Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information (SI)

Photoinitiated Thiol-ene Mediated Functionalization of 4,5-Enoses

Alejandro Prieto-Castañeda,^{a,c} Harlei Martin,^a Tapasi Manna,^b Laura Beswick,^b Joshua T. McLean,^a Imlirenla Pongener,^b Inés Rabadán González,^a Brendan Twamley,^a Gavin J. Miller,^{b*} Eoin M. Scanlan^{a*}

^a School of Chemistry & Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, 152-160 Pearse Street, Dublin, D02 R590, Ireland.

^b School of Chemical and Physical Sciences & Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.

^c Chemical and Environmental Technology Department, ESCET, Universidad Rey Juan Carlos, 28933, Móstoles, Spain.

* E-mail: eoin.scanlan@tcd.ie; g.j.miller@keele.ac.uk

Supporting Information I

General methods, synthetic procedures and characterization

Table of contents

1. General experimental details	S2
2. Synthesis and characterization	S3
2.1. General synthetic procedures	S3
2.2. Synthesis and characterization of compounds	S4
2.2.1. Thiol-ene reactions on 1,2-glycals	S4
2.2.2. Synthesis of 4,5-glycal 1	S 8
2.2.3. Thiol-ene reactions on 4,5-glycal 1	S9
2.2.4. Synthesis of 4,5-glycals 7-10	S15
2.2.5. Thiol-ene reactions on 4,5-glycals 7-10	S22
2.2.6. Synthesis of disaccharide 22 and thiol-ene reaction	S24
3. References	S28

1. General experimental details

All starting materials and reagents were commercial (Sigma-Aldrich, Merck, Fluorochem, Alfa-Aesar, Acros and Biosynth) and used without further purification unless otherwise stated. All UV reactions were carried out in a Luzchem photoreactor LZC-4 (120 V / 60 Hz) containing 14 UV-A lamps irradiating at 352 nm. Glycal synthesis reactions were conducted using anhydrous solvents under an atmosphere of N2. Dry solvents were obtained using equipment based on Grubb's design and stored under N₂ in a Young's flask over 4Å molecular sieves, except for anhydrous DMF and pyridine (Acros). For air sensitive reactions, solvents were added via syringe through rubber septa. Analytical thin-layer chromatography (TLC) was performed using Merck 60 F254 silica gel aluminium plates (pre-coated, 0.2 mm tick, 4 x 6 cm from 20 x 20 plates), and visualised by UV light (254 nm), 10% H₂SO₄ in EtOH followed by heat or molybdenum staining [ammonium molybdate (5.0 g) and concentrated H₂SO₄ (5.3 mL) in 100 mL H₂O] followed by heat. Flash column chromatography was performed using silica gel (Merck or Davisil, 230-400 mesh, 63-40 µm), the used eluents are specified in each case, and the proportions indicate the volume:volume ratio. The isolated products appear in order of elution, supported by their retention factor values (R_f). NMR spectra were recorded at 20 °C in a Bruker AV 400 spectrometer (400.13 MHz for ¹H and 100.6 MHz for ¹³C) and a Bruker AV 600 spectrometer (600.13 MHz for ¹H and 150.9 MHz for ¹³C), using CDCl₃, CD₃OD and D₂O (purchased from Apollo Scientific and Merck) as solvents. ¹H NMR and ¹³C NMR chemical shifts (δ in ppm) are referenced to internal solvent CDCl₃ (δ = 7.260 and 77.16 ppm, respectively), CD₃OD (δ = 3.310 and 49.00 ppm, respectively) and D₂O (δ = 4.790 ppm). Multiplicities are reported as s = singlet, br s = broad singlet, d = doublet, br d = broad doublet, t = triplet, q = quartet, p = pentet, dd = doublet of doublets, dd = doublet of doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, td = doublettriplet of doublets, tt = triplet of triplets, m = multiplet, and coupling constants as J (in Hz). DEPT 135 experiments were used to determine the type of carbon nucleus (C vs CH vs CH₂ vs CH₃). The assignment of the signals was confirmed by 2D spectra (COSY, HSQC, HMBC), and TOCSY was used to unequivocally discern between diastereomers. NMR data was processed using Mestrenova software. High-resolution mass spectrometry (HRMS) analysis was performed with a ThermoScientific LTQ Orbitrap XL and Q-Tof Premier Waters MALDI-quadrupole time-of-flight (Q-Tof) mass spectrometer equipped with a Z-spray electrospray ionization (ESI), electron ionization (EI), atmospheric-pressure chemical ionization (APCI), and matrix assisted laser desorption ionization (MALDI) sources, using DCTB (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile) as the MALDI matrix.

3,4,6-Tri-*O*-acetyl-1,2-dideoxy-D-*arabino*-hex-1-enopyranose (S1), 2,3,4,6-tetra-*O*-acetyl-1deoxy-D-*arabino*-hex-1-enopyranose (S2) and D-mannose (S8) were purchased from Biosynth. Methyl (methyl 2-*O*-benzoyl-3-*O*-benzyl- α -L-idopyranosyl)uronate-(1 \rightarrow 4)-2-azido-6-*O*-benzoyl-3-*O*benzyl-2-deoxy- α -D-glucopyranoside (23) was purchased from Heparin Building Blocks.

2. Synthesis and characterization

2.1. General synthetic procedures

2.1.1. Photoinitiated thiol-ene reaction

The appropriate 4,5-glycal or 1,2-glycal (1 equiv), 2,2-dimethoxy-2-phenylacetophenone (DPAP, 0.1 equiv) and 4-methoxyacetophenone (MAP, 0.1 equiv) were dissolved in the appropriate thiol (3 equiv). The reaction mixture was stirred and irradiated in the UV oven at room temperature for 1-6 h. The reaction progress was monitored by TLC. Once the reaction was completed, the mixture was purified by silica gel flash column chromatography.

2.1.2. Uronic acid esterification

According to an analogous previously described method,¹ the appropriate uronic acid (1 equiv), K_2CO_3 (3 equiv) and CH_3I (3 equiv) were dissolved in DMF. The reaction mixture was stirred at room temperature for 5-14 h. Then, the reaction was quenched with saturated aqueous $Na_2S_2O_3$ solution and extracted with CH_2Cl_2 . The aqueous layer was back extracted twice with CH_2Cl_2 , and the combined organic layers were dried over anhydrous Na_2SO_4 , filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography.

2.1.3. DBU-mediated β -elimination

According to a previously described method,² and applying slight modifications, to a solution of the appropriate saccharide (1 equiv) in CH_2Cl_2 at 0 °C was added dropwise 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 2 equiv), and the reaction mixture was stirred at room temperature for 2-19 h. Then, the reaction was diluted with CH_2Cl_2 and washed with 1M aqueous HCl solution and saturated aqueous NaHCO₃ solution. The organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography.

2.1.4. DMP oxidation and Et_3N -mediated β -elimination

To a solution of the appropriate saccharide (1 equiv) in CH_2Cl_2 was added Dess-Martin periodinane (DMP, 1.2 equiv), and the reaction mixture was stirred at room temperature for 6 h. Then, the reaction was diluted with CH_2Cl_2 , washed with saturated aqueous $Na_2S_2O_3$ and $NaHCO_3$ solutions, and H_2O . The organic layers were dried over anhydrous Na_2SO_4 , filtered and concentrated *in vacuo*. The crude was dissolved in CH_2Cl_2 , and Et_3N (1.2 equiv) was added dropwise, and the reaction mixture was stirred at room temperature for 1-2 h. After that, the reaction was diluted with CH_2Cl_2 and washed with 1M aqueous HCl solution, saturated aqueous $NaHCO_3$ solution, H_2O and brine. The organic

layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography.

2.1.5. NaBH₄ reduction

To a solution of the appropriate 4,5-glycal (1 equiv) in THF at 0 °C was added NaBH₄ (1.2 equiv), and the reaction mixture was stirred at room temperature for 1-2 h. Then, the reaction was quenched with saturated aqueous NH₄Cl solution, and the organic solvent was removed *in vacuo*. After that, the residue was dissolved in EtOAc, and washed with H₂O and brine. The organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography.

2.2. Synthesis and characterization of compounds

2.2.1. Thiol-ene reactions on 1,2-glycals

Table S1. Thiol-ene condition tests on commercially available 1,2-glycals.

3,4,6-tri-O-acetyl-2-deoxy-1-S-(2-mercaptoethyl)-1-thio-a-D-glucopyranose (S3a), 3,4,6-tri-Oacetyl-1-deoxy-2-S-(2-mercaptoethyl)-2-thio-D-glucopyranose (S3b) and 3,4,6-tri-O-acetyl-1-deoxy-2-S-(2-mercaptoethyl)-2-thio-D-mannopyranose (S3c)

According to general procedure 2.1.1., commercial 3,4,6-tri-*O*-acetyl-1,2-dideoxy-D-*arabino*-hex-1enopyranose (**S1**, 75 mg, 0.27 mmol), **4a** (0.07 mL, 0.83 mmol), DPAP (6.9 mg, 0.027 mmol) and MAP (4.1 mg, 0.027 mmol) were reacted for 1 h. Flash chromatography using hexane/acetone (90:10) afforded **S3a** (10.1 mg, 10%) as a colourless syrup, **S3b** (54.5 mg, 54%) as a colourless syrup and **S3c** (35.7 mg, 35%) as a colourless syrup. Combined isolated yield: 100.3 mg, 99%, **S3a/S3b/S3c** = 10:54:36. **R**_f (**S3a/S3b/S3c**) = 0.25 / 0.17 / 0.15 (hexane/acetone 80:20).

S3a: ¹H NMR (400 MHz, CDCl₃) δ 5.44 (d, *J* = 5.2 Hz, 1H, H-1), 5.22 (ddd, *J* = 11.6, 8.8, 5.6 Hz, 1H, H-3), 4.96 (td, *J* = 9.6, 3.6 Hz, 1H, H-4), 4.38 (ddd, *J* = 10.0, 5.2, 2.4 Hz, 1H, H-5), 4.31 (dd, *J* = 12.0, 5.2 Hz, 1H, H-6a), 4.06 (dd, *J* = 12.0, 2.4 Hz, 1H, H-6b), 2.98-2.73 (m, 4H, SCH₂ and CH₂SH), 2.29 (ddd, *J* = 13.6, 5.2, 1.2

Hz, 1H, H-H-2ax), 2.18 (ddd, J = 11.2, 5.6, 2.4 Hz, 1H, H-2eq), 2.09 (s, 3H, CH₃CO), 2.05 (s, 3H, CH₃CO), 2.01 (s, 3H, CH₃CO), 1.65 (d, J = 8.0 Hz, 1H, SH) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.8 (CO), 170.2 (CO), 170.0 (CO), 80.6 (C-1), 69.6 (C-4), 69.4 (C-3), 68.5 (C-5), 62.5 (C-6), 35.5 (SCH₂), 35.3 (C-2), 24.8 (CH₂SH), 21.0 (CH₃), 20.9 (CH₃), 20.8 (CH₃) ppm. HRMS (ESI⁺) *m/z* calcd. for C₁₄H₂₂NaO₇S₂ [M+Na]⁺: 389.0705; found: 389.0700.

S3b: ¹H NMR (400 MHz, CDCl₃) δ 5.00-4.93 (m, 2H, H-3 and H-4), 4.23 (dd, *J* = 12.4, 4.8 Hz, 1H, H-6a), 4.13 (dd, *J* = 12.0, 5.2 Hz, 1H, H-1eq), 4.08 (dd, *J* = 12.4, 2.0 Hz, 1H, H-6b), 3.62-3.55 (m, 1H, H-5), 3.37 (t, *J* = 12.0 Hz, 1H, H-1ax), 2.91-2.84 (m, 1H, H-2), 2.80-2.74 (m, 2H, SCH₂), 2.70-2.60 (m, 2H, C<u>H</u>₂SH), 2.082 (s,

3H, CH₃CO), 2.078 (s, 3H, CH₃CO), 2.01 (s, 3H, CH₃CO), 1.68 (t, J = 8.0 Hz, 1H, SH) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.8 (CO), 170.4 (CO), 169.9 (CO), 76.7 (C-5), 74.1 (C-3), 70.4 (C-1), 69.6 (C-4), 62.4 (C-6), 45.8 (C-2), 35.7 (SCH₂), 25.1 (CH₂SH), 20.91 (CH₃), 20.90 (CH₃), 20.8 (CH₃) ppm. HRMS (ESI⁺) m/z calcd. for C₁₄H₂₂NaO₇S₂ [M+Na]⁺: 389.0705; found: 389.0699.

S3c: ¹H NMR (400 MHz, CDCl₃) δ 5.27 (t, J = 9.2 Hz, 1H, H-4), 5.09 (dd, J = 8.2, 4.4 Hz, 1H, H-3), 4.18 (dd, J = 12.4, 5.2 Hz, 1H, H-6a), 4.13 (dd, J = 12.4, 2.8 Hz, 1H, H-6b), 4.10 (dd, J = 12.4, 2.8 Hz, 1H, H-1ax), 3.82 (dd, J = 12.4, 2.4 Hz, 1H, H-1eq), 3.58 (ddd, J = 9.0, 5.2, 2.8 Hz, 1H, H-5), 3.38 (dt, J = 4.4, 2.2 Hz, 1H, H-2),

2.85-2.78 (m, 2H, SCH₂), 2.72-2.65 (m, 2H, C<u>H</u>₂SH), 2.10 (s, 3H, CH₃CO), 2.09 (s, 3H, CH₃CO), 2.05 (s, 3H, CH₃CO), 1.72 (t, J = 8.0 Hz, 1H, SH) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.9 (CO), 170.5 (CO), 169.6 (CO), 77.1 (C-5), 74.0 (C-3), 69.6 (C-1), 66.7 (C-4), 62.7 (C-6), 46.4 (C-2), 36.7 (SCH₂), 24.9 (CH₂SH), 21.0 (CH₃), 20.9 (CH₃), 20.8 (CH₃) ppm. HRMS (ESI⁺) m/z calcd. for C₁₄H₂₂NaO₇S₂ [M+Na]⁺: 389.0705; found: 389.0701.

3,4,6-tri-O-acetyl-2-S-acetyl-1-deoxy-2-thio-D-glucopyranose (S4a) and 3,4,6-tri-O-acetyl-2-Sacetyl-1-deoxy-2-thio-D-mannopyranose (S4b)

According to general procedure 2.1.1., commercial S1 (100 mg, 0.37 mmol), 4g (0.08 mL, 1.10 mmol), DPAP (9.4 mg, 0.037 mmol) and MAP (5.5 mg, 0.037 mmol) were reacted for 1.5 h. Flash chromatography using hexane/acetone (90:10) afforded S4a³ (24.7 mg, 19%) as an off-white solid and S4b³ (94.7 mg, 74%) as an off-white solid. Combined isolated yield: 119.4 mg, 93%, S4a/S4b = 20:80. R_f (S4a/S4b) = 0.17 / 0.12 (hexane/acetone 80:20).

(s, 3H, CH₃COS), 2.09 (s, 3H, CH₃CO), 2.02 (s, 3H, CH₃CO), 2.01 (s, 3H, CH₃CO) ppm. ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ 193.4 (COS), 170.8 (CO), 170.4 (CO), 169.7 (CO), 76.7 (C-5), 72.0 (C-3), 69.7 (C-4), 69.2 (C-1), 62.4 (C-6), 43.2 (C-2), 30.9 (<u>C</u>H₃COS), 20.9 (CH₃), 20.7 (2CH₃) ppm. **HRMS** (ESI⁺) m/z calcd. for C₁₄H₂₀NaO₈S [M+Na]⁺: 371.0777; found: 371.0780.

S4b: ¹H NMR (400 MHz, CDCl₃) δ 5.20 (dd, J = 9.6, 4.8 Hz, 1H, H-3), 5.06 (t, J = 9.6 Hz, 1H, H-4), 4.22 (dt, J = 4.0, 2.0 Hz, 1H, H-2), 4.16 (dd, J = 12.4, 5.2 Hz, 1H, H-6a), 4.11 (dd, J = 12.4, 2.4 Hz, 1H, H-6b), 4.02 (dd, J = 12.8, 2.0 Hz, 1H, H-1eq), 3.90 (dd, J = 12.4, 2.0 Hz, 1H, H-1ax), 3.58 (ddd, J = 9.6, 4.8, 2.4 Hz, 1H, H-

5), 2.37 (s, 3H, CH₃COS), 2.10 (s, 3H, CH₃CO), 2.03 (s, 3H, CH₃CO), 1.97 (s, 3H, CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 194.2 (COS), 170.8 (CO), 170.2 (CO), 169.6 (CO), 77.3 (C-5), 72.0 (C-3), 69.9 (C-1), 66.9 (C-4), 62.7 (C-6), 45.0 (C-2), 30.7 (<u>C</u>H₃COS), 20.9 (CH₃), 20.84 (CH₃), 20.80 (CH₃) ppm. **HRMS** (ESI⁺) *m/z* calcd. for C₁₄H₂₀NaO₈S [M+Na]⁺: 371.0777; found: 371.0775.

3,4,6-tri-O-acetyl-2-S-benzoyl-1-deoxy-2-thio-D-glucopyranose (S5a) and 3,4,6-tri-O-benzoyl-2-Sacetyl-1-deoxy-2-thio-D-mannopyranose (S5b)

According to general procedure 2.1.1., commercial **S1** (100 mg, 0.37 mmol), thiobenzoic acid (0.13 mL, 1.10 mmol), DPAP (9.4 mg, 0.037 mmol) and MAP (5.5 mg, 0.037 mmol) were reacted for 4 h. Flash chromatography using hexane/acetone (90:10) afforded **S5a** (24.3 mg, 16%) as a yellowish syrup and **S5b** (75.8 mg, 50%) as an off-white solid. Combined isolated yield: 100.1 mg, 66%, **S5a/S5b** = 24:76. **R**_f (**S5a/S5b**) = 0.18 / 0.14 (hexane/acetone 80:20).

S5a: ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.90 (m, 2H, 2CH), 7.62-7.57 (m, 1H, CH), 7.48-7.42 (m, 2H, 2CH), 5.23 (dd, J = 11.2, 9.2 Hz, 1H, H-3), 5.10 (t, J = 9.6 Hz, 1H, H-4), 4.26 (dd, J = 12.4, 4.8 Hz, 1H, H-6a), 4.17 (dd, J = 11.6, 5.2 Hz, 1H, H-1eq), 4.15 (dd, J = 12.4, 2.0 Hz, 1H, H-6b), 4.03 (td, J = 11.2, 5.6 Hz, 1H, H-2),

3.66 (ddd, J = 10.0, 4.8, 2.4 Hz, 1H, H-5), 3.49 (t, J = 11.6 Hz, 1H, H-1ax), 2.11 (s, 3H, CH₃CO), 2.03 (s, 3H, CH₃CO), 2.00 (s, 3H, CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 189.3 (COS), 170.9 (CO), 170.5 (CO), 169.7 (CO), 136.4 (C), 134.1 (CH), 128.9 (CH), 127.6 (CH), 76.8 (C-5), 72.2 (C-3), 69.9 (C-4), 69.5 (C-1), 62.5 (C-6), 43.1 (C-2), 20.9 (CH₃), 20.8 (2CH₃) ppm. HRMS (ESI⁺) m/z calcd. for C₁₉H₂₂NaO₈S [M+Na]⁺: 433.0933; found: 433.0919.

S5b: ¹**H** NMR (400 MHz, CDCl₃) δ 8.00-7.97 (m, 2H, 2CH), 7.63-7.58 (m, 1H, CH), 7.50-7.45 (m, 2H, 2CH), 5.30 (dd, J = 9.6, 4.8 Hz, 1H, H-3), 5.17 (t, J = 9.6 Hz, 1H, H-4), 4.50 (dt, J = 4.4, 2.2 Hz, 1H, H-2), 4.21 (dd, J = 12.4, 5.6 Hz, 1H, H-6a), 4.115 (dd, J = 12.4, 2.4 Hz, 1H, H-6b), 4.14 (dd, J = 12.4, 2.0 Hz, 1H, H-1eq), 4.00 (dd, J = 12.8, 2.0 Hz, 1H, H-1ax), 3.64 (ddd, J = 9.6, 5.2, 2.4 Hz, 1H, H-5), 2.12 (s, 3H, CH₃CO), 2.05 (s, 3H, CH₃CO), 1. (s, 3H, CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 190.3 (COS), 170.9 (CO), 170.3 (CO), 169.7 (CO), 136.5 (C), 134.0 (CH), 128.9 (CH), 127.6 (CH), 77.4 (C-5), 72.1 (C-3), 70.2 (C-1), 67.1 (C-4), 62.8 (C-6), 44.9 (C-2), 20.93 (CH₃), 20.90 (CH₃), 20.8 (CH₃) ppm. HRMS (ESI⁺) m/z calcd. for C₁₉H₂₂NaO₈S [M+Na]⁺: 433.0933; found: 433.0931.

2-mercaptoethyl 2,3,4,6-tetra-O-acetyl-1-thio-a-D-glucopyranoside (S6)

According to general procedure 2.1.1., commercial 2,3,4,6-tetra-*O*-acetyl-1-deoxy-D-*arabino*-hex-1enopyranose (**S2**, 100 mg, 0.30 mmol), **4a** (0.08 mL, 0.91 mmol), DPAP (7.7 mg, 0.03 mmol) and MAP (4.5 mg, 0.03 mmol) were reacted for 1 h. Flash chromatography using CH₂Cl₂/EtOAc (95:5) afforded **S6**⁴ (98.9 mg, 77%) as an off-white solid. **R**_f (**S6**) = 0.52 (CH₂Cl₂/EtOAc 95:5).

S6: ¹H NMR (400 MHz, CDCl₃) δ 5.70 (d, J = 5.8 Hz, 1H, H-1), 5.35 (t, J = 9.8 Hz, 1H, H-3), 5.06-4.99 (m, 2H, H-2 and H-4), 4.43 (ddd, J = 10.4, 5.2, 2.0 Hz, 1H, H-5), 4.27 (dd, J = 12.4, 5.2 Hz, 1H, H-6a), 4.10 (dd, J = 12.4, 2.0 Hz, 1H, H-6b), 2.86-2.72 (m, 4H, SCH₂ and CH₂SH), 2.10 (s, 3H,

CH₃CO), 2.07 (s, 3H, CH₃CO), 2.04 (s, 3H, CH₃CO), 2.01 (s, 3H, CH₃CO), 1.63 (d, *J* = 8.0 Hz, 1H, SH) ppm.

2,3,4,6-tetra-O-acetyl-1-S-acetyl-1-thio-a-D-glucopyranose (S7)

According to general procedure 2.1.1., commercial **S2** (100 mg, 0.30 mmol), **4g** (65 μ L, 0.91 mmol), DPAP (7.7 mg, 0.03 mmol) and MAP (4.5 mg, 0.03 mmol) were reacted for 2.5 h. Flash chromatography using hexane/acetone (85:15) afforded **S7**^{4,5} (55.4 mg, 45%) as an off-white solid. **R**_f (**S7**) = 0.23 (hexane/acetone 75:25).

6b), 3.96 (ddd, *J* = 10.0, 4.0, 2.0 Hz, 1H, H-5), 2.42 (s, 3H, CH₃COS), 2.08 (s, 3H, CH₃CO), 2.02 (s, 6H, 2CH₃CO), 2.01 (s, 3H, CH₃CO) ppm.

2.2.2. Synthesis of 4,5-glycal 1

Synthesis of methyl 1,2,3-tri-O-acetyl-4-deoxy-β-D-gluco-hex-4-enopyranuronate (1)

Scheme S1. Synthesis of 1 from 2. Reaction conditions: (i) CH₃I, K₂CO₃, DMF, rt, 5h; (ii) DBU, CH₂Cl₂, 0 °C rt, 19h.

Methyl 1,2,3,4-tetra-O-acetyl- β -D-glucopyranuronate (3)

According to general procedure 2.1.2., 1,2,3,4-tetra-*O*-acetyl- β -D-glucopyranuronic acid⁶ (**2**, 4 g, 11.04 mmol), K₂CO₃ (4.58 g, 33.12 mmol) and CH₃I (2.06 mL, 33.12 mmol) in DMF (36 mL) were reacted for 5 h. After the appropriate quenching and extraction, the residue was washed repeatedly with Et₂O affording **3**⁷ (3.12 g, 75%) as an off-white solid that was used without further purification.

$$\begin{array}{c} \textbf{3: }^{1}\textbf{H NMR} (400 \text{ MHz, CDCl}_{3}) \ \delta \ 5.77 \ (d, \ J = 7.8 \text{ Hz}, 1\text{H}, \text{H-1}), \ 5.34-5.29 \ (m, \\ \textbf{1H, H-3}), \ 5.25 \ (t, \ J = 9.4 \text{ Hz}, 1\text{H}, \text{H-4}), \ 5.15 \ (dd, \ J = 8.9, \ 7.7 \text{ Hz}, 1\text{H}, \text{H-2}), \\ \textbf{4.18} \ (d, \ J = 9.4 \text{ Hz}, 1\text{H}, \text{H-5}), \ 3.75 \ (s, \ 3\text{H}, \text{OCH}_{3}), \ 2.12 \ (s, \ 3\text{H}, \text{CH}_{3}\text{CO}), \ 2.04 \end{array}$$

(s, 6H, 2CH₃CO), 2.03 (s, 3H, CH₃CO) ppm.

Methyl 1,2,3-tri-O-acetyl-4-deoxy-β-D-gluco-hex-4-enopyranuronate (1)

According to general procedure 2.1.3., **3** (3.12 g, 8.29 mmol) and DBU (2.48 mL, 16.58 mmol) in CH₂Cl₂ (20 mL) were reacted for 19 h. Flash chromatography using CH₂Cl₂/Et₂O (90:10) afforded 1² (2.15 g, 82%) as a white solid. $\mathbf{R}_{f}(1) = 0.70$ (CH₂Cl₂/Et₂O 90:10).

CH₃CO), 2.09 (s, 3H, CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.7 (CO), 169.2 (CO), 168.5 (CO), 161.8 (COO), 143.1 (C-5), 107.0 (C-4), 88.6 (C-1), 66.9 (C-2), 63.8 (C-3), 52.9 (OCH₃), 20.9 (CH₃), 20.78 (CH₃), 20.76 (CH₃) ppm. HRMS (ESI⁺) *m*/*z* calcd. for C₁₃H₂₀NO₉ [M+NH₄]⁺: 334.1133; found: 334.1138.

2.2.3. Thiol-ene reactions on 4,5-glycal 1

Methyl 1,2,3-tri-O-acetyl-4-S-(2-mercaptoethyl)-4-thio- α -L-idopyranuronate (5a) and methyl 1,2,3-tri-O-acetyl-4-S-(2-mercaptoethyl)-4-thio- β -D-galactopyranuronate (6a)

According to general procedure 2.1.1., methyl 1,2,3-tri-*O*-acetyl-4-deoxy- β -D-gluco-hex-4enopyranuronate (1, 75 mg, 0.24 mmol), 1,2-ethanedithiol (4a, 0.06 mL, 0.72 mmol), DPAP (6.1 mg, 0.024 mmol) and MAP (3.6 mg, 0.024 mmol) were reacted for 1 h. Flash chromatography using hexane/acetone (90:10) afforded 5a (24.3 mg, 25%) as a colourless syrup and 6a (70.1 mg, 72%) as an off-white solid. Combined isolated yield: 94.4 mg, 97%, 5a/6a = 26:74. R_f (5a/6a) = 0.32 / 0.25 (hexane/acetone 75:25).

5a: ¹H NMR (400 MHz, CDCl₃) δ 6.16 (dd, *J* = 2.4, 0.8 Hz, 1H, H-1), 5.26 (td, *J* = 3.6, 0.8 Hz, 1H, H-3), 4.96 (d, *J* = 3.6 Hz, 1H, H-5), 4.76 (ddd, *J* = 3.6, 2.4, 0.8 Hz, 1H, H-2), 3.85 (s, 3H, OCH₃), 3.12 (app t, *J* = 3.6 Hz, 1H, H-4), 2.83-2.76 (m, 2H, SCH₂), 2.76-2.69 (m, 2H, C<u>H</u>₂SH), 2.14 (s, 3H, CH₃CO), 2.12 (s, 3H, CH₃CO), 2.11 (s, 3H, CH₃CO), 1.66 (t, *J* = 8.0 Hz, 1H, SH) ppm. ¹³C{¹H}

RMN (101 MHz, CDCl₃) δ 169.6 (CO), 169.5 (CO), 168.8 (COO), 168.3 (CO), 91.3 (C-1), 69.99 (C-5), 69.97 (C-3), 67.0 (C-2), 52.9 (OCH₃), 43.9 (C-4), 38.2 (SCH₂), 24.7 (CH₂SH), 21.1 (CH₃), 21.0 (CH₃), 20.9 (CH₃) ppm. **HRMS** (ESI⁺) *m/z* calcd. for C₁₅H₂₂NaO₉S₂ [M+Na]⁺: 433.0603; found: 433.0595.

6a: ¹H NMR (400 MHz, CDCl₃) δ 5.64 (d, J = 8.4 Hz, 1H, H-1), 5.34 (dd, J = 10.0, 8.4 Hz, 1H, H-2), 5.17 (dd, J = 10.0, 4.4 Hz, 1H, H-3), 4.53 (d, J = 2.0 Hz, 1H, H-5), 3.84 (s, 3H, OCH₃), 3.67 (dd, J = 4.4, 2.0 Hz, 1H, H-4), 2.82-2.70 (m, 2H, SCH₂), 2.65-2.57 (m, 2H, CH₂SH), 2.13 (s, 3H, CH₃CO), 2.11 (s, 3H, CH₃CO), 2.04 (s, 3H, CH₃CO), 1.74 (t, J = 8.0 Hz, 1H, SH) ppm. ¹³C{¹H} NMR

(101 MHz, CDCl₃) δ 170.4 (CO), 169.3 (CO), 169.2 (CO), 166.7 (COO), 92.1 (C-1), 75.0 (C-5), 72.8 (C-3), 68.6 (C-2), 53.1 (OCH₃), 48.5 (C-4), 38.0 (SCH₂), 24.6 (CH₂SH), 21.0 (2CH₃), 20.8 (CH₃) ppm. **HRMS** (ESI⁺) *m/z* calcd. for C₁₅H₂₂NaO₉S₂ [M+Na]⁺: 433.0603; found: 433.0590.

* 1 mmol scale synthesis of 5a and 6a: According to general procedure 2.1.1., 4,5-glycal 1 (316.3 mg, 1 mmol), 4a (0.25 mL, 3 mmol), DPAP (25.6 mg, 0.1 mmol) and MAP (15 mg, 0.1 mmol) were reacted for 1 h. Flash chromatography using hexane/acetone (90:10) afforded 5a (57.5 mg, 14%) as a colourless syrup and 6a (299.6 mg, 73%) as an off-white solid. Combined isolated yield: 357.1 mg, 87%, 5a/6a = 16:84.

** Condition tests: Thiol-ene reaction was tested using other photoinitiators, light sources, low temperature, and thiol-Michael addition conditions. The tests were carried out on 1 (75 mg, 0.24 mmol) using 4a (0.06 mL, 0.72 mmol), and following the parameters collected in Table 1.

*** *Methyl* 4,5-(*ethane-1,2-dithiyl*)-4-deoxy-2,3-di-O-acetyl-β-D-glucopyranuronate (6a'): Compound 6a' was obtained by spontaneous intramolecular cyclization during the concentration step by heating while attempting to recrystallize 6a in ethanol. Compound 6a' was isolated as colourless, plate-shaped crystals.

 $6a': ^{1}H NMR (400 MHz, CDCl_{3}) \delta 5.94 (dd, J = 10.8, 9.6 Hz, 1H, H-3), 5.28 (t, J = 8.0 Hz, 1H, H-1), 4.98 (dd, J = 9.6, 8.0 Hz, 1H, H-2), 3.89 (s, 3H, OCH_{3}), 3.53 (ddd, J = 14.0, 12.8, 2.8 Hz, 1H, ¹/₂SCH₂-a), 3.37 (br d, J = 8.0 Hz, 1H, OH), 3.30 (d, J = 10.8 Hz, 1H, H-4), 3.09-2.98 (m, 2H, ¹/₂SCH₂-a and ¹/₂SCH₂-a)$

b), 2.35 (ddd, *J* = 14.8, 4.0, 2.8 Hz, 1H, ½SCH₂-b), 2.12 (s, 3H, CH₃CO), 2.11 (s, 3H, CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.9 (CO), 170.4 (CO), 167.2 (COO), 94.0 (C-1), 83.2 (C-5), 74.8 (C-2), 67.1 (C-3), 54.0 (OCH₃), 44.7 (C-4), 33.4 (SCH₂-a), 22.6 (SCH₂-b), 20.9 (CH₃), 20.8 (CH₃) ppm. HRMS (ESI⁺) *m/z* calcd. for C₁₃H₁₈NaO₈S₂ [M+Na]⁺: 389.0341; found: 389.0336.

Methyl 1,2,3-*tri-O-acetyl-4-S-(3-mercaptopropyl)-4-thio-\alpha-L-idopyranuronate (5b) and methyl* 1,2,3-*tri-O-acetyl-4-S-(3-mercaptopropyl)-4-thio-\beta-D-galactopyranuronate (6b)*

According to general procedure 2.1.1., 4,5-glycal 1 (75 mg, 0.24 mmol), 1,3-propanedithiol (4b, 0.07 mL, 0.72 mmol), DPAP (6.1 mg, 0.024 mmol) and MAP (3.6 mg, 0.024 mmol) were reacted for 1 h. Flash chromatography using hexane/acetone (90:10) afforded **5b** (22.1 mg, 22%) as a colourless syrup and **6b** (71.4 mg, 71%) as an off-white solid. Combined isolated yield: 93.5 mg, 92%, **5b/6b** = 23:77. \mathbf{R}_{f} (**5b/6b**) = 0.21 / 0.16 (hexane/acetone 75:25).

CH₂), 1.35 (t, J = 8.0 Hz, 1H, SH) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.6 (CO), 169.4 (CO), 168.8 (COO), 168.3 (CO), 91.3 (C-1), 70.2 (C-5), 69.8 (C-3), 67.2 (C-2), 52.8 (OCH₃), 43.9 (C-4), 33.3 (CH₂), 32.4 (SCH₂), 23.2 (CH₂SH), 21.0 (CH₃), 20.99 (CH₃), 20.92 (CH₃) ppm. HRMS (ESI⁺) m/z calcd. for C₁₆H₂₄NaO₉S₂ [M+Na]⁺: 447.0759; found: 447.0745.

6b: ¹H NMR (400 MHz, CDCl₃) δ 5.63 (d, J = 8.0 Hz, 1H, H-1), 5.35 (dd, J = 10.0, 8.0 Hz, 1H, H-2), 5.17 (dd, J = 10.0, 4.4 Hz, 1H, H-3), 4.53 (d, J = 2.0 Hz, 1H, H-5), 3.82 (s, 3H, OCH₃), 3.66 (dd, J = 4.4, 2.0 Hz, 1H, H-4), 2.74-2.55 (m, 4H, SCH₂ and CH₂SH), 2.11 (s, 3H, CH₃CO), 2.10 (s, 3H, CH₃CO), 2.03 (s, 3H, CH₃CO), 1.80 (p, J = 7.2 Hz, 2H, CH₂), 1.33 (t, J = 8.0 Hz, 1H, SH) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.3 (CO), 169.3 (CO), 169.2 (CO), 167.0 (COO), 92.1 (C-1), 75.0 (C-5), 72.9 (C-3), 68.7 (C-2), 52.9 (OCH₃), 48.4 (C-4), 33.2 (CH₂), 32.3 (SCH₂), 23.1 (CH₂SH), 20.96 (CH₃), 20.95 (CH₃), 20.7 (CH₃) ppm. **HRMS** (ESI⁺) *m/z* calcd. for C₁₅H₂₂NaO₉S₂ [M+Na]⁺: 447.0759; found: 447.0752.

Methyl 1,2,3-tri-O-acetyl-4-S-(3-chloropropyl)-4-thio- α -L-idopyranuronate (5c) and methyl 1,2,3-tri-O-acetyl-4-S-(3-chloropropyl)-4-thio- β -D-galactopyranuronate (6c)

According to general procedure 2.1.1., 4,5-glycal 1 (75 mg, 0.24 mmol), 3-chloropropanethiol (4c, 0.07 mL, 0.72 mmol), DPAP (6.1 mg, 0.024 mmol) and MAP (3.6 mg, 0.024 mmol) were reacted for 1 h. Flash chromatography using hexane/acetone (90:10) afforded 5c (16.4 mg, 16%) as a colourless syrup and 6c (72.7 mg, 71%) as an off-white solid. Combined isolated yield: 89.1 mg, 87%, 5c/6c = 18:82. $R_f(5c/6c) = 0.28 / 0.21$ (hexane/acetone 75:25).

5c: ¹H NMR (400 MHz, CDCl₃) δ 6.17 (d, J = 2.8 Hz, 1H, H-1), 5.27 (t, J = 3.6 Hz, 1H, H-3), 4.96 (d, J = 3.6 Hz, 1H, H-5), 4.76 (ddd, J = 3.6, 2.8, 0.8 Hz, 1H, H-2), 3.85 (s, 3H, OCH₃), 3.61 (t, J = 6.4 Hz, 2H, CH₂Cl), 3.12 (t, J = 3.6 Hz, 1H, H-4), 2.74 (t, J = 6.8 Hz, 2H, SCH₂), 2.13 (s, 3H, CH₃CO), 2.12 (s, 3H, CH₃CO), 2.10 (s, 3H, CH₃CO), 2.04 (tt, J = 6.8, 6.4 Hz, 2H, CH₂) ppm. ¹³C{¹H}

NMR (101 MHz, CDCl₃) δ 169.5 (CO), 169.4 (CO), 168.7 (COO), 168.2 (CO), 91.2 (C-1), 69.9 (C-5), 69.7 (C-3), 66.9 (C-2), 52.7 (OCH₃), 43.8 (C-4), 43.1 (CH₂Cl), 32.0 (CH₂), 31.1 (SCH₂), 21.0 (CH₃), 20.9 (CH₃), 20.8 (CH₃) ppm. **HRMS** (ESI⁺) *m/z* calcd. for C₁₆H₂₃ClNaO₉S [M+Na]⁺: 449.0649; found: 449.0649.

6c: ¹H NMR (400 MHz, CDCl₃) δ 5.64 (d, J = 8.4 Hz, 1H, H-1), 5.36 (dd, J = 10.0, 8.4 Hz, 1H, H-2), 5.18 (dd, J = 10.0, 4.4 Hz, 1H, H-3), 4.54 (d, J = 2.0 Hz, 1H, H-5), 3.83 (s, 3H, OCH₃), 3.67 (dd, J = 4.4, 2.0 Hz, 1H, H-4), 3.60 (t, J = 6.4 Hz, 2H, CH₂Cl), 2.75 (dt, J = 12.8, 6.8 Hz, 1H, ¹/₂SCH₂), 2.66 (dt, J = 12.8, 6.8 Hz, 1H, ¹/₂SCH₂), 2.04 (s, 3H, Hz, 1H, ¹/₂SCH₂), 2.04 (s, 3H, CH₃CO), 2.11 (s, 3H, CH₃CO), 2.04 (s, 2H₃CO), 2.

CH₃CO), 1.96 (p, J = 6.8 Hz, 2H, CH₂) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.3 (CO), 169.2 (CO), 168.9 (CO), 166.9 (COO), 92.0 (C-1), 74.9 (C-5), 72.8 (C-3), 68.6 (C-2), 52.9 (OCH₃), 48.4 (C-4), 43.0 (CH₂Cl), 32.0 (CH₂), 30.9 (SCH₂), 20.9 (CH₃), 20.8 (CH₃), 20.6 (CH₃) ppm. HRMS (ESI⁺) m/z calcd. for C₁₆H₂₃ClNaO₉S [M+Na]⁺: 449.0649; found: 449.0645.

Methyl 1,2,3-tri-O-acetyl-4-S-((R,S)-2,3-dihydroxypropyl)-4-thio- α -L-idopyranuronate (5d) and methyl 1,2,3-tri-O-acetyl-4-S-((R,S)-2,3-dihydroxypropyl)-4-thio- β -D-galactopyranuronate (6d)

According to general procedure 2.1.1., 4,5-glycal 1 (75 mg, 0.24 mmol), 3-mercapto-1,2-propanediol (4d, 0.07 mL, 0.72 mmol), DPAP (6.1 mg, 0.024 mmol) and MAP (3.6 mg, 0.024 mmol) were reacted for 3.5 h. Flash chromatography using hexane/acetone (55:45) afforded 5d (10 mg, 10%) as a colourless syrup and 6d (40.3 mg, 40%) as an off-white solid. Combined isolated yield: 50.3 mg, 50%, 5d/6d = 20:80. $R_f (5d/6d) = 0.17 / 0.12$ (hexane/acetone 60:40).

5d: ¹H NMR (400 MHz, CDCl₃) *R*,*S* mixture δ 6.16 (t, *J* = 2.8 Hz, 1H, H-1),
5.32 (app q, *J* = 3.6 Hz, 1H, H-3), 4.98 (dd, *J* = 3.6, 2.0 Hz, 1H, H-5), 4.77 (tdd, *J* = 3.6, 2.8, 0.8 Hz, 1H, H-2), 3.86 (s, 3H, OCH₃), 3.82-3.79 (m, 1H, *CHOH),
3.70 (ddd, *J* = 11.2, 3.6, 2.0 Hz, 1H, ¹/₂CH₂OH), 3.55 (ddd, *J* = 11.2, 8.8, 6.0 Hz,
1H, ¹/₂CH₂OH), 3.31 (app t, *J* = 3.6 Hz, 1H, H-4), 2.76 (ddd, *J* = 14.0, 4.4, 2.8

Hz, 1H, $\frac{1}{2}$ SCH₂), 2.67 (ddd, J = 14.0, 8.0, 1.2 Hz, 1H, $\frac{1}{2}$ SCH₂), 2.41 (br s, 2H, 2 OH), 2.13 (s, 3H, CH₃CO), 2.12 (s, 3H, CH₃CO), 2.11 (s, 3H, CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) *R*,*S* mixture δ 169.6 (CO), 169.2 (CO), 169.1 (COO), 168.3 (CO), 91.30 (C-1), 91.26 (C-1'), 71.24 (*CHOH), 71.20 (*CHOH'), 70.2 (C-5), 70.0 (C-5'), 69.9 (C-3), 69.8 (C-3'), 67.1 (C-2), 67.0 (C-2'), 65.25 (CH₂OH), 65.21 (CH₂OH'), 52.94 (OCH₃), 52.90 (OCH₃'), 44.2 (C-4), 43.8 (C-4'), 37.4 (SCH₂), 37.1 (SCH₂'), 21.1 (CH₃), 21.0 (CH₃), 20.9 (CH₃) ppm. HRMS (ESI⁺) *m*/*z* calcd. for C₁₆H₂₄NaO₁₁S [M+Na]⁺: 447.0937; found: 447.0931.

6d: ¹H NMR (400 MHz, CDCl₃) *R*,*S* mixture δ 5.64 (d, *J* = 8.0 Hz, 1H, H-1), 5.37 (dd, *J* = 10.0, 8.0 Hz, ½H, H-2), 5.31 (dd, *J* = 10.0, 8.0 Hz, ½H, H-2'), 5.22 (dd, *J* = 7.2, 4.4 Hz, ½H, H-3), 5.20 (dd, *J* = 7.2, 4.4 Hz, ½H, H-3'), 4.56 (dd, *J* = 3.6, 2.0 Hz, 1H, H-5), 3.84 (s, 3H, OCH₃), 3.77 (td, *J* = 3.6, 2.0 Hz, 1H, H-4), 3.74-3.65 (m, 2H, *CHOH and ½CH₂OH), 3.54 (dd, *J* = 11.0, 5.2 Hz, ½H,

¹/₂C<u>H</u>₂OH), 3.50 (dd, J = 11.0, 5.2 Hz, ¹/₂H, ¹/₂C<u>H</u>₂OH'), 2.74-2.66 (m, 2H, SCH₂), 2.41 (br s, 2H, 2 OH), 2.13 (s, 3H, CH₃CO), 2.11 (s, 3H, CH₃CO), 2.04 (s, 3H, CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) *R*,*S* mixture δ 170.37 (CO), 170.33 (CO'), 169.40 (CO), 169.37 (CO'), 169.2 (CO), 167.61 (COO), 167.60 (COO'), 92.2 (C-1), 92.1 (C-1'), 75.1 (C-5), 75.0 (C-5'), 72.8 (C-3), 72.3 (C-3'), 70.9 (*CHOH), 70.0 (*CHOH), 68.73 (C-2), 68.66 (C-2'), 65.1 (CH₂OH), 53.2 (OCH₃), 48.8 (C-4), 48.4 (C-4'), 37.51 (SCH₂), 37.44 (SCH₂'), 20.9 (CH₃), 20.86 (CH₃), 20.81 (CH₃'), 20.7 (CH₃) ppm. HRMS (ESI⁺) *m*/*z* calcd. for C₁₆H₂₄NaO₁₁S [M+Na]⁺: 447.0937; found: 447.0935.

Methyl 1,2,3-tri-O-acetyl-4-S-(3-methoxy-3-oxopropyl)-4-thio- α -L-idopyranuronate (5e) and methyl 1,2,3-tri-O-acetyl-4-S-(3-methoxy-3-oxopropyl)-4-thio- β -D-galactopyranuronate (6e)

According to general procedure 2.1.1., 4,5-glycal 1 (75 mg, 0.24 mmol), 3-mercaptopropionate (4e, 0.08 mL, 0.72 mmol), DPAP (6.1 mg, 0.024 mmol) and MAP (3.6 mg, 0.024 mmol) were reacted for 1 h. Flash chromatography using hexane/acetone (80:20) afforded 5e (21 mg, 20%) as a colourless syrup and 6e (82.7 mg, 79%) as an off-white solid. Combined isolated yield: 103.7 mg, 99%, 5e/6e = 20:80. R_f (5e/6e) = 0.25 / 0.19 (hexane/acetone 70:30).

5e: ¹H NMR (400 MHz, CDCl₃) δ 6.15 (d, J = 2.8 Hz, 1H, H-1), 5.28 (t, J = 3.6 Hz, 1H, H-3), 4.95 (d, J = 3.6 Hz, 1H, H-5), 4.76 (ddd, J = 3.6, 2.8, 0.8 Hz, 1H, H-2), 3.84 (s, 3H, OCH₃), 3.69 (S, 3H, OCH₃) 3.15 (t, J = 3.6 Hz, 1H, H-4), 2.86-2.82 (m, 2H, SCH₂), 2.64 (t, J = 7.0 Hz, 2H, CH₂CO), 2.13 (s, 3H, CH₃CO), 2.10 (s, 6H, 2CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃)

*δ*172.1 (COO), 169.6 (CO), 169.5 (CO), 168.8 (COO), 168.3 (CO), 91.3 (C-1), 70.2 (C-5), 70.0 (C-3), 67.1 (C-2), 52.8 (OCH₃), 52.0 (OCH₃), 44.3 (C-4), 34.8 (CH₂), 29.4 (SCH₂), 21.0 (CH₃), 20.98 (CH₃), 20.94 (CH₃) ppm. **HRMS** (ESI⁺) *m/z* calcd. for C₁₇H₂₄NaO₁₁S [M+Na]⁺: 459.0931; found: 459.0934.

6e: ¹H NMR (400 MHz, CDCl₃) *δ* 5.63 (d, *J* = 8.0 Hz, 1H, H-1), 5.33 (dd, *J* = 10.0, 8.0 Hz, 1H, H-2), 5.18 (dd, *J* = 10.0, 4.4 Hz, 1H, H-3), 4.52 (d, *J* = 2.0 Hz, 1H, H-5), 3.82 (s, 3H, OCH₃), 3.70-3.68 (m, 1H, H-4), 3.68 (s, 3H, OCH₃), 2.84 (dt, *J* = 13.2, 7.2 Hz, 1H, ¹/₂SCH₂), 2.76 (dt, *J* = 13.2, 7.2 Hz, 1H, ¹/₂SCH₂), 2.54 (t, *J* = 7.2 Hz, 2H, CH₂CO), 2.12 (s, 3H, CH₃CO), 2.10 (s, 3H, CH₃CO), 2.03 (s,

3H, CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) *δ* 171.9 (COO), 170.4 (CO), 169.3 (CO), 169.2 (CO), 166.9 (COO), 92.2 (C-1), 74.9 (C-5), 72.8 (C-3), 68.7 (C-2), 52.9 (OCH₃), 52.0 (OCH₃), 48.7 (C-4), 34.7 (CH₂), 28.8 (SCH₂), 20.9 (CH₃), 20.8 (CH₃), 20.7 (CH₃) ppm. HRMS (ESI⁺) *m/z* calcd. for C₁₇H₂₄NaO₁₁S [M+Na]⁺: 459.0931; found: 459.0928.

Methyl 1,2,3-tri-O-acetyl-4-S-(2-methoxy-2-oxoethyl)-4-thio- α -L-idopyranuronate (5f) and methyl 1,2,3-tri-O-acetyl-4-S-(2-methoxy-2-oxoethyl)-4-thio- β -D-galactopyranuronate (6f)

According to general procedure 2.1.1., 4,5-glycal 1 (75 mg, 0.24 mmol), 2-mercaptoacetate (4f, 0.07 mL, 0.72 mmol), DPAP (6.1 mg, 0.024 mmol) and MAP (3.6 mg, 0.024 mmol) were reacted for 2.5 h. Flash chromatography using hexane/acetone (80:20) afforded 5f (19.2 mg, 19%) as a colourless syrup and 6f (42.6 mg, 42%) as an off-white solid. Combined isolated yield: 61.8 mg, 61%, 5f/6f = 31:69. R_f (5f/6f) = 0.26 / 0.20 (hexane/acetone 70:30).

5f: ¹H NMR (600 MHz, CDCl₃) *δ* 6.14 (d, *J* = 3.6 Hz, 1H, H-1), 5.37 (t, *J* = 4.2 Hz, 1H, H-3), 4.99 (d, *J* = 3.6 Hz, 1H, H-5), 4.80 (t, *J* = 3.6 Hz, 1H, H-2), 3.85 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 3.39 (t, *J* = 4.2 Hz, 1H, H-4), 3.32 (d, *J* = 15.0 Hz, 1H, ¹/₂SCH₂), 3.26 (d, *J* = 15.0 Hz, 1H, ¹/₂SCH₂), 2.12 (s, 3H, CH₃CO),

2.11 (s, 3H, CH₃CO), 2.10 (s, 3H, CH₃CO) ppm. ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 170.4 (COO), 169.5 (CO), 169.1 (CO), 168.7 (COO), 168.3 (CO), 91.2 (C-1), 70.3 (C-5), 69.5 (C-3), 67.2 (C-2), 52.85 (OCH₃), 51.81 (OCH₃), 44.5 (C-4), 35.3 (SCH₂), 21.0 (CH₃), 20.96 (CH₃), 20.94 (CH₃) ppm. HRMS (ESI⁺) *m/z* calcd. for C₁₆H₂₂NaO₁₁S [M+Na]⁺: 445.0781; found: 445.0776.

6f: ¹H NMR (600 MHz, CDCl₃) δ 5.65 (d, *J* = 7.8 Hz, 1H, H-1), 5.35 (dd, *J* = 10.2, 7.8 Hz, 1H, H-2), 5.25 (dd, *J* = 10.2, 4.2 Hz, 1H, H-3), 4.53 (d, *J* = 2.4 Hz, 1H, H-5), 3.89 (dd, *J* = 4.2, 2.4 Hz, 1H, H-4), 3.82 (s, 3H, OCH₃), 3.72 (s, 3H, OCH₃), 3.30 (d, *J* = 14.4 Hz, 1H, ¹/₂SCH₂), 3.24 (d, *J* = 14.4 Hz, 1H, ¹/₂SCH₂),

2.12 (s, 3H, CH₃CO), 2.11 (s, 3H, CH₃CO), 2.03 (s, 3H, CH₃CO) ppm. ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 170.2 (CO), 170.0 (COO), 169.3 (CO), 169.1 (CO), 166.7 (COO), 92.2 (C-1), 74.8 (C-5), 72.5 (C-3), 68.7 (C-2), 53.0 (OCH₃), 52.6 (OCH₃), 48.1 (C-4), 34.4 (SCH₂), 21.0 (CH₃), 20.9 (CH₃), 20.7 (CH₃) ppm. HRMS (ESI⁺) *m/z* calcd. for C₁₆H₂₂NaO₁₁S [M+Na]⁺: 445.0781; found: 445.0780.

Methyl 1,2,3-tri-O-acetyl-4-S-acetyl-4-thio- α -L-idopyranuronate (5g) and methyl 1,2,3-tri-O-acetyl-4-S-acetyl-4-thio- β -D-galactopyranuronate (6g)

According to general procedure 2.1.1., 4,5-glycal 1 (75 mg, 0.24 mmol), thioacetic acid (4g, 0.05 mL, 0.72 mmol), DPAP (6.1 mg, 0.024 mmol) and MAP (3.6 mg, 0.024 mmol) were reacted for 6 h. Flash chromatography using hexane/acetone (85:15) afforded 5g (8.5 mg, 9%) as a colourless syrup and 6g (11.3 mg, 12%) as an off-white solid. Combined isolated yield: 19.8 mg, 21%, 5g/6g = 43:57. R_f (5g/6g) = 0.27 / 0.22 (hexane/acetone 70:30).

5g: ¹H NMR (400 MHz, CDCl₃) δ 6.13 (d, J = 3.6 Hz, 1H, H-1), 5.18 (dd, J = 4.0, 3.6 Hz, 1H, H-3), 5.00 (d, J = 3.6 Hz, 1H, H-5), 4.81 (t, J = 3.6 Hz, 1H, H-2), 4.21 (dd, J = 4.0, 3.6 Hz, 1H, H-4), 3.74 (s, 3H, OCH₃), 2.35 (s, 3H, CH₃COS), 2.13 (s, 3H, CH₃CO), 2.12 (s, 3H, CH₃CO), 2.11 (s, 3H, CH₃CO)

ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.5 (COS), 169.0 (CO), 168.9 (2 CO), 168.2 (COO), 90.8 (C-1), 69.3 (C-5), 69.0 (C-3), 66.5 (C-2), 52.7 (OCH₃), 40.6 (C-4), 30.4 (<u>CH₃COS</u>), 20.92 (CH₃), 20.88 (2CH₃) ppm. **HRMS** (ESI⁺) *m/z* calcd. for C₁₅H₂₀NaO₁₀S [M+Na]⁺: 415.0673; found: 415.0673.

6g: ¹**H** NMR (400 MHz, CDCl₃) δ 5.68 (d, J = 8.0 Hz, 1H, H-1), 5.32 (dd, J = 10.0, 4.0 Hz, 1H, H-3), 5.16 (dd, J = 10.0, 8.0 Hz, 1H, H-2), 4.62 (d, J = 2.4 Hz, 1H, H-5), 4.60 (dd, J = 4.0, 2.4 Hz, 1H, H-4), 3.74 (s, 3H, OCH₃), 2.37 (s, 3H, CH₃COS), 2.11 (s, 3H, CH₃CO), 2.04 (s, 3H, CH₃CO), 1.97 (s, 3H,

CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.9 (COS), 169.9 (CO), 169.3 (CO), 169.0 (CO), 166.3 (COO), 92.2 (C-1), 73.8 (C-5), 70.7 (C-3), 68.7 (C-2), 53.0 (OCH₃), 46.1 (C-4), 30.8 (<u>C</u>H₃COS), 20.9 (CH₃), 20.7 (2CH₃) ppm. **HRMS** (ESI⁺) *m*/*z* calcd. for C₁₅H₂₀NaO₁₀S [M+Na]⁺: 415.0675; found: 415.0671.

Methyl 1,2,3-tri-O-acetyl-4-S-benzyl-4-thio-β-D-galactopyranuronate (6h)

According to general procedure 2.1.1., 4,5-glycal 1 (75 mg, 0.24 mmol), benzyl mercaptan (4h, 0.08 mL, 0.72 mmol), DPAP (6.1 mg, 0.024 mmol) and MAP (3.6 mg, 0.024 mmol) were reacted for 2.5 h. Flash chromatography using hexane/acetone (80:20) afforded 6h (27.2 mg, 26%) as a colourless syrup. $\mathbf{R_f}(\mathbf{6h}) = 0.26$ (hexane/acetone 70:30).

6h: ¹H NMR (400 MHz, CDCl₃) *δ* 7.34-7.27 (m, 3H, 3CH), 7.23-7.19 (m, 2H, 2CH), 5.62 (d, *J* = 8.0 Hz, 1H, H-1), 5.34 (dd, *J* = 10.0, 8.0 Hz, 1H, H-2), 5.12 (dd, *J* = 10.0, 4.4 Hz, 1H, H-3), 4.46 (d, *J* = 1.6 Hz, 1H, H-5), 3.71 (d, *J* = 13.2 Hz, 1H, ½SCH₂), 3.65 (d, *J* = 13.2 Hz, 1H, ½SCH₂), 3.63 (s, 3H, OCH₃), 3.60

(dd, J = 4.4, 1.6 Hz, 1H, H-4), 2.10 (s, 3H, CH₃CO), 2.02 (s, 3H, CH₃CO), 1.97 (s, 3H, CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.1 (CO), 169.3 (CO), 169.2 (CO), 166.7 (COO), 137.7 (C), 129.3 (CH), 128.8 (CH), 127.5 (CH), 92.2 (C-1), 74.9 (C-5), 72.7 (C-3), 68.9 (C-2), 52.8 (OCH₃), 46.4 (C-4), 37.6 (SCH₂), 21.0 (CH₃), 20.8 (CH₃), 20.7 (CH₃) ppm. HRMS (ESI⁺) *m/z* calcd. for C₂₀H₂₄NaO₉S [M+Na]⁺: 463.1039; found: 463.1035.

2.2.4. Synthesis of 4,5-glycals 7-10

Synthesis of 1,2,3-tri-O-acetyl-4-deoxy-a-D-manno-hex-4-eno-1,5-pyranoside (7)

Scheme S2. Synthesis of 7 from S8. Reaction conditions: (i) a) TrCl, pyridine, 50 °C, 3 h; b) Ac₂O, 0 °C to rt, 18 h; (ii) NaI, TMSCl, CH₃CN, 0 °C, 20 min; (iii) a) DMP, CH₂Cl₂, rt, 6 h; b) Et₃N, CH₂Cl₂, rt, 1 h; (iv) NaBH₄, THF, 0 °C to rt, 1 h.

1,2,3,4-tetra-O-acetyl-6-O-triphenylmethyl- α/β -D-mannopyranose (S9 α/β)

According to a previously described method,⁸ a suspension of D-mannose (**S8**, 12 g, 66.6 mmol) and trityl chloride (TrCl, 18.57 g, 66.6 mmol) in pyridine (60 mL) was stirred under an inert atmosphere at 50 °C for 3 h. Then, the reaction mixture was cooled to 0 °C, and Ac₂O (35 mL) was added dropwise. After stirring for 18 h at room temperature, the mixture was poured into ice and stirred vigorously for

1.5 h to afford a white solid, which was collected by vacuum filtration and washed with ice-cold H₂O. The solid was dissolved in CH₂Cl₂ and washed with H₂O to remove remaining pyridine. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography using hexane/EtOAc (75:25), affording **S9** α^9 (22.42 g, 57%) as an off-white solid and **S9** β^9 (15.34 g, 39%) as an off-white solid. Combined isolated yield: 37.76 g, 96%, **S9** α /**S9** β = 60:40. **R**_f (**S9** α /**S9** β) = 0.38 / 0.33 (hexane/acetone 75:25).

*S*9α: ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 7.2 Hz, 6H, CH), 7.29 (t, *J* = 7.2 Hz, 6H, CH), 7.22 (t, *J* = 7.2 Hz, 3H, CH), 6.17 (d, *J* = 2.0 Hz, 1H, H-1), 5.51 (t, *J* = 10.0 Hz, 1H, H-4), 5.30 (dd, *J* = 10.0, 3.2 Hz, 1H, H-3), 5.26 (ddd, *J* = 3.2, 2.0, 0.8 Hz, 1H, H-2), 3.92 (ddd, *J* = 10.0, 4.2, 2.8 Hz, 1H, H-5), 3.31 (dd, *J* = δ

10.0, 2.8 Hz, 1H, H-6b), 3.08 (dd, *J* = 10.0, 4.2 Hz, 1H, H-6a), 2.23 (s, 3H, CH₃CO), 2.16 (s, 3H, CH₃CO), 1.99 (s, 3H, CH₃CO), 1.74 (s, 3H, CH₃CO) ppm.

S9 β : ¹**H** NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 7.2 Hz, 6H, CH), 7.29 (t, J = 7.2 Hz, 6H, CH), 7.22 (t, J = 7.2 Hz, 3H, CH), 5.86 (s, 1H, H-1), 5.46 (d, J = 3.2 Hz, 1H, H-2), 5.37 (t, J = 10.0 Hz, 1H, H-4), 5.07 (dd, J = 10.0, 3.2 Hz, 10.0 A 4 2.8 Hz HH (t, J) 2.24 (dd J = 10.0 2.8 Hz HH (t, J) 2.17 (dd J

1H, H-3), 3.65 (ddd, *J* = 10.0, 4.4, 2.8 Hz, 1H, H-5), 3.34 (dd, *J* = 10.0, 2.8 Hz, 1H, H-6b), 3.17 (dd, *J* = 10.0, 4.4 Hz, 1H, H-6a), 2.24 (s, 3H, CH₃CO), 2.13 (s, 3H, CH₃CO), 1.98 (s, 3H, CH₃CO), 1.75 (s, 3H, CH₃CO) ppm.

1,2,3,4-tetra-O-acetyl- α -D-mannopyranoside (11 α)

According to a previously described method,⁹ **S9** α (10.7 g, 18.1 mmol) and NaI (8.42 g, 56.1 mmol), previously dried under high vacuum, were suspended in CH₃CN (50 mL) and cooled to 0 °C. Then, TMSCl (7.1 mL, 56.1 mmol) was added dropwise, and the mixture was stirred for 20 min. A solution of Na₂S₂O₃·5H₂O (9.89 g, 39.9 mmol) in H₂O (100 mL) was added and stirring continued for 20 min. After that, the solvent was removed *in vacuo*, and the residue was dissolved in CH₂Cl₂ and washed with brine. The aqueous layer was back extracted with CH₂Cl₂, and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography using hexane/EtOAc (60:40), affording **11** α ⁸ (5.93 g, 94%) as an off-white solid. **R**_f (**11** α) = 0.21 (hexane/acetone 50:50).

11 α : ¹**H NMR** (400 MHz, CDCl₃) δ 6.09 (d, J = 1.6 Hz, 1H, H-1), 5.40 (dd, J = 10.0, 3.2 Hz, 1H, H-3), 5.30 (t, J = 10.0 Hz, 1H, H-4), 5.27 (dd, J = 3.2, 1.6 Hz, 1H, H-2), 3.85 (ddd, J = 10.0, 4.4, 2.4 Hz, 1H, H-5), 3.71 (dd, J = 12.7, 2.4 Hz,

1H, H-6b), 3.61 (dd, *J* = 12.7, 4.4 Hz, 1H, H-6a), 2.79 (br s, 1H, OH), 2.16 (s, 6H, 2CH₃CO), 2.08 (s, 3H, CH₃CO), 2.02 (s, 3H, CH₃CO) ppm.

1,2,3-tri-O-acetyl-4-deoxy-α-D-manno-hex-4-enodialdo-1,5-pyranoside (12α)

According to general procedure 2.1.4., 11α (2.9 g, 8.33 mmol) and DMP (4.24 g, 9.99 mmol) in CH₂Cl₂ (20 mL) were reacted for 6 h. After the appropriate quenching and extraction, the crude and Et₃N (1.39 mL, 9.99 mmol) in CH₂Cl₂ (60 mL) were reacted for 1 h. Flash chromatography using hexane/acetone (90:10) afforded 12α (595.8 mg, 25%) as an off-white solid. **R**_f (12α) = 0.41 (hexane/acetone 70:30).

12 α : ¹**H** NMR (400 MHz, CDCl₃) δ 9.24 (s, 1H, CHO), 6.41 (d, *J* = 3.6 Hz, 1H, H-1), 5.87 (dd, *J* = 2.8, 1.6 Hz, 1H, H-4), 5.81 (dd, *J* = 4.4, 2.8 Hz, 1H, H-3), 5.33 (ddd, *J* = 4.4, 3.6, 1.6 Hz, 1H, H-2), 2.14 (s, 3H, CH₃CO), 2.11 (s, 3H, CH₃CO),

2.10 (s, 3H, CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 184.9 (CHO), 170.0 (CO), 169.7 (CO), 168.0 (CO), 149.6 (C-5), 115.7 (C-4), 89.2 (C-1), 63.8 (C-3), 62.8 (C-2), 20.9 (CH₃), 20.8 (CH₃), 20.7 (CH₃) ppm. HRMS (ESI⁺) *m/z* calcd. for C₁₂H₁₄NaO₈ [M+Na]⁺: 309.0586; found: 309.0580.

1,2,3-tri-O-acetyl-4-deoxy-a-D-manno-hex-4-eno-1,5-pyranoside (7)

According to general procedure 2.1.5., 12α (430 mg, 1.50 mmol) and NaBH₄ (68.2 mg, 1.80 mmol) in THF (20 mL) were reacted for 1 h. Flash chromatography using hexane/acetone (85:15) afforded 7 (130 mg, 30%) as a yellowish syrup. **R**_f (7) = 0.16 (hexane/acetone 70:30).

Synthesis of 1,2,3,6-tetra-O-acetyl-4-deoxy- β -D-manno-hex-4-eno-1,5-pyranoside (8)

Scheme S3. Synthesis of **8** from **S9** β . Reaction conditions: (i) HBr/AcOH 33% w/w, AcOH, 15 °C, 10 s; (ii) a) DMP, CH₂Cl₂, rt, 6 h; b) Et₃N, DCM, rt, 2 h; (iii) NaBH₄, THF, 0 °C to rt, 2 h; (iv) Ac₂O, DMAP, pyridine, CH₂Cl₂, rt, 3 h.

1,2,3,4-tetra-O-acetyl- β -D-mannopyranose (11 β)

Similarly to a previously described method,⁸ **S9** β (10.2 g, 17.27 mmol) was dissolved in AcOH (120 mL) at 40 °C. The solution was cooled to 15 °C and HBr/AcOH (33% w/w in AcOH, 5 mL, 20.72 mmol) was added dropwise, and the mixture was stirred for 10 s. Then, the reaction mixture was filtered through Celite onto H₂O and the solid washed with AcOH. The solution was quenched with saturated aqueous NaHCO₃ solution, obtaining a white suspension which was extracted with CHCl₃. The organic layer was washed with saturated aqueous NaHCO₃ solution and H₂O. The organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was dissolved in the minimum amount of hot CHCl₃ and induced to crystallise with Et₂O. The crystals were collected by filtration and dried, affording **11** β ⁹ (3.6 g, 60%) as a white solid. **R**_f (**11** β) = 0.33 (hexane/EtOAc 50:50).

11β: ¹**H** NMR (400 MHz, CDCl₃) δ 5.88 (d, J = 1.2 Hz, 1H, H-1), 5.50 (dd, J = 3.2, 1.2 Hz, 1H, H-2), 5.27 (app t, J = 9.9 Hz, 1H, H-4), 5.18 (dd, J = 9.9, 3.2 Hz, 1H, H-3), 3.82-3.58 (m, 3H, H-5, H-6a,b), 2.22 (s, 3H, CH₃CO), 2.11 (s,

3H, CH₃CO), 2.10 (s, 3H, CH₃CO), 2.02 (s, 3H, CH₃CO) ppm.

1,2,3-tri-O-acetyl-4-deoxy- β -D-manno-hex-4-enodialdo-1,5-pyranoside (12 β)

According to general procedure 2.1.4., 11β (1.5 g, 4.31 mmol) and DMP (2.19 g, 5.17 mmol) in CH₂Cl₂ (16 mL) were reacted for 6 h. After the appropriate quenching and extraction, the crude and Et₃N (0.72 mL, 5.17 mmol) in CH₂Cl₂ (30 mL) were reacted for 2 h. Flash chromatography using hexane/EtOAc (70:30) afforded 12β (520 mg, 63%) as a yellow syrup. $\mathbf{R}_{f}(12\beta) = 0.45$ (hexane/EtOAc 75:25).

12β: ¹H NMR (400 MHz, CDCl₃) δ9.24 (s, 1H, CHO), 6.44 (dd, *J* = 2.0, 1.2 Hz, 1H, H-1), 5.90 (d, *J* = 4.0 Hz, 1H, H-4), 5.74 (ddd, *J* = 4.8, 4.0, 1.2 Hz, 1H, H-3), 5.37 (dd, *J* = 4.8, 2.0 Hz, 1H, H-2), 2.10 (s, 3H, CH₃CO), 2.08 (s, 3H, CH₃CO),

2.07 (s, 3H, CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 185.0 (CHO), 170.0 (CO), 169.7 (CO), 168.6 (CO), 150.2 (C-5), 114.6 (C-4), 88.4 (C-1), 65.0 (C-3), 62.2 (C-2), 20.8 (CH₃), 20.6 (CH₃), 20.5 (CH₃) ppm. HRMS (ESI⁺) *m*/*z* calcd. for C₁₂H₁₈NO₈ [M+NH₄]⁺: 304.1032; found: 304.1039.

1,2,3-tri-O-acetyl-4-deoxy-β-D-manno-hex-4-eno-1,5-pyranoside (13)

According to general procedure 2.1.5., 12β (1.3 g, 4.50 mmol) and NaBH₄ (2.04 g, 5.41 mmol) in THF (45 mL) were reacted for 2 h. Flash chromatography using hexane/EtOAc (70:30) afforded 13 (890 mg, 68%) as a colourless syrup. $\mathbf{R}_{f}(13) = 0.63$ (hexane/acetone 75:25).

AcO

0Ac `|`0 *13*: ¹H NMR (400 MHz, CDCl₃) δ 6.32 (dd, *J* = 2.8, 1.2 Hz, 1H, H-1), 5.52 (tq, *J* = 4.8, 1.2 Hz, 1H, H-3), 5.30 (dd, *J* = 4.8, 2.8 Hz, 1H, H-2), 5.09 (dt, *J* = 4.8, 1.2 Hz, 1H, H-4), 4.03 (br s, 2H, H-6ab), 2.46 (br s, 1H, OH), 2.12 (s, 3H, CH₃CO),

2.06 (s, 3H, CH₃CO), 2.05 (s, 3H, CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.6 (CO), 169.9 (CO), 169.5 (CO), 154.2 (C-5), 95.0 (C-4), 87.9 (C-1), 65.9 (C-2), 61.7 (C-3), 61.6 (C-6), 20.92 (CH₃), 20.90 (CH₃), 20.6 (CH₃) ppm. HRMS (ESI⁺) *m*/*z* calcd. for C₁₂H₂₀NO₈ [M+NH₄]⁺: 306.1189; found: 306.1197.

1,2,3,6-tetra-O-acetyl-4-deoxy-β-D-manno-hex-4-eno-1,5-pyranoside (8)

To a solution of **13** (90 mg, 0.31 mmol) in CH₂Cl₂ (3.1 mL) was added DMAP (19.1 mg, 0.16 mmol), pyridine (38 μ L, 0.47 mmol), and Ac₂O (0.06 mL, 0.62 mmol), and the reaction mixture was stirred at room temperature for 3 h. Then, the reaction was diluted with CH₂Cl₂, washed with 1M aqueous HCl solution, saturated aqueous NaHCO₃ solution, H₂O and brine. The organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography using Pet. ether/EtOAc (75:25), affording **8** (62.9 mg, 61%) as a colourless syrup. **R**_f (**8**) = 0.61 (Pet. ether/EtOAc 50:50).

CH₃CO), 2.00 (s, 3H, CH₃CO), 1.99 (s, 3H, CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.3 (CO), 170.0 (CO), 169.6 (CO), 169.1 (CO), 149.9 (C-5), 97.5 (C-4), 87.7 (C-1), 65.5 (C-2), 62.0 (C-6), 61.3 (C-3), 20.71 (CH₃), 20.70 (CH₃), 20.6 (CH₃), 20.4 (CH₃) ppm. HRMS (ESI⁺) *m/z* calcd. for C₁₄H₂₂NO₉ [M+NH₄]⁺: 348.1289; found: 348.1299.

Synthesis of methyl (methyl 2,3-di-O-benzoyl-4-deoxy-a-L-threo-hex-4-enopyranosid) uronate (9)

Scheme S4. Synthesis of **9** from **14**. Reaction conditions: (i) a) CH₃I, K₂CO₃, DMF, rt, 14h; b) BzCl, pyridine, 0 °C to rt, 12h; (ii) DBU, CH₂Cl₂, 0 °C to rt, 2h.

Methyl (methyl 2,3,4-tri-O-benzoyl-a-D-mannopyranosid)uronate (15)

According to general procedure 2.1.2., methyl α -D-mannopyranosiduronic acid¹⁰ (**14**, 826 mg, 3.97 mmol), K₂CO₃ (1.65 g, 11.90 mmol) and CH₃I (0.74 mL, 11.90 mmol) in DMF (5 mL) were reacted

for 14 h. After the appropriate quenching and extraction, the residue was dissolved in pyridine (3 mL) and cooled to 0 °C, and benzoyl chloride (BzCl, 1.43 mL, 12.3 mmol) was added dropwise. After stirring for 12 h at room temperature, the reaction was diluted with CH_2Cl_2 and washed with H_2O . The organic layer was dried over anhydrous Na_2SO_4 , filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography using hexane/EtOAc (75:25), affording **15**¹¹ (1.72 g, 81%) as a white solid. **R**_f (**15**) = 0.50 (hexane/EtOAc 70:30).

1H, H-5), 3.69 (s, 3H, OCH₃), 3.57 (s, 3H, OCH₃) ppm.

Methyl (methyl 2,3-di-O-benzoyl-4-deoxy-a-L-threo-hex-4-enopyranosid)uronate (9)

According to general procedure 2.1.3., **15** (500 mg, 0.93 mmol) and DBU (0.28 mL, 1.87 mmol) in CH₂Cl₂ (5 mL) were reacted for 2 h. Flash chromatography using hexane/EtOAc (70:30) afforded **9** (324 mg, 84%) as a yellow solid. $\mathbf{R}_{f}(\mathbf{9}) = 0.45$ (hexane/EtOAc 75:25).

9: ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, J = 8.4, 1.6 Hz, 2H, 2CH), 7.91 (dd, J = 8.4, 1.6 Hz, 2H, 2CH), 7.60-7.55 (m, 1H, 1CH), 7.53-7.48 (m, 1H, CH), 7.44-7.40 (m, 2H, 2CH), 7.36-7.32 (m, 2H, 2CH), 6.24 (dd, J = 2.8, 1.6 Hz, 1H, H-4), 6.03 (ddd, J = 4.4, 2.8, 0.4 Hz, 1H, H-3), 5.64 (ddd, J = 4.4, 2.8, 1.6 Hz, 1H, H-2), 5.32 (dd, J = 2.8, 0.4 Hz, 1H, H-1), 3.87 (s, 3H, OCH₃), 3.61 (s, 3H, OCH₃) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 165.7 (COO), 165.6 (COPh), 162.3 (COPh), 141.8 (C-5), 133.6 (CH), 133.4 (CH), 130.1 (CH), 129.9 (CH), 129.5 (C), 129.4 (C), 129.2 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 125.4 (CH), 109.0 (C-4), 99.5 (C-1), 65.0 (C-2), 64.4 (C-3), 56.9 (OCH₃), 52.7 (OCH₃) ppm. HRMS (ESI⁺) *m/z* calcd. for C₂₂H₂₄NO₈ [M+NH₄]⁺: 430.1496; found: 430.1499.

Synthesis of methyl 4-deoxy-a-L-threo-hex-4-enopyranosiduronic acid (10)

Scheme S5. Synthesis of 10 from S10. Reaction conditions: (i) Ac₂O, pyridine, rt, 2 h; (ii) DBU, CH₂Cl₂, 0 °C to rt, 2h; (iii) NaOH, EtOH/H₂O (1:1), rt, 6h.

Methyl (methyl 2,3,4-tri-O-acetyl-a-D-mannopyranosid)uronate (16)

To a solution of methyl (methyl α -D-mannopyranosid)uronate¹² (**S10**, 500 mg, 2.25 mmol) in pyridine (6 mL) was added dropwise Ac₂O (3 mL), and the reaction mixture was stirred at room temperature for 2 h. Then, the solvent was removed *in vacuo*, and the residue was purified by silica gel flash column chromatography using hexane/EtOAc (80:20), affording **16**¹³ (705 mg, 90%) as a white solid. **R**_f (**16**) = 0.50 (hexane/EtOAc 60:40).

16: ¹H NMR (400 MHz, CDCl₃) δ 5.43-5.37 (m, 2H, H-3 and H-4), 5.24 (dd, J = 2.8, 2.0 Hz, 1H, H-2), 4.83 (d, J = 2.0 Hz, 1H, H-1), 4.31 (dd, J = 9.0 Hz, 1H, H-5), 3.78 (s, 3H, OCH₃), 3.46 (s, 3H, OCH₃), 2.15 (s, 3H, CH₃CO), 2.05 (s, 3H,

CH₃CO), 2.01 (s, 3H, CH₃CO) ppm.

Methyl (methyl 2,3-di-O-acetyl-4-deoxy- α -L-threo-hex-4-enopyranosid)uronate (17)

According to general procedure 2.1.3., **16** (705 mg, 2.02 mmol) and DBU (0.60 mL, 4.05 mmol) in CH₂Cl₂ (6 mL) were reacted for 2 h. Flash chromatography using hexane/EtOAc (50:50) afforded **17** (502 mg, 86%) as a white solid. **R**_f (**17**) = 0.50 (hexane/EtOAc 50:50).

(s, 3H, CH₃CO) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.2 (CO), 170.1 (CO), 162.2 (COO), 141.7 (C-5), 108.8 (C-4), 99.3 (C-1), 64.4 (C-2), 63.6 (C-3), 56.8 (OCH₃), 52.7 (OCH₃), 20.92 (CH₃), 20.90 (CH₃) ppm. HRMS (ESI⁺) *m/z* calcd. for C₁₂H₂₀NO₈ [M+NH₄]⁺: 306.1183; found: 306.1182.

Methyl 4-deoxy-a-L-threo-hex-4-enopyranosiduronic acid (10)

To a solution of **17** (233 mg, 0.81 mmol) in EtOH/H₂O (1:1, 4 mL) was added NaOH (161.7 mg, 4.04 mmol), and the reaction mixture was stirred at room temperature for 6 h. Then, Amberlite resin (H⁺ form) was added to adjust the pH to ~2. The resin was removed by filtration, the filtrate concentrated *in vacuo* and residual water was removed by lyophilisation, affording **10** (120 mg, 78%) as a yellow solid. **R**_f (**10**) = 0.40 (CH₂Cl₂/MeOH/H₂O 10:5:1).

HO₂C OH
HO
$$^{\circ}$$
 10: ¹H NMR (400 MHz, D₂O) δ 6.10 (dd, J = 3.2, 1.2 Hz, 1H, H-4), 5.06 (d, J = 4.4
Hz, 1H, H-1), 4.46 (dd, J = 4.4, 3.2 Hz, 1H, H-3), 3.91 (td, J = 4.4, 1.2 Hz, 1H, H-4)
OMe 2), 3.54 (s, 3H, OCH₃) ppm, ¹³C{¹H} NMR (101 MHz, D₂O) δ 165.4 (COO), 140.3

(C-5), 112.5 (C-4), 101.3 (C-1), 65.5 (C-2), 62.1 (C-3), 56.6 (OCH₃) ppm. **HRMS** (ESI⁻) m/z calcd. for C₇H₉O₆⁻ [M]⁻: 189.0405; found: 189.0401.

2.2.5. Thiol-ene reactions on 4,5-glycals 7-10

1,2,3-tri-O-acetyl-4-S-(2-mercaptoethyl)-4-thio-a-D-mannopyranose (18)

According to general procedure 2.1.1., 1,2,3-tri-*O*-acetyl-4-deoxy- β -L-*erythro*-hex-4-enopyranose (7, 95.1 mg, 0.33 mmol), **4a** (0.08 mL, 0.98 mmol), DPAP (8.5 mg, 0.03 mmol) and MAP (5 mg, 0.03 mmol) were reacted for 1 h. Flash chromatography using hexane/acetone (90:10) afforded **18** (61.8 mg, 49%) as a colourless syrup. **R**_f (**18**) = 0.24 (hexane/acetone 70:30).

18: ¹H NMR (400 MHz, CDCl₃) δ 6.06 (d, J = 2.2 Hz, 1H, H-1), 5.21 (dd, J = 11.6, 3.2 Hz, 1H, H-3), 5.16 (dd, J = 3.2, 2.2 Hz, 1H, H-2), 4.03 (dd, J = 12.4, 3.2 Hz, 1H, H-6a), 3.92 (dd, J = 12.4, 2.4 Hz, 1H, H-6b), 3.79-3.74 (m, 1H, H-5), 3.13 (t, J = 11.6 Hz, 1H, H-4), 2.89-2.83 (m, 2H, SCH₂), 2.76-2.69

(m, 2H, C<u>H</u>₂SH), 2.15 (s, 3H, CH₃CO), 2.14 (s, 3H, CH₃CO), 2.08 (s, 3H, CH₃CO), 1.72 (t, J = 8.1 Hz, 1H, SH) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.9 (CO), 169.8 (CO), 168.7 (CO), 91.0 (C-1), 74.9 (C-5), 69.2 (C-3), 67.7 (C-2), 62.3 (C-6), 42.3 (C-4), 36.7 (SCH₂), 25.0 (CH₂SH), 21.0 (CH₃), 20.96 (CH₃), 20.92 (CH₃) ppm. HRMS (ESI⁺) m/z calcd. for C₁₄H₂₂NaO₈S₂ [M+Na]⁺: 405.0654; found: 405.0648.

1,2,3,6-tetra-O-acetyl-4-S-(2-mercaptoethyl)-4-thio-β-D-mannopyranose (19)

According to general procedure 2.1.1., 1,2,3,6-tetra-*O*-acetyl-4-deoxy- α -L-*erythro*-hex-4enopyranose (**8**, 57.4 mg, 0.17 mmol), **4a** (0.04 mL, 0.52 mmol), DPAP (4.4 mg, 0.017 mmol) and MAP (2.6 mg, 0.017 mmol) were reacted for 1 h. Flash chromatography using hexane/acetone (90:10) afforded **19** (27.3 mg, 37%) as a colourless syrup. **R**_f (**19**) = 0.26 (hexane/acetone 70:30).

19: ¹**H** NMR (400 MHz, CDCl₃) δ 5.77 (d, J = 1.2 Hz, 1H, H-1), 5.41 (dd, J = 3.2, 1.2 Hz, 1H, H-2), 5.02 (dd, J = 11.2, 3.2 Hz, 1H, H-3), 4.62 (dd, J = 12.0, 2.0 Hz, 1H, H-6b), 4.43 (dd, J = 12.0, 5.2 Hz, 1H, H-6a), 3.75 (ddd,

J = 11.2, 5.2, 2.0 Hz, 1H, H-5), 2.92 (t, J = 11.2 Hz, 1H, H-4), 2.85-2.74 (m, 2H, SCH₂), 2.71-2.64 (m, 2H, CH₂SH), 2.20 (s, 3H, CH₃CO), 2.11 (s, 3H, CH₃CO), 2.08 (s, 6H, 2CH₃CO), 1.70 (t, J = 8.0 Hz, 1H, SH) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.7 (CO), 170.2 (CO), 169.6 (CO), 168.5 (CO), 90.5 (C-1), 75.1 (C-5), 71.3 (C-3), 68.0 (C-2), 64.0 (C-6), 42.5 (C-4), 35.9 (SCH₂), 24.8 (CH₂SH), 21.0 (CH₃), 20.9 (CH₃), 20.88 (CH₃), 20.84 (CH₃) ppm. HRMS (ESI⁺) *m/z* calcd. for C₁₆H₂₄NaO₉S₂ [M+Na]⁺: 447.0759; found: 447.0759.

Methyl 2,3-di-O-benzoyl-4-S-(2-mercaptoethyl)-6-O-methyl-4-thio- α -D-talopyranosiduronate (20a) and methyl 2,3-di-O-benzoyl-4-S-(2-mercaptoethyl)-6-O-methyl-4-thio- β -L-gulopyranosiduronate (20b)

According to general procedure 2.1.1., methyl 2,3-di-*O*-benzoyl-4-deoxy-6-*O*-methyl- β -L-*erythro*-hex-4-enopyranosiduronate (**9**, 75 mg, 0.18 mmol), **4a** (46 μ L, 0.55 mmol), DPAP (4.7 mg, 0.018 mmol) and MAP (2.7 mg, 0.018 mmol) were reacted for 1 h. Flash chromatography using hexane/acetone (90:10) afforded **20a** (25.8 mg, 28%) as an off-white solid and **20b** (54.3 mg, 59%) as an off-white solid. Combined isolated yield: 80.1 mg, 87%, **20a/20b** = 32:68. **R**_f (**20a/20b**) = 0.18 / 0.14 (hexane/acetone 80:20).

20a: ¹H NMR (400 MHz, CDCl₃) *δ* 8.29-8.24 (m, 2H, 2CH), 7.99-7.94 (m, 2H, 2CH), 7.62-7.57 (m, 1H, CH), 7.56-7.51 (m, 1H, CH), 7.49-7.44 (m, 2H, 2CH), 7.40-7.34 (m, 2H, 2CH), 5.71 (dd, *J* = 5.2, 3.6 Hz, 1H, H-3), 5.44 (ddd, *J* = 3.6, 1.6, 0.8 Hz, 1H, H-2), 5.04 (d, *J* = 1.6 Hz, 1H, H-1), 4.94 (d, *J* = 2.6 Hz, 1H, H-5), 3.89 (s, 3H, OCH₃), 3.77 (dd, *J* = 5.2, 2.6 Hz, 1H, H-4), 3.49 (s, 3H, OCH₃),

2.73-2.62 (m, 2H, SCH₂), 2.54-2.43 (m, 2H, C<u>H</u>₂SH), 1.49 (t, J = 8.0 Hz, 1H, SH) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.8 (COO), 166.0 (COPh), 165.6 (COPh), 133.7 (CH), 133.6 (CH), 130.7 (CH), 130.0 (CH), 129.37 (C), 129.33 (C), 128.7 (CH), 128.5 (CH), 100.0 (C-1), 70.6 (C-5), 68.3 (C-2), 67.7 (C-3), 56.1 (OCH₃), 52.7 (OCH₃), 46.9 (C-4), 39.0 (SCH₂), 24.9 (CH₂SH) ppm. HRMS (ESI⁺) *m/z* calcd. for C₂₄H₂₆NaO₈S₂ [M+Na]⁺: 529.0967; found: 529.0962.

20b: ¹H NMR (400 MHz, CDCl₃) *δ* 8.06-8.02 (m, 2H, 2CH), 7.95-7.92 (m, 2H, 2CH), 7.66-7.61 (m, 1H, CH), 7.54-7.48 (m, 3H, 3CH), 7.38-7.34 (m, 2H, 2CH), 5.79 (t, *J* = 3.6 Hz, 1H, H-3), 5.63 (dd, *J* = 8.0, 3.6 Hz, 1H, H-2), 4.98 (d, *J* = 8.0 Hz, 1H, H-1), 4.87 (d, *J* = 2.8 Hz, 1H, H-5), 3.85 (s, 3H, OCH₃),

3.60 (s, 3H, OCH₃), 3.47 (dd, J = 3.6, 2.8 Hz, 1H, H-4), 2.97-2.91 (m, 2H, SCH₂), 2.84-2.77 (m, 2H, CH₂SH), 1.76 (t, J = 8.0 Hz, 1H, SH) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.6 (COO), 165.4 (COPh), 165.2 (COPh), 133.9 (CH), 133.4 (CH), 129.9 (CH), 129.8 (CH), 129.6 (C), 129.4 (C), 128.9 (CH), 128.5 (CH), 100.7 (C-1), 73.3 (C-5), 72.7 (C-2), 68.4 (C-3), 57.1 (OCH₃), 52.8 (OCH₃), 47.4 (C-4), 37.6 (SCH₂), 24.8 (CH₂SH) ppm. HRMS (ESI⁺) m/z calcd. for C₂₄H₂₆NaO₈S₂ [M+Na]⁺: 529.0967; found: 529.0959.

Methyl 4-S-(2-mercaptoethyl)-4-thio- β -L-gulopyranosiduronic acid (21)

According to general procedure 2.1.1., methyl 4-deoxy- β -L-*erythro*-hex-4-enopyranosiduronic acid (**10**, 50 mg, 0.26 mmol), **4a** (66 μ L, 0.79 mmol), DPAP (6.7 mg, 0.026 mmol) and MAP (3.9 mg, 0.026 mmol) were reacted for 1 h. For solubility reasons, MeOH (0.1 mL) was added. Flash

chromatography using Et₂O/EtOAc/MeOH/AcOH (30:30:1:0.25) afforded **21** (33.6 mg, 45%) as an off-white solid. $\mathbf{R}_{f}(\mathbf{21}) = 0.30$ (Et₂O/EtOAc/MeOH/AcOH 3:3:0.25:0.25).

103.7 (C-1), 74.0 (C-3), 73.7 (C-5), 69.4 (C-2), 57.4 (OCH₃), 51.9 (C-4), 38.6 (SCH₂), 25.4 (CH₂SH) ppm, COOH not observed. **HRMS** (ESF) m/z calcd. for C₉H₁₅O₆S₂ [M-H]⁻: 283.0310; found: 283.0318.

2.2.6. Synthesis of disaccharide 22 and thiol-ene reaction

Synthesis of methyl (methyl 2-O-benzoyl-3-O-benzyl-4-deoxy- α -L-threo-hex-4-enopyranosyl) uronate- $(1 \rightarrow 4)$ -2-acetamido-6-O-benzoyl-3-O-benzyl-2-deoxy- α -D-glucopyranoside (22)

Scheme S5. Synthesis of **22** from**23**. Reaction conditions: (i) Ac₂O, pyridine, rt, 2 h; (ii) DBU, CH₂Cl₂, 0 °C to rt, 2h; (iii) thioacetic acid, 2,6-lutidine, CHCl₃, 60 °C, 36h.

Methyl (*methyl* 4-O-acetyl-2-O-benzoyl-3-O-benzyl- α -L-idopyranosyl)uronate-(1 \rightarrow 4)-2-azido-6-O-benzoyl-3-O-benzyl-2-deoxy- α -D-glucopyranoside (24)

To a solution of the commercial disaccharide methyl (methyl 2-*O*-benzoyl-3-*O*-benzyl- α -L-idopyranosyl)uronate-(1 \rightarrow 4)-2-azido-6-*O*-benzoyl-3-*O*-benzyl-2-deoxy- α -D-glucopyranoside (**23**, 500 mg, 0.63 mmol) in pyridine (1.5 mL) was added dropwise Ac₂O (1 mL), and the reaction mixture was stirred at room temperature for 2 h. Then, the solvent was removed *in vacuo*, and the residue was purified by silica gel flash column chromatography using hexane/EtOAc (75:25), affording **24** (500 mg, 95%) as a white solid. **R**_f (**24**) = 0.68 (hexane/EtOAc 70:30).

24: ¹**H NMR** (400 MHz, CDCl₃) δ 8.07-8.03 (m, 2H, 2CH), 8.02-7.98 (m, 2H, 2CH), 7.57-7.51 (m, 2H, 2CH), 7.44-7.35 (m, 6H, 6CH), 7.35-7.26 (m, 8H, 8CH), 5.43 (d, J = 2.8 Hz, 1H, H-1 A), 5.22-5.16 (m, 2H, H-2 A and H-4 A), 4.99 (d, J = 3.2 Hz, 1H, H-5 A), 4.82 (dd, J = 11.2, 1.6 Hz, 2H, ½CH₂Ph A and ½CH₂Ph B), 4.79 (d, J = 3.6 Hz, 1H, H-1 B), 4.76-4.69 (m, 3H, H-6b B,

^{1/2}CH₂Ph A and ^{1/2}CH₂Ph B), 4.49 (dd, J = 12.0, 4.4 Hz, 1H, H-6a B), 4.08 (dd, J = 10.0, 8.8 Hz, 1H, H-4 B), 3.98 (ddd, J = 10.0, 4.4, 2.4 Hz, 1H, H-5 B), 3.94 (t, J = 3.6 Hz, 1H, H-3 A), 3.88 (dd, J = 10.0, 8.8 Hz, 1H, H-3 B), 3.47 (dd, J = 10.0, 3.6 Hz, 1H, H-2 B), 3.43 (s, 3H, OCH₃ A), 3.42 (s, 3H, OCH₃ B), 1.92 (s, 3H, CH₃CO A) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.9 (COO A), 168.8 (CO), 166.2 (COPh B), 165.3 (COPh A), 149.8 (CH), 137.8 (C), 137.4 (C), 133.7 (CH), 133.2 (CH), 130.0 (CH), 129.9 (C), 129.3 (C), 128.59 (CH), 128.55 (CH), 128.5 (CH), 128.4 (CH), 128.23 (CH), 128.18 (CH), 127.9 (CH), 127.6 (CH), 123.9 (CH), 98.6 (C-1 B), 98.0 (C-1 A), 78.8 (C-3 B), 75.6 (C-4 B), 75.1 (CH₂Ph B), 73.4 (C-3 A), 73.1 (CH₂Ph A), 69.4 (C-5 B), 68.6 (C-4 A), 68.3 (C-2 A), 67.6 (C-5 A), 63.9 (C-2 B), 62.8 (C-6 B), 55.6 (OCH₃), 52.1 (OCH₃), 20.8 (CH₃) ppm. HRMS (ESI⁺) *m*/*z* calcd. for C₄₄H₄₉N₄O₁₄ [M+NH₄]⁺: 857.3240; found: 857.3229.

Methyl (methyl 2-O-benzoyl-3-O-benzyl-4-deoxy-a-L-threo-hex-4-eno pyranosyl)uronate- $(1\rightarrow 4)$ *-2-azido-6-O-benzoyl-3-O-benzyl-2-deoxy-a-D-glucopyranoside (25)*

According to general procedure 2.1.3., disaccharide **24** (500 mg, 0.60 mmol) and DBU (0.18 mL, 1.19 mmol) in CH₂Cl₂ (7 mL) were reacted for 2 h. Flash chromatography using PhMe/EtOAc (90:10) afforded **25** (311 mg, 67%) as a white solid. \mathbf{R}_{f} (**25**) = 0.70 (PhMe/EtOAc 85:15).

25: ¹H NMR (400 MHz, CDCl₃) δ 8.04-8.00 (m, 2H, 2CH), 7.957.91 (m, 2H, 2CH), 7.57-7.50 (m, 2H, 2CH), 7.45-7.34 (m, 8H, 8CH), 7.32-7.23 (m, 6H, 6CH), 6.23 (dd, J = 4.4, 1.2 Hz, 1H, H-4
A), 5.63 (dd, J = 3.2, 1.2 Hz, 1H, H-1 A), 5.48 (ddd, J = 3.2, 2.8, 1.2 Hz, 1H, H-2 A), 5.19 (d, J = 10.8 Hz, 1H, ¹/₂CH₂Ph B), 4.80-

4.76 (m, 3H, H-1 B, $\frac{1}{2}$ CH₂Ph B and $\frac{1}{2}$ CH₂Ph A), 4.74 (d, J = 12.0 Hz, 1H, $\frac{1}{2}$ CH₂Ph A), 4.68 (dd, J = 12.4, 2.0 Hz, 1H, H-6b B), 4.50 (dd, J = 12.4, 4.4 Hz, 1H, H6a B), 4.10 (ddd, J = 4.4, 2.8, 1.2 Hz, 1H, H-3 A), 4.04 (dd, J = 10.0, 8.4 Hz, 1H, H-4 B), 3.99 (d, J = 8.4 Hz, 1H, H-3 B), 3.96 (ddd, J = 10.0, 4.4, 2.0 Hz, 1H, H-5 B), 3.62 (s, 3H, OCH₃ A), 3.43-3.39 (m, 4H, H-2 B and OCH₃ B) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.2 (COPh B), 165.2 (COPh A), 162.3 (COO A), 142.1 (C-5 A), 138.4 (C), 137.6 (C), 133.7 (CH), 133.3 (CH), 130.3 (CH), 130.0 (CH), 129.9 (C), 129.1 (CH), 128.63 (CH), 128.60 (CH), 128.56 (CH and C), 128.3 (CH), 128.06 (CH), 128.04 (CH), 127.6 (CH), 108.9 (C-4 A), 98.7 (C-1 B), 97.4 (C-1 A), 78.7 (C-3 B), 77.4 (C-4 B), 75.3 (CH₂Ph B), 71.3 (CH₂Ph A), 69.7 (C-3 CH), 128.04 (CH), 129.9 (C), 129.1 (CH), 129.7 (C-3 CH), 128.7 (C-3 CH), 128.9 (C-4 CH), 128.9 (CH), 128.9 (CH

A), 69.1 (C-2 A), 68.8 (C-5 B), 64.0 (C-2 B), 62.8 (C-6 B), 55.5 (OCH₃ A) 52.5 (OCH₃ B) ppm. **HRMS** (ESI⁺) *m/z* calcd. for C₄₂H₄₅N₄O₁₂ [M+NH₄]⁺: 797.3028; found: 797.3041.

Methyl (*methyl* 2-O-benzoyl-3-O-benzyl-4-deoxy- α -L-threo-hex-4-enopyranosyl)uronate- $(1 \rightarrow 4)$ -2-acetamido-6-O-benzoyl-3-O-benzyl-2-deoxy- α -D-glucopyranoside (22)

According to a previously described method,¹⁴ to a solution of 4,5-glycal disaccharide **25** (100 mg, 0.13 mmol) in CHCl₃ (ca. 0.3M, 0.4 mL) was added, under an inert atmosphere, 2,6-lutidine (39 μ L, 0.33 mmol) and thioacetic acid (24 μ L, 0.33 mmol), and the mixture was stirred at 60 °C for 36 h. Then, the solvent was removed *in vacuo* and the residue was purified by silica gel flash column chromatography using hexane/acetone (70:30), affording **22** (68.3 mg, 67%) as a yellowish syrup. **R**_f (**22**) = 0.16 (hexane/acetone 70:30).

22: ¹**H NMR** (400 MHz, CDCl₃) δ 8.04-8.01 (m, 2H, 2CH), 7.96-7.93 (m, 2H, 2CH), 7.57-7.50 (m, 2H, 2CH), 7.45-7.35 (m, 6H, 6CH), 7.31-7.27 (m, 8H, 8CH), 6.25 (dd, J = 4.4, 1.2 Hz, 1H, H-4 A), 5.57 (dd, J = 3.6, 1.2 Hz, 1H, H-1 A), 5.50 (ddd, J = 3.6, 3.2, 1.2 Hz, 1H, H-2 A), 5.22 (d, J = 9.2 Hz, 1H, NH B), 5.00 (d, J =

11.6 Hz, 1H, $\frac{1}{2}$ CH₂Ph B), 4.78 (d, J = 12.0 Hz, 1H, $\frac{1}{2}$ CH₂Ph A), 4.73 (d, J = 12.0 Hz, 1H, $\frac{1}{2}$ CH₂Ph A), 4.65 (dd, J = 12.0, 2.4 Hz, 1H, H-6b B), 4.64 (d, J = 3.2 Hz, 1H, H-1 B), 4.60 (d, J = 11.6 Hz, 1H, $\frac{1}{2}$ CH₂Ph B), 4.50 (dd, J = 12.0, 4.4 Hz, 1H, H-6a B), 4.23 (td, J = 9.6, 3.2 Hz, 1H, H-2 B), 4.12 (ddd, J = 4.4, 3.2, 1.2 Hz, 1H, H-3 A), 4.08 (dd, J = 9.6, 8.4 Hz, 1H, H-4 B), 3.92 (ddd, J = 9.6, 4.4, 2.4 Hz, 1H, H-5 B), 3.74-3.68 (m, 4H, H-3 B and OCH₃ A), 3.31 (s, 3H, OCH₃ B), 1.76 (s, 3H, CH₃CO B) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.9 (CONH B), 166.2 (COPh B), 165.2 (COPh A), 162.4 (COO A), 142.1 (C-5 A), 138.8 (C), 137.7 (C), 133.6 (CH), 133.2 (CH), 130.0 (CH), 129.85 (CH), 129.83 (C), 129.0 (C), 128.53 (CH), 128.50 (CH), 128.1 (CH), 128.0 (CH), 127.7 (CH), 108.9 (C-4 A), 98.4 (C-1 B), 97.6 (C-1 A), 78.1 (C-3 B), 77.7 (C-4 B), 75.0 (CH₂Ph B), 71.2 (CH₂Ph A), 70.0 (C-3 A), 69.2 (C-2 A), 69.0 (C-5 B), 62.9 (C-6 B), 55.2 (OCH₃ A), 52.6 (C-2 B), 52.5 (OCH₃ B), 23.5 (CH₃ B) ppm. HRMS (ESI⁺) *m*/*z* calcd. for C₄₄H₄₅NNaO₁₃ [M+Na]⁺: 818.2789; found: 818.2785.

Thiol-ene reaction on disaccharide 22

Methyl (methyl 2-O-benzoyl-3-O-benzyl-4-S-(2-mercaptoetyl)-4-thio-\beta-D-galactopyranosyl)uronate-(1-+4)-2-acetamido-6-O-benzoyl-3-O-benzyl-2-deoxy-\alpha-D-glucopyranoside (26)

According to general procedure 2.1.1., 4,5-glycal disaccharide **22** (159 mg, 0.20 mmol), **4a** (50 μ L, 0.60 mmol), DPAP (5.1 mg, 0.02 mmol) and MAP (3 mg, 0.02 mmol) were reacted for 2 h. Flash

chromatography using hexane/acetone (60:40) afforded **26** (71.1 mg, 40%) as a yellowish syrup. \mathbf{R}_{f} (**26**) = 0.20 (hexane/acetone 60:40).

26: ¹H NMR (400 MHz, CDCl₃) δ 8.06-8.01 (m, 2H, 2CH), 7.917.85 (m, 2H, 2CH), 7.58-7.53 (m, 1H, CH), 7.44-7.32 (m, 9H, 9CH), 7.29-7.27 (m, 1H, CH), 7.21-7.09 (m, 5H, 5CH), 5.62 (dd, J = 10.0, 7.6 Hz, 1H. H-2 A), 5.21 (d, J = 12.4 Hz, 1H, ½CH₂Ph A), 5.14 (d, J = 8.8 Hz, 1H, NH B), 4.68-4.58 (m, 4H, ½CH₂Ph A, H-1 A, H-1 B and ½CH₂Ph B), 4.45 (d, J = 12.0 Hz, 1H, ½CH₂Ph B),

4.40 (dd, J = 12.0, 4.0 Hz, 1H, H-6a B), 4.32 (dd, J = 12.0, 2.0 Hz, 1H, H-6b B), 4.18 (ddd, J = 10.4, 8.8, 3.6 Hz, 1H, H-2 B), 4.08 (d, J = 2.0 Hz, 1H, H-5 A), 3.90 (dd, J = 10.0, 8.4 Hz, 1H, H-4 B), 3.80 (dd, J = 10.0, 4.0 Hz, 1H, H-3 A), 3.74 (ddd, J = 10.0, 4.0, 2.0 Hz, 1H, H-5 B), 3.68 (dd, J = 10.4, 8.4 Hz, 1H, H-3 B), 3.62 (s, 3H, OCH₃ A), 3.48 (dd, J = 4.0, 2.0 Hz, 1H, H-4 A), 3.23 (s, 3H, OCH₃ B), 2.87 (dt, J = 13.6, 7.6 Hz, 1H, ½SCH₂ A), 2.79 (dt, J = 13.6, 7.6 Hz, 1H, ½SCH₂ A), 2.61 (app q, J = 7.6 Hz, 2H, CH₂SH A), 1.75 (s, 3H, CH₃CO B), 1.62 (t, J = 8.0 Hz, 1H, SH A) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.0 (CONH B), 168.2 (COO A), 166.2 (COPh B), 165.2 (COPh A), 139.7 (C), 137.0 (C), 133.4 (CH), 133.3 (CH), 130.0 (CH), 129.79 (C), 129.75 (CH), 129.2 (C), 128.65 (CH), 128.64 (CH), 128.53 (CH), 128.51 (CH), 128.2 (CH), 128.03 (CH), 128.01 (CH), 127.5 (CH), 101.9 (C-1 A), 98.3 (C-1 B), 79.0 (C-4 B), 78.7 (C-3 A), 78.4 (C-3 B), 75.1 (CH₂Ph B), 74.5 (C-5 A), 72.6 (CH₂Ph A), 72.5 (C-2 A), 68.7 (C-5 B), 62.8 (C-6 B), 55.2 (OCH₃ B), 52.7 (OCH₃ A), 52.5 (C-2 B), 48.7 (C-4 A), 37.6 (SCH₂ A), 24.6 (CH₂SH A), 23.5 (CH₃ B) ppm. **HRMS** (ESI⁺) *m/z* calcd. for C₄6H₅₁NNaO₁₃S₂ [M+Na]⁺: 912.2700; found: 912.2689.

3. References

- Beswick, L.; Ahmadipour, S.; Dolan, J. P.; Rejzek, M.; Field, R. A.; Miller, G. J. Chemical and Enzymatic Synthesis of the Alginate Sugar Nucleotide Building Block: GDP-D-Mannuronic Acid. *Carbohydr. Res.* 2019, 485 (8), 107819. DOI: 10.1016/j.carres.2019.107819
- (2) Combaud, D.; Thomas, M.; Papot, S.; Gesson, J.-P. Synthesis and Evaluation of *p*-Nitrophenyl β-D-Glucopyranosiduronic Analogues as New Triggers for β-Glucuronidase Mediated Prodrug Mono-Therapy. *Lett. Drug Des. Discov.* 2005, 2 (8), 631-637. DOI: 10.2174/157018005774717271
- (3) Igarashi, K.; Honma, T. Addition Reactions of Glycals. IV. The Free-Radical Addition of Thiolacetic Acid to D-Glucal Triacetate. J. Org. Chem. 1970, 35 (3), 606-610. DOI: 10.1021/jo00828a012
- (4) Debreczeni, N.; Bege, M.; Borbás, A. Synthesis of Potential Glycosyl Transferase Inhibitors by Thio-Click Reactions. *Eur. J. Org. Chem.* 2021, 2021 (48), 6743-6747. DOI: 10.1002/ejoc.202101220
- (5) Kelemen, V.; Bege, M.; Eszenyi, D.; Debreczeni, N.; Bényei, A.; Stürzer, T.; Herczegh, P.; Borbás, A. Stereoselective Thioconjugation by Photoinduced Thiol-ene Coupling Reactions of Hexo- and Pentopyranosyl D- and L-Glycals at Low-Temperature Reactivity and Stereoselectivity Study. *Chem. Eur. J.* 2019, 25 (64), 14555-14571. DOI: 10.1002/chem.201903095
- (6) Malkinson, J. P.; Falconer, R. A.; Toth, I. Synthesis of C-Terminal Glycopeptides from Resin-Bound Glycosyl Azides via a Modified Staudinger Reaction. J. Org. Chem. 2000, 65 (17), 5249-5252. DOI: 10.1021/jo000381z
- (7) Pilgrim, W.; Murphy, P. V. SnCl₄- and TiCl₄-Catalyzed Anomerization of Acylated *O* and *S*-Glycosides: Analysis of Factors That Lead to Higher α:β Anomer Ratios and Reaction Rates. *J. Org. Chem.* 2010, 75 (20), 6747-6755. DOI: 10.1021/jo101090f
- (8) Yu, H.; Chen, X. Aldolase-Catalyzed Synthesis of β-D-Galp-(1→9)-D-KDN: A Novel Acceptor for Sialyltransferases. Org. Lett. 2006, 8 (11), 2393-2396. DOI: 10.1021/ol060736m
- (9) Lopez, M.; Trajkovic, J.; Bornaghi, L. F.; Innocenti, A.; Vullo, D.; Supuran, C.; Poulsen, S.-A. Design, Synthesis, and Biological Evaluation of Novel Carbohydrate-Based Sulfamates as Carbonic Anhydrase Inhibitors. *J. Med. Chem.* 2011, 54 (5), 1481-1489. DOI: 10.1021/jm101525j
- (10) Muthana, M. M.; Qu, J.; Xue, M.; Klyuchnik, T.; Siu, A.; Li, Y.; Zhang, L.; Yu, H.; Li, L.; Wang, P. G.; Chen, X. Improved One-pot Multienzyme (OPME) Systems for Synthesizing UDP-Uronic Acids and Glucuronides. *Chem. Commun.* 2015, *51* (22), 4595-4598. DOI: 10.1039/c4cc10306h
- (11) Edington, R. A.; Hirst, E. L.; Percival, E. E. The Synthesis of Methyl Ethers of Mannuronic and Glucuronic Acid, and their Reaction with Periodate. J. Chem. Soc. 1955, 2281-2288. DOI: 10.1039/jr9550002281
- (12) Schnatbaum, K.; Schäfer, H. J. Electroorganic Synthesis 66: Selective Anodic Oxidation of Carbohydrates Mediated by TEMPO. *Synthesis* 1999, *5*, 864-872. DOI: 10.1055/s-1999-3464
- (13) Rej, R. N.; Glushka, J. N.; Chew, W.; Perlin, A. S. Chromic Acid Oxidation in the Synthesis of Uronic Acids. Use of the *O*-Levulinoyl Group to Minimize Acyl Migration. *Carbohydr. Res.* 1989, 189, 135-148. DOI: 10.1016/0008-6215(89)84092-3
- (14) Shangguan, N.; Katukojvala, S.; Greenberg, R.; Williams, L. J. The Reaction of Thio Acids with Azides: A New Mechanism and New Synthetic Applications. J. Am. Chem. Soc. 2003, 125 (26), 7754-7755. DOI: 10.1021/ja0294919