Electronic Supplementary Information for

Deprotonation of isoazatruxene enables photocatalytic arylation and phosphorylation of (hetero)aryl halides

Cen Zhou,^{a,c} Xi-Xian Chen,^{b,c} Bohang An,^b Ling-Wei Wu,^b Hao Cui,^{*b} and Xiao Zhang^{*b}

^aFujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.

^bFujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China. E-mail: <u>cuihao@fjnu.edu.cn (H.C.);</u> <u>zhangxiao@fjnu.edu.cn (X.Z.).</u>

^{*c*}These authors contributed equally to this work.

Table of Contents

1. General methods	S3
2. Synthesis of ITN-1	S4
3. General procedure for photocatalytic dehalogenative arylation	S5
4. General procedure for photocatalytic dehalogenative phosphorylation	S9
5. Application to photocatalytic multi-phosphorylation	S14
6. Mechanistic studies	S15
7. The apparent quantum yield (AQY) measurement	S19
8. Comparison of photocatalytic arylation between our work and other report	ted
synthetic methodologies	S20
9. X-Ray crystal data of 3f	S21
10. References	S25
11. Copies of NMR spectra	S26

1. General methods

Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry nitrogen atmosphere. All solvents were purified and dried according to standard methods prior to use.

¹H and ¹³C NMR spectra were recorded on a Bruker instrument (400 MHz and 100 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). High-resolution mass spectrometry (HRMS) was recorded on a Q-TOF (AB SCIEX X500R with ESI source, and Agilent 6545 LC with ESI source), which combines quadrupole precursor ion selection and a high-resolution accurate-mass (HR/AM) Time of Flight mass analyzer to deliver mass accuracy. Fourier Transform Infrared spectra were recorded on a Nicolet IS50 FT-IR spectrophotometer.

Substrates "Bu₄NPF₆ were purchased from Energy-chemical, and solvents were purchased from Aladdin, and used without further purification.

2. Synthesis of ITN-1

The substrate **ITN-1** was a known compound. The synthesis of **ITN-1** was accomplished following the reported procedure^[1].

ITN-1^[1], gray solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.87 (s, 1H), 11.48 (s, 1H), 11.38 (s, 1H), 8.87-8.78 (m, 3H), 7.82 (d, *J* = 8.4 Hz, 3H), 7.50-7.37 (m, 6H).

3. General procedure for photocatalytic dehalogenative arylation

To a flame-dried sealed tube were added **ITN-1** (3.5 mg, 5.0 mol%), **1** (0.2 mmol), **2** (4.0 mmol) and Cs_2CO_3 (0.4 mmol) in DMSO (2.0 mL, 0.1 M). The reaction mixture was degassed via freeze-pump-thaw for 3 cycles. After the reaction mixture was thoroughly degassed, the vial was sealed and positioned approximately 2~3 cm from 30 W blue LEDs. Then the reaction mixture was stirred at room temperature for the indicated time (monitored by TLC) under a nitrogen atmosphere. Afterwards, the reaction mixture was concentrated by rotary evaporation. Then the residue was purified by silica gel column chromatography using ethyl acetate/petroleum ether as the eluent to afford the desired products **3**. The analytical data of the products **3a-3r** are summarized below.

 $3a^{[2]}$, 32.3 mg, brown liquid, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 6.77 (t, J = 2.8 Hz, 1H), 6.35 (dd, J = 4.0, 2.0 Hz, 1H), 6.24-6.22 (m, 1H), 3.72 (s, 3H), 2.62 (s, 3H).

3b^[2], 27.2 mg, brown liquid, 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (t, J = 1.6 Hz, 1H), 7.87 (dt, J = 7.6, 1.6 Hz, 1H), 7.60 (dt, J = 8.0, 1.2 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 6.74 (t, J = 2.0 Hz, 1H), 6.28 (dd, J = 3.6, 2.0 Hz, 1H), 6.22 (t, J = 2.8 Hz, 1H), 3.68 (s, 3H), 2.62 (s, 3H).

3c^[2], 39.5 mg, yellow liquid, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.81 (m, 4H), 7.59 (t, J = 7.6 Hz, 1H), 7.52-7.47 (m, 4H), 6.77 (t, J = 2.0 Hz, 1H), 6.36 (dd, J = 4.0, 2.0 Hz, 1H), 6.23 (t, J = 3.2 Hz, 1H), 3.73 (s, 3H).

 $3d^{[2]}$, 31.6 mg, yellow solid, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.0 Hz, 1H), 7.49 (s, 1H), 7.41 (d, J = 8.0 Hz, 1H), 6.78 (t, J = 2.4 Hz, 1H), 6.37-6.35 (m, 1H), 6.24-6.22 (m, 1H), 3.73 (s, 3H), 3.17 (t, J = 5.6 Hz, 2H), 2.74-2.71 (m, 2H).

 $3e^{[2]}$, for aryl bromide, 24.8 mg, brown liquid, 67% yield; for aryl chloride, 16.3 mg, brown liquid, 44% yield. ¹H NMR (400 MHz, CDCl₃) δ 10.01 (s, 1H), 7.90 (dt, J = 8.4, 1.6 Hz, 2H), 7.56 (dt, J = 8.4, 1.6 Hz, 2H), 6.79-6.78 (m, 1H), 6.38 (dd, J = 3.6, 1.6 Hz, 1H), 6.24 (dd, J = 4.0, 2.8 Hz, 1H), 3.74 (s, 3H).

3f^[3], 28.2 mg, white solid, 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.08-8.04 (m, 2H), 7.50-7.46 (m, 2H), 6.78-7.75 (m, 1H), 6.36-6.33 (m, 1H), 6.24-6.21 (m, 1H), 3.93 (s, 3H), 3.71 (s, 3H).

3g^[3], 28.1 mg, white solid, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 6.76 (t, J = 2.0 Hz, 1H), 6.31 (dd, J = 3.6, 1.6 Hz, 1H), 6.23-6.22 (m, 1H), 3.70 (s, 3H).

3h^[3], 28.2 mg, yellow liquid, 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 6.78 (t, J = 2.4 Hz, 1H), 6.34 (dd, J = 3.6, 1.6 Hz, 1H), 6.24-6.22 (m, 1H), 3.71 (s, 3H).

3i^[2], 33.8 mg, yellow solid, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (dt, J = 8.8, 2.8 Hz, 2H), 7.54 (dt, J = 8.8, 2.4 Hz, 2H), 6.82-6.80 (m, 1H), 6.41 (dd, J = 3.6, 2.0 Hz, 1H), 6.24 (dd, J = 3.6, 2.4 Hz, 1H), 3.75 (s, 3H).

3*j*^[4], 23.8 mg, white solid, 51% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.61 (m,

4H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 2H) 7.35 (t, *J* = 7.2 Hz, 1H), 6.74 (t, *J* = 2.0 Hz, 1H), 6.29-6.28 (m, 1H), 6.23-6.22 (m, 1H), 3.72 (s, 3H).

3 $\mathbf{k}^{[4]}$, 28.1 mg, yellow liquid, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (t, J = 6.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 1H), 7.53-7.42 (m, 4H), 6.81 (t, J = 2.8 Hz, 1H), 6.31 (t, J = 3.2 Hz, 1H), 6.26 (dd, J = 3.6, 2.0 Hz, 1H), 3.39 (s, 3H).

31^[4], 27.6 mg, white solid, 67% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.82 (m, 4H), 7.55 (dd, J = 8.4, 1.6 Hz, 1H), 7.50-7.43 (m, 2H), 6.75 (t, J = 1.6 Hz, 1H), 6.34 (dd, J = 3.6, 1.6 Hz, 1H), 6.25 (dd, J = 3.6, 2.4 Hz, 1H), 3.72 (s, 3H).

 $3m^{[5]}$, 11.6 mg, brown liquid, 34% yield. δ 7.28 (t, J = 7.6 Hz, 1H), 7.23-7.18 (m, 2H), 7.11 (d, J = 7.6 Hz, 1H), 6.70 (t, J = 2.4 Hz, 1H), 6.22-6.18 (m, 2H), 3.65 (s, 3H), 2.38 (s, 3H).

3n^[6], 26.7 mg, brown liquid, 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.8 Hz, 2H), 7.33 (d, J = 8.8 Hz, 2H), 6.69 (t, J = 2.4 Hz, 1H), 6.21-6.18 (m, 2H), 3.66 (s, 3H), 1.35 (s, 9H).

30^[4], 18.4 mg, brown liquid, 53% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.55 (s, 1H), 7.29 (d, J = 4.0 Hz, 1H), 6.75 (t, J = 2.0 Hz, 1H), 6.70 (dd, J = 4.0, 2.0 Hz, 1H), 6.54 (d, J = 3.6 Hz, 1H), 6.19 (dd, J = 4.0, 2.8 Hz, 1H), 3.91 (s, 3H).

3p^[2], 28.3 mg, brown liquid, 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 4.0 Hz, 1H), 7.05 (d, J = 4.0 Hz, 1H), 6.75 (t, J = 2.4 Hz, 1H), 6.51-6.49 (m, 1H), 6.19-6.16 (m, 1H), 3.80 (s, 3H), 2.54 (s, 3H).

 $3q^{[4]}$, 28.2 mg, yellow liquid, 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (dd, J = 2.4, 0.8 Hz, 1H), 8.30 (dd, J = 8.0, 2.4 Hz, 1H), 7.71 (dd, J = 8.4, 0.8 Hz, 1H), 6.85-6.84 (m, 1H), 6.44 (dd, J = 4.0, 2.0 Hz, 1H), 6.26 (dd, J = 4.0, 2.8 Hz, 1H), 3.75 (s, 3H).

 $3r^{[4]}$, 34.3 mg, yellow liquid, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.02 (d, J = 2.4 Hz, 1H), 8.13-8.09 (m, 2H), 7.82 (dd, J = 8.0, 1.2 Hz, 1H), 7.72-7.68 (m, 1H), 7.58-7.54 (m, 1H), 6.82-6.81 (m, 1H), 6.42 (dd, J = 3.6, 2.0 Hz, 1H), 6.28 (dd, J = 3.6, 2.4 Hz, 1H), 3.75 (s, 3H).

3s^[18], 27.2 mg, colorless oil, 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 1.6 Hz, 1H), 7.47 (d, J = 1.6 Hz, 2H), 6.73-6.72 (m, 1H), 6.26-6.25 (m, 1H), 6.20-6.18 (m, 1H), 3.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 136.8, 131.9, 131.4, 129.9, 125.1, 122.8, 110.2, 108.3, 35.2.

3t, 34.6 mg, brown oil, 55% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 6.75 (t, *J* = 2.0 Hz, 1H), 6.33-6.32 (m, 1H), 6.21 (t, *J* = 2.8 Hz, 1H), 5.48 (t, *J* = 6.8 Hz, 1H), 5.10 (t, *J* = 6.8 Hz, 1H), 4.85 (d, *J* = 6.8 Hz, 2H), 3.70 (s, 3H), 2.14-2.06 (m, 4H), 1.77 (s, 3H), 1.70 (s, 3H), 1.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 142.4, 137.6, 133.6, 131.9, 129.8, 128.4, 127.9, 125.1, 123.8, 118.5, 110.0, 108.3, 61.9, 39.6, 35.4, 26.3, 25.7, 17.7, 16.6. IR (thin film): vmax (cm⁻¹) = 2921, 1710, 1606, 1474, 1375, 1266, 1177, 1096, 1058, 768, 705, 682, 452. HRMS (ESI) calcd for C₂₂H₂₇NO₂ [M+H]⁺: 338.2115. Found: 338.2123.

4. General procedure for photocatalytic dehalogenative phosphorylation

	Br P(OMe)3 ITN-1 (5.0 mol%) Cs2CO3 (2.0 equiv) DIPEA (2.0 equiv) MeOOC DIPEA (2.0 equiv) DIPEA (2.0 equiv) Ib 4a blue LEDs	Ac 5b
entry	variations from standard conditions	yield (%) ^b
1	none	71 (69) ^c
2	no Cs ₂ CO ₃	11
3	K ₂ CO ₃ instead of Cs ₂ CO ₃	41
4	'BuOK instead of Cs ₂ CO ₃	29
5	DBU instead of Cs ₂ CO ₃	30
6	no DIPEA	46
7	no ITN-1	0
8	no light	0

4.1 Table S1 Optimization of the reaction conditions

^{*a*} Reaction conditions: a solution of **ITN-1** (1.7 mg, 5.0 mol%), **1b** (0.1 mmol, 1.0 equiv), **4a** (1.0 mmol, 10.0 equiv), DIPEA (0.2 mmol, 2.0 equiv), and Cs₂CO₃ (0.2 mmol, 2.0 equiv) in DMSO (1.0 mL, 0.1 M) was irradiated by blue LEDs (30 W) at room temperature under nitrogen atmosphere for 24 h. ^{*b*} Determined by ¹H NMR yield using CH₂Br₂ as an internal standard. ^{*c*} Isolated yield. DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.

4.2 General procedure for photocatalytic dehalogenative

phosphorylation

To a flame-dried sealed tube were added **ITN-1** (3.5 mg, 5.0 mol%), **1** (0.2 mmol), $P(OR)_3$ (2.0 mmol), DIPEA (0.4 mmol), and Cs_2CO_3 (0.4 mmol) in DMSO (2.0 mL, 0.1 M). The reaction mixture was degassed via freeze-pump-thaw for 3 cycles. After the reaction mixture was thoroughly degassed, the vial was sealed and positioned approximately 2~3 cm from 30 W blue LEDs. Then the reaction mixture was stirred at room temperature for the indicated time (monitored by TLC) under a nitrogen atmosphere. Afterwards, the reaction mixture was concentrated by rotary evaporation. Then the residue was purified by silica gel column chromatography using ethyl acetate/petroleum ether as the eluent to afford the desired products **5**. The analytical data of the product **5a-5t** are summarized below.

5a^[7], 25.4 mg, colorless liquid, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, J = 8.4, 4.0 Hz, 2H), 7.91 (dd, J = 12.8, 8.4 Hz, 2H), 3.81 (s, 3H), 3.78 (s, 3H), 2.65 (s, 3H).

5b^[8], 16.9 mg, yellow liquid, 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (dd, J = 8.0, 3.6 Hz, 2H), 7.89 (dd, J = 12.8, 8.0 Hz, 2H), 3.96 (s, 3H), 3.81 (s, 3H), 3.78 (s, 3H).

CO₂Me

5c^[8], 43.8 mg, yellow liquid, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (dt, J = 14.0, 1.6 Hz, 1H), 8.26-8.23 (m, 1H), 8.04-7.98 (m, 1H), 7.62-7.56 (m, 1H), 3.95 (s, 3H), 3.81 (s, 3H), 3.78 (s, 3H).

5d^[9], 32.0 mg, yellow liquid, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.93 (m, 1H), 7.79-7.75 (m, 1H), 7.64-7.56 (m, 2H), 3.95 (s, 3H), 3.83 (s, 3H), 3.80 (s, 3H).

5e^[7], 32.5 mg, brown liquid, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.89 (m, 2H), 7.80-7.76 (m, 2H), 3.82 (s, 3H), 3.79 (s, 3H).

5f^[6], 46.4 mg, brown solid, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 8.8, 4.0 Hz, 2H), 7.71-7.68 (m, 2H), 7.62-7.59 (m, 2H), 7.46 (t, J = 7.2 Hz, 2H), 7.39 (t, J = 6.8 Hz, 1H), 3.80 (s, 3H), 3.78 (s, 3H).

5g^[7], 27.1 mg, colorless liquid, 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 8.4 Hz, 1H), 8.24 (dd, J = 16.4, 7.2 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.58-7.52 (m, 2H), 3.81 (s, 3H), 3.78 (s, 3H).

5h^[7], 48.6 mg, colorless liquid, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 8.46 (d, J = 15.6 Hz, 1H), 8.15 (dd, J = 8.4, 1.6 Hz, 1H), 8.04 (dd, J = 8.4, 4.0 Hz, 1H), 7.99 (d, J = 7.6 Hz, 1H), 7.84-7.79 (m, 1H), 4.00 (s, 3H), 3.84 (s, 3H), 3.81 (s, 3H).

5i^[10], 28.4 mg, yellow liquid, 53% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 13.6 Hz, 1H), 7.85-7.77 (m, 2H), 4.21-4.12 (m, 4H), 3.21 (t, J = 5.6 Hz, 2H), 2.77-2.74 (m, 2H), 1.35 (t, J = 7.2 Hz, 6H).

5j^[8], 40.3 mg, orange liquid, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 8.0, 3.6 Hz, 2H), 7.89 (dd, J = 13.2, 8.0 Hz, 2H), 4.41 (q, J = 7.2 Hz, 2H), 4.21-4.07 (m, 4H), 1.41 (t, J = 6.8 Hz, 3H), 1.33 (t, J = 7.2 Hz, 6H).

5 $\mathbf{k}^{[8]}$, 38.8 mg, orange liquid, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (dd, J = 14.0, 7.2 Hz, 1H), 7.82 (t, J = 6.8 Hz, 1H), 7.73-7.65 (m, 2H), 4.32-4.17 (m, 4H), 1.39 (t, J = 6.8 Hz, 6H).

51^[9], 32.5 mg, brown liquid, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 14.0 Hz, 1H), 7.95-7.87 (m, 3H), 7.79-7.74 (m, 1H), 7.63-7.54 (m, 2H), 4.23-4.08 (m, 4H), 1.34 (t, J = 6.8 Hz, 6H).

5m^[10], 52.9 mg, yellow liquid, 94% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 8.4 Hz, 1H), 8.27-8.21 (m, 1H), 8.18 (d, J = 9.2 Hz, 1H), 7.68 (t, J = 8.4 Hz, 1H), 7.62 (t, J = 8.4 Hz, 1H), 7.23-7.18 (m, 1H), 4.26-4.16 (m, 2H), 4.13-4.05 (m, 2H), 1.31 (t, J = 7.2 Hz, 6H).

5n^[11], 22.4 mg, orange liquid, 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.98 (d, J = 4.2 Hz, 1H), 8.78 (t, J = 2.4 Hz, 1H), 8.15-8.06 (m, 1H), 7.44-7.40 (m, 1H), 4.23-4.10 (m, 4H), 1.35 (t, J = 7.2 Hz, 6H).

50^[9], 47.0 mg, brown liquid, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.40 (d, J = 2.8 Hz, 1H), 9.07 (d, J = 9.6 Hz, 1H), 8.50 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.87-7.83 (m, 1H), 7.71 (t, J = 6.8 Hz, 1H), 4.29-4.12 (m, 4H), 1.34 (t, J = 6.8 Hz, 6H).

5p^[9], 47.4 mg, brown liquid, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.33 (s, 1H), 8.66 (d, J = 6.0 Hz, 1H), 8.44 (dd, J = 16.0, 7.2 Hz, 1H), 8.31 (d, J = 6.0 Hz, 1H), 8.18 (d, J = 6.0 Hz, 1H), 7.70 (td, J = 7.2, 3.2 Hz, 1H), 4.27-4.10 (m, 4H), 1.33 (t, J = 7.2 Hz, 6H).

5q^[9], 32.8 mg, yellow liquid, 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 15.6 Hz, 1H), 7.66-7.61 (m, 1H), 7.40 (dd, J = 8.4, 2.8 Hz, 1H), 7.13 (d, J = 2.8 Hz, 1H), 6.58 (dd, J = 3.2, 1.2 Hz, 1H), 4.17-4.02 (m, 4H), 3.83 (s, 3H), 1.32 (t, J = 7.2 Hz, 6H).

 $5r^{[10]}$, 42.2 mg, white solid, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 8.48 (d, J = 15.6 Hz, 1H), 8.14 (d, J = 8.8 Hz, 1H), 8.04-7.98 (m, 2H), 7.86-7.81 (m, 1H), 4.80-4.72 (m, 2H), 4.00 (s, 3H), 1.41(d, J = 6.4 Hz, 6H), 1.24 (d, J = 6.4 Hz, 6H).

5s^[9], 39.1 mg, colorless liquid, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.90 (m, 2H), 7.77-7.74 (m, 2H), 4.80-4.68 (m, 2H), 1.39 (d, J = 6.4 Hz, 6H), 1.24 (d, J = 6.0 Hz, 6H).

5t^[9], 35.1 mg, colorless liquid, 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, *J* = 13.6, 8.0 Hz, 2H), 7.79 (dd, *J* = 8.0, 3.6 Hz, 2H), 7.32 (t, *J* = 8.4 Hz, 4H), 7.21-7.15 (m, 6H).

5u, 40 mg, brown oil, 59% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.15-8.12 (m, 2H), 7.91-7.86 (m, 2H), 4.96 (td, J = 10.8, 4.4 Hz, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 2.15-2.10 (m, 1H), 1.97-1.90 (m, 1H), 1.76-1.72 (m, 2H), 1.61-1.54 (m, 2H), 1.16-1.01 (m, 2H), 0.95-0.91 (m, 7H), 0.79 (d, J = 10.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 134.5, 131.9 (d, J = 10.0 Hz), 131.5 (d, J = 186.0 Hz), 129.4 (d, J = 15.0 Hz), 75.5, 52.8 (d, J = 6.0 Hz), 47.2, 40.9, 34.3, 31.5, 26.6, 23.6, 22.0, 20.7, 16.5. IR (thin film): vmax (cm⁻¹) = 2953, 1715, 1455, 1286, 1265, 1180, 1103, 1054, 1018, 959, 830, 788, 762, 731, 696, 587, 521. HRMS (ESI) calcd for C₂₂H₂₇NO₂ [M+Na]⁺: 391.1645. Found: 391.1652.

$\mathbf{f} (0.1 \text{ mmol}) = \mathbf{f} (0.1 \text{ mmol})$

5. Application to photocatalytic multi-phosphorylation

To a flame-dried sealed tube were added **ITN-1** (10.2 mg, 30.0 mol%), **6** (0.1 mmol), **4a** (3.0 mmol), DIPEA (0.6 mmol), and Cs₂CO₃ (0.2 mmol) in DMSO (1.0 mL, 0.1 M). The reaction mixture was degassed via freeze-pump-thaw for 3 cycles. After the reaction mixture was thoroughly degassed, the vial was sealed and positioned approximately 2~3 cm from 30 W blue LEDs. Then the reaction mixture was stirred at room temperature for the indicated time (monitored by TLC) under nitrogen atmosphere. Afterwards, the reaction mixture was concentrated by rotary evaporation. Then the residue was purified by silica gel column chromatography (PE/EtOAc = 10/1) to afford the desired product 7 (46.2 mg, 73% yield) as an orange liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.91 (m, 6H), 7.85 (s, 3H), 7.82-7.79 (m, 6H), 3.84 (s, 9H), 3.81 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 144.7 (d, *J* = 3.0 Hz), 141.6, 132.6 (d, *J* = 11.0 Hz), 127.5 (d, *J* = 15.0 Hz), 126.2, 126.1 (d, *J* = 190.0 Hz), 52.8 (d, *J* = 6.0 Hz). IR (thin film): vmax (cm⁻¹) = 3448, 2954, 2851, 1596, 1384, 1240, 1184, 1133, 1054, 1027, 821, 779, 689, 570, 543, 461. HRMS (ESI) calcd for C₃₀H₃₃O₉P₃ [M+Na]⁺: 653.1229. Found: 653.1230.

6. Mechanistic studies

1) UV/vis absorption spectroscopic measurements

UV/vis absorption spectra of **ITN-1** and **ITN-1** with Cs_2CO_3 in DMSO were recorded in 1 cm path quartz cuvettes using Pgeneral TU-1901 UV/vis spectrometer.

Fig. S1 UV/vis absorption spectra of ITN-1 and ITN-1 with 40 equiv Cs₂CO₃.

Fig. S2 UV/vis absorption spectra of the reaction mixture.

2) UV/vis absorption and emission spectra of ITN-1 with Cs₂CO₃

Fig. S3 UV/vis absorption and emission spectra of ITN-1 with 40 equiv Cs_2CO_3 in DMSO (0.01 mM). Cross point λ : 432 nm. E_{0-0} : 2.87 eV.

3) Electrochemical measurements

Voltammetric experiments were conducted with a computer-controlled Shanghai Chen Hua CHI660E containing glassy carbon electrode serving as the working electrode, saturated calomel reference electrode, Pt wire auxiliary electrode.

Tetrabutylammonium hexafluorophosphate (775 mg, 2.0 mmol) was added to a 0.01 M solution of the **ITN-1** with 40.0 equiv Cs_2CO_3 in 20 mL DMSO, and the solution was vigorously bubbled with high purity nitrogen for 15 minutes before the measurement.

Excited state oxidation and reduction potentials were calculated by the following approximating formulas: $E_{1/2} (PC^*/PC^{\bullet-}) = E_{1/2}(PC/PC^{\bullet-}) + E_{0,0}$ and $E_{1/2} (PC^{\bullet+}/PC^*) = E_{1/2} (PC^{\bullet+}/PC) - E_{0,0}$.

Fig. S4 Cyclic voltammogram of ITN-1 with 40 equiv Cs₂CO₃ in DMSO (1.0 mM) containing 0.1 M ^{*n*}Bu₄NPF₆. Scan rate: 0.1 V/s. $E_{1/2}(PC^{\bullet+}/PC) = +0.19$ V, $E_{1/2}(PC^{\bullet+}/PC^*) = -2.68$ V.

Fig. S5 Cyclic voltammogram of ITN-1 with 40 equiv Cs₂CO₃ in DMSO (1.0 mM) containing 0.1 M ^{*n*}Bu₄NPF₆. Scan rate: 0.1 V/s. $E_{1/2}(PC/PC^{\bullet-}) = -2.16$ V, $E_{1/2}(PC^*/PC^{\bullet-}) = +0.71$ V.

4) ¹H NMR analysis

Fig. S6 Systematic ¹H NMR studies of ITN-1 with Cs₂CO₃.

5) UV/vis absorption of ITN-1 with different equivalents of Cs₂CO₃

Fig. S7 UV/vis absorption spectra of ITN-1 with 1, 2, 3 equivalents of Cs₂CO₃.

6) Fluorescence quenching experiments

The concentration of **ITN-1** was 0.01 mM with 40 equiv Cs_2CO_3 in DMSO. The concentration of the quencher (**1a**) was 0.1 M in DMSO. For each quenching experiment, the quencher was titrated to a solution (10 mL) of **ITN-1** with 40 equiv Cs_2CO_3 in a quartz glass bottle, respectively. The addition of the quencher refers to an increase of the quencher concentration of 5×10^{-4} M, 1×10^{-3} M, 3×10^{-3} M, 5×10^{-3} M, 8×10^{-3} M, 1×10^{-2} M. Then the emission intensity of ITN-1 with 40 equiv Cs_2CO_3 was collected respectively.

Fig. S8 Stern-Volmer quenching experiments.

7. The apparent quantum yield (AQY) measurement

The AQY for reductive arylation and reductive phosphorylation were measured using monochromatic LED lamps with band passfilter of 455 nm. The irradiation area was controlled as 1 x 1 cm². The intensity was 17.4 mW cm⁻²(ILT 950spectroradiometer). The AOY was calculated as AOY=Ne/Np*100% = $MN_Ahc/SPt\lambda*100\%$, where Ne is the amount of reactionelectrons, Np is the amount of incident photons, M is the amount of reductive arylation or reductive phosphorylation products, N_A is Avogadroconstant, h is the Planck constant, c is the speed of light, S is the irradiation area, P is the intensity of the irradiation, t is the photo-irradiation time, and λ is the wavelengthof the monochromatic light^[12].

	reductive arylation	reductive phosphorylation
t (s)	86400	86400
M (mol)	8.3x10 ⁻⁶	4.96x10 ⁻⁵
AQY (%)	0.14	0.86

Table S2. AQY for reductive arylation and reductive phosphorylation.

8. Comparison of photocatalytic arylation between our work and

other reported synthetic methodologies

Table S3. The yield comparison of photocatalytic arylation between our work and other reports.

	$Ac \begin{array}{c} & & Me \\ & & & N \\ & & & & N \\ & & & & & \\ & & & &$	Me N 3a	
Entry	Conditions	Yield (%)	Reference
1	5 mol% ITN-1 , 2.0 equiv Cs ₂ CO ₃ , DMSO, blue LEDs (X = Br)	81	Our work
2	5 mol% 5CzBN , 1.6 equiv Et ₃ N, DMSO, 420 nm (X = I)	69	[13]
3	5 mol% 4CzIPN, 2.0 equiv <i>n</i> -Bu ₃ N, 2.0 equiv TMG, DMSO/H ₂ O, blue LEDs (X = I)	73	[14]
4	1 mol% Ru(bpy)₃Cl₂ , 5 mol% pyrene, 1.4 equiv DIPEA, DMSO, 455 nm (X =Br)	74	[15]
5	2 mol% PDI , 0.8 mmol <i>n</i> -Bu ₄ NOAc, 3.0 mL DMSO, E = -0.84 V, Sb ₂ (S, Se) ₃ (-), Pt(+), Ag/AgCl(RE), Xe lamp	84	[16]
6	5 mol% DCA , 1.2 equiv DIPEA, MeCN, white LEDs (X = Br)	64	[17]
7	10 mol% Rh-6G , 2.2 equiv DIPEA, DMSO, 455 nm (X = Br)	54	[18]
8	K₂Sx (12.5 mol% per S), 1.5 equiv K ₂ CO ₃ , 2.0 equiv H ₂ O, DMSO, 440 nm (X = Br)	86	[19]

4CzIPN

S20

9. X-Ray crystal data of 3f

Fig. S9 X-Ray crystal structure of 3f (The crystal was obtained by slow

evaporation of the solution of DCM and PE) (CCDC: 2450746)

Identification code	3f
Empirical formula	$C_{13}H_{13}NO_2$
Formula weight	215.24
Temperature/K	298.81(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	11.5980(4)
b/Å	6.6697(2)
c/Å	14.8861(5)
$\alpha/^{\circ}$	90
β/°	100.902(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1130.74(7)
Z	4
$\rho_{calc}g/cm^3$	1.264
μ/mm^{-1}	0.693
F(000)	456.0
Crystal size/mm ³	0.3 imes 0.25 imes 0.2
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/	^o 7.762 to 150.968
Index ranges	$-14 \le h \le 14, -3 \le k \le 8, -18 \le l \le 18$
Reflections collected	6237

Independent reflections	2185 [$R_{int} = 0.0373$, $R_{sigma} = 0.0271$]
Data/restraints/parameters	2185/0/148
Goodness-of-fit on F ²	1.087
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0593, wR_2 = 0.1713$
Final R indexes [all data]	$R_1 = 0.0621, wR_2 = 0.1755$
Largest diff. peak/hole / e Å ⁻³	0.24/-0.21

Table S5 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3f. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
N11	133.8(10)	5987.2(18)	6122.8(7)	45.9(4)
O14	5804.5(10)	10333(2)	6167.7(9)	72.7(4)
C7	1218.4(12)	5153(2)	6444.5(9)	44.1(4)
C8	1036.3(14)	3389(2)	6876.6(9)	50.2(4)
C9	-178.6(14)	3152(2)	6818.4(10)	53.2(4)
C1	2350.4(12)	6055(2)	6354.3(9)	46.2(4)
O16	6572.3(12)	7277(3)	6091.1(15)	104.1(6)
C12	-125.8(15)	7831(2)	5604.6(11)	58.6(4)
C10	-712.4(13)	4757(3)	6348.3(10)	51.9(4)
C6	2623.4(14)	8061(2)	6542.8(12)	56.1(4)
C4	4577.9(13)	7574(3)	6258.3(10)	55.1(4)
C13	5758.4(14)	8336(3)	6165.9(12)	64.8(5)
C5	3719.6(14)	8816(3)	6494.1(12)	58.0(4)
C3	4316.4(15)	5564(3)	6085.4(13)	65.3(5)
C2	3220.5(14)	4823(3)	6120.5(12)	59.8(5)
C15	6916.6(16)	11206(4)	6091.4(15)	82.9(7)

Table S6 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3f. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

1		1		L		- 1
Atom	U11	U22	U33	U23	U 13	U12
N11	47.7(7)	50.3(7)	38.8(6)	0.5(5)	5.7(5)	0.1(5)
O14	46.1(7)	86.4(10)	84.4(9)	7.6(7)	9.5(6)	-13.8(6)
C7	46.7(8)	47.9(8)	36.8(7)	-2.5(5)	5.8(5)	-0.6(5)
C8	55.4(9)	49.2(8)	44.1(7)	2.1(6)	4.3(6)	-1.2(6)
C9	57.5(9)	57.7(9)	44.3(7)	0.5(6)	9.6(6)	-12.4(6)
C1	46.7(8)	51.0(8)	40.7(7)	0.4(5)	7.7(5)	0.3(6)
016	46.3(8)	109.2(12)	158.8(16)	-19.8(11)	24.7(8)	1.9(7)
C12	64.2(10)	56.0(9)	52.5(8)	7.3(7)	3.0(7)	6.5(7)
C10	46.1(8)	64.2(9)	45.3(8)	-4.0(6)	8.4(6)	-6.1(6)

C6	51.4(9)	52.5(9)	68.1(10)	-6.8(7)	21.2(7)	-0.5(6)
C4	41.5(8)	68.6(10)	53.3(8)	-0.3(7)	4.4(6)	-0.8(6)
C13	39.5(8)	89.6(14)	62.2(10)	-4.6(9)	2.1(7)	-1.2(7)
C5	55.0(9)	53.0(9)	67.4(10)	-3.8(7)	15.0(7)	-5.6(7)
C3	47.3(9)	67.6(10)	80.7(12)	-10.1(9)	11.7(7)	9.2(7)
C2	53.6(9)	52.2(9)	72.9(11)	-9.1(7)	10.1(8)	3.1(7)
C15	47.7(10)	121.2(19)	76.6(12)	12.6(12)	3.7(8)	-25.0(10)

Table S7 Bond Lengths for 3f.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N11	C7	1.3760(19)	C1	C6	1.392(2)
N11	C12	1.4527(19)	C1	C2	1.395(2)
N11	C10	1.369(2)	O16	C13	1.201(2)
O14	C13	1.333(2)	C6	C5	1.382(2)
014	C15	1.439(2)	C4	C13	1.491(2)
C7	C8	1.376(2)	C4	C5	1.390(2)
C7	C1	1.4730(19)	C4	C3	1.388(3)
C8	С9	1.404(2)	C3	C2	1.374(2)
С9	C10	1.362(2)			

Table S8 Bond Angles for 3f.

Atom A	Atom	. .					
1100111 1	Itom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C7	N11	C12	127.66(13)	С9	C10	N11	108.65(14)
C10	N11	C7	108.85(12)	C5	C6	C1	121.09(14)
C10	N11	C12	123.47(13)	C5	C4	C13	122.27(16)
C13	O14	C15	116.14(16)	C3	C4	C13	118.98(15)
N11	C7	C8	107.29(13)	C3	C4	C5	118.74(15)
N11	C7	C1	125.12(13)	O14	C13	C4	112.19(15)
C8	C7	C1	127.57(13)	O16	C13	O14	123.78(18)
C7	C8	С9	107.94(13)	O16	C13	C4	124.0(2)
C10	C9	C8	107.26(13)	C6	C5	C4	120.38(15)
C6	C1	C7	123.16(13)	C2	C3	C4	120.78(15)
C6	C1	C2	117.95(14)	C3	C2	C1	121.03(15)
C2	C1	C7	118.78(14)				

Table S9 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3f.

Atom	x	У	Z	U(eq)
H8	1615.76	2508.56	7157.52	60
H9	-549.69	2096.21	7056.6	64

H12A	-45.3	8950.49	6017.24	88
H12B	-915.07	7781.75	5262.95	88
H12C	411.38	7979.89	5191.3	88
H10	-1517.81	4979.96	6204.39	62
H6	2058.94	8908.19	6704.16	67
H5	3884.09	10163.17	6619.7	70
H3	4889.7	4708.42	5944.09	78
H2	3055.94	3479.31	5986.39	72
H15A	7098.38	10877.72	5505.9	124
H15B	7518.49	10686.67	6567.01	124
H15C	6874.65	12636.13	6150.45	124

10. References

- [1] R. Gao, B. An, C. Zhou and X. Zhang. *Molecules*, 2022, 27, 8722.
- [2] L. Gao, C. Zhou, R. Wang, F. Lan, B. An, X. Huang and X. Zhang. Chin. Chem. Lett., 2024, 35, 108832.
- [3] H. Hayashi, B Wang, X. Wu, S. J. Teo, A. Kaga, K. Watanabe, R. Takita, E. K. L. Yeow and S. Chiba. *Adv. Synth. Catal.*, 2020, **362**, 2223-2231.
- [4] H. Li, X. Tang, J. H. Pang, X. Wu, E. K. L. Yeow, J. Wu and S. Chiba. J. Am. Chem. Soc., 2021, 143, 481-487.
- [5] F. Yu, R. Mao, M. Yu, X. Gu and Y. Wang. J. Org. Chem., 2019, 84, 9946-9956.
- [6] N. Shen, R. Li, C. Liu, X. Shen, W. Guan and R. Shang. ACS Catal., 2022, 12, 2788-2795.
- [7] Y.-L. Zhao, G.-J. Wu, Y. Li, L.-X. Gao and F.-S. Han. Chem. Eur. J., 2012, 18, 9622-9627.
- [8] V. J. Roy and S. R. Roy. Org. Lett., 2023, 25, 923-927.
- [9] R. S. Shaikh, S. J. S. Düsel and B. König. ACS Catal., 2016, 6, 8410-8414.
- [10] S. Xiang, M. Li, Z. Xia, C. Fang, W. Yang, W. Deng and Z. Tan. Org. Biomol. Chem., 2024, 22, 1794-1799.
- [11] Y. Zhang, W. Chen, T. Tan, Y. Gu, S. Zhang, J. Li, Y. Wang, W. Hou, G. Yang, P. Ma and H. Xu. *Chem. Commun.*, 2021, 57, 4588-4591.
- [12] J. Shi, T Yuan, M. Zheng, X, Wang, ACS Catal., 2021, 11, 3040-3047.
- [13] W. Ou, R. Zou, M. Han, L. Yu and C. Su, Chin. Chem. Lett., 2020, 31, 1899-1902.
- [14] T. Constantin, F. Juliá, N. S. Sheikh and D. Leonori, Chem. Sci., 2020, 11, 12822-12828.
- [15] I. Ghosh, R. S. Shaikh and B. Konig, Angew. Chem. Int. Ed., 2017, 56, 8544-8549.
- [16] Y.-J. Chen, T. Lei, H.-L. Hu, H.-L. Wu, S. Zhou, X.-B. Li, B. Chen, C.-H. Tung and L.-Z. Wu, *Matter*, 2021, 4, 2354-2366.
- [17] M. Neumeier, D. Sampedro, M. Májek, V. A. de la Peña O'Shea, A. J. von Wangelin and R. Pérez-Ruiz, *Chem. Eur. J.* 2018, 24, 105-108.
- [18] I. Ghosh and B. König, Angew. Chem. Int. Ed., 2016, 55, 7676-7679.
- [19] H. Li, X. Tang, J. H. Pang, X. Wu, E. K. L. Yeow, J. Wu and S. Chiba, J. Am. Chem. Soc., 2021, 143, 481-487.

11. Copies of NMR spectra

¹H NMR Spectrum of **ITN-1**

¹H NMR Spectrum of **3a**

¹H NMR Spectrum of **3b**

¹H NMR Spectrum of **3c**

¹H NMR Spectrum of **3d**

¹H NMR Spectrum of **3e**

¹H NMR Spectrum of **3f**

¹H NMR Spectrum of **3g**

¹H NMR Spectrum of **3h**

¹H NMR Spectrum of **3i**

¹H NMR Spectrum of **3**j

¹H NMR Spectrum of 3k

¹H NMR Spectrum of **3**l

¹H NMR Spectrum of **3m**

¹H NMR Spectrum of **3n**

¹H NMR Spectrum of **30**

¹H NMR Spectrum of **3p**

¹H NMR Spectrum of **3q**

¹H NMR Spectrum of **3r**

¹H NMR Spectrum of **3s**

¹³C NMR Spectrum of **3s**

¹H NMR Spectrum of **3t**

¹³C NMR Spectrum of **3t**

¹H NMR Spectrum of **5a**

¹H NMR Spectrum of **5b**

¹H NMR Spectrum of **5c**

¹H NMR Spectrum of **5d**

¹H NMR Spectrum of **5e**

¹H NMR Spectrum of **5**f

 1 H NMR Spectrum of **5**g

¹H NMR Spectrum of **5h**

¹H NMR Spectrum of **5**i

¹H NMR Spectrum of **5**j

¹H NMR Spectrum of **5**k

¹H NMR Spectrum of **5**l

¹H NMR Spectrum of **5m**

¹H NMR Spectrum of **5n**

¹H NMR Spectrum of **50**

¹H NMR Spectrum of **5p**

¹H NMR Spectrum of **5q**

¹H NMR Spectrum of **5**r

¹H NMR Spectrum of **5s**

¹H NMR Spectrum of **5t**

¹H NMR Spectrum of **5u**

¹³C NMR Spectrum of **5u**

¹H NMR Spectrum of **7**

¹³C NMR Spectrum of **7**

