Supporting Information

Chromium(II)-Catalyzed Defluorinative Reductive Cross-Coupling of Acetals with α-Trifluoromethyl

Alkenes

Zaiyang Li, Meiming Luo,* and Xiaoming Zeng*

*E-mail: <u>luomm@scu.edu.cn</u> *E-mails: <u>zengxiaoming@scu.edu.cn</u>

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

Table of Contents

1. Material and Methods	S2
2. Optimizing Reaction Parameters	S4
3. Procedure for the Preparation of Substrates	S7
4. General Procedure for Cr-Catalyzed Defluorinative	Reductive
Cross-Coupling of Acetals and α -Trifluoromethyl Alkenes	S9
5. Synthetic Application	S30
6. Mechanistic Studies	S33
7. Supplementary References	S36
8. ¹ H, ¹³ C and ¹⁹ F NMR Spectra	S37

1. Material and Methods

General. All reactions dealing with air- or moisture-sensitive compounds were carried out in a flame-dried and sealed Schlenk reaction tube under an atmosphere of nitrogen. Analytical thin-layer chromatography was performed on glass plates coated with silica gel (0.25 mm, 230-400 mesh) containing a fluorescent indicator (Merck). Flash silica gel column chromatography was performed on silica gel 60 N (spherical and neutral, 140-325 mesh) as described by Still. NMR spectra were measured on a Bruker AVANCE III HD spectrometer and reported in parts per million (ppm). ¹H NMR spectra were recorded at 400 MHz in CDCl₃, ¹³C NMR spectra were recorded at 100 MHz in CDCl₃, ¹⁹F NMR spectra were recorded at 376 MHz in CDCl₃. With solvent residual as the internal standard for ¹H NMR: CHCl₃ at 7.26 ppm, and solvent as internal standard for ¹³C NMR: CDCl₃ at 77.16 ppm. ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, dd = doublet of doublets, ddd = doublet of doublet of doublets, td = triplet of doublets, ddt = doublet of doublets of triplets, qd = quartet of doublets, m = multiplet, br = broad signal), coupling constants (Hz), and integration. Analytical gas chromatography (GC) was carried out on a Thermo Trace 1300 gas chromatograph, equipped with a flame ionization detector. Mass spectra (GC-MS) were taken at Thermo Trace 1300 gas chromatograph mass spectrometer. High resolution mass spectra (HRMS) were recorded on the Exactive Mass Spectrometer (SCIEX X500R QTOF) equipped with ESI ionization source and TOF mass analyzer.

Material. Unless otherwise noted, materials were purchased from Tokyo Chemical Industry Co., Aldrich Inc., Alfa Aesar, Adamas, and other commercial suppliers and used as received. All chemicals were used without further purification except DMA, DMF, DMSO, toluene, and THF, which were dried in Grubbs solvent press and stored in Strauss flasks under a nitrogen atmosphere. CrCl₂ (99.99%), CrCl₃ (99.99%), Cr(acac)₃ (97%), CrF₃ (99.99%), CoCl₂ (99.9%), and FeCl₃ (>98%) were purchased from Aldrich Inc. and used as received. Cr(acac)₃ (97%), Cr(CO)₆ (97%), and NiCl₂ were purchased from Alfa Aesar and used as received.

2. Optimizing Reaction Parameters

Table S1. Studying the Effect of the Metal Salts on the Defluorinative Reductive Cross-Coupling of Acetals and α -Trifluoromethyl Alkenes^{*a*}

CF ₃ +	metal salt/dtbpy(10 mol%) Zn(3.0 eq)/TMSCI(3.0 eq) DMA, 60 °C, 12h 2a	F F OMe 3a
Entry	Metal salt	Yield (3a%) ^b
1		<10
2	CrCl ₂	92(90) ^c
3	CrCl ₃	80
4	Cr(acac) ₃	72
5	CrF ₃	20
6	Cr(CO) ₆	27
7	Cr(OAc) ₃	51
8	FeCl ₃	54
9	NiCl ₂	52
10	CoCl ₂	46

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), metal salt (0.02 mmol), dtbpy (0.02 mmol), Zn (0.6 mmol) TMSCl (0.6 mmol) and DMA (2 mL) at 60 °C for 12 h. ^{*b*}Yields were determined by GC analysis using *n*-tridecane as internal standard. ^{*c*}Isolated yield in parentheses.

1a	℃F _{3 +}	2a	CrCl ₂ /L(10 mol%) Zn(3.0 eq)/TMSCl(3.0 eq) DMA, 60 °C, 12h	B G Me G M
Entry	Ligand	Yield (3a%) ^b		
1		40	$R^1 \qquad R^1 \qquad \qquad$	L1 R ¹ = ^{<i>t-</i>} Bu
2	L1	92(90) ^c		$L2 R^1 = Me$ $L3 R^1 = OMe$
3	L2	72		
4	L3	80		L4
5	L4	70	Me Me Ŗ ²	
6	L5	65	\square	
7	L6	58		² L5 R ² = H L6 R ² = ^{t-} Bu

Table S2. Studying the Effect of the Ligands on the Defluorinative Reductive Cross-Coupling of Acetals and α -Trifluoromethyl Alkenes^{*a*}

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), CrCl₂ (0.02 mmol), Ligand (0.02 mmol), Zn (0.6 mmol) TMSCl (0.6 mmol) and DMA (2 mL) at 60 °C for 12 h. ^{*b*}Yields were determined by GC analysis using *n*-tridecane as internal standard. ^{*c*}Isolated yield in parentheses.

Table S3. Studying the Effect of the Reductants on the Defluorinative Reductive Cross-Coupling of Acetals and α-Trifluoromethyl Alkenes^{*a*}

CF ₃	+ CrCl ₂ /dtbpy(10 mol%) Reductant(3.0 eq)/TMSCl(3.0 e DMA, 60 °C, 12h	eq) and an arrow of the second secon
Entry	Reductant	Yield (3a%) ^b
1		<10
2	Zn	92(90) ^c
3	Mn	35
4	Mg	nd ^d
5	AI	nd ^d

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), CrCl₂ (0.02 mmol), dtbpy (0.02 mmol), reductant (0.6 mmol) TMSCl (0.6 mmol) and DMA (2 mL) at 60 °C for 12 h. ^{*b*}Yields were determined by GC analysis using *n*-tridecane as internal standard. ^{*c*}Isolated yield in parentheses. ^{*d*}Not detected.

Table S4. Studying the Effect of the Solvents and Temperature on the Defluorinative Reductive Cross-Coupling of Acetals and α -Trifluoromethyl Alkenes^{*a*}

CF ₃ +	2a	CrCl ₂ /dtbpy(10 mol%) Zn(3.0 eq)/TMSCl(3.0 eq) solvent, T, 12h	F F OMe 3a
Entry	Solvent	T(°C)	Yield (3a%) ^b
1	DMA	r.t.	77
2	DMA	40	81
3	DMA	60	92(90) ^c
4	DMA	80	74
5	THF	60	26
6	DMF	60	31
7	DMSO	60	nd ^d
8	Toluene	60	nd ^d

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), CrCl₂ (0.02 mmol), dtbpy (0.02 mmol), Zn (0.6 mmol) TMSCl (0.6 mmol) and solvent (2 mL) at T °C for 12 h. ^{*b*}Yields were determined by GC analysis using *n*-tridecane as internal standard. ^{*c*}Isolated yield in parentheses. ^{*d*}Not detected.

3. Procedure for the Preparation of Substrates

Synthesis of Trifluoromethyl Alkenes

Under the nitrogen atmosphere, arylboronic acid (10.0 mmol), Pd(PPh₃)₄ (0.3 mmol, 3 mol%), K₂CO₃ (20.0 mmol) were dissolved in THF (30.0 mL) in a two-neck flask. Then,

2-bromo-3,3,3-trifluoroprop-1-ene (20.0 mmol, 2.1 mL) was added dropwise into the mixture. The mixture was heated to 60 $^{\circ}$ C in an oil bath for at least 12 h. Then the mixed solution was extracted with ethyl acetate (3 × 15.0 mL). The organic layer was washed with brine (20.0 mL), dried over Na₂SO₄, and then concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate) to afford the desired products.

Synthesis of Acetals:

General Procedure for Preparation of the Acetals^{2,3}**:**

To a solution of aldehydes (10 mmol, 1 equiv) and trimethyl orthoformate (15 mmol, 1.7mL, 1.5 equiv) in methanol (20 mL) was added tetrabutylammonium tribromide (48

mg, 0.1 mmol, 0.01 equiv). The reaction was stirred at room temperature, and the progress of the reaction was monitored by TLC. After completion, the reaction mixture was poured into water and the product extracted with EtOAc (3×25 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified through column chromatography over silica gel (petroleum ether/ethyl acetate) to give the desired acetals.

4. General Procedure for Cr-Catalyzed Defluorinative Reductive

Cross-Coupling of Acetals and α -Trifluoromethyl Alkenes

General Procedure for the Synthesis of 3: In a dried Schlenk tube were placed trifluoromethyl alkenes 1 (0.2 mmol, 1.0 equiv), $CrCl_2$ (2.5 mg, 0.02 mmol, 10 mmol%), dtbpy (5.2 mg, 0.02 mmol, 10 mmol%) and Zn (39 mg, 0.6 mmol, 3.0 equiv). Subsequently, acetals 2 (0.4 mmol, 2.0 equiv), TMSCl (65 mg, 0.6 mmol, 3.0 equiv) and freshly distilled DMA (2 mL) was sequentially added by a syringe under atmosphere of nitrogen. The resulting solution was stirred at 60 °C for 12h. After removal of the volatiles under vacuum, the crude product was purified by column chromatography on silica gel to afford the title compound 3.

2-(1,1-Difluoro-4-methoxy-4-phenylbut-1-en-2-yl)naphthalene

The general procedure was applied to 2-(3,3,3-trifluoroprop-1-en-2-yl) naphthalene (**1a**, 44.5 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3a**, 58 mg, 90% yield) as colorless oil. ¹H NMR (400 MHz,

CDCl₃): δ = 7.85 (tt, *J* = 5.8, 1.1 Hz, 3H), 7.80–7.72 (m, 1H), 7.56–7.47 (m, 2H), 7.43 (dt, *J* = 8.6, 1.7 Hz, 1H), 7.38–7.29 (m, 3H), 7.26–7.23 (m, 2H), 4.07 (dd, *J* = 7.8, 6.3 Hz, 1H), 3.12 (s, 3H), 3.08–2.99 (m, 1H), 2.78 (ddt, *J* = 14.5, 6.4, 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.7 (dd, *J* = 290.3, 288.5 Hz), 141.2, 133.4, 132.6, 131.1 (dd, *J* = 4.4, 3.1 Hz), 129.6, 128.5, 128.2, 128.1, 128.0, 127.8, 127.7 (t, *J* = 3.2 Hz), 126.9, 126.5(t, *J* = 3.1 Hz), 126.4, 126.3, 89.8 (dd, *J* = 21.6, 15.3 Hz), 81.6 (t, *J* = 2.9 Hz), 56.9, 36.9 (d, *J* = 1.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -89.9 (d, *J* = 39.1 Hz). HRMS (ESI⁺): calcd for C₂₁H₁₈F₂ONa [M+Na]⁺ 347.1218 Found 347.1212.

4-(1,1-Difluoro-4-methoxy-4-phenylbut-1-en-2-yl)-1,1'-biphenyl

The general procedure was applied to 4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'-biphenyl (**1b**, 50 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3b**, 62 mg, 89% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.67–7.58 (m, 4H), 7.51–7.43 (m, 2H), 7.42–7.23 (m, 8H), 4.10 (t, J = 7.0 Hz, 1H), 3.15 (s, 3H), 2.95 (ddt, J = 14.5, 7.8, 2.2 Hz, 1H), 2.72 (ddt, J = 14.4, 6.3, 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.5 (dd, J = 290.5, 288.3 Hz), 141.2, 140.7, 140.2, 132.7 (dd, J = 4.2, 3.2 Hz), 129.0 (t, J = 3.6 Hz), 128.5, 128.0, 127.6, 127.3, 127.2, 126.9, 89.5 (dd, J = 21.5, 15.0 Hz), 81.7 (t, J = 2.9 Hz), 56.9, 36.7 (d, J = 1.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -89.8 (d, J = 39.0 Hz), -90.2 (d, J = 38.9 Hz). HRMS (ESI⁺): calcd for C₂₃H₂1F₂O [M+H]⁺ 351.1555, Found 351.1557.

(4,4-Difluoro-1-methoxybut-3-ene-1,3-diyl)dibenzene

The general procedure was applied to (3,3,3-trifluoroprop-1-en-2-yl)benzene (**1c**, 35 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3c**, 43 mg, 78% yield) as colorless oil. ¹H NMR (400 MHz,CDCl₃): δ = 7.42–7.19 (m, 10H), 4.03 (t, *J* = 7.1 Hz, 1H), 3.12 (s, 3H), 2.91 (ddt, *J* = 14.5, 7.9, 2.2 Hz, 1H), 2.67 (ddt, *J* = 14.5, 6.3, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.5 (dd, *J* = 288.2, 286.3 Hz), 141.2, 133.7 (dd, *J* = 4.0, 3.2 Hz), 128.6 (t, *J* = 3.1 Hz), 128.6, 128.5, 128.0, 127.5, 126.9, 89.8 (dd, *J* = 21.3, 15.4 Hz), 81.6 (t, *J* = 2.8 Hz), 56.8, 36.8 (d, *J* = 1.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -90.5 (d, *J* = 40.0 Hz), -90.8 (d, *J* = 39.9 Hz).

Spectroscopic data are in accordance with those described in the literature.⁴

1-(1,1-Difluoro-4-methoxy-4-phenylbut-1-en-2-yl)-4-methylbenzene

The general procedure was applied to 1-methyl-4-(3,3,3-trifluoroprop-1-en-2yl)benzene (**1d**, 37 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3d**, 47 mg, 82% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.36–7.28 (m, 3H), 7.25–7.18 (m, 6H), 4.02 (t, *J* = 7.0 Hz, 1H), 3.12 (s, 3H), 2.89 (ddt, *J* = 14.4, 7.8, 2.2 Hz, 1H), 2.65 (ddt, *J* = 14.4, 6.3, 2.4 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.4 (dd, *J* = 287.6, 285.6 Hz), 141.3, 137.2, 130.7 (dd, *J* = 3.5, 3.2 Hz), 129.3, 128.5, 128.4 (t, *J* = 3.0 Hz), 128.0, 126.9, 89.5 (dd, *J* = 21.1, 15.6 Hz), 81.6 (t, *J* = 2.7 Hz), 56.9, 36.9 (d, *J* = 1.7 Hz), 21.3; ¹⁹F NMR (376 MHz, CDCl₃): δ = -90.9 (d, *J* = 41.5 Hz), -91.2 (d, *J* = 41.0 Hz). HRMS (ESI⁺): calcd for C₁₈H₁₉F₂O [M+H]⁺ 289.1398, Found 289.1399.

1-(1,1-Difluoro-4-methoxy-4-phenylbut-1-en-2-yl)-3-methoxybenzene

The general procedure was applied to 1-methoxy-3-(3,3,3-trifluoroprop-1-en-2yl)benzene (**1e**, 40 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3e**, 50 mg, 82% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.37–7.21 (m, 6H), 6.92–6.82 (m, 3H), 4.09–4.01 (m, 1H), 3.82 (s, 3H), 3.13 (s, 3H), 2.89 (ddt, *J* = 14.5, 7.8, 2.1 Hz, 1H), 2.65 (ddt, *J* = 14.5, 6.3, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 159.7, 154.5 (dd, *J* = 290.1, 288.2 Hz), 141.2, 135.1 (dd, *J* = 3.8, 2.5 Hz), 129.6, 128.5, 128.0, 126.9, 121.0 (t, *J* = 2.9 Hz), 114.5 (t, *J* = 3.2 Hz), 112.9, 89.7 (dd, *J* = 21.1, 15.8 Hz), 81.6 (t, *J* = 2.9 Hz), 56.9, 55.4, 36.9 (d, *J* = 1.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -90.0 (d, *J* = 39.5 Hz), -90.2 (d, *J* = 39.8 Hz). HRMS (ESI⁺): calcd for C₁₈H₁₈F₂O₂Na [M+Na]⁺ 327.1167, Found 327.1163.

5-(1,1-Difluoro-4-methoxy-4-phenylbut-1-en-2-yl)-1,2,3-trimethoxybenzene

The general procedure was applied to 1,2,3-trimethoxy-5-(3,3,3-trifluoroprop-1-en-2yl)benzene (**1f**, 52 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 20/1) to afford the title compound (**3f**, 55 mg, 75% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.39–7.20 (m, 5H), 6.46 (d, *J* = 1.0 Hz, 2H), 4.08 (dd, *J* = 7.8, 6.3 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 6H), 3.15 (s, 3H), 2.94–2.83 (m, 1H), 2.63 (ddt, *J* = 14.5, 6.3, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.4 (dd, *J* = 287.8, 286.5 Hz), 153.2, 141.1, 137.4, 129.2 (dd, J = 4.7, 2.8 Hz), 128.5, 128.1, 126.9, 106.0 (t, J = 3.2 Hz), 89.9 (dd, J = 21.7, 15.4 Hz), 81.7 (t, J = 2.8 Hz), 61.0, 56.8, 56.3, 37.0 (d, J = 1.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -90.0$ (d, J = 40.8 Hz), -90.5 (d, J = 40.8 Hz). HRMS (ESI⁺): calcd for C₂₀H₂₃F₂O₄ [M+H]⁺ 365.1559, Found 365.1564.

1-(Tert-butyl)-4-(1,1-difluoro-4-methoxy-4-phenylbut-1-en-2-yl)benzene

The general procedure was applied to 1-(tert-butyl)-4-(3,3,3-trifluoroprop-1-en-2yl)benzene (**1g**, 46 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3g**, 50 mg, 75% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.42–7.24 (m, 9H), 4.08 (t, *J* = 7.0 Hz, 1H), 3.15 (s, 3H), 2.91 (ddt, *J* = 14.4, 7.6, 2.2 Hz, 1H), 2.72–2.63 (m, 1H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.5 (dd, *J* = 290.1, 287.7 Hz), 150.3, 141.3, 130.6 (dd, *J* = 4.1, 3.26 Hz), 129.6, 128.5, 128.1 (t, *J* = 3.2 Hz), 127.9, 126.9, 125.5, 89.4 (dd, *J* = 21.1, 15.2 Hz), 81.7 (t, *J* = 2.9 Hz), 56.9, 36.8 (d, *J* = 1.8 Hz), 34.7, 31.4; ¹⁹FNMR (376 MHz, CDCl₃): δ = -90.5 (d, *J* = 40.8 Hz), -90.9 (d, *J* = 40.9 Hz). HRMS (ESI⁺): calcd for C₂₁H₂₄F₂OK [M+K]⁺ 369.1427, Found 369.1424.

1-(1,1-Difluoro-4-methoxy-4-phenylbut-1-en-2-yl)-4-fluorobenzene

The general procedure was applied to 1-fluoro-4-(3,3,3-trifluoroprop-1-en-2yl)benzene (**1h**, 38 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3h**, 47 mg, 80% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.36–7.19 (m, 7H), 7.10–7.01 (m, 2H), 4.11–3.96 (m, 1H), 3.12 (s, 3H), 2.87 (ddt, J = 14.5, 7.9, 2.2 Hz, 1H), 2.64 (ddt, J = 14.5, 6.2, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 162.0$ (d, J = 246.8 Hz), 154.4 (dd, J = 290.4, 287.7 Hz), 141.0, 130.3 (dt, J = 8.1, 3.1 Hz), 129.6 (dd, J = 7.6, 3.1 Hz), 128.6, 128.1, 126.8, 115.6 (d, J = 21.6 Hz), 89.0 (dd, J = 22.0, 15.5 Hz), 81.6 (t, J = 3.0 Hz), 56.8, 36.9 (d, J = 1.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -90.4$ (d, J = 40.6 Hz), -90.9 (d, J = 40.2 Hz), -114.7. HRMS (ESI⁺): calcd for C₁₇H₁₆F₃O [M+H]⁺ 293.1148, Found 293.1153.

The general procedure was applied to 2-fluoro-1-methoxy-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (**1i**, 44 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3i**, 59 mg, 92% yield) as white solid. Melting point: 110–111 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.32 (dddd, *J* = 13.4, 8.6, 4.4, 2.2 Hz, 3H), 7.25–7.19 (m, 2H), 7.07–6.91 (m, 3H), 4.07–4.00 (m, 1H), 3.91 (s, 3H), 3.13 (s, 3H), 2.84 (ddt, *J* = 14.6, 7.9, 2.2 Hz, 1H), 2.61 (ddt, *J* = 14.5, 6.1, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.5 (dd, *J* = 290.4, 288.1 Hz), 153.4, 151.0, 146.9 (d, *J* = 10.7 Hz), 141.1, 138.7, 128.5, 128.2, 128.0, 127.9, 127.8, 126.8, 124.4 (q, *J* = 3.4 Hz), 116.4 (dt, *J* = 19.1, 3.3 Hz), 113.4 (d, *J* = 2.4 Hz), 88.8 (dd, *J* = 22.3, 15.3 Hz), 87.1, 81.7 (t, *J* = 2.9 Hz), 57.2, 56.8, 56.3, 36.7 (d, *J* = 1.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -90.0 (d, *J* = 40.1 Hz), -90.4 (d, *J* = 39.8 Hz), -135.02. HRMS (ESI⁺): calcd for C₁₈H₁₈F₃O₂ [M+H]⁺ 323.1253, Found 323.1260.

1-Chloro-4-(1,1-difluoro-4-methoxy-4-phenylbut-1-en-2-yl)benzene

The general procedure was applied to 1-chloro-4-(3,3,3-trifluoroprop-1-en-2yl)benzene (**1j**, 41 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3j**, 48 mg, 78% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.37–7.27 (m, 5H), 7.22 (ddt, *J* = 7.8, 2.7, 1.4 Hz, 4H), 4.07–3.97 (m, 1H), 3.12 (s, 3H), 2.88 (ddt, *J* = 14.6, 8.0, 2.1 Hz, 1H), 2.65 (ddt, *J* = 14.6, 6.2, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.4 (dd, *J* = 289.0, 287.1), 141.0, 133.3, 132.2 (dd, *J* = 4.7, 3.0 Hz), 129.9 (t, *J* = 3.2 Hz), 128.8, 128.6, 128.1, 126.8, 89.1 (dd, *J* = 22.1, 15.0 Hz), 81.6 (t, *J* = 2.9 Hz), 56.9, 36.7 (d, *J* = 1.7 Hz); ¹⁹F NMR (376MHz, CDCl₃): δ = -89.5(d, *J* = 38.4 Hz), -90.0 (d, *J* = 38.8 Hz). HRMS (ESI⁺): calcd for C₁₇H₁₆ClF₂O [M+H]⁺ 309.0852, Found 309.0856.

2-Chloro-4-(1,1-difluoro-4-methoxy-4-phenylbut-1-en-2-yl)-1-methoxybenzene

The general procedure was applied to 2-chloro-1-methoxy-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (**1k**, 47 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3k**, 54 mg, 80% yield) as white solid. Melting point: 104–105 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.37–7.27 (m, 4H), 7.25– 7.20 (m, 2H), 7.17–7.12 (m, 1H), 6.91 (d, *J* = 8.6 Hz, 1H), 4.08–3.99 (m, 1H), 3.92 (s, 3H), 3.13 (s, 3H), 2.85 (ddt, *J* = 14.5, 7.8, 2.1 Hz, 1H), 2.61 (ddt, *J* = 14.5, 6.2, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.4 (dd, *J* = 290.0, 288.4 Hz), 154.2, 141.0, 138.7, 130.3 (t, *J* = 3.2 Hz), 128.5, 128.2, 128.0, 128.0 (t, *J* = 3.3 Hz), 127.9, 127.8, 126.8, 122.5, 112.0, 88.6 (dd, *J* = 22.2, 15.5 Hz), 87.1, 81.6 (t, *J* = 2.8 Hz), 57.3, 56.8, 56.2, 36.8 (d, *J* = 1.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -90.1 (d, *J* = 39.9 Hz), -90.4 (d, *J* = 40.0 Hz). HRMS (ESI⁺): calcd for C18H18CIF₂O₂ [M+H]⁺ 339.0958, Found

339.0951.

1-Bromo-3-(1,1-difluoro-4-methoxy-4-phenylbut-1-en-2-yl)benzene

The general procedure was applied to 1-bromo-3-(3,3,3-trifluoroprop-1-en-2yl)benzene (**11**, 50 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**31**, 65 mg, 92% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.42 (h, *J* = 2.2 Hz, 2H), 7.37–7.28 (m, 3H), 7.23 (dd, *J* = 6.9, 1.9 Hz, 4H), 4.08–4.00 (m, 1H), 3.13 (s, 3H), 2.87 (ddt, *J* = 14.6, 8.0, 2.1 Hz, 1H), 2.64 (ddt, *J* = 14.6, 6.2, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.6 (dd, *J* = 291.4, 289.2 Hz), 140.9, 136.0 (dd, *J* = 4.5, 3.1 Hz), 131.6 (t, *J* = 3.3 Hz), 130.5, 130.0, 128.6, 128.1, 127.3 (t, *J* = 3.1 Hz), 126.8, 122.6, 89.1 (dd, *J* = 22.2, 15.1 Hz), 81.6 (t, *J* = 2.8 Hz), 56.8, 36.7 (d, *J* = 1.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -89.0 (d, *J* = 36.8 Hz), -89.3 (d, *J* = 37.2 Hz). HRMS (ESI⁺): calcd for C₁₇H₁₆BrF₂O [M+H]⁺ 353.0347, Found 353.0341.

1-(Benzyloxy)-4-(1,1-difluoro-4-methoxy-4-phenylbut-1-en-2-yl)benzene

The general procedure was applied to 1-(benzyloxy)-4-(3,3,3-trifluoroprop-1-en-2yl)benzene (**1m**, 56 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3m**, 55 mg, 72% yield) as white solid. Melting point: 81–82 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.49–7.28 (m, 8H), 7.23 (dt, J = 6.9, 1.4 Hz, 4H), 7.03–6.96 (m, 2H), 5.09 (s, 2H), 4.04 (t, J = 7.0 Hz, 1H), 3.13 (s, 3H), 2.88 (ddt, J = 14.4, 7.8, 2.2 Hz, 1H), 2.64 (ddt, J = 14.4, 6.3, 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 158.1$, 154.3 (dd, J = 287.2, 286.3 Hz), 141.3, 137.0, 129.8 (t, J = 3.1 Hz), 128.8, 128.5, 128.2, 128.0, 127.7, 126.9, 126.1 (dd, J = 4.2, 2.8Hz), 115.0, 89.2 (dd, J = 21.3, 15.7 Hz), 81.6 (t, J = 2.9 Hz), 70.2, 56.9, 36.9 (d, J = 1.7Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -91.2 (d, J = 42.2 Hz), -91.5 (d, J = 42.3 Hz). HRMS (ESI⁺): calcd for C₂₄H₂₂F₂O₂Na [M+Na]⁺ 403.1480, Found 403.1476.

5-(1,1-Difluoro-4-methoxy-4-phenylbut-1-en-2-yl)benzo[d][1,3]dioxole

The general procedure applied 5-(3,3,3-trifluoroprop-1-en-2was to yl)benzo[d][1,3]dioxole (**1n**, 43 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3n**, 57 mg, 90% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37 - 7.21$ (m, 5H), 6.85 - 6.73 (m, 3H), 5.99 (s, 2H), 4.04 (dd, J = 7.9, 6.2 Hz, 1H), 3.14 (s, 3H), 2.84 (ddt, J = 14.5, 7.9, 2.2 Hz, 1H), 2.60 (ddt, J = 14.5, 6.2, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 154.4$ (dd, J =286.8, 286.6 Hz), 147.8, 146.9, 141.2, 128.5, 128.0, 127.4 (d, J=2.1 Hz), 126.8, 122.2 (t, J = 3.1 Hz), 109.2 (t, J = 3.3 Hz), 108.5, 101.3, 89.5 (dd, J = 20.4, 17.2 Hz), 81.6 (t, J = 20.4, 17.2 Hz), 8J = 2.9 Hz), 56.9, 37.2 (d, J = 0.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -91.0$ (d, J =41.5 Hz), -91.2 (d, J = 41.5 Hz). HRMS (ESI⁺): calcd for C₁₈H₁₇F₂O₃ [M+H]⁺ 319.1140, Found 319.1141.

4-(1,1-Difluoro-4-methoxy-4-phenylbut-1-en-2-yl)benzonitrile

The general procedure was applied to 4-(3,3,3-trifluoroprop-1-en-2-yl)benzonitrile (10, 39 mg, 0.2 mmol) and (dimethoxymethyl)benzene (2a, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 10/1) to afford the title compound (**30**, 46 mg, 77% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.66–7.60 (m, 2H), 7.43–7.37 (m, 2H), 7.35–7.27 (m, 3H), 7.23–7.17 (m, 2H), 4.10–3.98 (m, 1H), 3.11 (s, 3H), 2.89 (ddt, *J* = 14.7, 8.0, 2.2 Hz, 1H), 2.70 (ddt, *J* = 14.7, 6.0, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.8(dd, *J* = 293.6, 290.6 Hz), 140.7, 139.0 (dd, *J* = 4.7, 3.8 Hz), 132.9, 129.2 (t, *J* = 3.5 Hz), 128.7, 128.2, 126.7, 118.8, 111.0, 89.5 (dd, *J* = 22.8, 13.9 Hz), 81.8 (t, *J* = 2.8 Hz), 56.9, 36.4 (d, *J* = 1.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -86.65 (d, *J* = 32.7 Hz), -87.74 (d, *J* = 32.9 Hz). Spectroscopic data are in accordance with those described in the literature.⁴

Methyl 4-(1,1-difluoro-4-methoxy-4-phenylbut-1-en-2-yl)benzoate

The general procedure was applied to methyl 4-(3,3,3-trifluoroprop-1-en-2-yl)benzoate (**1p**, 46 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 10/1) to afford the title compound (**3p**, 55 mg, 83% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 8.06–8.00 (m, 2H), 7.41–7.27 (m, 5H), 7.23–7.17 (m, 2H), 4.02 (dd, J = 7.7, 6.4 Hz, 1H), 3.93 (s, 3H), 3.10 (s, 3H), 2.93 (ddt, J = 14.6, 7.9, 2.1 Hz, 1H), 2.70 (ddt, J = 14.6, 6.2, 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 166.9, 154.6 (dd, J = 292.4, 289.4 Hz), 140.9, 138.7 (dd, J = 4.6, 3.5 Hz), 129.8, 129.1, 128.6, 128.5 (t, J = 3.3 Hz), 128.1, 126.8, 89.6 (dd, J = 22.1, 14.4 Hz), 81.7 (t, J = 2.9 Hz), 56.8, 52.3, 36.5 (d, J = 1.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -88.1 (d, J = 35.4 Hz), -88.7 (d, J = 35.4 Hz). Note: the signal observed at approximately -70 ppm in the ¹⁹F NMR spectrum likely originates from residual starting material. Quantitative integration analysis confirmed the impurity were present in minimal amounts (< 2.5%). HRMS (ESI⁺): calcd for C₁₉H₁₉F₂O₃ [M+H]⁺ 333.1297, Found 333.1291.

(4-(1,1-Difluoro-4-methoxy-4-phenylbut-1-en-2-yl)phenyl)(methyl)sulfane

The general procedure was applied to methyl(4-(3,3,3-trifluoroprop-1-en-2yl)phenyl)sulfane (**1q**, 44 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3q**, 54 mg, 85% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.37–7.26 (m, 4H), 7.25–7.20 (m, 5H), 4.03 (dd, *J* = 7.8, 6.3 Hz, 1H), 3.12 (s, 3H), 2.94–2.84 (m, 1H), 2.65 (ddt, *J* = 14.5, 6.2, 2.4 Hz, 1H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.4 (dd, *J* = 290.2, 288.2 Hz), 141.2, 137.7, 130.3 (dd, *J* = 4.3, 3.1 Hz), 129.0 (t, *J* = 3.2 Hz), 128.5, 128.0, 126.8, 126.5, 89.3 (dd, *J* = 21.6, 15.2 Hz), 81.6 (t, *J* = 2.9 Hz), 56.9, 36.7 (d, *J* = 1.8 Hz), 15.8; ¹⁹F NMR (376 MHz, CDCl₃): δ = -90.1 (d, *J* = 40.1 Hz), -90.5 (d, *J* = 39.6 Hz). HRMS (ESI⁺): calcd for C₁₈H₁₉F₂OS [M+H]⁺ 321.1119, Found 321.1114.

(4-(1,1-Difluoro-4-methoxy-4-phenylbut-1-en-2-yl)phenyl)trimethylsilane

The general procedure was applied to trimethyl(4-(3,3,3-trifluoroprop-1-en-2-yl)phenyl)silane (**1r**, 49 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3r**, 56 mg, 81% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.56–7.49 (m, 2H), 7.37–7.22 (m, 7H), 4.06 (t, *J* = 7.0 Hz, 1H), 3.14 (s, 3H), 2.92 (ddt, *J* = 14.5, 7.8, 2.2 Hz, 1H), 2.68 (ddt, *J* = 14.4, 6.3, 2.4 Hz, 1H), 0.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.5 (dd, *J* = 290.6, 288.3 Hz), 141.3, 139.7, 134.1 (dd, *J* = 4.3, 3.2 Hz), 133.6, 128.5, 128.0, 127.8 (t, *J* = 3.1 Hz), 126.9, 89.7 (dd, *J* = 21.2, 15.0 Hz), 81.6 (t, *J* = 2.9 Hz), 56.9, 36.7 (d, *J* = 1.7 Hz), -1.0;

¹⁹F NMR (376 MHz, CDCl₃): δ = -89.9 (d, *J* = 39.1 Hz), -90.4 (d, *J* = 39.2 Hz). HRMS (ESI⁺): calcd for C₂₀H₂₅F₂OSi [M+H]⁺ 347.1637, Found 347.1629.

4-(1,1-Difluoro-4-methoxy-4-phenylbut-1-en-2-yl)-N,N-diphenylaniline

The general procedure was applied to N,N-diphenyl-4-(3,3,3-trifluoroprop-1-en-2yl)aniline (**1s**, 68 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 20/1) to afford the title compound (**3s**, 84 mg, 95% yield) as a white solid. Melting point: 133–134 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.37–7.24 (m, 9H), 7.19–7.09 (m, 6H), 7.09–7.01 (m, 4H), 4.14 (t, *J* = 7.0 Hz, 1H), 3.17 (s, 3H), 2.90 (ddt, *J* = 14.4, 7.6, 2.2 Hz, 1H), 2.66 (ddt, *J* = 14.4, 6.4, 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.5 (dd, *J* = 288.2, 286.2 Hz), 147.7, 146.9, 141.3, 129.4, 129.2 (t, *J* = 3.3 Hz), 128.5, 127.9, 127.3 (t, *J* = 3.6 Hz), 126.9, 124.7, 123.2, 89.3 (dd, *J* = 21.4, 15.0 Hz), 81.9 (t, *J* = 2.7 Hz), 56.9, 36.7 (d, *J* = 1.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -90.3 (d, *J* = 41.0 Hz), -90.7 (d, *J* = 40.9 Hz). HRMS (ESI⁺): calcd for C₂₉H₂₆F₂NO [M+H]⁺ 442.1977, Found 442.1980.

5-(1,1-Difluoro-4-methoxy-4-phenylbut-1-en-2-yl)-2-methoxypyridine

The general procedure was applied to 2-methoxy-5-(3,3,3-trifluoroprop-1-en-2yl)pyridine (**1t**, 41 mg, 0.2 mmol) and (dimethoxymethyl)benzene (**2a**, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the title compound (**3t**, 37 mg, 60% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 8.10 (dt, *J* = 2.3, 1.0 Hz, 1H), 7.48 (ddd, *J* = 8.6, 2.5,

1.0 Hz, 1H), 7.36–7.20 (m, 5H), 6.74 (dd, J = 8.6, 0.8 Hz, 1H), 4.05 (dd, J = 8.0, 6.0 Hz, 1H), 3.96 (s, 3H), 3.13 (s, 3H), 2.84 (ddt, J = 14.6, 8.1, 2.2 Hz, 1H), 2.62 (ddt, J = 14.6, 6.1, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 163.4, 154.5 (dd, J = 288.0, 287.2 Hz), 146.7 (t, J = 3.5 Hz), 141.0, 138.8 (t, J = 3.1 Hz), 128.6, 128.1, 126.8, 122.7 (dd, J = 4.4, 3.4 Hz), 110.8, 86.9 (dd, J = 22.9, 15.7 Hz), 81.7 (t, J = 2.8 Hz), 56.8, 53.6,36.7 (d, J = 1.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -89.6$ (d, J = 39.8 Hz), -90.4 (d, J = 39.9 Hz). HRMS (ESI⁺): calcd for C₁₇H₁₈F₂NO₂ [M+H]⁺ 306.1300, Found 306.1303.

3-(1,1-Difluoro-4-methoxy-4-phenylbut-1-en-2-yl)thiophene

The general procedure was applied to 3-(3,3,3-trifluoroprop-1-en-2-yl)thiophene (1u, 36 mg, 0.2 mmol) and (dimethoxymethyl)benzene (2a, 61 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3u**, 51 mg, 91% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37 - 7.28$ (m, 4H), 7.26-7.09 (m, 4H), 4.19 (t, J = 6.9 Hz, 1H), 3.17 (s, 3H), 2.89 (ddt, J = 14.4, 7.6, 2.2 Hz, 1H), 2.65 (dddd, J = 14.4, 6.2, 2.8, 1.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 154.9$ (dd, J = 292.9, 287.7 Hz), 141.3, 133.9 (t, J =4.4 Hz), 128.6, 128.0, 127.3 (dd, J = 6.0, 2.4 Hz), 126.7, 125.6, 122.3 (t, J = 5.1 Hz), 85.9 (dd, J = 23.5, 14.3 Hz), 82.2 (t, J = 2.9 Hz), 57.0, 36.6 (d, J = 2.3 Hz); ¹⁹F NMR $(376 \text{ MHz, CDCl}_3)$: $\delta = -86.7 \text{ (d, } J = 36.9 \text{ Hz}), -90.2 \text{ (d, } J = 37.2 \text{ Hz}). \text{ HRMS (ESI}^+)$: calcd for C₁₅H₁₅F₂OS [M+H]⁺ 281.0806, Found 281.0802.

2-(1,1-Difluoro-4-methoxy-4-(p-tolyl)but-1-en-2-yl)naphthalene

The general procedure was applied to 2-(3,3,3-trifluoroprop-1-en-2-yl) naphthalene (1a, 44.5 mg, 0.2 mmol) and 1-(dimethoxymethyl)-4-methylbenzene (**2b**, 66 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3ab**, 64 mg, 94% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.91–7.80 (m, 3H), 7.75 (d, *J* = 1.8 Hz, 1H), 7.57–7.41 (m, 3H), 7.18–7.11 (m, 4H), 4.05 (dd, *J* = 7.7, 6.4 Hz, 1H), 3.12 (s, 3H), 3.04 (ddt, *J* = 14.6, 7.8, 2.2 Hz, 1H), 2.78 (ddt, *J* = 14.5, 6.4, 2.4 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.6 (dd, *J* = 290.2, 288.3 Hz), 138.1, 137.7, 133.4, 132.6, 131.2 (dd, *J* = 4.3, 3.1 Hz), 129.2, 128.1 (d, *J* = 7.7 Hz), 127.7 (t, *J* = 4.5 Hz), 126.9, 126.5 (t, *J* = 3.1 Hz), 126.3 (d, *J* = 11.3 Hz), 89.9 (dd, *J* = 21.6, 15.2 Hz), 81.4 (t, *J* = 2.8 Hz), 56.7, 36.9 (d, *J* = 1.7 Hz), 21.28; ¹⁹F NMR (376 MHz, CDCl₃): δ = -90.0 (d, *J* = 39.5 Hz), -90.5 (d, *J* = 39.5 Hz). HRMS (ESI⁺): calcd for C₂₂H₂₁F₂O [M+H]⁺ 339.1555, Found 339.1545.

2-(1,1-Difluoro-4-methoxy-4-(4-methoxyphenyl)but-1-en-2-yl)naphthalene

The general procedure was applied to 2-(3,3,3-trifluoroprop-1-en-2-yl) naphthalene (**1a**, 44.5 mg, 0.2 mmol) and 1-(dimethoxymethyl)-4-methoxybenzene (**2c**, 73 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3ac**, 64 mg, 90% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.85 (dt, *J* = 9.9, 4.2 Hz, 3H), 7.76–7.71 (m, 1H), 7.55–7.48 (m, 2H), 7.42 (dt, *J* = 8.6, 1.8 Hz, 1H), 7.18–7.12 (m, 2H), 6.90–6.84 (m, 2H), 4.02 (t, *J* = 7.1 Hz, 1H), 3.80 (s, 3H), 3.10 (s, 3H), 3.04 (ddt, *J* = 14.4, 7.5, 2.3 Hz, 1H), 2.78 (ddt, *J* = 14.4, 6.7, 2.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 159.4, 154.6 (dd, *J* = 288.4, 286.5 Hz), 133.4, 133.0, 132.6, 131.1 (dd, *J* = 4.3, 3.1 Hz), 128.2 (d, *J* = 2.6 Hz), 128.1, 127.74, 127.68 (t, *J* = 3.1 Hz), 126.5 (t, *J* = 3.0 Hz), 126.4, 126.3, 113.9, 89.9 (dd, *J* = 21.5, 15.2 Hz), 81.1 (t, *J* = 2.7 Hz), 56.6, 55.4, 36.7 (d, *J* = 1.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -90.0 (d, *J* = 39.5 Hz), -90.6 (d, *J* = 39.5 Hz). HRMS (ESI⁺): calcd for C₂₂H₂₀F₂O₂Na [M+Na]⁺ 377.1324, Found 377.1328.

2-(4-Ethoxy-1,1-difluoro-4-phenylbut-1-en-2-yl)naphthalene

The general procedure was applied to 2-(3,3,3-trifluoroprop-1-en-2-yl) naphthalene (**1a**, 44.5 mg, 0.2 mmol) and (diethoxymethyl)benzene (**2d**, 72 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3ad**, 53 mg, 78 % yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.86 (ddd, *J* = 9.7, 5.5, 1.8 Hz, 3H), 7.81–7.76 (m, 1H), 7.57–7.49 (m, 2H), 7.46 (dt, *J* = 8.6, 1.7 Hz, 1H), 7.38–7.25 (m, 5H), 4.21 (t, *J* = 7.0 Hz, 1H), 3.33 (dq, *J* = 9.3, 7.0 Hz, 1H), 3.19 (dq, *J* = 9.3, 7.0 Hz, 1H), 3.04 (ddt, *J* = 14.4, 7.8, 2.3 Hz, 1H), 2.89–2.76 (m, 1H), 1.12 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.7 (dd, *J* = 290.5, 288.5 Hz), 142.0, 133.4, 132.6, 131.3 (dd, *J* = 4.4, 3.3 Hz), 128.5, 128.1 (d, *J* = 4.4 Hz), 127.9, 127.7 (t, *J* = 3.2 Hz), 126.8, 126.5 (t, *J* = 3.1 Hz), 126.4, 126.3, 90.0 (dd, *J* = 21.5, 15.1 Hz), 79.8 (t, *J* = 2.9 Hz), 64.4, 37.0 (d, *J* = 1.7 Hz), 15.4; ¹⁹F NMR (376 MHz, CDCl₃): δ = -89.8 (d, *J* = 39.0 Hz), -90.6 (d, *J* = 39.3 Hz). HRMS (ESI⁺): calcd for C₂₂H₂₀F₂ONa [M+Na]⁺ 361.1374, Found 361.1381.

2-(1,1-Difluoro-4-(4-fluorophenyl)-4-methoxybut-1-en-2-yl)naphthalene

The general procedure was applied to 2-(3,3,3-trifluoroprop-1-en-2-yl) naphthalene (**1a**, 44.5 mg, 0.2 mmol) and 1-(dimethoxymethyl)-4-fluorobenzene (**2e**, 68 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3ae**, 55 mg, 80% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.85 (ddd, J = 9.6, 5.4, 1.8 Hz, 3H), 7.74 (d, J = 1.8 Hz, 1H), 7.57–7.47 (m, 2H), 7.41 (dt, J = 8.5, 1.7 Hz, 1H), 7.25–7.16 (m, 2H), 7.07–6.97 (m, 2H), 4.05 (t, J = 7.1 Hz, 1H), 3.11 (s, 3H), 3.03 (ddt, J = 14.5, 7.5, 2.4 Hz, 1H), 2.81–

2.71 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 162.6 (d, *J* = 245.7 Hz), 136.8 (d, *J* = 3.1 Hz), 133.4, 132.7, 130.9 (dd, *J* = 4.3, 3.2 Hz), 128.5 (d, *J* = 8.1 Hz), 128.3, 128.1, 127.8, 127.6 (t, *J* = 3.2 Hz), 126.5, 126.4, 115.5, 115.3, 89.7 (dd, *J* = 21.5, 15.4 Hz), 81.0 (t, *J* = 2.8 Hz), 56.8, 36.79; ¹⁹F NMR (376 MHz, CDCl₃): δ = -89.8 (d, *J* = 39.4 Hz), -90.3 (d, *J* = 38.9 Hz), -114.5. HRMS (ESI⁺): calcd for C₂₁H₁₈F₃O [M+H]⁺ 343.1304, Found 343.1312.

2-(4-(4-Chlorophenyl)-1,1-difluoro-4-methoxybut-1-en-2-yl)naphthalene

The general procedure was applied to 2-(3,3,3-trifluoroprop-1-en-2-yl) naphthalene (**1a**, 44.5 mg, 0.2 mmol) and 1-chloro-4-(dimethoxymethyl)benzene (**2f**, 74 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3af**, 54 mg, 75% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.84 (t, *J* = 8.0 Hz, 3H), 7.73 (d, *J* = 1.8 Hz, 1H), 7.57–7.47 (m, 2H), 7.40 (dt, *J* = 8.6, 1.7 Hz, 1H), 7.34–7.27 (m, 2H), 7.19–7.11 (m, 2H), 4.03 (t, *J* = 7.1 Hz, 1H), 3.10 (s, 3H), 3.01 (ddt, *J* = 14.5, 7.6, 2.3 Hz, 1H), 2.74 (ddt, *J* = 14.4, 6.6, 2.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.7 (dd, *J* = 288.9, 286.7 Hz), 139.7, 133.7, 133.4, 132.66, 131.0, 130.9 (dd, *J* = 4.3, 3.2 Hz), 129.6, 128.7, 128.3 (d, *J* = 4.7 Hz), 128.1, 127.8, 127.7 (t, *J* = 3.2 Hz), 126.5, 126.4, 126.3 (t, *J* = 3.0 Hz), 89.6 (dd, *J* = 21.5, 15.4 Hz), 81.0 (t, *J* = 2.9 Hz), 56.9, 36.7 (d, *J* = 1.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -89.7 (d, *J* = 38.7 Hz), -90.1 (d, *J* = 38.7 Hz). HRMS (ESI⁺): calcd for C₂₁H₁₇ClF₂ONa [M+Na]⁺ 381.0828, Found 381.0829.

2-(4-(4-Bromophenyl)-1,1-difluoro-4-methoxybut-1-en-2-yl)naphthalene

The general procedure was applied to 2-(3,3,3-trifluoroprop-1-en-2-yl) naphthalene (**1a**, 44.5 mg, 0.2 mmol) and 1-bromo-4-(dimethoxymethyl)benzene (**2g**, 92 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3ag**, 52 mg, 65% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.89–7.80 (m, 3H), 7.72 (d, *J* = 1.7 Hz, 1H), 7.55–7.37 (m, 5H), 7.13–7.06 (m, 2H), 4.02 (t, *J* = 7.1 Hz, 1H), 3.10 (s, 3H), 3.00 (ddt, *J* = 14.5, 7.6, 2.3 Hz, 1H), 2.80–2.69 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.7 (dd, *J* = 290.8, 288.5 Hz), 140.2, 133.4, 132.7, 131.7, 130.9 (t, *J* = 3.5 Hz), 128.6, 128.3, 128.1, 127.8, 127.7 (t, *J* = 3.2 Hz), 126.5, 126.4, 126.3 (t, *J* = 3.0 Hz), 121.9, 89.6 (dd, *J* = 21.4, 15.5 Hz), 81.1 (t, *J* = 2.9 Hz), 56.9, 36.7 (d, *J* = 1.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = - 89.6 (d, *J* = 38.8 Hz), -90.1 (d, *J* = 38.8 Hz). HRMS (ESI⁺): calcd for C₂₁H₁₇BrF₂ONa [M+Na]⁺ 425.0323, Found 425.0329.

6-(4,4-Difluoro-1-methoxy-3-(naphthalen-2-yl)but-3-en-1-yl)-2,3-

dihydrobenzo[b][1,4]dioxine

The general procedure was applied to 2-(3,3,3-trifluoroprop-1-en-2-yl) naphthalene (**1a**, 44.5 mg, 0.2 mmol) and 6-(dimethoxymethyl)-2,3-dihydrobenzo[b][1,4]dioxine (**2h**, 84 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3ah**, 61 mg, 80 % yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.84 (dt, *J* = 9.7, 3.5 Hz, 3H), 7.73 (d, *J* = 1.7 Hz, 1H), 7.55–7.46 (m, 2H), 7.41 (dt, *J* = 8.6, 1.7 Hz, 1H), 6.81 (d, *J* = 8.2 Hz, 1H), 6.76 (d, *J* = 2.0 Hz, 1H), 6.69 (dd, *J* = 8.2, 2.1 Hz, 1H), 4.21 (q, *J* = 1.1 Hz, 4H), 3.96 (t, *J* = 7.0 Hz, 1H), 3.11 (s, 3H), 3.06–2.95 (m, 1H), 2.74 (ddt, *J* = 14.5, 6.4, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.6 (dd, *J* = 288.5, 286.5 Hz), 143.6, 143.3, 134.5, 133.4, 132.6, 131.1 (dd, *J* = 4.2, 3.2 Hz), 128.1 (d, *J* = 3.2 Hz), 127.7 (t, *J* = 3.1 Hz), 126.5 (t, *J* = 3.0 Hz), 126.4, 126.2, 120.0, 117.2, 115.7, 89.9 (dd, *J* = 21.6, 15.1 Hz), 81.1 (t, *J* = 2.5 Hz), 64.4, 56.7, 36.8 (d, *J* = 1.7 Hz); ¹⁹F NMR (376 MHz,

CDCl₃): $\delta = -89.9$ (d, J = 39.5 Hz), -90.5 (d, J = 39.5 Hz). HRMS (ESI⁺): calcd for C₂₃H₂₀F₂O₃Na [M+Na]⁺ 405.1273, Found 405.1278.

(4-(4,4-Difluoro-1-methoxy-3-(naphthalen-2-yl)but-3-en-1-

yl)phenyl)(methyl)sulfane

The general procedure was applied to 2-(3,3,3-trifluoroprop-1-en-2-yl) naphthalene (1a, 44.5 mg, 0.2 mmol) and (4-(dimethoxymethyl)phenyl)(methyl)sulfane (2i, 79 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3ai**, 62 mg, 83 % yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.89–7.79 (m, 3H), 7.76–7.68 (m, 1H), 7.55–7.47 (m, 2H), 7.40 (dt, J = 8.6, 1.7 Hz, 1H), 7.24–7.18 (m, 2H), 7.17–7.11 (m, 2H), 4.02 (t, J = 7.1 Hz, 1H), 3.10 (s, 3H), 3.02 (ddt, J = 14.5, 7.6, 2.3 Hz, 1H), 2.76 (ddt, J = 14.5, 6.6, 2.3 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 154.6$ (dd, J = 290.5, 288.3 Hz), 138.1, 138.0, 133.4, 132.6, 131.0 (dd, J = 4.3, 3.2 Hz), 128.2 (d, J = 13.6 Hz), 127.8, 127.7 (t, J = 3.2 Hz), 127.5, 126.7, 126.5 (t, J = 3.5 Hz), 126.3, 89.8 (dd, J = 21.5, 15.3 Hz), 81.2 (t, J = 2.9 Hz), 56.8, 36.7 (d, J = 1.8 Hz), 15.9; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -89.8$ (d, J = 39.3 Hz), -90.3 (d, J = 38.8 Hz). HRMS (ESI⁺): calcd for C₂₂H₂₁F₂OS [M+H]⁺ 371.1276, Found 371.1269.

2-((1-(4-Bromophenyl)-4,4-difluoro-3-(naphthalen-2-yl)but-3-en-1-yl)oxy)ethan-**1-ol**

The general procedure was applied to 2-(3,3,3-trifluoroprop-1-en-2-yl) naphthalene (1a, 44.5 mg, 0.2 mmol) and 2-(4-bromophenyl)-1,3-dioxolane (2j, 91 mg, 0.4 mmol). The reaction was quenched with dilute hydrochloric acid upon completion. The crude

product was purified by column chromatography on silica gel (PE/EtOAc = 5/1) to afford the title compound (**3aj**, 62 mg, 72% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.89–7.80 (m, 3H), 7.74 (d, *J* = 1.8 Hz, 1H), 7.56–7.39 (m, 5H), 7.16–7.08 (m, 2H), 4.22 (dd, *J* = 7.9, 6.0 Hz, 1H), 3.58 (t, *J* = 4.6 Hz, 2H), 3.32 (dt, *J* = 9.9, 4.2 Hz, 1H), 3.28–3.18 (m, 1H), 3.03 (ddt, *J* = 14.6, 8.0, 2.3 Hz, 1H), 2.79 (ddt, *J* = 14.7, 5.9, 2.2 Hz, 1H), 1.76 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.7 (dd, *J* = 291.3, 288.7 Hz), 140.2, 133.4, 132.6, 131.8, 130.9 (dd, *J* = 4.2, 3.3 Hz), 128.4 (d, *J* = 5.6 Hz), 128.0, 127.8, 127.5 (t, *J* = 3.2 Hz), 126.6, 126.5, 126.2 (t, *J* = 3.0 Hz), 122.0, 89.7 (dd, *J* = 21.4, 15.3 Hz), 80.1 (t, *J* = 2.9 Hz), 70.2, 62.0, 36.7 (d, *J* = 1.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -89.4 (d, *J* = 38.1 Hz), -90.0 (d, *J* = 38.2 Hz). HRMS (ESI⁺): calcd for C₂₂H₂₀BrF₂O₂ [M+H]⁺ 433.0609, Found 433.0606.

2-(4-Cyclopentyl-1,1-difluoro-4-methoxybut-1-en-2-yl)naphthalene

The general procedure was applied to 2-(3,3,3-trifluoroprop-1-en-2-yl) naphthalene (**1a**, 44.5 mg, 0.2 mmol) and (dimethoxymethyl)cyclopentane (**2k**, 58 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3ak**, 37 mg, 58% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.90 – 7.80 (m, 4H), 7.54–7.46 (m, 3H), 3.30 (s, 3H), 3.05 (td, *J* = 6.9, 5.2 Hz, 1H), 2.78–2.63 (m, 2H), 2.09–1.95 (m, 1H), 1.79–1.69 (m, 1H), 1.66–1.47 (m, 5H), 1.40–1.21 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.5 (dd, *J* = 290.5, 287.9 Hz), 133.4, 132.6, 131.5 (dd, *J* = 4.1, 2.9 Hz), 128.2, 128.1, 127.7, 127.5 (t, *J* = 3.3 Hz), 126.4, 126.3 (t, *J* = 3.1 Hz), 126.3, 90.5 (dd, *J* = 21.3, 14.3 Hz), 83.1 (t, *J* = 2.5 Hz), 58.2, 44.3, 31.8, 29.3, 28.3, 25.8, 25.7; ¹⁹F NMR (376 MHz, CDCl₃): δ = -90.2 (d, *J* = 40.8 Hz), -90.4 (d, *J* = 40.7 Hz). HRMS (ESI⁺): calcd for C₂₀H₂₃F₂O [M+H]⁺ 317.1711, Found 317.1710.

2-(4-Cyclohexyl-1,1-difluoro-4-methoxybut-1-en-2-yl)naphthalene

The general procedure was applied to 2-(3,3,3-trifluoroprop-1-en-2-yl) naphthalene (**1a**, 44.5 mg, 0.2 mmol) and (dimethoxymethyl)cyclohexane (**2l**, 63 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3al**, 41 mg, 62% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.88–7.77 (m, 4H), 7.52–7.44 (m, 3H), 3.24 (s, 3H), 2.96–2.88 (m, 1H), 2.68–2.61 (m, 2H), 1.76–1.55 (m, 6H), 1.47 (ddd, *J* = 11.8, 9.6, 6.1 Hz, 1H), 1.21–1.07 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.4 (dd, *J* = 290.1, 287.4 Hz), 133.4, 132.6, 131.5 (d, *J* = 1.4 Hz), 128.2, 128.1, 127.7, 127.6 (t, *J* = 3.3 Hz), 126.4 (t, *J* = 2.9 Hz), 126.3, 90.7 (dd, *J* = 18.6, 17.0 Hz), 83.8 (t, *J* = 2.4 Hz), 58.5, 41.5, 30.1, 29.0, 28.2, 26.7, 26.5 (d, *J* = 1.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -90.31. HRMS (ESI⁺): calcd for C₂₁H₂₅F₂O [M+H]⁺ 331.1868, Found 331.1867.

2-(4-(Cyclohex-3-en-1-yl)-1,1-difluoro-4-methoxybut-1-en-2-yl)naphthalene

The general procedure was applied to 2-(3,3,3-trifluoroprop-1-en-2-yl) naphthalene (**1a**, 44.5 mg, 0.2 mmol) and 4-(dimethoxymethyl)cyclohex-1-ene (**2m**, 62 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3am**, 36 mg, 55 % yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.89–7.78 (m, 4H), 7.55–7.44 (m, 3H), 5.76–5.60 (m, 2H), 3.28 (d, *J* = 1.6 Hz, 3H), 3.04 (dtd, *J* = 15.8, 6.8, 6.3, 4.9 Hz, 1H), 2.69 (dq, *J* = 8.0, 3.0, 2.6 Hz, 2H), 2.19–1.52 (m, 7H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.5 (t, *J* = 287.5 Hz), 133.4, 132.6, 131.4, 128.2, 128.1, 127.7, 127.5 (q, *J* = 3.2 Hz), 127.3, 127.0, 126.6, 126.4 (d, *J* = 1.5 Hz), 126.3, 90.5 (m), 83.1 (dt, *J* = 5.0, 2.6 Hz), 58.6 (d, *J* = 17.9 Hz),

37.5 (d, J = 6.7 Hz), 30.1 (d, J = 25.5 Hz), 27.9, 26.6, 25.7, 25.5 (d, J = 10.7 Hz), 24.1; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -90.2$ (d, J = 2.8 Hz). HRMS (ESI⁺): calcd for C₂₁H₂₃F₂O [M+H]⁺ 329.1711, Found 329.1717.

2-(1,1-Difluoro-4-methoxy-6-phenylhex-1-en-2-yl)naphthalene

The general procedure was applied to 2-(3,3,3-trifluoroprop-1-en-2-yl) naphthalene (**1a**, 44.5 mg, 0.2 mmol) and (3,3-dimethoxypropyl)benzene (**2n**, 72 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3an**, 35 mg, 50 % yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.87–7.78 (m, 3H), 7.77–7.73 (m, 1H), 7.54–7.46 (m, 2H), 7.42 (dt, J = 8.5, 1.6 Hz, 1H), 7.24–7.05 (m, 5H), 3.27 (s, 3H), 3.19 (q, J = 6.1 Hz, 1H), 2.83–2.55 (m, 4H), 1.79 (dddd, J = 9.3, 7.3, 5.7, 1.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 154.6 (dd, J = 288.5, 286.6 Hz), 142.2, 133.4, 132.6, 131.3 (dd, J = 3.1, 2.6 Hz), 128.5, 128.3, 128.1, 127.8, 127.6 (t, J = 3.1 Hz), 126.5, 126.3, 126.3 (t, J = 3.0 Hz), 125.9, 90.2 (dd, J = 20.9, 15.4 Hz), 78.5 (t, J = 2.9 Hz), 57.0, 35.4, 32.4, 31.4; ¹⁹F NMR (376 MHz, CDCl₃): δ = -90.1 (d, J = 40.5 Hz), -90.3 (d, J = 40.2 Hz). HRMS (ESI⁺): calcd for C₂₃H₂₃F₂O [M+H]⁺ 353.1711, Found 353.1718.

3-(4,4-Difluoro-1-methoxy-3-(naphthalen-2-yl)but-3-en-1-yl)thiophene

The general procedure was applied to 2-(3,3,3-trifluoroprop-1-en-2-yl) naphthalene (**1a**, 44.5 mg, 0.2 mmol) and 3-(dimethoxymethyl)thiophene (**2o**, 63 mg, 0.4 mmol). The crude product was purified by column chromatography on silica gel (PE/EtOAc = 50/1) to afford the title compound (**3ao**, 37 mg, 55 % yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.85 (dt, *J* = 6.5, 3.9 Hz, 3H), 7.77–7.70 (m, 1H), 7.56–7.47 (m, 2H),

7.41 (dt, J = 8.6, 1.6 Hz, 1H), 7.30 (dd, J = 4.9, 2.9 Hz, 1H), 7.09–7.02 (m, 2H), 4.20 (t, J = 7.1 Hz, 1H), 3.15 (s, 3H), 3.08 (ddt, J = 14.4, 7.5, 2.4 Hz, 1H), 2.88–2.79 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 154.7$ (dd, J = 288.6, 286.6 Hz), 142.5, 133.4, 132.6, 131.0 (dd, J = 4.2, 3.1 Hz), 128.2 (d, J = 13.7 Hz), 127.8, 127.6 (t, J = 3.2 Hz), 126.4 (t, J = 3.1 Hz), 126.3, 126.3, 125.9, 122.6, 89.7 (dd, J = 21.4, 15.5 Hz), 77.3 (t, J = 2.8 Hz), 56.7, 35.9 (d, J = 1.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -89.9$ (d, J = 38.9 Hz), -90.3 (d, J = 39.4 Hz). HRMS (ESI⁺): calcd for C₁₉H₁₇F₂OS [M+H]⁺ 331.0963, Found 331.0957.

5. Synthetic Application

5.1 Gram-Scale Reactions

Gram-Scale Reaction for 3a: In a dried Schlenk tube were placed 2-(3,3,3-trifluoroprop-1-en-2-yl)naphthalene **1a** (0.9 g, 4.0 mmol), $CrCl_2$ (50 mg, 0.4 mmol, 10 mmol%), dtbpy (104 mg, 0.4 mmol, 10 mmol%) and Zn (780 mg, 12 mmol, 3.0 equiv), then, the (dimethoxymethyl)benzene **2a** (1.2 g, 8 mmol, 2.0 equiv), TMSCl (1.3 g, 12 mmol, 3.0 equiv) and freshly distilled DMA (8 mL) was sequentially added by a syringe under atmosphere of nitrogen. The resulting solution was stirred at 60 °C for 12 h. After the completion of the reaction, the mixture solution was concentrated under vacuum and the crude products were purified by column chromatography (PE/EtOAc = 50/1) to afford the desired compound **3a** (0.96 g, 74% yield) as a colorless oil.

5.2 Transformations of gem-Difluoroalkenes

Procedure for 6⁵: An oven-dried 10 mL Schlenk tube was charged with Cs₂CO₃ (9.8 mg, 0.03 mmol, 10 mol%), TMSCN (89 mg, 0.90 mmol, 3 equiv), and **3a** (97 mg, 0.3 mmol), and then anhydrous MeCN (2.0 mL) was added via syringe. The resulting solution was stirred at 60 °C for 12 h. After the completion of the reaction, the mixture solution was concentrated under vacuum and the crude products were purified by column chromatography (PE/EtOAc = 20/1) to afford the desired compound 6 (62 mg, 62% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.95–7.87 (m, 3H), 7.83 (d, J = 1.9 Hz, 1H), 7.60-7.53 (m, 2H), 7.43 (dd, J = 8.5, 1.8 Hz, 1H), 7.36-7.29 (m, 2H), 7.43 (dd, J = 8.5, 1.8 Hz, 1H), 7.36-7.29 (m, 2H), 7.43 (dd, J = 8.5, 1.8 Hz, 1H), 7.36-7.29 (m, 2H), 7.43 (dd, J = 8.5, 1.8 Hz, 1H), 7.36-7.29 (m, 2H), 7.43 (dd, J = 8.5, 1.8 Hz, 1H), 7.36-7.29 (m, 2H), 7.43 (dd, J = 8.5, 1.8 Hz, 1H), 7.36-7.29 (m, 2H), 7.43 (dd, J = 8.5, 1.8 Hz, 1H), 7.36-7.29 (m, 2H), 7.43 (dd, J = 8.5, 1.8 Hz, 1H), 7.36-7.29 (m, 2H), 7.43 (dd, J = 8.5, 1.8 Hz, 1H), 7.36-7.29 (m, 2H), 7.43 (dd, J = 8.5, 1.8 Hz, 1H), 7.36-7.29 (m, 2H), 7.43 (dd, J = 8.5, 1.8 Hz, 1H), 7.36-7.29 (m, 2H), 7.43 (dd, 3H), 7.3H), 7.25–7.20 (m, 2H), 4.07 (dd, J = 8.8, 5.4 Hz, 1H), 3.28 (ddd, J = 14.2, 8.9, 2.7 Hz, 1H), 3.08 (s, 3H), 2.94 (ddd, J = 14.2, 5.4, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 140.4, 137.9$ (d, J = 15.0 Hz), 133.5 (d, J = 54.5 Hz), 129.1, 128.7, 128.5, 128.4 (d, J = 1.9 Hz), 128.2, 127.9 (d, J = 3.4 Hz), 127.4, 127.0, 126.7, 125.2 (d, J = 2.8 Hz), 87.1, 80.9 (d, J = 2.6 Hz), 56.8, 39.3; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -122.4$. Note: the signal from the impurity was observed at approximately -125 ppm in the ¹⁹F NMR spectrum. Quantitative integration analysis confirmed the impurity were present in minimal amounts (< 6%). HRMS (ESI⁺): calcd for $C_{22}H_{19}FNO [M+H]^+$ 332.1445, Found 332.1450.

Procedure for 7⁶: A solution of azole 4a (68 mg, 1.0 mmol) in DMF (1 mL) was added dropwise to a mixture of **3a** (324 mg, 1.2 mmol, 1.2 equiv) and K₃PO₄ (424.0 mg, 2 mmol, 2 equiv) in DMF (1 mL) via syringe and then stirred at room temperature for 12 h (monitored by TLC). After completion of the reaction, the mixture was quenched with H₂O (20mL). The aqueous phase was extracted with CH₂Cl₂ (3×10 mL). The organic layer was dried over MgSO₄ and filtered, and the filtrate was concentrated in vacuo. The crude product was purified by column chromatography on silica gel using a hexane/dichloromethane (10:1) mixture as eluent to afford the pure target compound 7 (189 mg, 51% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.82–7.77 (m, 1H), 7.77-7.70 (m, 2H), 7.57-7.54 (m, 1H), 7.52-7.46 (m, 2H), 7.38-7.27 (m, 5H), 7.19–7.07 (m, 1H), 7.03 (dd, J = 8.5, 1.8 Hz, 1H), 6.89 (s, 1H), 6.78 (s, 1H), 4.10 (dd, J = 8.0, 6.3 Hz, 1H), 3.27 (ddd, J = 14.2, 8.2, 2.6 Hz, 1H), 3.12 (s, 3H), 2.96 (ddd, J = 14.2, 8.2, 2.6 Hz, 1H), 3.12 (s, 3H), 2.96 (ddd, J = 14.2, 8.2, 2.6 Hz, 1H), 3.12 (s, 3H), 2.96 (ddd, J = 14.2, 8.2, 2.6 Hz, 1H), 3.12 (s, 3H), 2.96 (ddd, J = 14.2, 8.2, 2.6 Hz, 1H), 3.12 (s, 3H), 3.12 (s, 3 14.2, 6.1, 3.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 162.5, 143.7 (d, J = 260.8 Hz), 140.9, 137.2, 133.2, 132.7, 132.3 (d, J = 4.5 Hz), 129.4, 128.7, 128.4, 128.0 (d, J = 6.7 Hz), 127.7, 127.5 (d, J = 3.5 Hz), 126.8, 126.5 (d, J = 4.0 Hz), 125.8 (d, J = 2.8Hz), 118.7 (d, J = 2.4 Hz), 111.7 (d, J = 23.8 Hz), 81.1 (d, J = 2.9 Hz), 56.7, 39.1; ¹⁹F NMR (376 MHz, CDCl₃): δ = -92.6. Note: the signal observed at approximately -90 ppm in the ¹⁹F NMR spectrum likely originates from residual starting material. Quantitative integration analysis confirmed the impurity were present in minimal amounts (< 6%). HRMS (ESI⁺): calcd for C₂₄H₂₂FN₂O [M+H]⁺ 373.1711, Found 373.1713.

Procedure for 8⁷: To a solution of *gem*-difluoroalkenes **3a** (0.5 mmol) and Pd(PPh₃)₄ (28.9 mg, 0.025 mmol) in diethyl ether was added dropwise a solution of Grignard reagent in Et₂O (1.2 mmol) at room temperature under an argon atmosphere. The mixture was stirred for 2 h at reflux temperature (monitored by TLC and GC/MS). After completion of the reaction, the reaction mixture was quenched with a saturated aqueous

solution of NH4Cl (5 mL) and extracted with ethyl acetate (3× 10 mL). The combined organic layer was washed with water and brine, then dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The crude residue was then purified by column chromatography on silica gel to afford pure target compound **8** (123 mg, 78% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.87 (dd, *J* = 13.1, 8.6 Hz, 3H), 7.58 (s, 1H), 7.51 (m, 2H), 7.38–7.27 (m, 6H), 4.05–3.93 (m, 1H), 3.10 (d, *J* = 1.2 Hz, 4H), 2.83 (dd, *J* = 14.1, 6.7 Hz, 1H), 1.71 (s, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 142.2, 141.2, 133.5, 132.1, 131.2, 130.9, 128.3, 128.3, 127.9, 127.7, 127.5, 127.5, 127.0, 125.9, 125.5, 82.4, 56.6, 43.2, 22.6, 20.6; HRMS (ESI⁺): calcd for C₂₃H₂₄OK [M+K]⁺ 355.1459, Found 355.1464.

6. Mechanistic Studies

A Series of Control Experiments

(a)

In a dried Schlenk tube were placed Zn (39 mg, 0.6 mmol, 3.0 equiv). Subsequently, acetal **2a** (0.4 mmol, 2.0 equiv), TMSCl (65 mg, 0.6 mmol, 3.0 equiv) and freshly distilled DMA (2 mL) was sequentially added by a syringe under atmosphere of nitrogen. The resulting solution was stirred at 60 $^{\circ}$ C for 12h. After removal of the volatiles under vacuum, the crude product was purified by column chromatography on silica gel to afford the title compound **4** (trace).

(b)

In a dried Schlenk tube were placed CrCl₂ (2.5 mg, 0.02 mmol, 10 mmol%), dtbpy (5.2 mg, 0.02 mol, 10 mmol%) and Zn (39 mg, 0.6 mmol, 3.0 equiv). Subsequently, acetal **2a** (0.4 mmol, 2.0 equiv), TMSCl (65 mg, 0.6 mmol, 3.0 equiv) and freshly distilled DMA (2 mL) was sequentially added by a syringe under atmosphere of nitrogen. The resulting solution was stirred at 60 °C for 12h. After removal of the volatiles under vacuum, the crude product was purified by column chromatography on silica gel to afford the title compound **4**. ¹H NMR (400 MHz, CDCl₃): δ = 7.31–7.26 (m, 6H), 7.17 (dd, *J* = 7.2, 2.5 Hz, 4H), 4.31 (s, 2H), 3.16 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 138.7, 128.2, 128.0, 127.8, 87.1, 57.3. Spectroscopic data are in accordance with those described in the literature.⁸

(c)

In a dried Schlenk tube were placed $CrCl_2$ (25 mg, 0.2 mmol,1 equiv), dtbpy (52 mg, 0.2 mol, 1 equiv). Subsequently, acetal **2a** (0.4 mmol, 2.0 equiv), TMSCl (65 mg, 0.6 mmol, 3.0 equiv) and freshly distilled DMA (2 mL) was sequentially added by a syringe under atmosphere of nitrogen. The resulting solution was stirred at 60 °C for 12h. After removal of the volatiles under vacuum, the crude product was purified by column chromatography on silica gel to afford the title compound **4**.

(d)

In a dried Schlenk tube were placed CrCl₂ (2.5 mg, 0.02 mmol, 10 mmol%), dtbpy (5.2 mg, 0.02 mol, 10 mmol%) and Zn (39 mg, 0.6 mmol, 3.0 equiv). Subsequently, acetal **2a** (0.4 mmol, 2.0 equiv), TMSCl (65 mg, 0.6 mmol, 3.0 equiv), 1,1-diphenylethylene (0.8 mmol, 144.0 mg, 2.0 equiv) and freshly distilled DMA (2 mL) was sequentially added by a syringe under atmosphere of nitrogen. The resulting solution was stirred at 60 °C for 12h. After removal of the volatiles under vacuum, the crude product was purified by column chromatography on silica gel to afford the title compound **5**. ¹H NMR (400 MHz, CDCl₃): δ = 7.38–7.14 (m, 15H), 4.17 (dd, *J* = 9.5, 6.4 Hz, 1H), 3.88 (dd, *J* = 8.7, 5.0 Hz, 1H), 3.13 (s, 3H), 2.53 (ddd, *J* = 13.8, 8.7, 6.4 Hz, 1H), 2.34 (ddd, *J* = 14.1, 9.5, 5.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 144.9, 144.6, 142.3, 128.7, 128.6, 128.2, 128.0, 127.8, 126.9, 126.4, 126.3, 81.6, 56.7, 47.4, 44.4. Spectroscopic data are in accordance with those described in the literature.⁹

(e)

In a dried Schlenk tube were placed trifluoromethyl alkene **1a** (0.2 mmol, 1.0 equiv), CrCl₂ (2.5 mg, 0.02 mmol, 10 mmol%), dtbpy (5.2 mg, 0.02 mol, 10 mmol%), Zn (39 mg, 0.6 mmol, 3.0 equiv) and TEMPO (62.5 mg, 0.4 mmol, 2.0 equiv). Subsequently, acetal **2a** (0.4 mmol, 2.0 equiv), TMSCl (65 mg, 0.6 mmol, 3.0 equiv) and freshly distilled DMA (2 mL) was sequentially added by a syringe under atmosphere of nitrogen. The resulting solution was stirred at 60 °C for 12h. After removal of the volatiles under vacuum, the reaction solution was purified by column chromatography on silica gel to afford the crude product. Subsequently, we examined the crude product using high resolution mass spectra (HRMS) and detected the product **9** which formed by combination of TEMPO and *α*-methoxybenzyl radical. HRMS (ESI⁺): calcd for C₁₇H₂₈NO₂ [M+H]⁺ 278.2115, Found 278.2110.

7. Supplementary References

- (1) Zhu, C. -M.; Liang, R. -B.; Xiao, Y.; Zhou, W.; Tong, Q. -X.; Zhong, J. -J. Metal Free and Site-Selective α-C–H Functionalization of Tetrahydrofuran Enabled by the Photocatalytic Generation of Bromine Radicals. *Green Chem.* **2023**, *25*, 960–965.
- (2) Gnaim, S.; Shabat, D. Self-Immolative Chemiluminescence Polymers: Innate Assimilation of Chemiexcitation in a Domino-like Depolymerization. J. Am. Chem. Soc. 2017, 139, 10002–10008.
- (3) (a) Mei, Y.; Bentley, P. A.; Du, J. NCS with Thiourea as Highly Efficient Catalysts for Acetalization of Aldehydes. *Tetrahedron Lett.* 2009, *50*, 4199-4200. (b) Yi, H.; Niu, L.; Wang, S.; Liu, T.; Singh, A. K.; Lei, A. Visible-Light-Induced Acetalization of Aldehydes with Alcohols. *Org. Lett.* 2017, *19*, 122–125.
- (4) Lin, Z.; Lan, Y.; Wang, C. Synthesis of *gem*-Difluoroalkenes via Nickel-Catalyzed Reductive C–F and C–O Bond Cleavage. *ACS Catal.* **2019**, *9*, 775–780.
- (5) Jiang, L. -F.; Ren, B. -T.; Li, B.; Zhang, G. -Y.; Peng, Y.; Guan, Z. -Y.; Deng, Q. -H. Nucleophilic Substitution of *gem*-Difluoroalkenes with TMSNu Promoted by Catalytic Amounts of Cs₂CO₃. J. Org. Chem. **2019**, 84, 6557–6564.
- (6) Xiong, Y.; Zhang, X.; Huang, T.; Cao, S. Synthesis of *N*-(α-Fluorovinyl)azoles by the Reaction of Difluoroalkenes with Azoles. *J. Org. Chem.* **2014**, *79*, 6395–6402.
- (7) Dai, W.; Xiao, J.; Jin, G.; Wu, J.; Cao, S. Palladium- and Nickel-Catalyzed Kumada Cross-Coupling Reactions of *gem*-Difluoroalkenes and Monofluoroalkenes with Grignard Reagents. *J. Org. Chem.* **2014**, *79*, 10537–10546.
- (8) Hatano, B.; Nagahashi, K.; Habaue, S. Reductive Coupling of Aromatic Dialkyl Acetals Using the Combination of Zinc and Chlorotrimethylsilane in the Presence of Potassium Carbonate. *Chem. Lett.* **2007**, *36*, 1418–1419.
- (9) Hori, M.; Kataoka, T.; Shimizu, H.; Aoki, H. Synthesis and Reactions of 1-Thianaphthalenes. *Chem. Pharm. Bull.* **1988**, *36*, 3816–3825.
8. ¹H, ¹³C and ¹⁹F NMR Spectra

Fig. S1. ¹H NMR Spectrum of compound 3a (25 °C, 400 MHz, CDCl₃)

Fig. S4. ¹H NMR Spectrum of compound 3b (25 °C, 400 MHz, CDCl₃)

Fig. S6. ¹⁹F NMR Spectrum of compound 3b (25 °C, 376 MHz, CDCl₃)

Fig. S8. ¹³C NMR Spectrum of compound 3c (25 °C, 100 MHz, CDCl₃)

Fig. S10. ¹H NMR Spectrum of compound 3d (25 °C, 400 MHz, CDCl₃)

Fig. S12. ¹⁹F NMR Spectrum of compound 3d (25 °C, 376 MHz, CDCl₃)

Fig. S18. ¹⁹F NMR Spectrum of compound 3f (25 °C, 376 MHz, CDCl₃)

Fig. S26. ¹³C NMR Spectrum of compound 3i (25 °C, 100 MHz, CDCl₃)

Fig. S30. ¹⁹F NMR Spectrum of compound 3j (25 °C, 376 MHz, CDCl₃)

Fig. S32. ¹³C NMR Spectrum of compound 3k (25 °C, 100 MHz, CDCl₃)

Fig. S34. ¹H NMR Spectrum of compound 3l (25 °C, 400 MHz, CDCl₃)

Fig. S36. ¹⁹F NMR Spectrum of compound 3l (25 °C, 376 MHz, CDCl₃)

Fig. S42. ¹⁹F NMR Spectrum of compound **3n** (25 °C, 376 MHz, CDCl₃)

Fig. S44. ¹³C NMR Spectrum of compound 30 (25 °C, 100 MHz, CDCl₃)

Fig. S48. ¹⁹F NMR Spectrum of compound **3p** (25 °C, 376 MHz, CDCl₃)

Fig. S52. ¹H NMR Spectrum of compound 3r (25 °C, 400 MHz, CDCl₃)

Fig. S56. ¹³C NMR Spectrum of compound 3s (25 °C, 100 MHz, CDCl₃)

Fig. S60. ¹⁹F NMR Spectrum of compound 3t (25 °C, 376 MHz, CDCl₃)

Fig. S62. ¹³C NMR Spectrum of compound 3u (25 °C, 100 MHz, CDCl₃)

Fig. S66. ¹⁹F NMR Spectrum of compound 3ab (25 °C, 376 MHz, CDCl₃)

Fig. S68. ¹³C NMR Spectrum of compound 3ac (25 °C, 100 MHz, CDCl₃)

Fig. S70. ¹H NMR Spectrum of compound 3ad (25 °C, 400 MHz, CDCl₃)

Fig. S78. ¹⁹F NMR Spectrum of compound 3af (25 °C, 376 MHz, CDCl₃)

Fig. S80. ¹³C NMR Spectrum of compound 3ag (25 °C, 100 MHz, CDCl₃)

Fig. S84. ¹⁹F NMR Spectrum of compound 3ah (25 °C, 376 MHz, CDCl₃)

Fig. S88. ¹H NMR Spectrum of compound 3aj (25 °C, 400 MHz, CDCl₃)

Fig. S90. ¹⁹F NMR Spectrum of compound 3aj (25 °C, 376 MHz, CDCl₃)

Fig. S96. ¹⁹F NMR Spectrum of compound 3al (25 °C, 376 MHz, CDCl₃)

Fig. S100. ¹H NMR Spectrum of compound 3an (25 °C, 400 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -21 f1 (ppm)

Fig. S102. ¹⁹F NMR Spectrum of compound 3an (25 °C, 376 MHz, CDCl₃)

0

Fig. S104. ¹³C NMR Spectrum of compound 3ao (25 °C, 100 MHz, CDCl₃)

Fig. S106. ¹H NMR Spectrum of compound 4 (25 °C, 400 MHz, CDCl₃)

