Electronic Supplementary Information

Electrophilic Glycoluril-Based Reagents for Atom-Economic Thiocyanation and Selenocyanation of (Hetero)arenes

Paula Casasús, Jordi Mestre, Roksana Radłowska, Miguel Bernús and Omar Boutureira*

Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo 1, 43007 Tarragona, Spain

*E-mail: omar.boutureira@urv.cat

Table of Contents

1. Stability studies of reagents 5a and 5b	2
1.1. DSC	2
1.2. TGA	3
2. Solubility studies of reagents 5a and 5b	4
3. Green metrics calculations	5
Protocol 1 (5a). This work	5
Protocol 2 (R1)	6
Protocol 3 (R2)	7
4. ECOSCALE Calculation	8
Protocol 1 (5a). This work	8
Protocol 2 (R1)	9
Protocol 3 (R2)	9
5. Experimental procedures for flow chemistry	10
5.1 Packed bed reactor preparation	10
5.2 Flow chemistry set-up	10
5.3 Flow chemistry optimization	12
5.4 Sequential flow chemistry procedure for multiple consecutive experiments	12
6. Synthesis	13
6.1. Reagent preparation	13
6.2. Additional characterization data and reactivity experiments	15
6.3. Substrate scope	17
6.4. Derivatizations	29
7. NMR spectra	31
8. References	

1. Stability studies of reagents 5a and 5b

1.1. DSC

Differential scanning calorimetry (DSC) was performed using a Mettler DSC3+ Star system thermal analyzer under a nitrogen purge gas (50 mL/min) with heating rates of 2 °C/min and cooling rates of 30 °C/min in a temperature range of 25 °C to 200 °C. Calibration was conducted using indium standards for both heat flow and temperature. Samples weighing 2 mg were enclosed in perforated aluminum pans.

1.2. TGA

A Mettler TGA/SDTA851e/LF/1100 equipment was utilized to conduct thermogravimetric analysis (TGA) on samples weighing 2 mg in ceramic crucibles. N₂ was used as the purge gas (50 mL/min) and the analysis was performed at a scanning rate of 10 $^{\circ}$ C/min within a temperature range of 30 $^{\circ}$ C to 600 $^{\circ}$ C.

Figure S2. TGA analysis of reagents **5a** and **5b**. 5% weight decomposition (**5a**) = 167 °C; 5% weight decomposition (**5b**) = 143 °C

2. Solubility studies of reagents 5a and 5b

Procedure. A 10 mL round-bottom flask, equipped with a magnetic stir bar, was charged with 20 mg of reagent (**5a** or **5b**) and 1.5 mL of the corresponding solvent. The solution was stirred 30 min at room temperature. Then, the mixture was filtered under vacuum and the filtrate was concentrated under pressure. The resulting solid was then dried under vacuum and weighted (Table S1).

REAGENT	SOLVENT	SOLUBILITY (mg/mL)
O L	CH₃CN	5.67 mg/mL
Ph	CH ₂ Cl ₂	1.27 mg/mL
NCS-N YN-SCN	CHCl₃	1.30 mg/mL
Ö 5a	CH ₃ COO(CH ₂) ₃ CH ₃ (<i>n</i> -butyl acetate, <i>n</i> BuOAc)	1.21 mg/mL
	CH₃CN	1.03 mg/mL
$\frac{\text{NCSe}_{N}}{\text{Ph}} + \frac{\text{SeCN}}{\text{Ph}}$ $\frac{\text{NCSe}^{N}}{\text{NCSe}} + \frac{\text{N}}{\text{SeCN}}$	CH ₂ Cl ₂	0.87 mg/mL
	CHCl₃	1.01 mg/mL
Ö 5b	CH ₃ COO(CH ₂) ₃ CH ₃ (<i>n</i> -butyl acetate, <i>n</i> BuOAc)	0.83 mg/mL

Table S1. Solubility studies of reagents 5a,b in selected solvents

3. Green metrics calculations

The following formulas were used for calculating Atom Economy (AE), Reaction Mass Efficiency (RME), simple E Factor (sEF), E factor (EF), and solvent contribution.^[1]

$$AE = \frac{\text{molecular weight desired product}}{\sum \text{molecular weight reagents}} \times 100$$

$$sEF = \frac{\sum m(\text{raw materials}) + \sum m(\text{reagents}) - m(\text{desired product})}{m(\text{desired product})}$$

$$EF = \frac{\sum m(\text{raw materials}) + \sum m(\text{reagents}) + \sum m(\text{solvents}) - m(\text{desired product})}{m(\text{desired product})}$$

Solvent contribution $= \frac{EF - sEF}{EF} \times 100$

$$RME = \frac{m \text{ (desired product)}}{\sum m(reagents)} x \ 100$$

Protocol 1 (5a). This work

The calculations of the green metrics for the electrophilic aromatic substitution reaction are as follows:

$$EF = \frac{58 \text{ mg } \mathbf{6} + 86 \text{ mg } \mathbf{5a} + 2358 \text{ mg } CH_{3}CN - 86 \text{ mg } \mathbf{6a}}{86 \text{ mg } \mathbf{6a}} = 28.1$$

Solvent contribution = $\frac{28.1 \text{ EF} - 0.67 \text{ sEF}}{28.1 \text{ EE}} \text{ x100} = 97\%$ 28.1 EF

Within solvent recovery (71% of CH₃CN recovery):

$$EF = \frac{58 \text{ mg } \mathbf{6} + 86 \text{ mg } \mathbf{5a} + 2358 \text{ mg } CH_3CN - 86 \text{ mg } \mathbf{6a} - 1674 \text{ mg } CH_3CN}{86 \text{ mg } \mathbf{6a} + 1674 \text{ mg } CH_3CN} = 0.47$$

$$EF = \frac{58 \text{ mg } \mathbf{6} + 86 \text{ mg } \mathbf{5a} + 2646 \text{ mg } n\text{BuOAc} - 86 \text{ mg } \mathbf{6a}}{86 \text{ mg } \mathbf{6a}} = 31.4$$

Solvent contribution = $\frac{31.4 \text{ EF} - 0.67 \text{ sEF}}{31.4 \text{ EF}} \text{x100} = 97\%$

Within solvent recovery (80% of *n*-butyl acetate (*n*BuOAc) recovery):

$$EF = \frac{58 \text{ mg } \mathbf{6} + 86 \text{ mg } \mathbf{5a} + 2358 \text{ mg } n\text{BuOAc} - 86 \text{ mg } \mathbf{6a} - 2116 \text{ mg } n\text{BuOAc}}{86 \text{ mg } \mathbf{6a} + 2116 \text{ mg } n\text{BuOAc}} = 0.14$$

Protocol 2 (R1)

J. Org. Chem., 2018, 83, 1576-1583.

$$PMF = \frac{26 \text{ mg } 6a}{100 - 40\%}$$

_ .

$$48 \text{ mg } \mathbf{R1} + 17.6 \text{ mg } \mathbf{6}^{100} = 40\%$$

sEF =
$$\frac{17.6 \text{ mg } \mathbf{6} + 48 \text{ mg } \mathbf{R1} - 26 \text{ mg } \mathbf{6a}}{26 \text{ mg } \mathbf{6a}} = 1.52$$

 $EF = \frac{17.6 \text{ mg } \mathbf{6} + 48 \text{ mg } \mathbf{5a} + 887 \text{ mg } CH_{3}CN - 26 \text{ mg } \mathbf{6a}}{26 \text{ mg } \mathbf{6a}} = 35.6$

Solvent contribution = $\frac{35.6 \text{ EF} - 1.52 \text{ sEF}}{35.6 \text{ EF}} \text{x}100 = 95\%$

Protocol 3 (R2)

Org. Biomol. Chem., 2019, 17, 7131-7134.

4. ECOSCALE Calculation

The Ecoscale values for the different protocols were calculated using the *Ecoscale calculator* website <u>https://ecoscale.cheminfo.org/</u>.

Protocol 1 (5a). This work

A Reagents 🗵										
Link										
identifier	name	MF*	MW	density	purity*	mi	9	mmoles	equiv.	
1 + -	Indole	C8H7N 11	7.15028	1.22	100%	0.047541	0.058	0.495090	1 🗙 🗙	
2 + -	3a,6a-diphenyl-1,3,4,6-tetrathiocyanato	C20H10N8C 52	22.5940		100%	0	0.086	0.1645636	0.332391(
3 + -	Acetonitrile	CH3CN 41	1.05252	0.781	100%	3	2.343	57.073232	115.27836 👌 🍛 🗶 🛛	×
Products 🗵										
	identifier*: name:	N	4F*:	MW:	g:	mmole	s: g th	eor: yield:	4	
	3-Thiocyanatoindole][C9H6NZ3	5 1/4.2	2002 0.086	0.493	0.0	99.704	4	
Conditions							D	and Relat		
Reagents	Indole	ame			mi 5.7	noles eq.	253	azard Price		
	2a 6a-dinkenul-1 2 4 6-tetrathiographicitetrat	udroimida to [4 E-	dimidazo	le-2 E(1H 3	2H)-diana 1.0		200			
	sa,oa-uphenyi-1,3,4,0-tetratiliocyanatotetral	1901011110020[4,5*	ujimuazo	ne-2,5(11)2	shj-dione 1.5	1 0.33				
	Acetonitrile				66	3.64 115.2	7 81) 💥 ° o		
Yield	100					l	0]	
Price / availability						l	-8]	
Safety	Describle former					l	-10		J	
rechnical setup	Common set-up	Com	mon set-	up		r	0		1	
	Instruments for controlled addition of chem	icals				l	U		J	
Temperature / time	Possible items	Selec	ted items							
,	Room temperature, < 1h	Roor	m temper	ature, < 1h	1	ſ	0		1	
	Heating, < 1h					l	•		ì	
Workup and purification	Possible items	Selec	ted items							
	Adding solvent Simple filtration	Simp	ole filtratio	on olvent with	bp < 150°C	[0]	
	Removal of solvent with bp < 150°C				op 1.00 0					
EcoScale							82			
B										
Reagents 🗠										
Link		M.5*	MV	V da	eity	-18*	ml		molog oguju	
Link	r* name	MF*	MV	V der	nsity pu	rity*	ml 47541	g n	nmoles equiv.	¥
Link	r* name Indole	MF*	MV	V der	nsity pu	rity* % 0.0	ml 47541	g n 0.058 0.	1moles equiv. 495090! 1 X	×
C Link identifie	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan	MF* C8H7N ato C20H10N8	MV 117.15 C 522.55	V der 5028 1.22 940	nsity pu 100	rity* % 0.0 % 0	ml 47541	g n 0.058 0. 0.086 0.	1000es equiv. 195090: 1 X 1 164563(0.332391(172735: 46.90536(×
Cargents	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate	MF* C8H7N ato C20H10N8 C6H12O2	MV 117.15 C 522.55 116.16	V der 5028 1.22 940 5008 0.88	nsity pu 2000 100 100 100	rity* % 0.0 % 0 % 3	ml 47541	g n 0.058 0. 0.086 0. 2.64 22	amoles equiv. 495090! 1	×
Cargents Endertifie Link identifie 1 + - 2 + - 3 + - Products -	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate	MF* C8H7N ato C20H10N8 C6H12O2	MV 117.11 C 522.55 116.10	V der 5028 1.22 940 0 6008 0.88	nsity pu 100 100 100	rity* % 0.0 % 0 % 3	ml 47541	g n 0.058 0. 0.086 0. 2.64 22	nmoles equiv. 495090! 1	×
Link 1 + 2 + 3 + Products	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate identifier*: name: 3-Thiocyanatoindole	MF* C8H7N ato C20H10N8 C6H12O2	MV 117.19 C 522.59 116.10 MF*: C9H	V der 5028 1.22 940	nsity pu 2 100 100 100 100	rity* % 0.0 % 3 9: 0.077	ml 47541	g n 0.058 0. 0.086 0. 2.64 222 : g theor: 698 0.086255	Imples equiv. 495090! 1 Implementation 1645631 0.332391(Implementation .727251 45.90525(Implementation yleid: 89.2702 Implementation	×
Conditions	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate identifier*: name: 3-Thiocyanatoindole	MF* C8H7N ato C6H12O2	MV 117.19 (522.59 116.10 MF*: C9H	V der 5028 1.22 940 - 5008 0.88 0.88	nsity pu 100 100 100 100 100 100	rity* % 0.0 % 3 3 9: 0.077	ml 47541 	g n 0.058 0. 0.086 0. 2.64 22 : g theor: 69f 0.086255	equiv. 495090! 1 X 1645631 0.332391(X 7727251 45.90525(X yield: 89.2702 X	×
Conditions	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate identifier*: name: 3-Thiocyanatoindole	MF* C8H7N ato C20H10N8 C6H12O2	MV 117.1 (522.53 116.10 MF*: C9H	V der 502£ 1.22 940 500£ 0.88 16N2S	nsity pu 2 100 100 100 100 100 100 100	rity* % 0.0 % 0 % 3 3: 0.077 mmole	ml 47541 	g n 0.058 0. 0.086 0. 2.64 22 : g theor: 698 0.086255 Bp Hazard Prio	equiv. 495090! 1	×
Conditions	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate identifier*: name: 3-Thiocyanatoindole Indole	MF* C8H7N ato C20H10N8 C6H12O2	MV 117.19 (522.59 116.10 MF*: C9H	V der 5028 1.22 940	nsity pu 2	rity* % 0.0 % 3 	ml 47541 	g n 0.058 0. 0.086 0. 2.64 222 : g theor: 699 0.086255 Bp Hazard Prid 53 §	amoles equiv. 495090? 1 1 1645631 0.332391(1 7.72725 45.90525(1 yield: 89.2702 1	×
Conditions	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate identifier*: name: 3-Thiocyanatoindole Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatotr	MF* C8H7N ato C20H10N8 C6H12O2 Name	MV 117.15 (522.55 116.10 MF*: C9H	V der 5028 1.22 940 5008 0.88 5008 0.88 16N2S 1 16N2S 1	nsity pu : [100 100 100 100 100 100 100 100	rity* % 0.0 % 3 	ml 47541 	g n 0.058 0. 0.086 0. 2.64 222 : g theor: 69f 0.086255 Bp Hazard Price 53 \$	amoles equiv. 495090? 1 1 1645631 0.332391(1 7.72725 45.90525(1 yield: 89.2702 1	×
Conditions	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate identifier*: name: 3-Thiocyanatoindole Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanator n-Butyl acetate	MF* C8H7N ato C20H10N8 C6H12O2 Name	MV [117.1! [522.5: [116.10 MF*: [C9H	V der 5028 1.22 940 5008 0.88 5008 0.88	nsity pu : [100 100 100 100 100 100 100 100	rity* % 0.00 % 0 3: 0.077 mmole 6.42 one 2.13 295.15	mi 47541 mmoles 0.4419 1 2 0.33 45.9 1	g n 0.058 0. 0.086 0. 2.64 222 : g theor: 69f 0.086255 Bp Hazard Price 53 6 27 6	Imoles equiv. 495090? 1 Image: Comparison of the system of t	×
Conditions	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate identifier*: name: 3-Thiocyanatoindole Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatote n-Butyl acetate 90	MF* C8H7N ato C20H10N8 C6H12O2 Name	MV 117.11 (522.53 116.10 MF*: C9H (4,5-d]in	V der 5026 1.22 940 0 5006 0.88 16N2S 0.88	nsity pu 100 100 100 100 100 100 100 10	rity* % 0.00 % 0 3: 0.077 mmole 6.42 one 2.13 295.15	mi 47541 mmoles 0.4419 is eq. E 1 23 0.33 45.9 13	g n 0.058 0. 0.086 0. 2.64 22 : g theor: 694 0.086255 Sp Hazard Price 53 6 27 9 4	moles equiv. 495090! 1 1 164563i 0.3323910 1 .72725: 45.905250 1 yield: 89.2702 1	×
Conditions	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate identifier*: name: 3-Thiocyanatoindole 1 Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatote n-Butyl acetate 89	MF* C8H7N ato C20H10N8 C6H12O2	MV 117.11 (522.57 116.10 MF*: C9H	V der 5028 1.22 940 - 5006 0.88 16N2S - 16N2S -	nsity pu 100 100 100 100 100 100 100 10	rity* % 0.0 % 0 % 3 3: 0.077 mmole 6.42 one 2.13 295.15	ml 47541 0.4419 0.4419 s eq. E 1 2 0.33 45.9 12	g n 0.058 0. 0.086 0. 2.64 22 g theor: 694 (0.086255 Sp Hazard Price 53 227 % 5	amoles equiv. 495090! 1 Image: Comparison of the system of t	×
Conditions Conditions Keagents Conditions Keagents Vield Price / availability Safety	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate identifier*: name: 3-Thiocyanatoindole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatote n-Butyl acetate 89	MF* C8H7N ato C20H10N8 C6H12O2	MV 117.13 (522.53 116.10 MF*: C9H	v der 502E 1.22 940 0 500E 0.88 16N2S 0 16N2S 0	nsity pu 	rity* % 0.0 % 3 3: 0.077 mmole 6.42 one 2.13 295.15	ml 47541 0.4419 0.4419 s eq. E 1 2 0.33 45.9 1 -	g n 0.058 0. 0.086 0. 2.64 22 g theor: 694 694 0.086255 Sp Hazard Price 5 5 8	amoles equiv. 495090! 1 Image: Comparison of the system of t	×
Conditions Conditions Conditions Keagents Conditions Keagents Vield Price / availability Safety Technical setue	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate identifier*: name: 3-Thiocyanatoindole Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatote n-Butyl acetate 89	MF* C8H7N ato C20H10N8 C6H12O2	MV 117.11 () 522.52 116.10 MF*: C9H	v der 502E 1.22 940 500E 0.88 500E 0.88	nsity pu 	rity* % 0.0 % 0 % 3 3: 0.077 mmole 6.42 one 2.13 295.15	mi 447541 (0.4419) (0.4419) (0.33) 45.911 (- (- (-) (-) (-) (-) (-) (-) (-) (-) (g n 0.058 0. 0.086 0. 2.64 22 g theor: 69f 69f 0.086255 Sp Hazard Price 5 5 8 0 6	amoles equiv. 495090! 1 Image: Comparison of the system of t	×
Conditions	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate identifier*: name: 3-Thiocyanatoindole Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatotr n-Butyl acetate 89 Possible Items Common set-up	MF* C8H7N ato C0H10N8 C6H12O2 Name etrahydroimidazo	MV 117.11 (522.57 116.10 MF*: C9H (4,5-d]in Selected I Commor	v der 502E 1.22 940 500E 0.88 500E 0.88 166N2S 5 166N2S 5 1 set-up	nsity pu 	rity* % 0.0 % 3 3: 0.077 mmole 6.42 00ne 2.13 295.15	ml 47541 0.4419 s eq. E 1 2 2 0.33 45.9 1 - - 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	g n 0.058 0. 0.086 0. 2.64 22 : g theor: 69! 0.086255 Bp Hazard Price 53 9 27 9 5 8 0 0	amoles equiv. 495090! 1 Image: Comparison of the system of t	×
Conditions Conditions Reagents	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate identifier*: name: 3-Thiocyanatoindole a,6a-diphenyl-1,3,4,6-tetrathiocyanatot n-Butyl acetate 89 Possible items Common set-up Instruments for controlled addition of ct	MF* C8H7N ato C20H10N8 C6H12O2 Name etrahydroimidazo	MV 117.1(522.5: 116.1(MF*: C9H (4,5-d]in Selected i Commor	v der 502E 1.22 940	nsity pu 	rity* % 0.0 % 3 3 0.077 mmole 6.42 00ne 2.13 295.15	ml 47541 0.4419 1 2 2 0.33 45.9 1 - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	g n 0.058 0. 0.086 0. 2.64 22 g theor: 698 698 0.086255 Bp Hazard Price 5 8 0 0 0	amoles equiv. 495090! 1 Image: Comparison of the system of t	×
Conditions	r name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate identifier*: name: 3-Thiocyanatoindole indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatoin n-Butyl acetate 89 Possible items Common set-up Instruments for controlled addition of cf Unconventional activation technique Pessible items	MF* C8H7N to C0H10N8 C6H12O2 Name trahydroimidazo	MV 117.1(522.5: 116.1(MF*: C9H (4,5-d]in Selected i Commor	v der 502E 1.22 940	nsity pu : [100 100 : [100 : [100	rity* % 0.0 % 3 3 0.077 mmole 6.42 00ne 2.13 295.15	mi 47541 0.4419 s eq. E 1 2: 0.33 45.9 1: - - - 0 (0	g n 0.058 0. 0.086 0. 2.64 22 g theor: 698 698 0.086255 30 8 27 9 5 8 0 0	nmoles equiv. 495090! 1 X 1645631 0.332391(X .727251 45.90525(X yield: 89.2702 X	×
Conditions Conditions Reagents	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate Identifier*: name: 3-Thiocyanatoindole Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatoin Butyl acetate 89 Possible items Common set-up Instruments for controlled addition of cf Unconventional activation technique Possible items Room temperature, < 1h	MF* C8H7N to C0H10N8 C6H12O2 Name trahydroimidazo	MV 117.1(522.5: 116.1(MF*: C9H (4,5-d)in Selected i Commor Selected i Room te	v der 502E 1.22 940	nsity pu . [100 . [1	rity* % 0.0 % 3 3: 0.077 mmole 6.42 one 2.13 295.15	mi 47541 0.4419 ss eq. E 1 2 2 0.33 45.9 1 - - - 0 0	g n 0.058 0. 0.086 0. 2.64 222 g theor: 69k 0.086255 Bp Hazard Price 53 8 27 9 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0	nmoles equiv. 495090! 1 Image: Comparison of the system of	×
Conditions	r name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate Identifier*: name: 3-Thiocyanatoindole Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatoin n-Butyl acetate 89 Possible items Common set-up Instruments for controlled addition of ct Unconventional activation technique Possible items Room temperature, < 1h Room temperature, < 24h Uation < 1h	MF* C8H7N to C0H10N8 C6H12O2 Name trahydroimidazo	MV 117.1(522.5: 116.1(MF*: C9H (4,5-d)in Selected i Commor Selected i Room te	v der 502E 1.22 940	nsity pu . [100 . [1	rity* % 0.0 % 3 3 0.077 mmole 6.42 00ne 2.13 295.15	mi 47541 0.4419 ss eq. E 1 2: 0.33 45.9 1: - - - 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	g n 0.058 0. 0.086 0. 2.64 222 g theor: 698 0.086255 Bp Hazard Price 53 8 27 9 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0	nmoles equiv. 495090! 1 Image: Comparison of the system of	×
Conditions	r name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate Identifier*: name: Ide	MF* C8H7N to C0H10N8 C6H12O2 Name trahydroimidazo	MV 117.1(522.5: 116.1(MF*: C9H (4,5-d)in Selected i Commor Selected i Room te	v der 502E 1.22 940	nsity pu 2 [100 100 100 100 100 100 100 100	rity* % 0.0 % 3 3: 0.077 mmole 6.42 one 2.13 295.15	mi 47541 0.4419 se eq. E 1 2 2 0.33 45.9 1 - - - 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	g n 0.058 0. 0.086 0. 2.64 222 g theor: 69k 0.086255 Bp Hazard Price 53 8 27 9 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0	nmoles equiv. 495090! 1 Image: Comparison of the system of	×
Conditions	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan n-Butyl acetate Identifier*: name: 3-Thiocyanatoindole Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatoin Butyl acetate 89 Possible items Common set-up Instruments for controlled addition of cf Unconventional activation technique Possible items Room temperature, < 1h Room temperature, < 24h Heating, < 1h Possible items. Simple filtration	MF* C8H7N to C0H10N8 C6H12O2 Name trahydroimidazo	MV 117.11 (522.57 116.10 MF*: C9H (4,5-d)in Selected i Commor Selected i Room te Selected i	v der 502E 1.22 940	nsity pu : [100 100 100 100 100 100 100 100	rity* % 0.0 % 3 3: 0.077 mmole 6.42 one 2.13 295.15	mi 47541 0.4419 1 2 0.33 45.9 1 - - 0 0 0 0	g n 0.058 0. 0.086 0. 2.64 222 g theor: 698 0.086255 Bp Hazard Price 53 8 27 9 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0	amoles equiv. 495090! 1 1645631 0.3323911 .727253 45.905255 yield: 89.2702	×
Kagents Kagents Kagents Kagents Identifie Identifie	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan In-Butyl acetate Indole identifier*: name: 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatoindole Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatoindole Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatoin Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatoin Indole Common set-up Instruments for controlled addition of ct Unconventional activation technique Possible items Room temperature, < 1h	MF* C8H7N to C0H10N8 C6H12O2 Name etrahydroimidazo	MV 117.11 (522.57 116.10 MF*: C9H (4,5-d)im (4,5-d)im Selected i Commor Selected i Room te Selected i Simple fi Remova	v der 502E 1.22 940	nsity pu : [100 100 100 100 100 100 100 100	rity* % 0.0 % 3 3: 0.077 mmole 6.42 one 2.13 295.15	mi 47541 0.4419 1 2 0.33 45.9 1 - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	g n 0.058 0. 0.086 0. 2.64 222 g theor: 698 0.086255 Bp Hazard Price 53 6 27 6 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0	amoles equiv. 495090! 1 1645631 0.332391(.727253 45.90525(yield: 89.2702	×
Kasgents Link identifie 1 + 2 + 2 + 3 + Products Conditions Conditions Reagents Yield Price / availability Safety Technical setup Temperature / time Workup and purification	r* name Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyan In-Butyl acetate Identifier*: identifier*: name: 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatoindole Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatoindole Indole 3a,6a-diphenyl-1,3,4,6-tetrathiocyanatoin n-Butyl acetate 89 Common set-up Instruments for controlled addition of ct Unconventional activation technique Possible items Room temperature, < 1h	MF* C8H7N to C0H10N8 C6H12O2 Name trahydroimidazo	MV 117.11 (522.57 116.10 MF*: C9H (4,5-d)im (4,5-d)im Selected i Commor Selected i Room te Selected i Simple fi Removal	v der 502E 1.22 940	nsity pu : [100 100 100 100 100 100 100 100	rity* % 0.0 % 3 3: 0.077 mmole 6.42 one 2.13 295.15	mi 47541 0.4419 1 2 0.33 45.9 1 - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	g n 0.058 0. 0.086 0. 2.64 222 g theor: 698 0.086255 Bp Hazard Price 53 6 27 6 8 0 0 0 0 0 0 0 0 0 0 0 0 0	amoles equiv. 495090! 1 X 1645631 0.332391(X .727253 45.90525(X yield: 89.2702 X	×

Protocol 2 (R1)

Reagents 🗵										
Link										
identifier	* name	MF*	MW	density	purity*	mi	g	mmoles	equiv.	
1 + -	Indole	C8H7N	117.15028	1.22	100%	0.014402	0.01757	0.149978;	1	XX
2 + -	2-thiocyanatobenzo[d]isothiazol-3(2H)-c	C8H4N2O3	240.2510		100%	0	0.048	0.199791(1.332133(
3 + -	Tetrahydrofuran	C4H8O	72.10692	0.88	100%	1	0.88	12.20409	81.372432	8 × ×
Products 🗵										
	identifier*: name: 3-Thiocyanatoindole		MF*: C9H6N2	MW: S 174.22	g: 2004 0.026	mmole: 0.1492	s: g theor 236{ 0.026	r: yield: 129 99.506	30(
Conditions 🗵										
Reagents	Name		mmo	les eq.	Bp Haza	rd Price				
	Indole		5.76	1	253	6				
	2-thiocyanatobenzo[d]isothiazol-3(2H)-one 1	,1-dioxide	7.68	1.33		80				
	Tetrahydrofuran		469.3	8 81.37	66 👌					
Yield	100						0			
Price / availability							-8			
Safety							-5			
Technical setup	Possible items Common set-up Instruments for controlled addition of chem Unconventional activation technique	icals	elected items Common set-	up		[0			
Temperature / time	Possible items Room temperature, < 1h Room temperature, < 24h Heating, < 1h	Se F	elected items Room temper	ature, < 1h		[0			
Workup and purification	Possible items Sublimation Liquid - liquid extraction or washing Classical chromatography	Se	elected items Classical chro	omatograph	IY .	[-10			
EcoScale							77			

Figure S4. Ecoscale calculation for Protocol 2 with R1 reagent. J. Org. Chem., 2018, 83, 1576– 1583

Reagents II										
Link identifier	* name	MF*	MW	density	purity*	mi	g	mmoles	equiv.	
1 + -	Indole	C8H7N	117.15028	1.22	100%	0.018852	0.023	0.196329(1	XX
2 + -	N-(phenylsulfonyl)-N-thiocyanatobenzei	C13H10N2C	354.4130		100%	0	0.092	0.259584	1.3221894	
3 + -	Acetonitrile	CH3CN	41.05252	0.781	100%	1	0.781	19.02441(96.90065:	🛦 💩 🗙 🗙
Products I	, ,		,,,					,		
	identifier*: name: 3-Thiocyanatoindole		MF*: C9H6N2S	MW: 5 174.2	g: 2004 0.034	mmoles 0.1951	: g theo 55{ 0.034	r: yield: 204 99.403	6	
Conditions 🗵										
Reagents	Name		mmole	es eq. E	Bp Hazard	Price				
	Indole		5.77	1 2	53	6				
	N-(phenylsulfonyl)-N-thiocyanatobenzenesulfo	onamide	7.63	1.32		20				
	Acetonitrile		559.54	96.9 8	1 🛦 🔍	ě,				
Yield									1	
Price / availability	99						, 			
Safety							8			
Technical setup	Passible items	6	elected items			Ŀ	10			
rechnical secup	Common set-up		common set-	up					1	
	Instruments for controlled addition of chemi	icals				Ľ	,			
Temperature / time	Possible items	S	elected items							
	Room temperature, < 1h	R	oom temper	ature, < 1h	ı I	6)			
	Heating, < 1h						-		I	
Workup and purification	Possible items	Se	elected items							
	Sublimation	C	lassical chro	matograph	ıy	[10			
	Classical chromatography									
EcoScale							72			

Protocol 3 (R2)

Figure S5. Ecoscale calculation for Protocol 3 with R2 reagent. Org. Biomol. Chem., 2019, 17, 7131–7134

5. Experimental procedures for flow chemistry

5.1 Packed bed reactor preparation

To perform flow chemistry experiments, a packed bed was selected as the appropriate module for reagent **5a**. The reactor consisted of an empty polypropylene (PP) cartridge from an automated flash chromatography column, which was filled with a mixture of **5a** and glass beads (425–600 μ L) in a weight ratio of 1:1. Importantly, this mixture was grinded in an agate mortar and dried 30 min under vacuum before filling up the cartridge. In our system, the cartridge could be filled with a mixture of ~6 g of **5a** and glass beads. The empty volume of the reactor was determined to be ~4 mL by weighting the filled cartridge before and after flushing it with the solvent of choice. (Figure S6).^[2]

Figure S6. Packed bed reactor used in this study

5.2 Flow chemistry set-up

The set-up consists of a syringe pump where a syringe is inserted, which is connected to the cartridge via PFA tubing using Luer adapters. From the reactor, another tube will be attached ending with a needle in order to release the liquid drop by drop in a controlled manner (Figure S7A).

Once the set-up is complete, a solution of the desired substrate was prepared in the solvent of choice. This solution will be loaded into the syringe of the syringe pump, which will push the corresponding solution through the system. As it passes through the reactor, the reaction will occur, retaining the solid byproducts formed during the reaction and allowing the corresponding solution containing the product to pass through. The product will be collected at the end of the system (Figure S7B).

Electronic Supplementary Information

Figure S7. (A) Set-up description. (B) Schematic representation of the reaction procedure using a flow chemistry setup

5.3 Flow chemistry optimization

A 0.2 M solution of 5-fluoroindole **7** (810 mg 6 mmol) in CHCl₃ (30 mL) was prepared by adding 1,3-bis(trifluoromethyl)benzene (155 μ L, 1 mmol) as an internal standard (IS). This solution is loaded into the syringe pump to pass through the reactor, which was charged with reagent **5a** (2.3 g, 4.4 mmol), in 5 mL increments at different flow rates (Table S2).

Table S2. Flow chemistry optimization with 5-fluoroindole

Entry	Flow rate (mL/min)	Residence time (min)	7 (%) ^a	7a (%)ª
1	8	0.5	80	0
2	4	1	78	7
3	2	2	73	8
4	1	4	60	22
5	0.67	6	30	50
6	0.5	8	0	91

^aThe yield was determined by ¹⁹F NMR by directing the flow into an NMR tube and collecting approximately 0.6 mL using 1,3-bis(trifluoromethyl)benzene (BTB) as an internal standard.

When the optimal conditions were repeated using n-butyl as a solvent, the product **7a** was obtained in 87% yield.

5.4 Sequential flow chemistry procedure for multiple consecutive experiments

Three 0.5 M solutions of the substrate 5-fluoroindole 7 (135 mg, 1 mmol), aniline 20 (91 μ L, 1 mmol), and phenol 21 (94 mg, 1 mmol) were prepared in CHCl₃ (5 mL) each. Considering that the cartridge has a capacity of 4 mL, it was begun by passing the first solution through the reactor, which was charged with reagent 5a (3.0 g, 5.7 mmol). Once the solution was fully consumed, an additional 4 mL of pure solvent was passed through to wash the reactor, pushing any potential product that might remain inside the cartridge, which was collected in the same flask obtaining 7a in 91% of yield. Using the same cartridge, the next syringe was loaded with the solution of the subsequent substrate, and the process was repeated, with the new product being collected in a new flask obtaining 21a in quantitative yield. The same procedure was followed for the third substrate yielding 20a in 90%. The same procedure was repeated replacing the solvent with the greener n-butyl acetate. Although the yields slightly decreased (7a: 82%, 21a: 88%, and 20a: 79%), the corresponding products were still obtained in a pure clean form.

6. Synthesis

General Remarks. Proton (¹H NMR), carbon (¹³C NMR), selenium (⁷⁷Se NMR), and fluorine (¹⁹F NMR) nuclear magnetic resonance spectra were recorded on a Varian Mercury or a Bruker Avance Ultrashield spectrometer operating at 400 MHz for ¹H, 100.6 MHZ for ¹³C, 76.5 MHz for ⁷⁷Se, and 376.5 MHz for ¹⁹F. For insoluble samples, carbon (¹³C NMR) nuclear magnetic resonance spectra were recorded on a Bruker Avance III 500 spectrometer operating at 500.13 MHz for ¹H, using a 5 mm BBO gradient probe with enhanced proton sensitivity, and 125.77 MHZ for ¹³C. All chemical shifts are quoted on the δ scale in parts per million (ppm) using the residual solvent as internal standard (¹H NMR: CDCl₃ = 7.26, CD₃CN = 1.94, CD₃OD = 3.31, $CD_2CI_2 = 5.32$ and ¹³C RMN; $CDCI_3 = 77.16$, $CD_3CN = 118.26$, $CD_3OD = 49.00$, $CD_2CI_2 = 53.84$). Coupling constants (J) are reported in Hz with the following splitting abbreviations: s = singlet, bs = broad singlet, d = doublet, t =triplet, q = quartet, dd = doublet of doublet, tt = triplet of triplet, td = triplet of doublet, dt = doublet of triplet, ddt = doublet of doublet of triplet. Highresolution mass spectra (HRMS) were recorded on an Agilent 1100 Series LC/MSD mass spectrometer with electrospray ionization (ESI). For GC-HRMS mass determination the compounds were directly analyzed by gas chromatography coupled to high-resolution mass spectrometry (Thermo Scientific™ TRACETM 1310 GC system/Exactive GC Orbitrap mass spectrometer). The chromatographic column was a HP-5MS and carried gas was He. Ionization was done by electronic impact (EI), with electron energy of 70 eV. The instrument operated in high-resolution MS scan mode between 40–400 m/z. Nominal and exact m/z values are reported in Daltons. Thin layer chromatography (TLC) was carried out using commercial backed sheets coated with 60 Å F₂₅₄ silica gel. Visualization of the silica plates was achieved using UV lamp (λ_{max} = 254 nm), 6% H₂SO₄ in EtOH, cerium molybdate and/or potassium permanganate staining solutions. Flash column chromatography was carried out using silica gel 60 Å CC (230–400 mesh). Mobile phases are reported in relative composition (e.g., 1:1 EtOAc/hexane v/v). All reactions using anhydrous conditions were performed using oven-dried apparatus under an atmosphere of argon. Brine refers to a saturated solution of sodium chloride. Anhydrous sodium sulfate (Na₂SO₄) was used as drying agent after reaction work-up, as indicated. All reagents were purchased from Sigma Aldrich, Cymit, Carbosynth, Apollo Scientific, Fluorochem, and Manchester Organics chemical companies.

6.1. Reagent preparation

3a,6a-diphenyltetrahydroimidazo[4,5-*d***]imidazole-2,5(1***H*,3*H***)-dione** (3). Following a reported procedure,^[3] a 2000 mL round-bottom flask, equipped with a magnetic stir bar, was charged with urea (20 g, 333 mmol, 1 equiv.), benzil (35 g, 166 mmol, 0.5 equiv.), and toluene (666 mL, 0.5 M). Then, trifluoroacetic acid (33.3 mL, 434 mmol, 1.3 equiv.) was added and the mixture was refluxed for 20 h. Once the reaction was completed, the mixture was cooled to room temperature. The resulting precipitate was

filtered, washed with 9:1 EtOH/MeOH, and dried under reduced pressure to afford diphenylglycoluril **3** (36 g, 74%) as a white solid. ¹H NMR (DMSO- d_6 , 400 MHz): δ 7.73 (s, 4H), 7.10–6.93 (m, 10H). FT–IR (neat) ν in cm⁻¹: 3212.8, 3062.4, 1669.1, 1483.9, 1448.3, 1313.3,

1224.6, 1138.8, 1076.1, 1030.8. Spectroscopic data are consistent with those previously reported.^[4]

1,3,4,6-tetrachloro-3a,6a-diphenyltetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dione (4). Following a reported procedure,^[4] a 2000 mL roundbottom flask, equipped with a magnetic stir bar, was charged with diphenylglycoluril 3 (20 g, 68 mmol, 1 equiv.) and H₂O (884 mL, 0.08 M). The solution was cooled down to 0 °C with an ice-water bath and sodium acetate (NaOAc) (40 g, 487 mmol, 7 equiv.) was added followed by trichloroisocyanuric acid (TCCA). The mixture was stirred at room

temperature for 20 h. Once the reaction was completed, the resulting precipitate was filtered, washed with H_2O (500 mL), and dried under reduced pressure to afford 4 (26 g, 89%) as a white solid. ¹H NMR (Acetone-*d*₆, 400 MHz): δ 5.81 (m, 10H). FT–IR (neat) *ν* in cm⁻¹: 1762.6, 1491.7, 1449.2, 1321.9, 1237.1, 1138.8, 1078.9, 1031.7, 1001.8. Spectroscopic data are consistent with those previously reported.^[4]

3a,6a-diphenyl-1,3,4,6-tetrathiocyanatotetrahydroimidazo[4,5-

mixture was then cooled down to –10 $^{\mathrm{o}}\mathrm{C}$ and 4 (3.5 g, 8.1 mmol, 1 equiv.) was added. The mixture was stirred 15 min at room

temperature. Once the reaction was completed, the solution was filtered and concentrated under reduced pressure to afford **5a** (4 g, 95%) as a white solid. ¹H NMR (CD₃CN, 400 MHz): δ 7.37-6.90 (m, 10H). ¹³C NMR (CD₃CN, 125.8 MHz): δ 156.30, 133.35, 130.91, 129.51, 128.66, 112.52, 87.32. FT-IR (neat) v in cm⁻¹: 2154.1, 1749.1, 1449.2, 1402.0, 1320.0, 1226.5, 1079.9, 1032.6, 1000.9, 931.5, 880.3, 852.4, 819.6. **HRMS (ESI**⁺) for [M+H]⁺ C₂₀H₁₁N₈O₂S₄⁺ (*m/z*): calc. 522.9883; found 522.9861.

3a,6a-diphenyl-1,3,4,6-

Subsequently, anhydrous CH₃CN (12.5 mL, 0.09 M) was added. The mixture was then cooled down to -30 °C and 4 (2 g, 4.6

mmol, 1 equiv.) was added. The mixture was stirred 20 min at room temperature. Once the reaction was completed, the solution was filtered and concentrated under reduced pressure to afford 5b (2.5 g, 80%) as a red solid. ¹H NMR (CD₃CN, 400 MHz): δ 7.13–6.94 (m, 10H). FT–IR (neat) v in cm⁻¹: 2247.63, 2121.6, 2091.4, 1672.9, 1407.8, 1316.2, 1219.8, 1142.6, 1108.9, 1076.1, 1030.8, 998.9, 956.5, 935.3.

6.2. Additional characterization data and reactivity experiments

Reagents **5a** and **5b** were difficult to characterize by NMR due to their low solubility and high reactivity in solution.

N–Cl substitution

To rule out the presence of N–Cl substitution in the reagent, a series of experiments were conducted by preparing reagent **5a/b** using different equivalents of NH₄SCN/KSeCN (Table S3). When no source of XCN (X = S or Se) was used in the preparation of reagent **5**, only 3-chloroindole **6.1** was observed in the subsequent reaction (Table S3, entry 1). In contrast, using a substoichiometric amount of the XCN salts resulted in a mixture of both 3-chloroindole **6.1** and the XCN product (**6a** or **6b**, respectively). Finally, when an excess of the inorganic salt was added, only the XCN products were observed.

Table S3. One-pot consecutive reactions. Identification of reaction products and confirmationof N–Cl absence in the reagent structure

Entry	4 (equiv.)	Salt (equiv.)	6 (equiv.)	6a/b conv. (%)	6.1 conv. (%)
1	0.33	0	1	0	100
2	0.33	0.66	1	45	55
3	0.33	1.65	1	100	0

Throughout the investigation of nucleophiles, no chlorinated products were observed, indicating that N–Cl substitution is highly unlikely to be present in the reagent's structure.

Number of reactive S/SeCN groups in the glycoluril core

To estimate the number of reactive XCN groups (X = S or Se), a 1:10 equivalent reaction between 5-fluoroindole 7 and reagent 5a or 5b was carried out. In both cases, the ratio of starting material 7 to product 7a or 7b was 6:4, indicating the presence of four units of SCN or SeCN per glycoluril core (Figure S8).

Figure S8. ¹⁹F NMR demonstrates the ratio 7/7a,b

HRMS and GC–MS analysis

The HRMS peak for **5a** was determined by HPLC–MS (ESI⁺). However, obtaining an HRMS peak for **5b** proved difficult, likely due to its previously mentioned low solubility and high reactivity in solution (see Section 2). Nevertheless, the GC–MS (EI) chromatogram showed a single peak (t_R : 11.71 min) and m/z peaks in the mass spectrum with the characteristic selenium isotopic pattern (Figure S9).

Figure S9. GC-MS (EI) chromatogram of 5b

6.3. Substrate scope

General procedure A for thiocyanation (6a,b–30a). A 25 mL round-bottom flask, equipped with a magnetic stir bar, was charged with the substrate (1 equiv.), CH_3CN (or CH_2Cl_2) (0.16 M) and reagent **5a,b** (0.33 equiv.). Certain substrates required the addition of trifluoromethanesulfonic acid (TfOH) (1.5 equiv.). The mixture was stirred at room temperature, monitoring the progress of the reaction by TLC. Once the reaction was completed, the solution was filtered, concentrated under reduced pressure, and purified by flash column chromatography.

3-Thiocyanato-1*H***-indole (6a).** This compound was prepared following the general procedure A, starting from 1*H*-indole **6** (58 mg, 0.5 mmol) and **5a** (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room

temperature for 10 min and purified by flash column chromatography (SiO₂, 3:7 EtOAc/hexane) to afford **6a** (86 mg, 99%) as a yellow solid. *R*_{*f*}: (3:7 EtOAc/hexane): 0.39. ¹**H NMR (CDCl₃, 400 MHz)**: δ 8.67 (bs, 1H), 7.85–7.78 (m, 1H), 7.51 (d, *J* = 2.8 Hz, 1H), 7.47–7.41 (m, 1H), 7.36–7.29 (m, 2H). ¹³**C NMR (CDCl₃, 100.6 MHz)**: δ 136.12, 131.06, 127.81, 124.05, 122.06, 118.92, 112.19, 111.98, 92.51. Spectroscopic data are consistent with those previously reported.^[5]

SCN 5-Fluoro-3-thiocyanato-1*H*-indole (7a). This compound was prepared following the general procedure A, starting from 5-fluoroindole 7 (67 mg, 0.5 mmol) and 5a (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 20 min and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to afford 7a (93

mg, 97%) as a brown solid. R_f : (1:4 EtOAc/hexane): 0.13. ¹H NMR (CDCl₃, 400 MHz): δ 8.84 (bs, 1H), 7.52 (d, J = 2.9 Hz, 1H), 7.42 (dd, J = 8.8, 2.5 Hz, 1H), 7.34 (dd, J = 8.9, 4.2 Hz, 1H), 7.04 (td, J = 9.0, 2.5 Hz, 1H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 159.11 (d, J = 238.8 Hz), 132.79, 132.54, 128.56 (d, J = 10.5 Hz), 113.32 (d, J = 9.6 Hz), 112.68 (d, J = 26.5 Hz), 112.02, 104.01 (d, J = 24.8 Hz), 92.15 (d, J = 3.9 Hz). ¹⁹F NMR (CDCl₃, 376 MHz): δ -120.73 (td, J = 9.0, 4.2 Hz). Spectroscopic data are consistent with those previously reported.^[6]

5-Chloro-3-thiocyanato-1*H*-indole (8a). This compound was prepared following the general procedure A, starting from 5-chloroindole 8 (76 mg, 0.5 mmol) and 5a (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 20 min and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to afford 8a

(103 mg, 99%) as a brown solid. R_f : (1:4 EtOAc/hexane): 0.14. ¹H NMR (CD₃OD, 400 MHz): δ 12.50 (bs, 1H), 9.22 (d, J = 2.2 Hz, 1H), 8.99 (d, J = 2.0 Hz, 1H), 8.87–8.81 (m, 1H), 8.54 (dd, J = 8.7, 2.0 Hz, 1H). ¹³C NMR (CD₃OD, 100.6 MHz): δ 135.02, 134.02, 128.86, 126.67, 123.31, 117.22, 114.09, 110.92, 90.58. Spectroscopic data are consistent with those previously reported.^[5]

5-Bromo-3-thiocyanato-1*H***-indole (9a).** This compound was prepared following the general procedure A, starting from 5-bromoindole 9 (98 mg, 0.5 mmol) and **5a** (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 22 h and purified by flash column chromatography (SiO₂, 3:7 EtOAc/hexane) to afford **7a** (124

mg, 98%) as a white solid. R_f : (1:4 EtOAc/hexane): 0.28. ¹H NMR (CDCl₃, 400 MHz): δ 8.74 (bs, 1H), 7.93 (d, J = 2.0 Hz, 1H), 7.53 (d, J = 2.9 Hz, 1H), 7.40 (dd, J = 8.7, 1.8 Hz, 1H), 7.30 (dd, J = 8.7, 0.6 Hz, 1H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 134.68, 132.06, 129.41, 127.10, 121.51, 115.49, 113.57, 111.46, 92.26. Spectroscopic data are consistent with those previously reported.^[5]

SCN 3-Thiocyanato-1*H*-indole-5-carbonitrile (10a). This compound was prepared following the general procedure A, starting from 5-cianoindole 10 (71 mg, 0.5 mmol) and 5a (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 18 h

and purified by flash column chromatography (SiO₂, 3:7 EtOAc/hexane) to afford **10a** (99 mg, 99%) as a white solid. R_f : (3:7 EtOAc/hexane): 0.15. ¹H NMR (CD₃OD), 400 MHz): δ 13.31 (bs, 1H), 9.02 (s,1H), 9.00–8.94 (m, 1H), 8.58–8.46 (m, 1H), 8.43 (dd, J = 8.5, 1.5 Hz, 1H). ¹³C NMR (CD₃OD, 100.6 MHz): δ 138.20, 135.93, 127.30, 125.71, 123.37, 119.91, 114.24, 112.01, 103.47, 91.50. Spectroscopic data are consistent with those previously reported.^[7]

SCN 5-Nitro-3-thiocyanato-1*H*-indole (11a). This compound was prepared following the general procedure A, starting from 5-nitroindole 11 (81 mg, 0.5 mmol) and 5a (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 22 h and purified by flash column chromatography (SiO₂, 1:1

EtOAc/hexane) to afford **11a** (108 mg, 99%) as an orange solid. *R*_{*J*}: (1:1 EtOAc/hexane): 0.32. ¹**H NMR (CD₃CN, 400 MHz)**: δ 10.38 (bs, 1H), 8.66 (dd, *J* = 2.2, 0.7 Hz, 1H), 8.18 (dd, *J* = 9.0, 2.2 Hz, 1H), 7.93 (d, *J* = 2.9 Hz, 1H), 7.70 (dd, *J* = 9.0, 0.6 Hz, 1H). ¹³**C NMR (CD₃CN, 100.6 MHz)**: δ 143.79, 140.03, 136.61, 127.77, 119.16, 115.47, 113.92, 111.93, 94.80. Spectroscopic data are consistent with those previously reported.^[7]

3-thiocyanato-1*H***-indole-5-carboxylic acid (12a).** This compound was prepared following the general procedure A, starting from 1*H*-indole-5-carboxylic acid **12** (81 mg, 0.5 mmol) and **5a** (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 18 h and purified by flash column

chromatography (SiO₂, 1:9 MeOH/CH₂Cl₂) to afford **12a** (88 mg, 80%) as a yellow solid. R_f : (1:9 MeOH/CH₂Cl₂): 0.22. ¹H NMR (CD₃OD, 400 MHz): δ 8.46 (dd, J = 1.6, 0.7 Hz, 1H), 7.96 (dd, J = 8.6, 1.6 Hz, 1H), 7.83 (s, 1H), 7.54 (dd, J = 8.6, 0.7 Hz, 1H). ¹³C NMR (CD₃OD, 100.6 MHz): δ 139.41, 133.69, 127.28, 124.24, 123.62, 120.62, 111.98, 111.39, 92.26. Spectroscopic data are consistent with those previously reported.^[8]

5-Methoxy-3-thiocyanato-1*H***-indole (13a).** This compound was prepared following the general procedure A, starting from 5-methoxyindole **13** (74 mg, 0.5 mmol) and **5a** (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 10 min and purified by flash column chromatography (SiO₂, 1:4

EtOAc/hexane) to afford **11a** (101 mg, 99%) as an orange solid. *R*_{*f*}: (1:4 EtOAc/hexane): 0.20. ¹H NMR (CDCl₃, 400 MHz): δ 8.79 (bs, 1H), 7.42 (d, *J* = 2.9 Hz, 1H), 7.28 (d, *J* = 8.9 Hz, 1H), 7.19 (d, *J* = 2.4 Hz, 1H), 6.94 (dd, *J* = 8.9, 2.4 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 155.76, 131.62, 130.95, 128.56, 114.50, 113.19, 112.32, 99.85, 91.24, 55.94. Spectroscopic data are consistent with those previously reported.^[5]

SCN 1-Methyl-3-thiocyanato-1*H*-indole (14a). This compound was prepared following the general procedure A, starting from 1-methyl-1*H*-indole 14 (66 mg, 0.5 mmol) and 5a (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 22 h and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to afford 14a (89 mg, 94%) as a

yellow solid. *R_f*: (1:4 EtOAc/hexane): 0.42. ¹H NMR (CDCl₃, 400 MHz): δ 7.80 (dd, *J* = 7.2, 1.0 Hz,

1H), 7.41–7.28 (m, 4H), 3.71 (s, 3H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 137.17, 135.17, 128.44, 123.42, 121.59, 118.85, 112.03, 110.32, 89.61, 33.37. Spectroscopic data are consistent with those previously reported.^[5]

2-Methyl-3-thiocyanato-1*H***-indole (15a).** This compound was prepared following the general procedure A, starting from 2-methyl-1*H***-indole 15** (66 mg, 0.5 mmol) and **5a** (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 3 h and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to afford **15a** (90 mg,

96%) as a pink solid. *R*_{*f*}: (1:4 EtOAc/hexane): 0.23. ¹**H NMR (CDCl**₃, 400 MHz): δ 8.65 (bs, 1H), 7.67 (ddd, *J* = 7.6, 1.5, 0.8 Hz, 1H), 7.34–7.16 (m, 3H), 2.44 (s, 3H). ¹³**C NMR (CDCl**₃, 100.6 MHz): δ 141.10, 132.88, 127.44, 123.63, 120.47, 119.93, 118.92, 110.73, 109.57, 8.28. Spectroscopic data are consistent with those previously reported.^[6]

3-Methyl-2-thiocyanato-1*H***-indole (16a).** This compound was prepared following the general procedure A, starting from 3-methyl-1*H*-indole **16** (66 mg, 0.5 mmol) and **5a** (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 22 h and purified by flash column chromatography (SiO₂, 1:9 EtOAc/hexane) to

afford **16a** (61 mg, 64%) as a yellow solid. R_f : (1:9 EtOAc/hexane): 0.20. ¹H NMR (CDCl₃, 400 MHz): δ 7.74 (bs, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 7.34–7.17 (m, 3H), 2.37 (s, 3H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 136.3, 130.4, 129.0, 123.1, 121.0, 119.0, 115.9 (t, *J* = 242.5 Hz), 111.8, 103.9, 39.1 (t, *J* = 23.2 Hz). Spectroscopic data are consistent with those previously reported.^[9]

2-Thiocyanato-1*H***-pyrrole (17a).** This compound was prepared following the general procedure A, starting from 1*H*-pyrrole **17** (34 mg, 0.5 mmol) and **5a** (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 24 h and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to afford **17a** (64 mg, 99%) as a brown liquid. R_f : (1:4 EtOAc/hexane): 0.27. ¹H NMR (CD₂Cl₂, **400 MHz**): δ 8.86 (bs, 1H), 6.94–6.86 (m, 1H), 6.61–6.48 (m, 1H), 6.19 (q, *J* = 3.0 Hz, 1H). ¹³C NMR (CD₂Cl₂, **100.6 MHz**): δ 124.52, 121.14, 119.99, 111.14, 103.24. Spectroscopic data are consistent with those previously reported.^[5]

CN 2,5-Dimethyl-3-thiocyanato-1*H*-pyrrole (18a). This compound was prepared following the general procedure A, starting from 2,5-dimethyl-1*H*-pyrrole 18 (47 mg, 0.5 mmol) and 5a (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 10 min and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to

afford **18a** (54 mg, 72%) as a brown solid. R_f : (1:4 EtOAc/hexane): 0.25. m.p.: 145.3–148.6 °C; ¹H NMR (CDCl₃, **400 MHz**): δ 8.20 (bs, 1H), 5.94 (s, 1H), 2.30 (s, 3H), 2.19 (s, 3H). ¹³C NMR (CDCl₃, **100.6 MHz**): δ 132.92, 127.60, 113.14, 110.48, 94.51, 12.83, 11.21. FT–IR (neat) ν in cm⁻¹: 3325.6, 3181.0, 2921.6, 2151.2, 1592.9, 1522.5, 1408.75, 1393.3, 1286.3, 1240.9. Spectroscopic data are consistent with those previously reported.^[6]

2,5-Dimethyl-3,4-dithiocyanato-1H-pyrrole (19a). This compound was prepared following the general procedure A, starting from 2,5-dimethyl-1*H*-pyrrole **18** (47 mg, 0.5 mmol) and **5a** (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 2 h and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to afford **19a** (21

mg, 20%) as a brown solid. *R*_{*f*}: (1:4 EtOAc/hexane): 0.13. m.p.: 80.9–83.1 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.93 (bs, 1H), 2.29 (s, 6H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 135.62, 111.16, 99.90, 11.89. FT–IR (neat) *v* in cm⁻¹: 3350.7, 2921.63, 2852.2, 2155.1, 1730.8, 1577.5, 1534.1, 1439.6, 1389.5, 1366.3. HRMS (EI) for (M)⁺ C₈H₇N₃S₂⁺⁺ (*m*/*z*): calc. 209.0081; found 209.0076.

4-Thiocyanatoaniline (20a). This compound was prepared following the general procedure A, starting from aniline **20** (46 mg, 0.5 mmol) and **5a** (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 10 min and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to afford **20a** (74 mg, 99%) as an orange solid. *R*_{*f*}: (1:4 EtOAc/hexane): 0.15. ¹H NMR (CDCl₃, **400 MHz**): δ 7.26 (d, *J* = 8.7 Hz, 2H), 6.57 (d, *J* = 8.6 Hz, 2H), 3.92 (bs, 2H). ¹³C NMR

(CDCl₃, 100.6 MHz): δ 148.99, 134.54, 116.10, 112.57, 109.33. Spectroscopic data are consistent with those previously reported.^[8]

4-Thiocyanatophenol (21a). This compound was prepared following the general procedure A, starting from phenol **21** (47 mg, 0.5 mmol) and **5a** (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 10 min and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to afford **21a** (75 mg, 99%) as a yellow oil. *R*_{*f*}: (1:4 EtOAc/hexane): 0.20. ¹H NMR (CDCl₃, 400 MHz): δ 7.42 (dd, J = 8.6, 1.4 Hz, 2H), 6.87 (dd, J = 8.6, 1.5 Hz, 2H). ¹³C NMR (CDCl₃,

100.6 MHz): δ 158.26, 134.33, 117.57, 112.92, 112.49. Spectroscopic data are consistent with those previously reported.^[8]

3,5-Dimethyl-4-thiocyanatophenol (22a). This compound was prepared following the general procedure A, starting from 3,5-dimethylphenol **22** (61 mg, 0.5 mmol) and **5a** (86 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 10 min and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to afford **22a** (89 mg, 99%) as a yellow solid. *R*_{*j*}: (1:4 EtOAc/hexane): 0.32. ¹H NMR (CDCl₃, 400

MHz): δ 6.65 (d, J = 0.7 Hz, 2H), 5.76 (bs, 1H), 2.52 (s, 6H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 158.03, 145.05, 116.23, 112.54, 111.64, 22.07. Spectroscopic data are consistent with those previously reported.^[8]

1-Methoxy-4-thiocyanatobenzene (23a). This compound was prepared following the general procedure A, starting from anisole **23** (54 mg, 0.5 mmol), **5a** (86 mg, 0.165 mmol), and TfOH (66 μ L, 0.75 mmol) in CH₂Cl₂ (3 mL). The mixture was stirred at room temperature for 30 min and purified by flash column chromatography (SiO₂, 1:9 EtOAc/hexane) to afford **23a** (62 mg, 75%) as a yellow oil. **R**_f: (1:9 EtOAc/hexane): 0.30. ¹H NMR (CDCl₃, 400 MHz): δ 7.50 (d, *J* = 8.9 Hz, 2H), 6.94 (d, *J*

= 8.9 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 161.34, 133.82, 115.87, 113.82, 111.62, 55.56. Spectroscopic data are consistent with those previously reported.^[8]

1,3,5-Trimethyl-2-thiocyanatobenzene (24a). This compound was prepared following the general procedure A, starting from mesitylene **24** (60 mg, 0.5 mmol), **5a** (86 mg, 0.165 mmol), and TfOH (66 μ L, 0.75 mmol) in CH₂Cl₂ (3 mL). The mixture was stirred at room temperature for 18 h and purified by flash column chromatography (SiO₂, 100% hexane) to afford **24a** (77 mg, 86%) as a white solid. *R*_{*f*}: (100% hexane): 0.18. ¹H

NMR (CDCl₃, 400 MHz): δ 7.01 (d, *J* = 0.5 Hz, 2H), 2.55 (s, 6H), 2.30 (s, 3H). ¹³C **NMR (CDCl₃, 100.6 MHz):** δ 142.71, 141.49, 130.06, 119.12, 110.88, 21.88, 21.08. Spectroscopic data are consistent with those previously reported.^[7]

9-Thiocyanatoanthracene (25b). This compound was prepared following the general procedure A, starting from anthracene **25** (89 mg, 0.5 mmol), **5a** (86 mg, 0.165 mmol), and TfOH (66 μ L, 0.75 mmol) in CH₂Cl₂ (3 mL). The mixture was stirred at room temperature for 18 h

and purified by flash column chromatography (SiO₂, 100% hexane) to afford **25a** (86 mg, 73%) as an orange solid. R_f : (100% hexane): 0.13. m.p.: 174.6–176.0 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.57 (dd, J = 8.9, 1.0 Hz, 2H), 8.50 (s, 1H), 7.99–7.88 (m, 2H), 7.62 (ddd, J = 8.9, 6.6, 1.3 Hz, 2H), 7.46 (ddd, J = 8.1, 6.6, 1.1 Hz, 2H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 133.91, 132.51, 131.86, 129.28, 128.69, 126.93, 125.31, 114.91, 110.88. FT–IR (neat) v in cm⁻¹: 3050.83, 2920.7, 2851.2, 2148.3, 1731.8, 1621.8, 1521.6, 1438.6, 1377.9, 1306.5. HRMS (EI) for (M)⁺⁻ C₁₅H₉NS⁺⁻ (m/z): calc. 235.0456; found 235.0452.

N-(4,5-Dihydroxy-2-thiocyanatophenethyl)acetamide (26a). This compound was prepared following the general procedure A, starting from *N*-(3,4-dihydroxyphenethyl)acetamide **26** (54 mg, 0.28 mmol) and **5a** (48 mg, 0.092 mmol) in CH_3CN (2.5

mL). The mixture was stirred at room temperature for 18 h and purified by flash column chromatography (SiO₂, 0.5:9.5 MeOH/CH₂Cl₂ + 2% Et₃N) to afford **26a** (42 mg, 58%) as a brown oil. R_f : (0.5:9.5 MeOH/CH₂Cl₂ + 2% Et₃N): 0.18. ¹H NMR (CD₃OD, 400 MHz): δ 7.08 (s, 1H), 6.80 (s, 1H), 3.39 (t, J = 7.3 Hz, 2H), 2.91 (t, J = 7.2 Hz, 2H), 1.92 (s, 3H). ¹³C NMR (CD₃OD, 100.6 MHz): δ 171.98, 148.44, 145.15, 133.78, 120.46, 117.42, 111.75, 110.86, 39.90, 32.78, 21.14. FT–IR (neat) v in cm⁻¹: 2920.7, 2159.9, 1558.2, 1507.1, 1434.8, 1362.5, 1036.6. HRMS (ESI⁺) for [M+H]⁺ C₁₁H₁₃N₂O₃S⁺ (*m/z*): calc. 253.0641; found 253.0640.

5-Amino-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-thiocyanato-1H-

pyrazole-3-carbonitrile (27a). This compound was prepared following the general procedure A, starting from 5-amino-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-1*H*-pyrazole-3-carbonitrile **27** (96 mg, 0.3 mmol), **5a** (52 mg, 0.099 mmol), and TfOH (40 μ L, 0.45 mmol) in CH₂Cl₂ (2.5 mL). The mixture was stirred at room temperature for 8 h and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to afford **27a** (45 mg, 40%) as a yellow oil. *R*_{*f*}: (1:4 EtOAc/hexane): 0.10. ¹H

NMR (CDCl₃, 400 MHz): δ 7.82 (s, 2H), 4.53 (s, 2H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 149.93, 136.45, 135.32 (q, J = 34.6 Hz), 134.35, 131.40, 126.53 (q, J = 3.7 Hz), 121.80 (appq, J = 274.2 Hz), 110.88, 108.47, 82.34. ¹⁹F NMR (CDCl₃, 376.5 MHz): δ –63.33 (s, 3F). FT–IR (neat) v in cm⁻ ¹: 3316.9, 3195.5, 2247.6, 1647.9, 1571.1, 1507.1, 1459.9, 1394.3, 1319.1, 1210.1. HRMS (ESI⁺) for [M+H]⁺ C₁₂H₅Cl₂F₃N₅S⁺ (m/z): calc. 377.9589; found 377.9590.

2-(6-Methoxy-5-thiocyanatonaphthalen-2-yl)propanoic
 OH acid (28a). This compound was prepared following the general procedure A, starting from *rac*-Naproxen 28 (115 mg, 0.5 mmol), 5a (86 mg, 0.165 mmol), and TfOH (66 μL, 0.75 mmol) in CH₂Cl₂ (3 mL). The mixture was stirred at room temperature for 1 h and purified by flash column

chromatography (SiO₂, 1:4 EtOAc/hexane + 1% AcOH) to afford **28a** (115 mg, 80%) as a white solid. *R*_{*f*}: (1:4 EtOAc/hexane + 1% AcOH): 0.15. **m.p.**: 169.1–172.6 °C. ¹**H NMR (CDCl₃, 400 MHz)**: δ 8.29 (d, *J* = 8.8 Hz, 1H), 7.96 (d, *J* = 9.1 Hz, 1H), 7.75 (s, 1H), 7.64 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.32 (d, *J* = 9.1 Hz, 1H), 4.10 (s, 3H), 3.91 (q, *J* = 7.1 Hz, 1H), 1.61 (d, *J* = 7.2 Hz, 3H). ¹³**C NMR (CDCl₃, 100.6 MHz)**: δ 179.90, 158.74, 136.06, 133.83, 133.80, 129.42, 128.72, 127.12, 124.61, 113.36, 110.95, 103.63, 59.97, 44.99, 18.06. **FT–IR (neat) v in cm⁻¹**: 2941.8, 2152.2, 1704.8, 1594.8, 1495.5, 1479.1, 1456.9, 1418.4, 1374.0, 1354.8. **HRMS (ESI⁺)** for [M+H]⁺ C₁₅H₁₄NO₃S⁺ (*m/z*): calc. 288.0688; found 288.0687.

5-Benzoyl-7-thiocyanato-2,3-dihydro-1H-pyrrolizine-1-

carboxylic acid (29a). This compound was prepared following the general procedure A, starting from Ketorolac **29** (127 mg, 0.5 mmol) and **5a** (86 mg, 0.165 mmol) in CH_2Cl_2 (3 mL). The mixture was stirred at room

temperature for 24 h and purified by flash column chromatography (SiO₂, 1:10 CH₃CN/CH₂Cl₂ + 1% AcOH) to afford **29a** (150 mg, 96%) as a brown oil. *R*_f: (1:10 CH₃CN/CH₂Cl₂ + 1% AcOH): 0.16. ¹H NMR (CDCl₃, 400 MHz): δ 10.11 (bs, 1H), 7.82–7.76 (m, 2H), 7.62–7.53 (m, 1H), 7.48 (dd, *J* = 8.2, 6.8 Hz, 2H), 6.99 (s, 1H), 4.60–4.48 (m, 2H), 4.20 (dd, *J* = 7.9, 5.5 Hz, 1H), 3.00–2.84 (m, 2H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 185.18, 177.73, 175.06, 145.05, 137.83, 132.45, 128.93, 128.55, 128.45, 128.21, 111.24, 94.29, 48.93, 42.21, 31.41, 20.82. FT–IR (neat) *v* in cm⁻¹: 2925.5, 2156.0, 1714.4, 1625.7, 1596.8, 1573.6, 1524.5, 1489.7, 1457.9, 1438.6. HRMS (ESI⁺) for [M+H]⁺ C₁₆H₁₃N₂O₃S⁺ (*m/z*): calc. 313.0641; found 313.0643.

N-(5,7-di-*tert*-Butyl-2-iminobenzo[*d*][1,3]oxathiol-4-yl)-4-oxo-1,4-dihydroquinoline-3-carboxamide

(30a). This compound was prepared following the general procedure A, starting from Ivacaftor 30 (117 mg, 0.3 mmol) and 5a (52 mg, 0.099 mmol) in CH_2Cl_2 (2.5 mL). The mixture was stirred at room temperature for 5 h and purified by flash column chromatography (SiO₂, 1:9 MeOH/CH₂Cl₂) to afford

30a (116 mg, 87%) as a white solid. **R**_f: (1:9 MeOH/CH₂Cl₂): 0.25. **m.p.**: 228.1–230.2 °C. ¹**H NMR** (CD₃OD, 400 MHz): δ 8.87 (s, 1H), 8.45–8.39 (m, 1H), 7.87–7.78 (m, 1H), 7.69 (dt, *J* = 8.3, 0.9

Hz, 1H), 7.56 (ddd, J = 8.2, 7.0, 1.1 Hz, 1H), 7.38 (s, 1H), 1.46 (s, 9H), 1.44 (s, 9H). ¹³C NMR (CD₃OD, 100.6 MHz): δ 177.44, 166.85, 163.83, 146.58, 144.39, 142.17, 139.36, 133.20, 132.06, 126.76, 126.28, 126.03, 125.56, 125.54, 122.46, 11868, 109.80, 34.92, 34.40, 29.76, 28.53. FT–IR (neat) v in cm⁻¹: 3178.1, 2957.3, 1634.4, 1560.1, 1538.9, 1512.9, 1473.35, 1417.4, 1399.1, 1382.7. HRMS (ESI⁺) for [M+H]⁺ C₂₅H₂₈N₃O₃S⁺ (m/z): calc. 450.1845; found 450.1845.

SeCN 3-Selenocyanato-1*H*-indole (6b). This compound was prepared following the general procedure A, starting from 1*H*-indole 6 (58 mg, 0.5 mmol) and 5b (117 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 20 min and purified by flash column chromatography (SiO₂, 3:7 EtOAc/hexane) to afford 6b (110 mg, 99%) as a

brown solid. *R*_{*f*}: (3:7 EtOAc/hexane): 0.34. ¹**H NMR (CDCl₃, 400 MHz)**: δ 8.78 (bs, 1H), 7.74–7.65 (m, 1H), 7.41–7.28 (m, 2H), 7.32–7.19 (m, 2H). ¹³**C NMR (CDCl₃, 100.6 MHz)**: δ 136.07, 132.07, 128.70, 123.69, 121.79, 119.43, 112.10, 102.53, 89.01. ⁷⁷Se NMR (CDCl₃, 76.5 MHz): δ 152.97. Spectroscopic data are consistent with those previously reported.^[10]

SeCN 5-Fluoro-3-selenocyanato-1H-indole (7b). This compound was prepared following the general procedure A, starting from 5-fluoroindole 7 (67 mg, 0.5 mmol) and 5b (117 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 20 min and purified by flash column chromatography (SiO₂, 1:4

EtOAc/hexane) to afford **7b** (111 mg, 93%) as a brown solid. **R**_{*f*}: (1:4 EtOAc/hexane): 0.11. ¹H NMR (CDCl₃, 400 MHz): δ 8.66 (bs, 1H), 77.57 (d, *J* = 2.8 Hz, 1H), 7.44–7.34 (m, 2H), 7.06 (td, *J* = 9.0, 2.5 Hz, 1H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 159.07 (d, *J* = 238.6 Hz), 132.42, 132.45, 129.61 (d, *J* = 10.5 Hz), 112.92 (d, *J* = 9.6 Hz), 112.53 (d, *J* = 26.5 Hz), 104.83 (d, *J* = 24.7 Hz), 101.64, 89.55 (d, *J* = 4.8 Hz). ¹⁹F NMR (CDCl₃, 376 MHz): δ –120.92 (td, *J* = 9.0, 4.2 Hz). ⁷⁷Se NMR (CDCl₃, 76.5 MHz): δ 153.64. FT–IR (neat) v in cm⁻¹: 3315.0, 2915.8, 2848.4, 2156.0, 1735.6, 1582.3, 1484.9, 1455.0, 1416.5, 1373.1. Spectroscopic data are consistent with those previously reported.^[11]

SeCN 5-Chloro-3-selenocyanato-1*H*-indole (8b). This compound was prepared following the general procedure A, starting from 5-chloroindole 8 (76 mg, 0.5 mmol) and 5b (117 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 20 min and purified by flash column chromatography (SiO₂, 1:4

EtOAc/hexane) to afford **8b** (128 mg, 99%) as an orange solid. **R**_f: (1:4 EtOAc/hexane): 0.10. ¹H **NMR (CDCl₃, 400 MHz):** δ 8.64 (bs, 1H), 7.70 (d, J = 2.0 Hz, 1H), 7.54 (d, J = 2.8 Hz, 1H), 7.34 (d, J = 8.7 Hz, 1H), 7.28–7.21 (m, 1H). ¹³C **NMR (CD₃OD, 100.6 MHz):** δ 134.38, 132.99, 129.97, 127.98, 124.44, 119.32, 112.94, 101.21, 89.59. ⁷⁷Se **NMR (CDcl₃, 76.5 MHz)**: δ 151.89. **FT–IR (neat)** v in cm⁻¹: 3330.5, 3125.1, 2154.1, 1860.0, 1700.9, 1617.9, 1568.8, 1495.5, 1460.8, 1446.4. **HRMS (ESI⁻)** for [M-H]⁻ C₉H₄ClN₂Se⁻ (m/z): calc. 254.9233; found 254.9222.

SeCN 5-Bromo-3-selenocyanato-1*H*-indole (9b). This compound was prepared following the general procedure A, starting from 5-bromoindole 8 (98 mg, 0.5 mmol) and 5b (117 mg, 0.165 mmol) in

CH₃CN (3 mL). The mixture was stirred at room temperature for 20 h and purified by flash column chromatography (SiO₂, 3:7 EtOAc/hexane) to afford **9b** (148 mg, 98%) as a brown solid. *R*_f: (1:4 EtOAc/hexane): 0.22; ¹H NMR (CD₃OD, 400 MHz): δ 12.86 (bs, 1H), 8.73 (d, *J* = 2.8 Hz, 1H), 8.51 (d, *J* = 1.8 Hz, 1H), 8.30 (dd, *J* = 8.6, 0.6 Hz, 1H), 8.17 (dd, *J* = 8.6, 1.9 Hz, 1H). ¹³C NMR (CD₃OD, 100.6 MHz): δ 135.38, 133.78, 130.60, 125.52, 121.13, 113.93, 113.57, 102.19, 88.24. ⁷⁷Se NMR (CD₃OD, 76.5 MHz): δ 151.73. Spectroscopic data are consistent with those previously reported.^[12]

SeCN 3-Selenocyanato-1*H*-indole-5-carbonitrile (10b). This compound was prepared following the general procedure A, starting from 5cianoindole 10 (71 mg, 0.5 mmol) and 5b (117 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 18 h and purified by flash column chromatography (SiO₂, 3:7

EtOAc/hexane) to afford **10b** (119 mg, 98%) as a red solid. R_f : (3:7 EtOAc/hexane): 0.13. ¹H NMR (CD₃OD, 400 MHz): δ 13.18 (bs, 1H), 8.92–8.86 (m, 2H), 8.49 (d, J = 8.5 Hz, 1H), 8.44–8.37 (m, 1H). ¹³C NMR (CD₃OD, 100.6 MHz): δ 138.15, 135.87, 128.61, 125.30, 124.28, 120.10, 113.89, 104.51, 103.00, 91.06. ⁷⁷Se NMR (CD₃OD, 76.5 MHz): δ 151.47. Spectroscopic data are consistent with those previously reported.^[12]

5-Nitro-3-selenocyanato-1H-indole (11b). This compound was prepared following the general procedure A, starting from 5-nitroindole **11** (81 mg, 0.5 mmol) and **5b** (117 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 20 h and purified by flash column chromatography (SiO₂, 3:7

EtOAc/hexane) to afford **11b** (130 mg, 98%) as a yellow solid. R_f : (3:7 EtOAc/hexane): 0.12. m.p.: 208.7–210.1 °C. ¹H NMR (CD₃CN, 400 MHz): δ 10.35 (bs, 1H), 8.55 (d, J = 2.2 Hz, 1H), 8.13 (dd, J = 9.0, 2.2 Hz, 1H), 7.86 (d, J = 2.8 Hz, 1H), 7.65 (dd, J = 9.0, 0.6 Hz, 1H). ¹³C NMR (CD₃CN, 100.6 MHz): δ 143.57, 140.05, 137.09, 128.95, 118.95, 116.32, 113.64, 102.64, 92.33. ⁷⁷Se NMR (CD₃CN, 76.5 MHz): δ 152.70. FT–IR (neat) v in cm⁻¹: 2921.6, 2149.3, 1701.9, 1595.8, 1495.5, 1456.9, 1355.7, 1330.6, 1297.9, 1227.6. HRMS (ESI⁻) for [M-H]⁻ C₉H₄N₃O₂Se⁻ (m/z): calc. 265.9474; found 265.9474.

SeCN 3-Selenocyanato-1*H*-indole-5-carboxylic acid (12b). This compound was prepared following the general procedure A, starting from 1*H*-indole-5-carboxylic acid 12 (81 mg, 0.5 mmol) and 5b (117 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 22 h and purified by flash

column chromatography (SiO₂, 1:9 MeOH/CH₂Cl₂) to afford **12b** (97 mg, 73%) as a yellow solid. R_f : (1:9 MeOH/CH₂Cl₂): 0.20. m.p.: 212.4–216.1 °C. ¹H NMR (CD₃CN, 400 MHz): δ 10.19 (bs, 1H), 8.46–8.41 (m, 1H), 8.01–7.94 (m, 1H), 7.84 (d, J = 2.9 Hz, 1H), 7.64 (dd, J = 8.7, 0.7 Hz, 1H). ¹³C NMR (CD₃CN, 100.6 MHz): δ 167.96, 139.68, 134.71, 127.86, 125.15, 123.99, 121.29, 113.29, 112.24, 93.36.⁷⁷Se NMR (CD₃CN, 76.5 MHz): δ 146.93. FT–IR (neat) v in cm⁻¹: 3303.5, 2250.5, 1665.2, 1616.1, 1418.4, 1347.0, 1288.2, 819.6. HRMS (ESI⁺) for [M+H]⁺ C₁₀H₆N₂O₂Se⁺ (m/z): calc. 266.9666; found 266.9669.

5-Methoxy-3-selenocyanato-1*H***-indole (13b).** This compound was prepared following the general procedure A, starting from 5-methoxyindole **13** (74 mg, 0.5 mmol) and **5b** (117 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 10 min and purified by flash column

chromatography (SiO₂, 1:4 EtOAc/hexane) to afford **13b** (124 mg, 99%) as an orange solid. R_f : (1:4 EtOAc/hexane): 0.17. ¹H NMR (CDCl₃, 400 MHz): δ 8.79 (bs, 1H), 7.42 (d, J = 2.9 Hz, 1H), 7.28 (d, J = 8.9 Hz, 1H), 7.19 (d, J = 2.4 Hz, 1H), 6.94 (dd, J = 8.9, 2.4 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 155.78, 132.39, 130.96, 129.60, 114.43, 112.96, 102.24, 100.76, 88.91, 55.97. ⁷⁷Se NMR (CDCl₃, 76.5 MHz): δ 151.51. Spectroscopic data are consistent with those previously reported.^[12]

1-Methyl-3-selenocyanato-1*H***-indole (14b).** This compound was prepared following the general procedure A, starting from 1-methyl-1*H*-indole **14** (66 mg, 0.5 mmol) and **5b** (117 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 20 min and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to afford **14b**

(107 mg, 91%) as a red solid. R_f : (1:4 EtOAc/hexane): 0.26. ¹H NMR (CDCl₃, 400 MHz): δ 7.74 (dt, J = 7.1, 1.2 Hz, 1H), 7.43–7.22 (m, 4H), 3.73 (s, 3H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 137.17, 136.01, 129.50, 123.29, 121.49, 119.71, 110.12, 102.00, 87.03, 33.32. ⁷⁷Se NMR (CDCl₃, 76.5 MHz): δ 150.07. Spectroscopic data are consistent with those previously reported.^[12]

2-Methyl-3-selenocyanato-1*H***-indole (15b).** This compound was prepared following the general procedure A, starting from 2-methyl-1*H*-indole **15** (66 mg, 0.5 mmol) and **5b** (117 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 20 min and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to

afford **15b** (110 mg, 94%) as a brown solid. R_{f} : (1:4 EtOAc/hexane): 0.19. ¹H NMR (CDCl₃, 400 MHz): δ 8.53 (bs, 1H), 7.64–7.57 (m, 1H), 7.31–7.17 (m, 3H), 2.50 (s, 3H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 142.03, 135.42, 129.80, 122.88, 121.48, 118.92, 111.05, 102.07, 87.85, 13.04. ⁷⁷Se NMR (CDCl₃, 76.5 MHz): δ 128.74. Spectroscopic data are consistent with those previously reported.^[12]

3-Methyl-2-selenocyanato-1*H***-indole (16b).** This compound was prepared following the general procedure A, starting from 3-methyl-1*H*-indole **16** (66 mg, 0.5 mmol) and **5b** (117 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 22 h and purified by flash column chromatography (SiO₂, 1:9

EtOAc/hexane) to afford **16b** (93 mg, 79%) as a red solid. R_{f} : (1:9 EtOAc/hexane): 0.11. ¹H NMR (CDCl₃, 400 MHz): δ 8.33 (bs, 1H), 7.59 (dd, J = 8.1, 0.7 Hz, 1H), 7.36–7.25 (m, 2H), 7.22–7.14 (m, 1H), 2.46 (s, 3H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 138.15, 127.62, 124.77, 122.38, 120.34, 119.81, 111.26, 107.76, 100.09, 10.44. ⁷⁷Se NMR (CDCl₃, 76.5 MHz): δ 190.82. FT–IR (neat) v in cm⁻¹: 3374.8, 2149.3, 1541.8, 1454.1, 1398.1, 1290.1, 1224.6, 1058.7, 1009.5; Spectroscopic data are consistent with those previously reported.^[13]

2-Selenocyanato-1H-pyrrole (17b). This compound was prepared following the general procedure A, starting from 1H-pyrrole **17** (34 mg, 0.5 mmol) and **5b** (117 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 1 h and purified by flash column chromatography (SiO₂, 1:9 EtOAc/hexane) to afford **17b** (61 mg, 70%) as a brown oil. R_f : (1:9 EtOAc/hexane): 0.25. ¹H NMR (CD₂Cl₂, 400 MHz): δ 8.80 (bs, 1H), 6.99 (d, J = 1.8 Hz, 1H), 6.69–6.63 (m, 1H), 6.28 (q, J = 3.0 Hz, 1H). ¹³C NMR (CD₂Cl₂, 100.6 MHz): δ 124.65, 121.35, 111.34, 101.33, 99.63.⁷⁷Se NMR (CDCl₃, 76.5 MHz): δ 217.72. FT–IR (neat) v in cm⁻¹: 3325.6, 2922.6, 2157.9, 2049.0, 1701.9, 1570.7, 1462.7, 1372.1. HRMS (EI) for (M)⁺⁻ C₅H₄N₂Se⁺⁻ (m/z): calc. 171.9540; found 171.9534.

2,5-Dimethyl-3-selenocyanato-1*H***-pyrrole (18b).** This compound was prepared following the general procedure A, starting from 2,5-dimethyl-1*H*-pyrrole **18** (47 mg, 0.5 mmol) and **5b** (117 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 30 min and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to

afford **18b** (55 mg, 55%) as a brown solid. R_f : (1:4 EtOAc/hexane): 0.25. m.p.: 117.4–119.3 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.20 (bs, 1H), 5.97 (dd, J = 2.8, 1.1 Hz, 1H), 2.33 (s, 3H), 2.20 (s, 3H). ¹³C NMR (CDCl₃, **100.6 MHz)**: δ 133.15, 127.86, 111.87, 103.15, 92.28, 12.79, 12.16. ⁷⁷Se NMR (CDCl₃, **76.5 MHz**): δ 169.48. FT–IR (neat) ν in cm⁻¹: 3331.4, 2921.6, 2853.2, 2144.5, 1587.1, 1403.9, 1391.4, 1369.2, 1233.3. HRMS (TOF EI) for (M)⁺⁻ for C₇H₈N₂Se⁺⁻ (m/z): calc. 199.9853; found 199.9848.

4-Selenocyanatoaniline (20b). This compound was prepared following the general procedure A, starting from aniline **20** (46 mg, 0.5 mmol) and **5b** (117 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 20 min and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to afford **20b** (82 mg, 84%) as a brown solid. **R**_f: (1:4 EtOAc/hexane): 0.11. ¹H NMR (CDCl₃, **400 MHz**): δ 7.44 (d, *J* = 8.5 Hz, 2H), 6.64 (d, *J* = 8.5 Hz, 2H), 3.94 (bs, 2H).

¹³C NMR (CDCl₃, 100.6 MHz): δ 148.81, 136.50, 116.27, 107.17, 102.71. ⁷⁷Se NMR (CDCl₃, 76.5 MHz): δ 306.37. Spectroscopic data are consistent with those previously reported.^[13]

4-Selenocyanatophenol (21b). This compound was prepared following the general procedure A, starting from phenol **21** (47 mg, 0.5 mmol) and **5b** (117 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 1 h and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to afford **21b** (84 mg, 85%) as a yellow solid. **R**_f: (1:4 EtOAc/hexane): 0.18. ¹H NMR (CDCl₃, **400 MHz**): δ 7.53 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H). ¹³C NMR (CDCl₃, 100.6

MHz): δ 158.06, 136.38, 117.65, 110.63, 102.77. ⁷⁷Se NMR (CDCl₃, 76.5 MHz): δ 308.65. Spectroscopic data are consistent with those previously reported.^[11]

3,5-Dimethyl-4-selenocyanatophenol (22b). This compound was prepared following the general procedure A, starting from 3,5-dimethylphenol **22** (61 mg, 0.5 mmol) and **5b** (117 mg, 0.165 mmol) in CH₃CN (3 mL). The mixture was stirred at room temperature for 20 min and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane)

to afford **22b** (91 mg, 81%) as a yellow solid. R_{f} : (1:4 EtOAc/hexane): 0.26. ¹H NMR (CDCl₃, 400 MHz): δ 6.66 (s, 2H), 2.55 (s, 6H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 157.82, 145.27, 115.81, 114.15, 101.75. ⁷⁷Se NMR (CDCl₃, 76.5 MHz): δ 193.10. Spectroscopic data are consistent with those previously reported.^[12]

1-Methoxy-4-selenocyanatobenzene (23b). This compound was prepared following the general procedure A, starting from anisole **23** (54 mg, 0.5 mmol), **5b** (117 mg, 0.165 mmol), and TfOH (66 μ L, 0.75 mmol) in CH₂Cl₂ (3 mL). The mixture was stirred at room temperature for 10 min and purified by flash column chromatography (SiO₂, 1:9 EtOAc/hexane) to afford **23b** (73 mg, 69%) as a yellow solid. *R*_f: (1:9 EtOAc/hexane): 0.27. ¹H NMR (CDCl₃, 400 MHz): δ 7.60 (d, *J* = 8.9 Hz,

2H), 6.92 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 161.38, 136.05, 116.02, 111.09, 102.02, 55.50. ⁷⁷Se NMR (CDCl₃, 76.5 MHz): δ 307.27. Spectroscopic data are consistent with those previously reported.^[10]

1,3,5-Trimethyl-2-selenocyanatobenzene (24b). This compound was prepared following the general procedure A, starting from mesitylene **24** (60 mg, 0.5 mmol), **5b** (117 mg, 0.165 mmol), and TfOH (66 μ L, 0.75 mmol) in CH₂Cl₂ (3 mL). The mixture was stirred at room temperature for 5 h and purified by flash column chromatography (SiO₂, 100% hexane) to afford **24b** (78 mg, 70%) as a yellow oil. *R*_{*f*}: (100% hexane): 0.13. ¹H NMR

(CDCl₃, 400 MHz): δ 7.01 (s, 2H), 2.58 (s, 6H), 2.30 (s, 3H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 142.92, 141.27, 129.66, 120.41, 101.29, 24.36, 21.01.⁷⁷Se NMR (CDCl₃, 76.5 MHz): δ 195.47. FT–IR (neat) v in cm⁻¹: 2918.7, 2851.2, 2146.4, 1760.7, 1598.7, 1452.1, 1376.9, 1299.8, 1278.6, 1251.6. HRMS (EI) for (M)⁺⁻ C₁₀H₁₁NSe⁺⁻ (m/z): calc. 225.0057; found 225.0048.

9-Selenocyanatoanthracene (25b). This compound was prepared following the general procedure A, starting from anthracene **25** (89 mg, 0.5 mmol), **5b** (117 mg, 0.165 mmol), and TfOH (66 μ L, 0.75 mmol) in CH₂Cl₂ (3 mL). The mixture was stirred at room temperature for 8 h and purified by flash column chromatography (SiO₂, 100% hexane) to afford

25b (100 mg, 71%) as a yellow solid. R_f : (100% hexane): 0.10. m.p.: 181.1–183.0 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.69–8.61 (m, 3H), 8.08–8.01 (m, 2H), 7.71 (ddd, J = 8.9, 6.6, 1.3 Hz, 2H), 7.57 (ddd, J = 8.0, 6.6, 1.1 Hz, 2H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 134.40, 132.43, 131.95, 129.27, 128.54, 127.93, 125.87, 117.90, 101.11. ⁷⁷Se NMR (CDCl₃, 76.5 MHz): δ 161.00. FT–IR (neat) v in cm⁻¹: 30489, 2920.7, 2851.2, 2146.4, 1931.4, 1803.1, 1728.8, 1623.8, 1520.6, 1438.6. Spectroscopic data are consistent with those previously reported.^[14]

5-Amino-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-selenocyanato-

1*H*-**pyrazole-3-carbonitrile (27b).** This compound was prepared following the general procedure A, starting from 5-amino-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-1*H*-pyrazole-3-carbonitrile **27** (96 mg, 0.3 mmol), **5b** (70 mg, 0.099 mmol), and TfOH (40 μ L, 0.45 mmol) in CH₂Cl₂ (2.5 mL). The mixture was stirred at room temperature for 2 h and purified by flash column chromatography (SiO₂, 3:7 EtOAc/hexane)

to afford **27b** (44 mg, 35%) as a yellow oil. R_f : (3:7 EtOAc/hexane): 0.15. ¹H NMR (CDCl₃, 400 MHz): δ 7.82 (s, 2H), 4.47 (s, 2H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 150.40, 136.44, 135.29 (appq, J = 36.7 Hz), 134.54, 132.32, 126.50 (q, J = 3.9 Hz), 121.73 (q, J = 276.9 Hz), 111.47, 98.77, 79.02. ¹⁹F NMR (CDCl₃, 376.5 MHz): δ -63.31 (s, 3F). ⁷⁷Se NMR (CDCl₃, 76.5 MHz): δ 141.92. FT–IR (neat) v in cm⁻¹: 3417.2, 3332.4, 3243.7, 2251.5, 2161.8, 1742.4, 1636.3, 1567.9, 1509.0, 1455.0. HRMS (ESI⁺) for [M+H]⁺ C₁₂H₅Cl₂F₃N₅Se⁺ (*m/z*): calc. 425.9033; found 425.9029.

2-(6-Methoxy-5-selenocyanatonaphthalen-2-

yl)propanoic acid (28b). This compound was prepared following the general procedure A, starting from *rac*-naproxen **28** (115 mg, 0.5 mmol), **5b** (117 mg, 0.165 mmol), and TfOH (66 μ L, 0.75 mmol) in CH₂Cl₂ (3 mL). The mixture was stirred at room temperature for 5 h and

purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane + 1% AcOH) to afford **28b** (70 mg, 42%) as a yellow solid. *R*_{*f*}: (1:4 EtOAc/hexane + 1% AcOH): 0.13. **m.p.**: 169.3–171.6 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.23 (d, *J* = 8.9 Hz, 1H), 7.94 (d, *J* = 9.1 Hz, 1H), 7.73 (s, 1H), 7.61 (d, *J* = 9.0 Hz, 1H), 7.31 (d, *J* = 9.1 Hz, 1H), 4.06 (s, 3H), 3.91 (q, *J* = 7.2 Hz, 1H), 1.60 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 180.22, 158.17, 135.98, 134.20, 133.64, 129.66, 128.58, 127.09, 126.81, 113.29, 104.88, 101.33, 57.06, 45.03, 18.05. ⁷⁷Se NMR (CDCl₃, 76.5 MHz): δ 159.60. FT–IR (neat) ν in cm⁻¹: 2921.6, 2149.3, 1701.9, 1595.8, 1495.5, 1456.9, 1355.7, 1330.6, 1297.8, 1271.8. HRMS (ESI⁺) for [M+H]⁺ C₁₅H₁₄NO₃Se⁺ (*m/z*): calc. 336.0134; found 336.0135.

6.4. Derivatizations

General procedure B for trifluoromethylation (31a–32a,b). A 5 mL round-bottom flask, equipped with a magnetic stir bar, was charged with the substrate (1 equiv.), potassium fluoride (3 equiv.), and DMF (0.2 M). The solution was cooled down to 0 $^{\circ}$ C and trimethyl(trifluoromethyl)silane (TMSCF₃) was added. The mixture was stirred for 2 h at room temperature, monitoring the progress of the reaction by TLC. Upon completion, Et₂O was added to the reaction mixture, and then extracted with ammonium chloride. The organic layer was dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash column chromatography.

3-((Trifluoromethyl)thio)-1H-indole (31a). This compound was prepared following the general procedure B, starting from 3-thiocyanato-1*H*-indole **6a** (35 mg, 0.2 mmol), potassium fluoride (35 mg, 0.6 mmol), and TMSCF₃ (90 μ L, 0.6 mmol) in DMF (1 mL). The mixture was stirred at room temperature for 2 h and purified by flash column chromatography (SiO₂,

1:4 EtOAc/hexane) to afford **31a** (33 mg, 75%) as a pink solid. R_f : (2:8 EtOAc/hexane): 0.23. ¹H NMR (CDCl₃, **400 MHz**): δ 8.51 (bs, 1H), 7.84–7.77 (m, 1H), 7.54 (dd, J = 2.7, 0.8 Hz, 1H), 7.48–7.37 (m, 1H), 7.34–7.23 (m, 2H). ¹³C NMR (CDCl₃, **100.6 MHz**): δ 136.04, 134.07, 132.78, 129.48, 129.45 (q, J = 309.9 Hz), 123.47, 121.67, 119.38, 95.66 (appq, J = 2.6 Hz). ¹⁹F NMR (CDCl₃, **376.5 MHz**): δ –44.64 (s, 3F). HRMS (EI) for (M)⁺⁻ C₉H₆F₃NS⁺⁻ (*m/z*): calc. 217.0173; found 217.0168.

4-((Trifluoromethyl)thio)phenol (32a). This compound was prepared following the general procedure B, starting from 4-thiocyanatophenol **21** (51 mg, 0.3 mmol), potassium fluoride (60 mg, 1 mmol), and TMSCF₃ (150 μL, 1 mmol) in DMF (2 mL). The mixture was stirred at room temperature for 2 h and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to afford **32a** (46 mg, 70%) as a yellow oil. *R*_f: (1:4 EtOAc/hexane): 0.25. ¹H NMR (CDCl₃, 400 MHz): δ 7.56–7.50

(m, 2H), 6.90–6.83 (m, 2H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 158.05, 138.57, 129.59 (q, *J* = 308.1 Hz), 116.54, 115.19 (appq, *J* = 2.2 Hz). ¹⁹F NMR (CDCl₃, 376.5 MHz): δ –43.94 (s, 3F). HRMS (EI) for (M)⁺⁻ C₇H₅F₃OS⁺⁻ (*m/z*): calc. 194.0013; found 194.0008.

4-((Trifluoromethyl)selanyl)phenol (32b). This compound was prepared following the general procedure B, starting from 4-selenocyanatophenol **21** (28 mg, 0.1 mmol), potassium fluoride (24 mg, 0.4 mmol), and TMSCF₃ (63 μ L, 0.4 mmol) in DMF (0.7 mL). The mixture was stirred at room temperature for 2 h and purified by flash column chromatography (SiO₂, 1:4 EtOAc/hexane) to afford **32b** (25 mg, 72%) as a yellow oil. *R*_{*f*}: (1:4 EtOAc/hexane): 0.24. ¹**H NMR (CDCl**₃,

400 MHz): δ 7.66–7.51 (m, 1H), 6.81–6.70 (m, 1H), 5.05 (bs, 1H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 157.61, 139.23, 122.47 (q, *J* = 333.2 Hz), 116.70, 113.19. ¹⁹F NMR (CDCl₃, 376.5 MHz): δ – 37.16 (s, 3F). HRMS (EI) for (M)⁺⁻ C₇H₅F₃OSe⁺⁻ (*m/z*): calc. 241.9458; found 241.9452.

7. NMR spectra

Figure S10. ¹H NMR (CD₃CN, 400 MHz) of 5a

Figure S12. ¹H NMR (CD₃CN, 400 MHz) of 5b

Electronic Supplementary Information

Figure S15. ¹H NMR (CDCl₃, 400 MHz) of 7a

Figure S16. ¹³C NMR (CDCl₃, 100.6 MHz) of 7a

C

Figure S17. ^{19}F NMR (CDCl₃ 376.5 MHz) of 7a

Figure S21. ¹³C NMR (CDCl₃, 100.6 MHz) of 9a

Figure S22. ¹H NMR (CD₃OD, 400 MHz) of 10a

Figure S25. ¹³C NMR (CD₃CN, 100.6 MHz) of **11a**

Electronic Supplementary Information

Figure S27. ¹³C NMR (CD₃OD, 100.6 MHz) of **12a**

Figure S29. ¹³C NMR (CDCl₃, 100.6 MHz) of 13a

Figure S30. ¹H NMR (CDCl₃, 400 MHz) of 14a

Figure S31. ¹³C NMR (CDCl₃, 100.6 MHz) of 14a

Figure S33. ¹³C NMR (CDCl₃, 100.6 MHz) of 15a

Electronic Supplementary Information

SCN

Figure S39. ¹³C NMR (CDCl₃, 100.6 MHz) of 18a

Figure S41. ¹³C NMR (CDCl₃, 100.6 MHz) of **19a**

200

Figure S43. ¹³C NMR (CDCl₃, 100.6 MHz) of 20a

Electronic Supplementary Information

Figure S45. ¹³C NMR (CDCl₃, 100.6 MHz) of **21a**

Figure S46. ¹H NMR (CDCl₃, 400 MHz) of **22a**

Figure S47. ¹³C NMR (CDCl₃, 100.6 MHz) of 22a

Figure S49. ¹³C NMR (CDCl₃, 100.6 MHz) of 23a

Figure S51. ¹³C NMR (CDCl₃, 100.6 MHz) of 24a

Figure S54. ¹H NMR (CD₃OD, 400 MHz) of 26a

Figure S55. ¹³C NMR (CD₃OD, 100.6 MHz) of **26a**

Figure S57. ¹³C NMR (CDCl₃, 100.6 MHz) of 27a

Figure S58. ¹⁹F NMR (CDCl₃ 376.5 MHz) of 27a

Figure S59. ¹H NMR (CDCl₃, 400 MHz) of 28a

Figure S60. ¹³C NMR (CDCl₃, 100.6 MHz) of 28a

Figure S61. ¹H NMR (CDCl₃, 400 MHz) of 29a

Electronic Supplementary Information

Figure S62. ¹³C NMR (CDCl₃, 100.6 MHz) of 29a

Figure S63. ¹H NMR (CD₃OD, 400 MHz) of **30a**

Figure S64. ¹³C NMR (CD₃OD, 100.6 MHz) of 30a

Figure S66. ¹³C NMR (CDCl₃, 100.6 MHz) of 6b

Figure S68. ¹H NMR (CDCl₃, 400 MHz) of **7b**

Figure S69. ¹³C NMR (CDCl₃, 100.6 MHz) of 7b

Figure S70. ¹⁹F NMR (CDCl₃ 376.5 MHz) of 7b

Figure S71. ⁷⁷Se NMR (CDCl₃, 76 MHz) of 7b

Figure S72. ¹H NMR (CDCl₃, 400 MHz) of 8b

Figure S73. ¹³C NMR (CDCl₃, 100.6 MHz) of 8b

Electronic Supplementary Information

Figure S75. ¹H NMR (CD₃OD, 400 MHz) of **9b**

Figure S76. ¹³C NMR (CD₃OD, 100.6 MHz) of **9b**

Figure S77. ⁷⁷Se NMR (CD₃OD, 76 MHz) of **9b**

Figure S78. ¹H NMR (CD₃OD, 400 MHz) of **10b**

~ 138.15 ~ 135.87	128.61 125.30 124.28 113.89	~ 104.51 ~ 103.00	91.06
1 ($(\mathcal{C} \mathcal{C})$	17	1

_ _ _

. . .

Figure S79. ¹³C NMR (CD₃OD, 100.6 MHz) of **10b**

Electronic Supplementary Information

Figure S82. ¹³C NMR (CD₃CN, 100.6 MHz) of **11b**

Figure S83. ⁷⁷Se NMR (CD₃CN, 76 MHz) of **11b**

Figure S84. ¹H NMR (CD₃CN, 400 MHz) of **12b**

Figure S86. ⁷⁷Se NMR (CD₃CN, 76 MHz) of **12b**

Figure S87. ¹H NMR (CDCl₃, 400 MHz) of **13b**

Figure S88. ¹³C NMR (CDCl₃, 100.6 MHz) of **13b**

Figure S90. ¹H NMR (CDCl₃, 400 MHz) of **14b**

Figure S91. ¹³C NMR (CDCl₃, 100.6 MHz) of **14b**

Figure S93. ¹H NMR (CDCl₃, 400 MHz) of **15b**

Figure S94. ¹³C NMR (CDCl₃, 100.6 MHz) of 15b

Figure S97. ¹³C NMR (CDCl₃, 100.6 MHz) of **16b**

Figure S99. ¹H NMR (CDCl₃, 400 MHz) of **17b**

Figure S100. ¹³C NMR (CDCl₃, 100.6 MHz) of **17b**

Figure S102. ¹H NMR (CDCl₃, 400 MHz) of **18b**

Figure S106. ¹³C NMR (CDCl₃, 100.6 MHz) of **20b**

Figure S108. ¹H NMR (CDCl₃, 400 MHz) of 21b

Figure S109. ¹³C NMR (CDCl₃, 100.6 MHz) of **21b**

Figure S111. 1 H NMR (CDCl₃, 400 MHz) of **22b**

Figure S112. ¹³C NMR (CDCl₃, 100.6 MHz) of 22b

Figure S114. ¹H NMR (CDCl₃, 400 MHz) of **23b**

Figure S115. ¹³C NMR (CDCl₃, 100.6 MHz) of **23b**

Figure S117. ¹H NMR (CDCl₃, 400 MHz) of **24b**

Figure S118. ¹³C NMR (CDCl₃, 100.6 MHz) of **24b**

Figure S119. ⁷⁷Se NMR (CDCl₃, 76 MHz) of **24b**

Figure S120. ¹H NMR (CDCl₃, 400 MHz) of 25b

Figure S121. ¹³C NMR (CDCl₃, 100.6 MHz) of 25b

Figure S123. 1 H NMR (CDCl₃, 400 MHz) of 27b

Figure S124. ¹³C NMR (CDCl₃, 100.6 MHz) of **27b**

Figure S125. ¹⁹F NMR (CDCl₃ 376.5 MHz) of **27b**

Figure S126. ⁷⁷Se NMR (CDCl₃, 76 MHz) of 27b

Figure S127. ¹H NMR (CDCl₃, 400 MHz) of **28b**

Electronic Supplementary Information

Figure S128. ¹³C NMR (CDCl₃, 100.6 MHz) of 28b

Figure S130. ¹H NMR (CDCl₃, 400 MHz) of **31a**

Figure S131. ¹³C NMR (CDCl₃, 100.6 MHz) of 31a

Figure S132. ¹⁹F NMR (CDCl₃ 376.5 MHz) of **31a**

Electronic Supplementary Information

Figure S134. ¹³C NMR (CDCl₃, 100.6 MHz) of 32a

Figure S135. ¹⁹F NMR (CDCl₃ 376.5 MHz) of **32a**

Figure S136. ¹H NMR (CDCl₃, 400 MHz) of **32b**

Figure S137. ¹³C NMR (CDCl₃, 100.6 MHz) of **32b**

Figure S138. ¹⁹F NMR (CDCl₃ 376.5 MHz) of **32b**

8. References

- (a) D. J. C. Constable, A. D. Curzons, V. L. Cunningham, *Green Chem.*, 2002, 4, 521–527.
 (b) S. Fadlallah, P. S. Roy, G. Garnier, K. Saito, F. Allais, *Green Chem.*, 2021, 23, 1495–1535.
- [2] The PP cartridge was purchased form Interchim company: 4g, Double Luer Lock Top and Bottom Empty Solid Load Cartridge with Screw Cap, frits, O-ring and end tips, 20p.
- [3] P. J. Glissen, A. Swartjes, B: Spierenburg, J. P. J. Bruekers, P. Tinnemans, P. B. White, F. P. J. T. Rutjes, R. J. M. Nolte, J. A. A. W. Elemans, *Tetrahedron*, 2019, 75, 4640–4647.
- [4] A. Shiri, A. K. Zad, *Synthesis*, 2009, **16**, 2797–2801.
- [5] H. Jiang, W. Yu, X. Tang, J. Li, W. Wu, J. Org. Chem. 2017, 82, 9312–9320.
- [6] D. L. Zhu, H. Wen, Q. Wu, J. Li, D. J. Young, Y. Wang, H. X. Li, *Tetrahedron*, 2023, 135, 133322.
- [7] (a) Q. Huang, X. Peng, H. Li, H. He, L. Liu, *Molecules*, 2022, 27, 772; (b) Org. Biomol. Chem., 2019, 17, 7131–7134.
- [8] T. B. Mete, T. M. Khopade, R. G. Bhat, *Tetrahedron Lett.*, 2017, **58**, 415–418.
- [9] K. Nikoofar, S. Gorji, J. Sulphur Chem., 2015, **36**, 178–186.
- [10] J. Cui, M. Wei, L. Pang, J. Xiao, C. Gan, J. Guo, C. Xie, Q. Zhu, Y. Huang, *Tetrahedron*, 2020, **76**, 130978.
- [11] R. Abonia, L. F. Gutierrez, A. T. Zwarycz, S. C. Smits, K. K. Laali, Heteroat. Chem., 2019, Article ID 1459681.
- [12] N. Muniraj, J. Dhineshkumar, K. R. Prabhu, *ChemistrySelect*, 2016, **5**, 1033–1038.
- [13] D. Zhu, A. H. Ye, Z. M. Chen, Synthesis, 2021, 53, 3744–3750.
- [14] X. Zhang, X. B. Huang, Y. B. Zhou, M. C. Liu, H. Y. Wu, Chem. Eur. J., 2021, 27, 944–948.