for the Synthesis of Compounds 1	4
4.	General Procedures B for the Synthesis of Compounds 1	4
5.	Condition optimization ^a	5
6.	Gram-Scale Reaction	5
7.	Sunlight reaction	6
8.	Control experiments	6
9.	Mechanistic investigation	7
10.	Characterization Data	8
11.	NMR spectra	.20

1. General Information

General Remarks. Catalytic reactions were performed under air using pre-dried glasswares. Analytical TLC was performed with silica gel GF254 plates. For column chromatography, a 200-300 mesh silica gel was employed. Organic solutions were concentrated under reduced pressure using a rotary evaporator. Room temperature (r.t.) is 23-25 °C.

Materials. Unless otherwise noted below, all other compounds have been reported in the literature or are commercially available. Commercial reagents and analytical grade or anhydrous solvents were used without further purification. All photocatalysts are purchased from laajoo.com.

Instrumentation. Deuterated solvents were purchased from Cambridge Isotope Laboratories. ¹H NMR spectra were recorded on Bruker AVANCE III 400 and INOVA instruments with 400 MHz frequencies, and ¹³C NMR spectra were recorded on Bruker AVANCE III 400 with 100 MHz frequencies. ¹⁹F NMR spectra were recorded on a Bruker AVANCE III 400 spectrometer with a ¹⁹F operating frequency of 376 MHz. Chemical shifts (δ) were reported in ppm relative to the residual solvent signal (CDCl₃ δ = 7.26 for ¹H NMR and δ = 77.0 for ¹³C NMR; DMSO δ = 2.53 for ¹H NMR and δ =40.01 for ¹³C NMR). Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), td (triplet of doublets) or m (multiplet). HRMS was obtained using a Q-TOF instrument equipped with an ESI source.

Light source in detail. The light source used for the photochemical experiments is a UV LED curing system (Figure S1), purchased from Shenzhen Heshengbang Technology Co., LTD (Product model: PLS-LED 100). The reaction vessel is borosilicate glass test tubes and no filters were applied. The distance from the light source to the irradiation vessel is 0.5-1 cm.

Figure S1. Reaction device

LED fixed lamp (Figure S2), 15-40 W ($\lambda = 420 \pm 15$ nm). Product model: PLS-LED 100. 3 W blue LED, purchased from taobao.COM. Manufacturer: Beijing Perfect light Technology Co., Ltd. (China). The reaction vessel is borosilicate glass test tubes and no filters were applied. The distance from the light source to the irradiation vessel is 4-5 cm.

Figure S2. Photoreaction set-up for scale-up reaction.

2. General Procedures for the Synthesis of Products 4a

Mix the raw materials 1- [(iodomethyl)sulfonyl] -4-methylbenzene **1a** (0.1 mmol), carbon disulfide **2a** (0.4 mmol), morpholine **3a** (0.12 mmol), Cs_2CO_3 (0.2 mmol), and DMSO (2 mL) in a 4 mL transparent glass bottle, and react for 30 minutes under the illumination of a 3 W blue LED light. After 30 minutes, the mixture was concentrated

by rotary evaporation and the crude mixture was directly charged on silica gel and purified by column chromatography with petroleum ether/ethyl acetate as eluents to afford product **4a**.

3. General Procedures A for the Synthesis of Compounds 1

Add sodium metabisulfite (5 mmol, 1 equiv) to a round-bottom flask containing 20 mL of N, N-dimethylformamide (DMF), stir at room temperature for 15 minutes, then add methylene iodide (6 mmol, 1.2 equiv). Stir the reaction at 80 °C for 20 hours. After the reaction is complete, quench the reaction mixture by adding it to 100 mL of water and extract the mixture three times, each with 50 mL of ethyl acetate (EA) The remaining organic phase is then extracted and washed separately with 50 mL of saturated brine and 50 mL of saturated sodium thiosulfate solution, taking the upper organic phase. Remove most of the solvent by rotary evaporation, and dry in an oven at 50 °C for 24 hours to obtain the product **1**. (**1a-1g,1i**)

4. General Procedures B for the Synthesis of Compounds 1

Add an equimolar amount of 3-chloroacetone (5 mmol, 1 equiv.) and sodium ptoluenesulfinate to a round-bottom flask containing 10 mL of DMF, stir at room temperature for 24 hours, then quench the reaction mixture by adding it to 50 mL of water and extract with 30 mL of ethyl acetate (EA) each for three times, retaining the organic phase. Drying and evaporation of solvent give the product.

In a beaker containing 5 mL of a 1,4-dioxane/water (1:1) mixture, add materials

synthesized in the previous step (2.5 mmol, 1 equiv), potassium iodide (20 mmol, 8 equiv), and iodine (10 mmol, 4 equiv.), then NaOH aqueous solution (1 M) was added until the color of iodine disappeared Stir the mixture for 30 minutes, then extract with 20 mL of dichloromethane each for three times. Evaporation of solvent from the organic phase and drying of the crude product in an oven at 50 °C for 24 hours afford the product **1h**.

5. Condition optimization^a

, o S O	+ CS ₂ +		→ SSSSN			
1a	2a	3a	4a			
entry		base (n)	yield (%) ^b			
1		0.1mmol	80			
2		0.2mmol	88			
3		0.3mmol	86			
4		0.4mmol	87			
5		0.5mmol	77			
^a Reaction conditions: 1a (0.1 mmol), 2a (0.4 mmol), 3a (0.12 mmol), Cs ₂ CO ₃ ,						
DMSO (2 mL), r.t., 3 W blue LEDs, 30 minutes reaction time. ^b Isolated yield.						

6. Gram-Scale Reaction

In a 250 ml round bottom flask, **1a** (2.2195 g, 7.5 mmol), **2a** (2.2783 g, 30 mmol), **3a** (0.7836 g, 9 mmol), and Cs_2CO_3 (4.8873 g, 15 mmol) were dissolved in DMSO (150 ml). The reactants were mixed evenly and then reacted under irradiation from a 42 W blue LEDs for 6h. After reaction, the mixture was extracted with ethyl acetate (3×100 mL), and the combined organic extract was washed with saline (300 mL), dried with

anhydrous sodium sulfate and then concentrated in vacuo. The crude mixture was directly purified by column chromatography on silica gel (EA: PE =1:1) by flash column to obtain the desired product **4a** (1.4648 g, 59%).

7. Sunlight reaction

Figure S3. Sunlight reaction

Compound **1a** (0.1 mmol, 1.0 equiv), **2a** (0.4 mmol, 2.0 equiv), **3a** (0.12 mmol, 1.2 equiv), and cesium carbonate (Cs₂CO₃, 0.2 mmol, 2.0 equiv) was added to a 4 mL transparent glass vial containing a magnetic stir bar. Anhydrous dimethyl sulfoxide (2.0 mL) was then added to the vial using a syringe. The reaction mixture was stirred under direct sunlight for 6 hours (location: Hangzhou, longitude 118° E, latitude 29° N, starting at 10:00 a.m. in January). After 6 hours, the reaction mixture was extracted with ethyl acetate (3×10 mL), washed twice with water (40 mL each time), and then washed with brine (40 mL). The organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel, eluting with hexane/ethyl acetate, to afford the desired product **4a** (67%, 22.2mg).

8. Control experiments

a) The radical trapping experiments

The raw materials 1-[(iodomethyl) sulfonyl] -4-methylbenzene **1a** (0.1 mmol), carbon disulfide **2a** (0.4 mmol), morpholine **3a** (0.12 mmol), Cs_2CO_3 (0.2 mmol), TEMPO (1 mmol) and DMSO (2 mL) were mixed in a 4 mL transparent glass bottle, and reacted for 30 minutes under the illumination of a 3 W blue LED light. After the reaction, only a little target product **4a** was detected, and the reaction was basically inhibited.

9. Mechanistic investigation

Figure S4. UV-vis Spectroscopic Measurements on Various Combinations of **1a** (0.05M), **2a** (0.2M), **3a** (0.06M) and Cs₂CO₃ (0.1M) in DMSO

The UV/Vis absorption spectra of different combinations of 1-[(iodomethyl) sulfonyl]-4-methylbenzene (1a), carbon disulfide (2a) with and morpholine (3a) in DMSO were recorded in 1 cm path quartz cuvettes by using a SHIMADZU UV-3600 UV-visible spectrophotometer, respectively. The long wavelength bands in UV/vis absorption spectra were shown in Figure S4.

10. Characterization Data

tosylmethyl morpholine-4-carbodithioate (4a). brown oil (88%, 29.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 5.25 (s, 2H), 4.21 (s, 2H), 3.99 (s, 2H), 3.74-3.66 (m, 4H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 145.3, 134.8, 129.7, 129.2, 66.2, 59.5, 21.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₃H₁₇NO₃S₃ 332.0444; Found: 332.0458.

(phenylsulfonyl)methyl morpholine-4-carbodithioate (4b). brown oil (91%, 28.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.66 (t, J = 7.5 Hz, 1H), 7.54 (t, J = 7.8 Hz, 2H), 5.28 (s, 2H), 4.19 (s, 2H), 3.98 (s, 2H), 3.74-3.62 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 192.1, 137.7, 134.2, 129.3, 129.1, 66.2, 59.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₂H₁₅NO₃S₃ 318.0287; Found: 318.0290.

((4-fluorophenyl) sulfonyl) methyl morpholine-4-carbodithioate (4c). yellow solid (74%, 28.8 mg), m.p. 114-115°C. ¹H NMR (400 MHz, CDCl₃) δ 8.07-7.85 (m, 2H), 7.21 (t, *J* = 8.5 Hz, 2H), 5.27 (s, 2H), 4.19 (s, 2H), 3.97 (s, 2H), 3.75-3.69 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 191.8, 167.5, 165.0, 133.6, 132.3, 132.2, 116.5, 116.3, 66.1, 59.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -102.57. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₂H₁₄FNO₃S₃ 336.0193; Found: 336.0203.

((4-chlorophenyl) sulfonyl) methyl morpholine-4-carbodithioate (4d). yellow solid (88%, 33.4 mg), m.p. 107-108°C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.6 Hz, 2H), 7.51 (d, *J* = 8.6 Hz, 2H), 5.29 (s, 2H), 4.21 (s, 2H), 3.96 (s, 2H), 3.79-3.66 (m,

4H). ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 141.1, 136.0, 130.8, 129.3, 59.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₂H₁₄ClNO₃S₃ 351.9898; Found: 351.9899.

((4-bromophenyl) sulfonyl) methyl morpholine-4-carbodithioate (4e). yellow solid (75%, 29.7 mg), m.p. 142-143°C. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.6 Hz, 2H), 7.68 (d, *J* = 8.6 Hz, 2H), 5.28 (s, 2H), 4.21 (s, 2H), 3.96 (s, 2H), 3.80-3.60 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 136.5, 132.3, 130.9, 129.7, 59.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₂H₁₄BrNO₃S₃ 395.9392; Found: 395.9393.

((3-bromophenyl) sulfonyl) methyl morpholine-4-carbodithioate (4f). yellow solid (69%, 29.7 mg), m.p. 121-122°C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.89 (d, J = 7.7 Hz, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.42 (t, J = 7.9 Hz, 1H), 5.28 (s, 2H), 4.18 (s, 2H), 3.98 (s, 2H), 3.72 (t, J = 4.9 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 191.4, 139.3, 137.2, 132.3, 130.6, 128.0, 122.8, 66.2, 59.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₂H₁₄BrNO₃S₃ 395.9392; Found: 395.9390.

(naphthalen-2-ylsulfonyl) methyl morpholine-4-carbodithioate (4g). yellow solid (83%, 35.0 mg), m.p. 103-104°C. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 1.7 Hz, 1H), 8.08-7.86 (m, 4H), 7.77-7.46 (m, 2H), 5.35 (s, 2H), 3.99 (d, *J* = 45.5 Hz, 4H), 3.56 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 191.8, 135.6, 134.4, 131.9, 131.4, 129.6, 129.5, 129.3, 128.1, 127.8, 123.7, 66.1, 59.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₇NO₃S₃ 368.0444; Found: 368.0451.

1-tosylethyl morpholine-4-carbodithioate (4h). brown oil (39%, 16.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 5.92 (q, J = 7.3

Hz, 1H), 4.41-3.84 (m, 4H), 3.70 (s, 4H), 2.45 (s, 4H), 1.76 (d, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.7, 145.1, 133.9, 129.9, 129.7, 129.6, 129.3, 68.6, 66.2, 21.8, 15.0. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₄H₁₉NO₃S₃ 346.0600; Found: 346.0604.

(pyridin-3-ylsulfonyl) methyl morpholine-4-carbodithioate (4i). yellow solid (93%, 30.0 mg), m.p. 99-100°C. ¹H NMR (400 MHz, CDCl₃) δ 9.10 (s, 1H), 8.84 (d, *J* = 5.1 Hz, 1H), 8.23 (d, *J* = 8.1 Hz, 1H), 7.48 (dd, *J* = 8.0, 4.8 Hz, 1H), 5.31 (s, 2H), 4.12 (s, 2H), 3.97 (s, 2H), 3.69 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 191.1, 154.5, 150.3, 137.2, 133.8, 123.7, 66.1, 59.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₁H₁₄N₂O₃S₃ 319.0240; Found: 319.0250.

benzyl morpholine-4-carbodithioate(4j). yellow oil (50%, 12.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.30-7.21 (m, 3H), 4.53 (s, 2H), 4.28 (s, 2H), 3.88 (s, 2H), 3.69 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 197.2, 135.8, 129.5, 128.7, 127.7, 66.3, 42.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₂H₁₅NOS₂ 254.0668; Found: 254.0675.

2-methylbenzyl morpholine-4-carbodithioate(4k). yellow oil (82%, 21.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 7.4 Hz, 1H), 7.18 (dhept, J = 9.1, 1.8 Hz, 3H), 4.54 (s, 2H), 4.35 (s, 2H), 3.93 (s, 2H), 3.75 (s, 4H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.4, 137.5, 133.1, 130.6, 130.5, 128.2, 126.3, 66.3, 40.8, 19.42. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₃H₁₇NOS₂ 268.0824; Found: 268.0832.

3-methylbenzyl morpholine-4-carbodithioate(41). yellow oil (63%, 16.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.22 (m, 3H), 7.15 (d, J = 7.0 Hz, 1H), 4.61 (s, 2H), 4.40 (s, 2H), 4.00 (s, 2H), 3.81 (s, 4H), 2.41(s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.3, 138.4, 135.6, 130.2, 128.6, 128.5, 126.5, 66.3, 42.2, 21.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₃H₁₇NOS₂ 268.0824; Found:

m/z: $[M+H]^+$ Calcd for $C_{13}H_{17}NOS_2$ 268.0824; 268.0830.

4-methylbenzyl morpholine-4-carbodithioate(4m). yellow oil (45%, 12.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 7.8 Hz, 2H), 4.54 (s, 2H), 4.33 (s, 2H), 3.93 (s, 2H), 3.75 (s, 4H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.4, 137.5, 132.6, 129.4, 129.3, 66.3, 41.9, 21.3. HRMS (ESI-TOF) m/z: [M+H]⁺

Calcd for C₁₃H₁₇NOS₂ 268.0824; Found: 268.0831.

4-fluorobenzyl morpholine-4-carbodithioate(4n). yellow oil (44%, 11.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, J = 8.4, 5.5 Hz, 2H), 6.99 (t, J = 8.6 Hz, 2H), 4.55 (s, 2H), 4.32 (s, 2H), 3.92 (s, 2H), 3.74 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 163.5, 161.0, 131.8, 131.7, 131.1, 131.0, 115.4, 66.3, 41.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₂H₁₄FNOS₂ 272.0574; Found: 272.0579.

4-(trifluoromethoxy) benzyl morpholine-4-carbodithioate(4o). yellow oil (77%, 26.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 8.6 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 4.55 (s, 2H), 4.34 (s, 2H), 3.92 (s, 2H), 3.76 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 148.6, 135.0, 130.8, 121.8, 121.1, 119.20, 66.3, 40.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₃H₁₄F₃NO₂S₂ 338.0491; Found: 338.0494.

quinolin-8-ylmethyl morpholine-4-carbodithioate(4p). yellow oil (74%, 22.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.95 (dd, J = 4.3, 1.8 Hz, 1H), 8.14 (dd, J = 8.3, 1.8 Hz, 1H), 7.97 (d, J = 7.1 Hz, 1H), 7.75 (d, J = 6.8 Hz, 1H), 7.53-7.37 (m, 2H), 5.31 (s, 2H), 4.31 (s, 2H), 3.92 (s, 2H), 3.70 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 198.3, 149.8, 146.6, 136.5, 135.2, 130.6, 128.5, 127.9, 126.5, 121.3, 66.3, 37.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₆N₂OS₂ 305.0777; Found: 305.0784.

4-((tert-butoxycarbonyl) amino) benzyl morpholine-4-carbodithioate(4q). yellow oil (57%, 21.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.32-7.26 (m, 2H), 7.09 (d, *J* = 7.0 Hz, 1H), 6.60 (s, 1H), 4.58 (s, 2H), 4.37 (s, 2H), 3.97 (s, 2H), 3.79 (s, 4H), 1.55(s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 197.4, 137.5, 132.6, 129.4, 129.3, 66.3, 41.9, 21.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₂₄N₂O₃S₂ 369.1301; Found: 369.1308.

tosylmethyl methyl(phenyl)carbamodithioate (4r). brown oil (85%, 29.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.52-7.43 (m, 3H), 7.36-7.29 (m, 2H), 7.18 (d, *J* = 9.7 Hz, 2H), 5.09 (s, 2H), 3.68 (s, 3H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.2, 145.0, 135.1, 130.0, 129.6, 129.5, 129.3, 126.9, 60.8, 21.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₇NO₂S₃ 352.0495; Found: 352.0512.

tosylmethyl methyl(p-tolyl) carbamodithioate (4s). yellow solid (86%, 33.0 mg), m.p. 150-151°C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.3 Hz, 2H), 7.28 (s, 1H), 7.05 (d, *J* = 8.3 Hz, 2H), 5.09 (s, 2H), 3.65 (s, 3H), 2.44 (d, *J* = 13.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 194.2, 145.0, 135.0, 130.6, 129.5, 129.3, 126.6, 60.8, 47.3, 21.8, 21.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₉NO₂S₃ 366.0651; Found: 366.0659.

tosylmethyl methyl(m-tolyl) carbamodithioate (4t). yellow solid (64%, 23.0 mg), m.p. 108-109°C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.3 Hz, 2H), 7.34 (t, *J* = 8.2 Hz, 3H), 7.28 (s, 1H), 6.97 (s, 2H), 5.10 (s, 2H), 3.66 (s, 3H), 2.44 (d, *J* = 17.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 194.0, 145.0, 140.3, 135.0, 130.4, 129.8, 129.5, 129.3, 127.3, 123.8, 60.8, 21.8, 21.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₉NO₂S₃ 366.0651; Found: 366.0659.

tosylmethyl dibenzylcarbamodithioate (4u). yellow solid (50%, 21.1 mg), m.p. 120-121°C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.35 (dd, *J* = 16.6, 7.9 Hz, 9H), 7.13 (d, *J* = 6.2 Hz, 3H), 5.33 (s, 2H), 5.22 (s, 2H), 4.89 (s, 2H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.5, 145.1, 134.7, 134.0, 129.6, 129.4, 129.1, 128.9, 128.3, 128.1, 127.9, 127.1, 60.4, 58.1, 54.2, 21.9. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₃H₂₃NO₂S₃ 442.0964; Found: 442.0965.

tosylmethyl 2-methylmorpholine-4-carbodithioate (4v). brown oil (82%, 28.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.3 Hz, 2H), 5.24 (d, *J* = 21.8 Hz, 3H), 4.46 (s, 1H), 3.95 (d, J = 3.6 Hz, 1H), 3.65-3.50 (m, 2H), 3.28 (d, *J* = 40.7 Hz, 1H), 3.03 (s, 1H), 2.44 (s, 3H), 1.28-1.17 (m, 3H)). ¹³C NMR (101 MHz, CDCl₃) δ 192.0, 145.3, 134.8, 129.7, 129.2, 71.6, 65.7, 59.5, 21.8, 18.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₄H₁₉NO₃S₃ 346.0600; Found: 346.0610.

tosylmethyl 2-ethylmorpholine-4-carbodithioate (4w). brown oil (80%, 28.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.3 Hz, 2H), 7.45-7.26 (m, 2H), 5.24 (d, J = 17.9 Hz, 3H), 4.45 (s, 1H), 3.95 (d, J = 13.6 Hz, 1H), 3.52 (t, J = 11.8 Hz, 1H), 3.42-3.20 (m, 2H), 2.98 (d, J = 32.3 Hz, 1H), 2.44 (s, 3H), 1.66-1.41 (m, 2H), 0.98 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 145.2, 134.8, 129.7, 129.2, 65.7, 59.5, 26.0, 21.8, 9.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₂₁NO₃S₃ 360.0757; Found: 360.0764.

tosylmethyl thiomorpholine-4-carbodithioate (4x). brown oil (79%, 27.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 5.26 (s, 2H), 4.46 (s, 2H), 4.25 (s, 2H), 2.65 (s, 4H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.4, 145.3, 134.6, 129.7, 129.4, 59.6, 21.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₃H₁₇NO₂S₄ 348.0215; Found: 348.0226.

tosylmethyl pyrrolidine-1-carbodithioate (4y). brown oil (64%, 20.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 7.8 Hz, 2H), 5.22 (s, 2H), 3.83 (t, *J* = 7.5 Hz, 2H), 3.70 (t, *J* = 6.9 Hz, 2H), 2.44 (s, 3H), 2.07 (q, *J* = 6.6 Hz, 2H), 1.96 (p, *J* = 6.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 187.7, 145.1, 135.1, 129.7, 129.1, 59.4, 56.2, 50.8, 26.1, 24.2, 21.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₃H₁₇NO₂S₃ 316.0495; Found: 316.0506.

tosylmethyl thiazolidine-3-carbodithioate (4z). yellow solid (80%, 26.6 mg), m.p. 95-96°C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 7.9 Hz,

2H), 5.22 (s, 2H), 3.47 (s, 3H), 3.39 (s, 3H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.1, 145.2, 135.0, 129.7, 129.0, 60.6, 46.7, 41.6, 21.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₂H₁₅NO₂S₄ 334.0059; Found: 334.0074.

tosylmethyl 4-ethylpiperazine-1-carbodithioate (4aa). yellow solid (70%, 25.4 mg), m.p. 98-99°C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.3 Hz, 2H), 5.25 (s, 2H), 4.27 (s, 2H), 4.01 (s, 2H), 2.58-2.45 (m, 6H), 2.44 (s, 3H), 1.12 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.6, 145.2, 134.8, 129.7, 129.3, 59.7, 51.9, 21.8, 11.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₂₂N₂O₂S₃ 359.0917; Found: 359.0923.

tosylmethyl 4-propylpiperazine-1-carbodithioate (4ab). brown oil (46%, 17.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 5.25 (s, 2H), 4.23 (s, 2H), 3.97 (s, 2H), 2.47 (d, *J* = 10.0 Hz, 4H), 2.44 (s, 3H), 2.37-2.29 (m, 2H), 1.51 (h, *J* = 7.4 Hz, 2H), 0.92 (t, *J* = 7.4 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 191.4, 145.1, 134.8, 129.7, 129.3, 60.0, 59.7, 52.4, 21.8, 19.9, 11.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₂₄N₂O₂S₃ 373.1073; Found: 373.1081.

tosylmethyl 4-isopropylpiperazine-1-carbodithioate (4ac). brown oil (44%, 16.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 5.25 (s, 2H), 4.23 (s, 2H), 3.97 (s, 2H), 2.75 (s, 1H), 2.56 (s, 4H), 2.44 (s, 3H), 1.06 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 191.3, 145.1, 134.8, 129.7, 129.3, 59.7, 54.5, 48.0, 21.8, 18.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₂₄N₂O₂S₃ 373.1073; Found: 373.1084.

tosylmethyl 4-isobutylpiperazine-1-carbodithioate (4ad). brown oil (93%, 36.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 5.26 (s, 2H), 4.23 (s, 2H), 3.96 (s, 2H), 2.45 (s, 7H), 2.13 (s, 2H), 1.78 (t, J = 6.7 Hz, 1H), 0.91 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 191.4, 145.1, 134.8, 130.0, 129.7, 129.3, 77.3, 66.2, 59.7, 52.7, 25.4, 21.8, 20.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₂₆N₂O₂S₃ 387.1230; Found: 387.1235.

tosylmethyl 4-cyclopropylpiperazine-1-carbodithioate (4ae). yellow solid (65%, 29.6 mg), m.p. 142-143°C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 5.25 (s, 2H), 4.18 (s, 2H), 3.90 (s, 2H), 2.66 (d, J = 20.8 Hz, 4H), 2.44 (s, 3H), 1.63 (s, 1H), 0.53-0.41 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 191.4, 186.4, 145.1, 134.8, 129.7, 129.3, 59.7, 53.4, 52.5, 51.9, 50.4, 38.1, 37.9, 21.8, 6.2, 6.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₂₂N₂O₂S₃ 371.0917; Found: 371.0930.

tosylmethyl 4-(methoxymethyl) piperidine-1-carbodithioate (4af). brown oil (25%, 9.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 9.7 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 5.25 (d, *J* = 31.1 Hz, 3H), 4.60 (s, 1H), 3.32 (s, 3H), 3.22 (d, *J* = 6.1 Hz, 3H), 3.08 (s, 1H), 2.43 (s, 3H), 2.15-1.54 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 190.5, 145.0, 134.7, 129.6, 129.6, 129.3, 129.3, 59.8, 59.0, 53.6, 50.6, 36.3, 21.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₂₃NO₃S₃ 374.0913; Found: 374.0929.

tosylmethyl 4-phenylpiperidine-1-carbodithioate (4ag). yellow solid (67%, 27.1 mg), m.p. 135-136°C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.4 Hz, 2H), 7.28 (s, 1H), 7.24 (s, 2H), 7.23-7.14 (m, 2H), 7.11 (d, *J* = 6.8 Hz, 2H), 5.42 (s, 1H), 5.23 (d, *J* = 28.1 Hz, 2H), 4.72 (s, 1H), 3.16 (d, *J* = 62.5 Hz, 2H), 2.88-2.74 (m, 1H), 2.36 (s, 3H), 1.90 (s, 2H), 1.68-1.57 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 190.8, 145.1, 144.0,

134.9, 129.7, 129.3, 128.8, 126.9, 126.7, 60.0, 42.4, 21.8. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{20}H_{23}NO_2S_3$ 406.0964; Found: 406.0969.

tosylmethyl diethylcarbamodithioate (4ah). brown oil (75%, 23.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 5.24 (s, 2H), 3.88 (q, J = 7.1 Hz, 2H), 3.72 (q, J = 7.2 Hz, 2H), 2.42 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.3, 145.1, 134.7, 129.5, 129.4, 59.8, 51.1, 47.1, 21.7, 12.8, 11.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₃H₁₉NO₂S₃ 318.0651; Found: 318.0663.

tosylmethyl dipropylcarbamodithioate (4ai). brown oil (72%, 24.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.25 (s, 2H), 3.82-3.71 (m, 2H), 3.64-3.55 (m, 2H), 2.42 (s, 3H), 1.70 (h, *J* = 7.5 Hz, 2H), 1.57 (h, *J* = 7.5 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H), 0.85 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.9, 145.0, 134.6, 129.5, 129.4, 59.9, 58.3, 54.5, 21.7, 21.1, 19.4, 11.2, 11.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₂₃NO₂S₃ 346.0964; Found: 346.0972.

tosylmethyl diallylcarbamodithioate (4aj). brown oil (48%, 16.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.3 Hz, 2H), 5.84-5.59 (m, 2H), 5.29 (d, *J* = 10.4 Hz, 1H), 5.24 (s, 2H), 5.22-5.03 (m, 3H), 4.50 (d, *J* = 6.1 Hz, 2H), 4.29 (d, *J* = 5.4 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.0, 145.1, 134.6, 130.2, 129.8, 129.6, 129.4, 119.0, 118.7, 60.1, 58.1, 53.9, 21.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₉NO₂S₃ 342.0651; Found: 342.0657.

tosylmethyl 4-phenylpiperidine-1-carbodithioate (4ak). brown oil (77%, 28.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 7.9 Hz, 2H), 5.25 (s, 2H), 3.84-3.75 (m, 2H), 3.68-3.57 (m, 2H), 2.42 (s, 3H), 1.68-1.60 (m, 2H), 1.57 -1.46 (m, 2H), 1.40-1.32 (m, 2H), 1.30-1.22 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.6, 145.0, 134.6, 129.5, 129.4, 59.9, 56.5, 52.7, 29.7, 28.1, 21.8, 20.1, 20.0, 13.9, 13.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₂₇NO₂S₃ 374.1277; Found: 374.1291.

tosylmethyl dihexylcarbamodithioate (4al). brown oil (42%, 18.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.3 Hz, 2H), 5.25 (s, 2H), 3.82-3.73 (m, 2H), 3.66-3.56 (m, 2H), 2.42 (s, 3H), 1.65 (t, *J* = 7.7 Hz, 2H), 1.50 (q, *J* = 7.5 Hz, 2H), 1.29 (d, *J* = 23.5 Hz, 12H), 0.89 (dd, *J* = 12.1, 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 190.5, 145.0, 134.6, 129.5, 129.4, 59.9, 56.8, 53.0, 31.5, 31.4, 27.6, 26.5, 26.4, 25.9, 22.6, 21.7, 14.0. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₁H₃₅NO₂S₃ 430.1903; Found: 430.1921.

tosylmethyl diheptylcarbamodithioate (4am). brown oil (51%, 25.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 8.2 Hz, 2H), 5.25 (s, 2H), 3.84-3.70 (m, 2H), 3.64-3.53 (m, 2H), 2.42 (s, 3H), 1.66 (q, *J* = 7.4 Hz, 2H), 1.51 (p, *J* = 7.7 Hz, 2H), 1.33-1.23 (m, 16H), 0.92-0.86 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 190.5, 145.0, 134.6, 129.5, 129.4, 59.9, 56.8, 53.0, 31.8, 31.7, 29.0, 28.9, 27.7, 26.8, 26.7, 26.0, 22.6, 21.8, 14.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₃H₃₉NO₂S₃ 458.2216; Found: 458.2218.

2,2,6,6-tetramethyl-1-(tosylmethoxy)piperidine (5a). yellow solid (25%, 25.0 mg), m.p. 113-114°C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 4.78 (s, 2H), 2.46 (s, 3H), 1.70 (s, 1H), 1.54 (s, 1H), 1.41-1.36 (m, 4H), 0.98 (d, J = 7.9 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 129.7, 129.0, 89.6, 60.8, 39.7, 32.4, 21.8, 20.1, 16.8. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₇H₂₇NO₃S 348.1604; Found: 348.162

11. NMR spectra

¹H NMR-spectrum of 4a

¹³C NMR-spectrum of 4a

¹H NMR-spectrum of 4b

¹³C NMR-spectrum of 4b

σ/ppm

¹H NMR-spectrum of 4c

¹³C NMR-spectrum of 4c

¹⁹F NMR-spectrum of 4c

1h13.2-4-F.1.1.1r =

S24

¹³C NMR-spectrum of 4d

¹H NMR-spectrum of 4e

¹³C NMR-spectrum of 4e

¹H NMR-spectrum of 4f

¹³C NMR-spectrum of 4f

¹³C NMR-spectrum of 4g

¹H NMR-spectrum of 4h

¹³C NMR-spectrum of 4h

¹H NMR-spectrum of 4i

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 σ/ppm

¹³C NMR-spectrum of 4i

¹³C NMR-spectrum of 4j

¹³C NMR-spectrum of 4k

¹³C NMR-spectrum of 4l

¹³C NMR-spectrum of 4m

¹³C NMR-spectrum of 4n

¹⁹F NMR-spectrum of 4n

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 o/ppm

¹³C NMR-spectrum of 40

¹⁹F NMR-spectrum of 40

¹³C NMR-spectrum of 4p

¹³C NMR-spectrum of 4q

¹H NMR-spectrum of 4r

¹³C NMR-spectrum of 4r

¹H NMR-spectrum of 4s

¹³C NMR-spectrum of 4s

¹H NMR-spectrum of 4t

¹³C NMR-spectrum of 4t

¹H NMR-spectrum of 4u

¹³C NMR-spectrum of 4u

¹H NMR-spectrum of 4v

¹³C NMR-spectrum of 4v

¹H NMR-spectrum of 4w

¹³C NMR-spectrum of 4w

¹H NMR-spectrum of 4x

¹³C NMR-spectrum of 4x

lhl1.20-13-c.1.1.1r —

- 59.6 - 21.8 - 21.8

¹H NMR-spectrum of 4y

¹³C NMR-spectrum of 4y

¹H NMR-spectrum of 4z

¹³C NMR-spectrum of 4z

¹H NMR-spectrum of 4aa

¹³C NMR-spectrum of 4aa

¹H NMR-spectrum of 4ab

¹³C NMR-spectrum of 4ab

¹H NMR-spectrum of 4ac

¹³C NMR-spectrum of 4ac

¹H NMR-spectrum of 4ad

¹³C NMR-spectrum of 4ad

¹H NMR-spectrum of 4ae

¹³C NMR-spectrum of 4ae

¹H NMR-spectrum of 4af

¹³C NMR-spectrum of 4af

lh12.29-7-c.1.1.1r —

$\begin{array}{c} 77.4 \\ 77.1 \\ 75.1 \\ 76.8 \\ 759.0 \\ -53.6 \\ -53.6 \\ -50.6 \\ -36.3 \\ -36$

¹H NMR-spectrum of 4ag

¹³C NMR-spectrum of 4ag

 $\underbrace{+77.4}_{76.8}$ -60.0 -42.4 -21.8

¹H NMR-spectrum of 4ah

¹³C NMR-spectrum of 4ah

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 σ/ppm

-5.25 $\begin{array}{c} 2.42 \\ 11.75 \\ 11.75 \\ 11.75 \\ 11.57 \\$ C7.82 28 3.78 3.76 3.74 3.60 3.58 3.58 њ¢ сң 1.94H 1.88H 3.124 3.124 1.86H .86. 1.89H 2.18H 2.09H 3.00H 8.5 8.0 7.5 7.0 6.5 6.0 5.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 5.0 4.5 4.0 3.5 σ/ppm

¹H NMR-spectrum of 4ai

¹³C NMR-spectrum of 4ai

¹H NMR-spectrum of 4aj

¹³C NMR-spectrum of 4aj

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 o/ppm

¹H NMR-spectrum of 4ak

¹³C NMR-spectrum of 4ak

¹H NMR-spectrum of 4al

¹³C NMR-spectrum of 4al

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 σ/ppm

¹H NMR-spectrum of 4am

¹³C NMR-spectrum of 4am

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 σ/ppm

¹H NMR-spectrum of 5a

¹³C NMR-spectrum of 5a

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 o/ppm