Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

#### "Supporting Information"

### Mechanism and Stereoselectivity of a [3+2] Cycloaddition Involving a Glucosyl Nitrone: A MEDT Study

Mohamed Chellegui<sup>a,b\*</sup>, Simplice Koudjina<sup>c,d</sup>, Ines Salhi<sup>a</sup>, Sofiane Benmetir<sup>e,f</sup>, Raad Nasrullah Salih<sup>g</sup>, Haydar A. Mohammad-Salim<sup>h,i</sup>, Guy Y.S. Atohoun<sup>d</sup> and Jesus Vicente de Julián-Ortiz<sup>e</sup>

<sup>a</sup>Laboratory of Organic Chemistry (LR17ES08), Faculty of Sciences, University of Sfax, 3038 Sfax, Tunisia.
<sup>b</sup>Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium.
<sup>c</sup>National High School of Applied Biosciences and Biotechnologies (ENSBBA), National University of Sciences, Technologies, Engineering and Mathematics (UNSTIM), BP 486 Abomey, Sogbo-Aliho, Benin.
<sup>d</sup>Laboratory of Chemical Physics-Materials and Molecular Modeling (LCP3M), University of Abomey-Calavi (UAC), 03 BP 3409 Cotonou, Benin.
<sup>e</sup>Department of Physical Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Valencia, Spain.
<sup>f</sup>Process and Environmental Engineering Laboratory (LIPE), Faculty of Chemistry, University of Science and Technology of Oran Mohamed BOUDIAF, P.O. Box 1503, El Mnaouer, 31000 Oran, Algeria.
<sup>g</sup>Nursing Department, Bardarash Technical Institute, Akre University for Applied science, Duhok 42001, Kurdistan Region, Iraq.
<sup>h</sup>Department of Chemistry, Faculty of Science, University of Zakho, Zakho 42002, Kurdistan Region, Iraq.

### 1 General Aspects of Thermodynamics and Kinetics

In this work, DFT at the IEFPCM(toluene)/M06-2X-D3/6–311G(d,p) level of approximation is employed to describe the 32CA reaction between

C-(D-glucoso)-N-methyl nitrone 1 and 1H-pyrrole-2,5-dione 2 (Scheme S1).



Scheme S1 32CA reactions stereoisomeric paths of C-(D-glucoso)-N-Methyl nitrone 1 with 1H-pyrrole-2,5-dione 2. [CN = endo cycloadduct, CX = exo cycloadduct, TSN = TS-endo, and TSX = TS-exo].

The thermochemical state functions were calculated using the following expressions corresponding to the different reaction steps:

 $\Delta X = X (\text{product/TS}) - [X (C-(D-glucoso)-N-Methyl nitrone) + X (1H-pyrrole-2,5-dione)].$ 

With, X = E, H, G, and S.

### 2 Thermodynamic Data

The relative values of energy (E), enthalpy (H<sup>0</sup>), entropy (S<sup>0</sup>) and Gibbs enthalpy (G<sup>0</sup>) of the reactants, products, and TSs are given in **Table S1**.

| Systems | E (a.u.)    | H <sup>0</sup> (a.u.) | S <sup>0</sup> (cal mol <sup>-1</sup> K <sup>-1</sup> ) | <b>G</b> <sup>0</sup> (a.u.) |
|---------|-------------|-----------------------|---------------------------------------------------------|------------------------------|
| 1       | -667.167799 | -666.93619            | 129.482                                                 | -667.01525                   |
| 2       | -359.39309  | -359.31449            | 80.971                                                  | -359.36393                   |
| CN      | -1026.62570 | -1026.30977           | 153.307                                                 | -1026.40337                  |
| СХ      | -1026.61991 | -1026.30446           | 157.627                                                 | -1026.40071                  |
| TSN     | -1026.55641 | -1026.24508           | 160.387                                                 | -1026.35426                  |
| TSX     | -1026.54871 | -1026.23716           | 163.605                                                 | -1026.33705                  |

**Table S1** Energies, enthalpies, entropies, and Gibbs enthalpies of reactants, transition states, and products calculated at theIEFPCM(toluene)/M06-2X-D3/6-311G(d,p) level of approximation (T = 383.15 K and P = 1 atm).

### **3** Bond Evolution Theory (BET) analysis along the decomposition pathways

**Table S2** Table Basin Populations (in e), IRC coordinates (RX, Bohr AMU<sup>1/2</sup>), relative electronic energies ( $\Delta E$  in kcal/mol) and C3-C4/O1-C5 bond lengths (in Å) along the **TSN** stereoisomeric channel of the 32CA reaction between C-(D-glucoso)-N-methyl nitrone **1** and 1H-pyrrole-2,5-dione **2**.

|          | SS]   | D-I   | SSI   | D-II  | SSE   | )-III | SSE   | )-IV  | SSI   | D-V   | SSE   | )-VI  | SSD   | -VII  |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Basins   | First | Last  |
| V(N2,C3) | 3.75  | 3.98  | 3.16  | 3.16  | 3.03  | 3.03  | 2.66  | 2.42  | 2.35  | 2.35  | 2.27  | 2.19  | 2.13  | 1.83  |
| V(C4,C5) | 3.32  | 3.21  | 3.20  | 3.20  | 2.88  | 2.88  | 2.70  | 2.44  | 2.33  | 2.33  | 2.25  | 2.20  | 2.15  | 1.96  |
| V(01,N2) | 1.45  | 1.29  | 1.25  | 1.25  | 1.24  | 1.24  | 1.20  | 1.15  | 1.12  | 1.12  | 1.09  | 1.08  | 1.07  | 0.96  |
| V(01)    | 6.01  | 5.82  | 5.78  | 5.78  | 5.80  | 5.80  | 5.80  | 5.80  | 6.02  | 6.02  | 5.29  | 5.25  | 5.24  | 5.05  |
| V(N2)    |       |       | 0.88  | 0.88  | 1.09  | 1.09  | 1.25  | 1.57  | 1.70  | 1.70  | 1.82  | 1.92  | 2.01  | 2.35  |
| V(C3)    |       |       |       |       |       |       | 0.32  | 0.40  |       |       |       |       |       |       |
| V(C4)    |       |       |       |       | 0.35  | 0.35  | 0.45  | 0.63  |       |       |       |       |       |       |
| V(C3,C4) |       |       |       |       |       |       |       |       | 1.16  | 1.16  | 1.28  | 1.36  | 1.43  | 1.85  |
| V(C5)    |       |       |       |       |       |       | 0.07  | 0.15  |       |       |       |       |       |       |
| V'(01)   |       |       |       |       |       |       |       |       |       |       | 0.75  | 0.82  |       |       |
| V(01,C5) |       |       |       |       |       |       |       |       |       |       |       |       | 0.90  | 1.25  |
| d(C3,C4) | 2.867 | 2.293 | 2.250 | 2.250 | 2.206 | 2.206 | 2.165 | 2.075 | 2.027 | 2.027 | 1.979 | 1.938 | 1.880 | 1.508 |
| d(O1,C5) | 2.644 | 2.011 | 1.963 | 1.963 | 1.916 | 1.916 | 1.889 | 1.772 | 1.728 | 1.728 | 1.689 | 1.636 | 1.598 | 1.424 |
| RX       | -6.74 | -0.67 | -0.33 | -0.33 | 0.00  | 0.00  | 0.32  | 0.99  | 1.33  | 1.33  | 1.67  | 2.01  | 2.35  | 6.71  |
| Ε        | 24.75 | 33.23 | 33.65 | 33.65 | 33.83 | 33.83 | 33.56 | 31.44 | 29.39 | 29.39 | 26.71 | 23.50 | 19.96 | 0.00  |

**Table S3** Table Basin Populations (in e), IRC coordinates (RX, Bohr AMU<sup>1/2</sup>), relative electronic energies ( $\Delta E$  in kcal/mol) and C3-C4/O1-C5 bond lengths (in Å) along the **TSX** stereoisomeric channel of the 32CA reaction between C-(D-glucoso)-N-methyl nitrone **1** and 1H-pyrrole-2,5-dione **2**.

|          | SS.   | D-I   | SSI   | D-II  | SSD   | )-III | SSE   | D-IV  | SSI   | D-V   | SSE   | )-VI  | SSD   | -VII  |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Basins   | First | Last  |
| V(N2,C3) | 3.70  | 3.88  | 3.63  | 3.70  | 2.81  | 2.57  | 2.47  | 2.39  | 2.32  | 2.20  | 2.14  | 2.09  | 2.03  | 1.84  |
| V(C4,C5) | 3.31  | 3.20  | 3.19  | 3.14  | 2.89  | 2.76  | 2.55  | 2.44  | 2.35  | 2.22  | 2.17  | 2.13  | 2.09  | 1.97  |
| V(01,N2) | 1.52  | 1.39  | 1.36  | 1.33  | 1.31  | 1.23  | 1.20  | 1.15  | 1.14  | 1.09  | 1.09  | 1.05  | 1.03  | 0.96  |
| V(01)    | 5.88  | 5.86  | 5.82  | 5.76  | 5.78  | 5.73  | 5.72  | 5.73  | 5.76  | 6.04  | 5.37  | 5.28  | 5.24  | 5.09  |
| V(N2)    |       |       |       |       | 0.95  | 1.33  | 1.45  | 1.58  | 1.69  | 1.87  | 1.96  | 2.02  | 2.07  | 2.31  |
| V(C3)    |       |       | 0.30  | 0.36  | 0.39  | 0.47  | 0.52  | 0.53  |       |       |       |       |       |       |
| V(C4)    |       |       |       |       | 0.27  | 0.45  | 0.53  | 0.62  |       |       |       |       |       |       |
| V(C3,C4) |       |       |       |       |       |       |       |       | 1.25  | 1.43  | 1.50  | 1.57  | 1.61  | 1.89  |
| V(C5)    |       |       |       |       |       |       | 0.16  | 0.21  | 0.21  | 0.20  |       |       |       |       |
| V'(01)   |       |       |       |       |       |       |       |       |       |       | 0.73  | 0.82  |       |       |
| V(01,C5) |       |       |       |       |       |       |       |       |       |       |       |       | 0.92  | 1.25  |
| d(C3,C4) | 3.212 | 2.368 | 2.322 | 2.229 | 2.183 | 2.088 | 2.041 | 1.933 | 1.946 | 1.856 | 1.812 | 1.770 | 1.728 | 1.547 |
| d(O1,C5) | 2.720 | 2.163 | 2.124 | 2.045 | 2.005 | 1.929 | 1.890 | 1.833 | 1.814 | 1.734 | 1.693 | 1.651 | 1.609 | 1.426 |
| RX       | 7.54  | 1.21  | 0.90  | 0.30  | 0.00  | -0.60 | -0.91 | -1.21 | -1.51 | -2.11 | -2.41 | -2.72 | -3.02 | -7.53 |
| E        | 26.60 | 37.68 | 38.68 | 38.81 | 39.99 | 39.09 | 37.85 | 36.01 | 27.14 | 27.13 | 23.33 | 19.33 | 15.34 | 0.00  |

### 4 Drug-likeness assessment and ADMET predictions

| Lipinski                    | Ghose                   | Veber                      | Egan                        | Muegge                                     |
|-----------------------------|-------------------------|----------------------------|-----------------------------|--------------------------------------------|
| $MW \le 500 Da$             | 160 Da ≤ MW ≤ 480 Da    | #Rotatable bonds $\leq 10$ | WLOGP $\leq 5.88$           | $200 \text{ Da} \le MW \le 600 \text{ Da}$ |
| $MLOGP \leq 4.15$           | WLOGP <-0.4             | $TPSA \le 140 \text{ Å}^2$ | TPSA > 131.6 Å <sup>2</sup> | XLOGP3<-2                                  |
| #H-bond donors $\leq 5$     | $40 \le MR \le 130$     |                            |                             | $TPSA \le 150 \text{ Å}^2$                 |
| #H-bond acceptors $\leq 10$ | $20 \le \#atoms \le 70$ |                            |                             | $\#$ Rings $\leq 7$                        |
| -                           |                         |                            |                             | #Carbons > 4                               |
|                             |                         |                            |                             | #Heteroatoms > 1                           |
|                             |                         |                            |                             | #Rotatable bonds $\leq 15$                 |
|                             |                         |                            |                             | #H-bond donors $\leq 5$                    |
|                             |                         |                            |                             | #H-bond acceptors $\leq 10$                |

Table S4 Main features of the five druglikeness rules evaluated for CN and CX compounds.

Table S5 Compounds CN and CX distribution and exertion SwissADME-Computed Drug-Likeness Predictions.

| Property                | CN     | СХ     | Comment                                                                  |
|-------------------------|--------|--------|--------------------------------------------------------------------------|
| <b>BBB</b> Permeability | 0.284  | 0.303  | Blood Brain penetration. Category 1: BBB+; Category 0: BBB-;             |
|                         |        |        | The output value is probably being BBB+                                  |
| PPB                     | 11.77% | 14.65% | Plasma Protein Binding                                                   |
|                         |        |        | Optimal: < 90%. Drugs with high protein-bound may have a low therapeutic |
|                         |        |        | index.                                                                   |
| CL (Clearance)          | 1.517  | 1.508  | The unit of predicted CL plasma penetration is ml/min/kg.                |
|                         |        |        | >15 ml/min/kg: high clearance                                            |
|                         |        |        | 5-15 ml/min/kg: moderate clearance                                       |
|                         |        |        | >5 ml/min/kg: low clearance                                              |

| Property       | CN                   | СХ           |  |
|----------------|----------------------|--------------|--|
| CYP1A2         | inhibitor(substrate) |              |  |
|                | 0.013(0.063)         | 0.017(0.063) |  |
| <b>CYP2C19</b> | inhibitor            | (substrate)  |  |
|                | 0.025(0.243)         | 0.021(0.248) |  |
| CYP2C9         | inhibitor(substrate) |              |  |
|                | 0.001(0.077)         | 0.001(0.103) |  |
| CYP2D6         | inhibitor            | (substrate)  |  |
|                | 0.004(0.127)         | 0.005(0.138) |  |
| CYP3A4         | inhibitor(substrate) |              |  |
|                | 0.006(0.022)         | 0.005(0.02)  |  |

 Table S6 SwissADME-Computed Drug-Likeness and Metabolism Predictions for CN and CX Compounds.

## 5 Molecular Docking against 1CIN

| Complex | Amino acid | Bond Type          | Distance (A°) |
|---------|------------|--------------------|---------------|
| CN      | HIS A64    | Hydrogen bond      | 2.6           |
|         | LYS A170   | Hydrogen bond      | 2.8           |
|         | TRP A5     | Hydrogen bond      | 2.0           |
|         | GLU A236   | Weak Hydrogen bond | 2.8           |
|         | PHE A231   | Hydrophobic bond   | 2.9           |
|         | GLY A63    | Hydrogen bond      | 1.9           |
|         | HOH A366   | Hydrogen bond      | 2.4           |
|         | HOH A366   | Hydrogen bond      | 1.9           |
|         | HOH A366   | Hydrogen bond      | 2.1           |
|         | HOH A366   | Hydrogen bond      | 2.2           |
| СХ      | SER A71    | Hydrogen bond      | 2.5           |
|         | ASP A59    | Hydrogen bond      | 2.1           |
|         | HOH A169   | Weak Hydrogen bond | 2.3           |
|         | HOH A173   | Weak Hydrogen bond | 2.0           |
|         | VAL A61    | Weak Hydrogen bond | 1.9           |
|         | HOH A178   | Hydrogen bond      | 1.5           |
|         | ALA A69    | Hydrogen bond      | 1.9           |
|         | HOH A202   | Weak Hydrogen bond | 2.4           |
|         | HOH A154   | Weak Hydrogen bond | 3.0           |

Table S7 Binding affinity (kcal/mol) and nonbonding interactions of 1CIN and its products, CN and CX.

### 6 Cartesian Coordinates of all the Stationary Points as Computed at the

### IEFPCM(toluene)/M06-2X-D3/6-311G(d,p) level of approximation

C-(D-glucoso)-N-methyl nitrone 1

| С | 3.33963600  | 0.08465600  | 0.13162200  |
|---|-------------|-------------|-------------|
| Н | 3.37006500  | 0.42993100  | 1.17069800  |
| Н | 4.12814600  | 0.59734100  | -0.43164100 |
| С | 1.97992900  | 0.45890100  | -0.44952200 |
| Н | 1.92709100  | 0.13113200  | -1.49678900 |
| С | 0.83361900  | -0.25328200 | 0.28065000  |
| Н | 0.97573700  | -0.16394500 | 1.36636300  |
| С | -0.52384200 | 0.38298100  | -0.03616400 |
| Н | -0.50029300 | 0.80473000  | -1.05349700 |
| С | -1.63665400 | -0.62816000 | 0.00308700  |
| Н | -1.47306100 | -1.68766500 | 0.11784300  |
| Ν | -2.84675800 | -0.19290000 | -0.11098600 |
| 0 | -3.14638700 | 1.04762300  | -0.26544900 |
| С | -4.00130600 | -1.09950200 | -0.06411600 |
| Н | -4.62454400 | -0.78322400 | 0.76984400  |
| Η | -4.54831100 | -0.96690200 | -0.99532500 |
| Н | -3.67314200 | -2.12873600 | 0.05698500  |
| 0 | -0.75276200 | 1.40216900  | 0.91074100  |
| Η | -1.62304200 | 1.76061300  | 0.67378400  |
| 0 | 0.80015200  | -1.61149400 | -0.12002000 |
| Н | 1.70197700  | -1.94715100 | -0.03231100 |
| 0 | 1.80836400  | 1.85614900  | -0.33825000 |
| Н | 2.36347200  | 2.28125100  | -0.99668700 |
| 0 | 3.50048000  | -1.32719400 | 0.04854900  |
| Н | 4.27614900  | -1.58865900 | 0.54973500  |

1H-pyrrole-2,5-dione 2

| С | 0.00045500  | -0.16052300 | 1.14996800  |
|---|-------------|-------------|-------------|
| С | -0.00139600 | 1.26494100  | 0.66403000  |
| С | -0.00139600 | 1.26494100  | -0.66403000 |
| С | 0.00045500  | -0.16052300 | -1.14996800 |
| Η | -0.00248200 | 2.09827700  | 1.35069200  |
| Η | -0.00248200 | 2.09827700  | -1.35069200 |
| 0 | 0.00045500  | -0.55666800 | 2.28163400  |
| 0 | 0.00045500  | -0.55666800 | -2.28163400 |
| Ν | 0.00103600  | -0.94169800 | 0.00000000  |
| Η | 0.00172300  | -1.95100300 | 0.00000000  |
|   |             |             |             |

CN

| С | -2.19032900 | 1.40956400  | -0.27502000 |
|---|-------------|-------------|-------------|
| С | -1.61377900 | 0.63370900  | 0.89962000  |
| С | -2.57620800 | -0.53198600 | 1.12193600  |
| С | -3.63924300 | -0.38911000 | 0.01938100  |
| Н | -1.52979400 | 1.31711900  | 1.74352000  |
| Н | -3.07408700 | -0.55264500 | 2.09070000  |
| 0 | -1.72224900 | 2.39453500  | -0.79418700 |
| 0 | -4.53547500 | -1.13952600 | -0.23057700 |
| Ν | -3.36710400 | 0.80079600  | -0.65553600 |
| Н | -3.91406700 | 1.12121500  | -1.44564200 |
| С | 4.27517700  | -0.53259700 | 0.60046100  |
| Н | 3.92371600  | -1.40754200 | 1.15928400  |
| Η | 5.06278000  | -0.03800300 | 1.17639800  |
| С | 3.10832000  | 0.42598700  | 0.43501300  |
| Н | 3.45347600  | 1.34465200  | -0.05264800 |
| С | 2.00757500  | -0.17014100 | -0.45896300 |
| Н | 1.83753700  | -1.21252800 | -0.15179800 |
| С | 0.68026000  | 0.59076700  | -0.32885200 |
| Н | 0.24033600  | 0.61833300  | -1.32939500 |
|   |             |             |             |

| С | -0.26881200 | -0.10125700 | 0.65051200  |
|---|-------------|-------------|-------------|
| Η | 0.23576200  | -0.18291300 | 1.61629800  |
| Ν | -0.64276900 | -1.46423100 | 0.25083600  |
| 0 | -1.81277000 | -1.72960700 | 1.01648300  |
| С | -0.93669600 | -1.65798300 | -1.16897600 |
| Η | -1.36522400 | -2.65231200 | -1.27848800 |
| Η | -1.62483700 | -0.92208600 | -1.60387700 |
| Н | 0.00469200  | -1.61802900 | -1.72041000 |
| 0 | 0.91470200  | 1.92179600  | 0.11221200  |
| Η | 0.17297200  | 2.46074500  | -0.19562100 |
| 0 | 2.37893000  | -0.11027100 | -1.82360700 |
| Н | 3.26357500  | -0.49476000 | -1.88092700 |
| 0 | 2.64635100  | 0.68351800  | 1.74761500  |
| Η | 2.05709400  | 1.44380600  | 1.67315900  |
| 0 | 4.73689200  | -0.90165200 | -0.69417500 |
| Н | 5.39653900  | -1.59307400 | -0.60842500 |

# CX

| С | 2.65738100  | 0.80364700  | -0.76814500 |
|---|-------------|-------------|-------------|
| С | 1.17777000  | 0.46805800  | -0.64809200 |
| С | 1.12552000  | -1.01618200 | -0.31240000 |
| С | 2.58699100  | -1.48759900 | -0.33527000 |
| Н | 0.69938200  | 0.73761500  | -1.58532600 |
| Н | 0.52026000  | -1.61448700 | -0.99096700 |
| 0 | 3.14314700  | 1.89126700  | -0.92062200 |
| 0 | 2.99987200  | -2.58791300 | -0.10443300 |
| Ν | 3.36510400  | -0.38563400 | -0.67137300 |
| Н | 4.37613100  | -0.42188800 | -0.71136400 |
| С | -3.11780700 | -1.52653000 | -0.68507400 |
| Н | -2.31431100 | -2.20254000 | -0.36813200 |
| Н | -3.53106600 | -1.88310500 | -1.63318400 |
|   |             |             |             |

| С | -2.51779800 | -0.14504600 | -0.88257900 |
|---|-------------|-------------|-------------|
| Н | -3.28533700 | 0.53832300  | -1.26290900 |
| С | -2.04075500 | 0.43560700  | 0.46202300  |
| Н | -1.63245400 | -0.36537500 | 1.08344800  |
| С | -0.98681100 | 1.54258500  | 0.33849900  |
| Н | -1.23018600 | 2.22867400  | 1.15465500  |
| С | 0.49056300  | 1.13071800  | 0.55715200  |
| Н | 1.04074700  | 2.03157100  | 0.84258600  |
| Ν | 0.59868300  | 0.14998200  | 1.64090700  |
| 0 | 0.54071400  | -1.11979100 | 0.98762500  |
| С | 1.83522100  | 0.23470800  | 2.41410600  |
| Н | 1.86293200  | -0.61210400 | 3.09739200  |
| Н | 2.74844300  | 0.23548400  | 1.80674700  |
| Н | 1.79786800  | 1.15510600  | 2.99735300  |
| 0 | -1.13944300 | 2.20733200  | -0.91268000 |
| Н | -0.83348900 | 3.11424400  | -0.83319000 |
| 0 | -3.15432100 | 1.03182300  | 1.11571700  |
| Н | -3.81634600 | 0.33353900  | 1.19267800  |
| 0 | -1.48299400 | -0.31335700 | -1.83610400 |
| Н | -1.27865700 | 0.57378800  | -2.15168800 |
| 0 | -4.12571200 | -1.42585800 | 0.31316300  |
| Н | -4.38217600 | -2.30709500 | 0.59252900  |

## TSN

| С | -2.19595400 | 1.42516600  | -0.42227600 |
|---|-------------|-------------|-------------|
| С | -2.13314600 | 0.93512800  | 0.96633600  |
| С | -3.05907300 | -0.09942800 | 1.10430100  |
| С | -3.80864500 | -0.21282400 | -0.19580300 |
| Н | -1.74823800 | 1.56848100  | 1.75002200  |
| Η | -3.55314400 | -0.39762400 | 2.01584500  |
| 0 | -1.51211400 | 2.27713500  | -0.95976500 |

| -4.74707800 | -0.90469900                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.47309700                                          |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| -3.17293200 | 0.67939400                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.06796800                                          |
| -3.42774900 | 0.80167700                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.03742000                                          |
| 4.65261700  | -0.13617000                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.04115600                                          |
| 4.81525300  | -0.23882700                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.03796600                                           |
| 5.42971400  | 0.51258700                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.45380800                                          |
| 3.30980000  | 0.54389000                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.27275100                                          |
| 3.10204800  | 0.54470400                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.35376900                                          |
| 2.16058400  | -0.18831200                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.44025500                                           |
| 2.33079600  | -0.09484300                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.52381200                                           |
| 0.79459300  | 0.42932600                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.11063000                                           |
| 0.64489100  | 0.36196100                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.97335000                                          |
| -0.30933000 | -0.30035900                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.84062900                                           |
| -0.29810600 | -0.24768300                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.92196900                                           |
| -0.95465500 | -1.34158400                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.33560500                                           |
| -2.01705900 | -1.70268200                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.98718100                                           |
| -0.86136300 | -1.75450000                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.07195900                                          |
| -1.49375900 | -2.63244500                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.16867500                                          |
| -1.21482700 | -0.96637800                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.73734300                                          |
| 0.17558100  | -1.99987900                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.28715000                                          |
| 0.79786900  | 1.78330300                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.52811300                                           |
| 0.07361200  | 2.23447100                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05931900                                           |
| 2.06003300  | -1.54200200                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05056400                                           |
| 2.94584400  | -1.86128300                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.17566500                                          |
| 3.48710700  | 1.84833100                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.22998400                                           |
| 2.60773400  | 2.23321800                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.34239400                                           |
| 4.64735200  | -1.40653000                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.68658000                                          |
| 5.47407100  | -1.85715800                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.49805900                                          |
|             | $\begin{array}{r} -4.74707800\\ -3.17293200\\ -3.42774900\\ 4.65261700\\ 4.81525300\\ 5.42971400\\ 3.30980000\\ 3.10204800\\ 2.16058400\\ 2.33079600\\ 0.79459300\\ 0.79459300\\ 0.64489100\\ -0.30933000\\ -0.29810600\\ -0.95465500\\ -2.01705900\\ -0.86136300\\ -1.49375900\\ -1.21482700\\ 0.17558100\\ 0.79786900\\ 0.79786900\\ 0.07361200\\ 2.06003300\\ 2.94584400\\ 3.48710700\\ 2.60773400\\ 4.64735200\\ 5.47407100\end{array}$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ |

TSX

| С | 2.66753300  | 1.24015900  | -0.33339700 |
|---|-------------|-------------|-------------|
| С | 1.29296400  | 0.85614200  | -0.75386100 |
| С | 1.34456400  | -0.42761900 | -1.28013500 |
| С | 2.76784200  | -0.89331800 | -1.23376200 |
| Н | 0.56082800  | 1.61469500  | -0.98226200 |
| Н | 0.65838600  | -0.87102200 | -1.98459000 |
| 0 | 3.06362700  | 2.28118300  | 0.12802300  |
| 0 | 3.25599200  | -1.89985700 | -1.67254800 |
| Ν | 3.45797300  | 0.10745000  | -0.54572400 |
| Н | 4.45645400  | 0.09156300  | -0.39560200 |
| С | -3.97864900 | -0.41870400 | -1.00336600 |
| Н | -3.40895400 | -0.83502600 | -1.84259100 |
| Н | -4.83036300 | 0.13910600  | -1.40220200 |
| С | -3.08601100 | 0.57039600  | -0.26296500 |
| Н | -3.63241300 | 0.96528100  | 0.60526300  |
| С | -1.78074000 | -0.08768400 | 0.21770200  |
| Н | -1.23755000 | -0.41099700 | -0.67822000 |
| С | -0.91235800 | 0.85747400  | 1.05674000  |
| Н | -1.35940500 | 0.82434900  | 2.05952700  |
| С | 0.54146100  | 0.44194600  | 1.25376900  |
| Н | 1.06232400  | 1.07375300  | 1.97121700  |
| Ν | 0.98336400  | -0.81542200 | 1.24485300  |
| 0 | 0.68691500  | -1.55595900 | 0.24160300  |
| С | 2.12938400  | -1.24395000 | 2.05947700  |
| Н | 2.80080300  | -1.81069400 | 1.41846000  |
| Н | 2.63725800  | -0.37695400 | 2.47904800  |
| Н | 1.76205100  | -1.88361600 | 2.86180600  |
| 0 | -0.98272100 | 2.18776700  | 0.56522500  |
| Н | -0.59010100 | 2.79397200  | 1.20038800  |
| 0 | -2.02210300 | -1.16378700 | 1.09910800  |
| Н | -2.77095000 | -1.66919700 | 0.75703700  |
| 0 | -2.83456300 | 1.56996100  | -1.22946700 |
|   |             |             |             |

| Н | -2.25992900 | 2.22169400  | -0.81340700 |
|---|-------------|-------------|-------------|
| 0 | -4.40821900 | -1.44383600 | -0.11440500 |

Н -4.92516500 -2.08394000 -0.60928900