Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Rhodium-catalyzed enantioselective hydrogenation of (1-arylvinyl)phosphonates with TADDOL-based phosphoramidite P,S ligands

Vladislav S. Zimarev, Ilya D. Firsin, Alexander V. Larin, Victor A. Tafeenko, Grigorii N. Bondarenko, Ilya V. Chuchelkin, Vladislav K. Gavrilov, Konstantin N. Gavrilov, Nataliya S. Goulioukina and Irina P. Beletskaya

Supporting Information

Table of Contents

1. General information	2
2. Synthesis of (1-arylvinyl)phosphonic acids	3
3. Synthesis of diisopropyl (1-arylvinyl)phosphonates	5
4. $Rh(I)$ -catalyzed asymmetric hydrogenation of substrates 3 and characterization of products 6	13
5. Synthesis of (<i>R</i>)-(+)-[1-(4-chlorophenyl)ethyl]phosphonic acid ((<i>R</i>)-(+)-7)	23
6. Synthesis and characterization of [Rh(COD)L3]BF ₄	23
7. References	24
8. X-Ray structure determinations	26
9. NBO atomic charges on the α -carbon atoms	38
10. ¹ H and ¹³ C NMR spectra	39
11. HPLC data	99

1. General information

¹H, ¹³C, ³¹P and ¹⁹F NMR spectra were recorded on Bruker Avance 400, 600 or Agilent 400-MR spectrometers at ambient temperature; ¹³C and ³¹P spectra were ¹H decoupled. Chemical shifts are reported on the δ -scale in ppm relative to the solvent (CDCl₃: δ_C =77.00; CD₃OD: δ_C =49.00) or the residual solvent peak (CDCl₃: δ_H =7.25; CD₃OD: δ_H =3.30) as internal standards, or to external 85% H₃PO₄ (δ_P =0) or CFCl₃ (δ_F =0). High resolution mass spectra (HRMS) were measured on the AB Sciex TripleTOF 5600+ spectrometer operated in positive ionization mode using electrospray ionization (ESI).

Optical rotations were measured on a A.KRÜSS Optronic GmbH P8000 polarimeter. Enantiomeric excesses of chiral compounds were determined by HPLC on a Stayer instrument with a UV detector at 220 nm using Daicel Chiralcel OD-H and Daicel Chiralpak AD-H columns (see data for individual compounds for details). Racemic compounds were used for comparison. Preparative column chromatography was carried out using Macherey–Nagel silica gel 60 (0.015–0.04 mm). Analytical thin-layer chromatography (TLC) was performed on aluminum backed plates (Merck, TLC Silica gel 60 F₂₅₄), spots were visualized using 254 nm ultraviolet light. Melting points were found on an Electrothermal 9100 apparatus in sealed capillaries and are uncorrected.

X-ray Crystal Structure Data were collected on a STOE diffractometer with a Pilatus100K detector, focusing mirror collimation Mo K α (0.7071Å) radiation, plane graphite monochromator, rotation method mode. STOE X-AREA software was used for cells refinement and data reduction. Data collection and image processing was performed with X-Area 1.67 (STOE & Cie GmbH, Darmstadt, Germany, 2013). Intensity data were scaled with LANA (part of X-Area) in order to minimize differences of intensities of symmetry-equivalent reflections (multi-scan method). Structures were solved and refined with SHELX program.¹ Non-hydrogen atoms were refined using the anisotropic full matrix least-square procedure. Molecular geometry calculations (see Tables S2-12) were performed with the SHELX program, and the molecular graphics were prepared using Mercury software. CCDC 2420815, 2420900, and 2207923 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data request/cif.

Geometries of vinylphosphonates **3a-r** were optimized using GAUSSIAN16² at the B3LYP-D3/6- $31+G^{**}$ level and were considered for calculating the Natural Bond Orbital (NBO) charges,³ as implemented in the same code using the Gaussian NBO Version 3.1 package.

Dichloromethane (DCM) was distilled over calcium hydride, and 1,2-dimethoxyethane (DME) was distilled over sodium benzophenon ketyl under argon prior to use.

Ligands L1-16,⁴ [Rh(COD)₂]BF₄,⁵ dimethyl (1-phenylvinyl)phosphonate (1),⁶ diethyl (1-phenylvinyl)phosphonate (2),⁷ (1-phenylvinyl)phosphonic acid,⁸⁻¹⁰ [1-(4-bromophenyl)vinyl]phosphonic acid,¹¹ [1-(4chlorophenyl)vinyl]phosphonic acid,⁸⁻¹⁰ [1-(4-methylphenyl)vinyl]phosphonic acid,⁸⁻¹⁰ [1-(4-isobutylphenyl)vinyl]phosphonic acid,¹¹ [1-(4-diphenyl)vinyl]phosphonic acid,⁸ [1-(naphthalen-2-yl)vinyl]phosphonic acid,⁸ [1-(naphthalen-1-yl)vinyl]phosphonic acid,^{8,9} (*E*)-*N*,*N*-dimethyl-4-(2-nitrovinyl)aniline,¹² (*E*)-1methoxy-2-(2-nitrovinyl)benzene,¹³ (*E*)-1-methoxy-3-(2-nitrovinyl)benzene,^{14,15} (*E*)-1-methoxy-4-(2-nitrovinyl)-benzene,^{14,15} (*E*)-2-methoxy-6-(2-nitrovinyl)naphthalene,¹⁵ (*E*)-3-(2-nitrovinyl)-1*H*-indol,¹⁶ (*E*)-(3-nitroallyl)benzene,¹⁵ triisopropyl orthoformate,¹⁷ were obtained as previously described. Other reagents were purchased from commercial suppliers and used as received.

2. Synthesis of (1-arylvinyl)phosphonic acids

General procedure: Freshly distilled phosphorus trichloride (3.7 ml, 42 mmol, 1.4 equiv.) was slowly added dropwise to the acylated arene (30 mmol, 1 equiv.) under an inert atmosphere. The mixture was stirred for another hour. Glacial acetic acid (5.2 ml, 90 mmol, 3 equiv.) was then added dropwise. The reaction mixture was stirred overnight, then poured onto ice and left for 1 h. The volatile materials were removed on a rotary evaporator at 90°C. The residue was dissolved in boiling concentrated hydrochloric acid and the mixture was refluxed for 3-29 h. The solution was cooled and precipitated solid (1-arylvinyl)phosphonic acid was collected and dried in a vacuum desiccator over NaOH.

[1-(3-Chlorophenyl)vinyl]phosphonic acid. The time of the reflux with conc. HCl was 25 h. The product was obtained as beige flaky crystals in 67% yield; mp 115-117°C, $R_{\rm f}$ 0.41 (MeOH/CHCl₃ 2 : 1). ³¹P NMR (162 MHz, CD₃OD, δ): 14.4. ¹H NMR (400 MHz,

CD₃OD, δ): 6.04 (dd, ²*J*_{H,H}=1.4 Hz, ³*J*_{H,P}=43.5 Hz, 1H, *trans*-PC=CH), 6.22 (dd, ²*J*_{H,H}=1.4 Hz, ³*J*_{H,P}=21.5 Hz, 1H, *cis*-PC=CH), 7.31-7.36 (m, 2H, CH_{Ar}), 7.49 (m, 1H, CH_{Ar}), 7.61 (m, 1H, CH_{Ar}). ¹³C NMR (101 MHz, CD₃OD, δ): 127.13 (d, ³*J*_{C,P}=5.8 Hz, CH_{Ar}), 128.68 (d, ³*J*_{C,P}=5.4 Hz, CH_{Ar}), 129.02 (CH_{Ar}), 130.12 (d, ²*J*_{C,P}=7.0 Hz, H₂C=), 130.87 (CH_{Ar}), 135.17 (CCl_{Ar}), 141.02 (d, ²*J*_{CP}=12.3 Hz, C_{Ar}), 143.43 (d, ¹*J*_{C,P}=175.8 Hz, =CP). HRMS (ESI): found 436.9877, calcd. for [2M + H]⁺ (C₁₆H₁₇Cl₂O₆P₂) 436.9872.

[1-(4-Fluorophenyl)vinyl]phosphonic acid.¹¹ The time of the reflux with conc. HCl was 10 h. The product was obtained as beige flaky crystals in 58% yield; mp 134°C,*R* $_f 0.34 (MeOH/CHCl₃ 2 : 1). ³¹P NMR (162 MHz, CD₃OD, <math>\delta$): 15.1 (⁶*J*_{P,F}=1.2 Γ u). ¹H NMR (400 MHz, CD₃OD, δ): 6.00 (br d, ³*J*_{H,P}=44.0 Hz, 1H, *trans*-PC=CH), 6.17 (br d, ³*J*_{H,P}=21.6 Hz, 1H, *cis*-PC=CH), 7.07 (dd, ³*J*_{H,H}=8.8 Hz, ³*J*_{H,F}=8.6 Hz, 2H, CH_{Ar}), 7.59 (ddd, ³*J*_{H,H}=8.8 Hz, ⁴*J*_{H,F}=5.5 Hz, ⁴*J*_{H,P}=0.9 Hz, 2H, CH_{Ar}). ¹³C NMR (101 MHz, CD₃OD, δ): 115.98 (d, ²*J*_{C,F}=21.7 Hz, CH_{Ar}), 129.16 (d, ²*J*_{C,P}=7.8 Hz, H₂C=), 130.66 (dd, ³*J*_{C,P}=5.6 Hz, ³*J*_{C,F}=8.1 Hz, CH_{Ar}), 135.17 (dd, ²*J*_{C,P}=12.4 Hz, ⁴*J*_{C,F}=3.6 Hz, C_{Ar}), 143.43 (d, ¹*J*_{C,P}=176.9 Hz, =CP), 164.08 (dd, ¹*J*_{C,F}=245.9 Hz, ⁵*J*_{C,P}=0.7 Hz, CF_{Ar}). ¹⁹F NMR (376 MHz, CD₃OD, δ): -116.43 (ddt, ³*J*_{H,F}=8.6 Hz, ⁴*J*_{H,F}=5.5 Hz, ⁶*J*_{P,F}=1.2 Hz).

F PO₃F

[1-(3,4-Difluorophenyl)vinyl]phosphonic acid. The time of the reflux with conc. HCl was 29 h. The product was obtained as a light grey solid in 56% yield; mp 131-135°C, $R_{\rm f}$

0.66 (MeOH/CHCl₃ 2 : 1). ³¹P NMR (162 MHz, CD₃OD, δ): 14.1 (⁶*J*_{P,F}=1.4 Hz). ¹H NMR (400 MHz, CD₃OD, δ): 6.00 (dd, ²*J*_{H,H}=1.2 Hz, ³*J*_{H,P}=43.3 Hz, 1H, *trans*-PC=CH), 6.21 (dd, ²*J*_{H,H}=1.2 Hz, ³*J*_{H,P}=21.5 Hz, 1H, *cis*-PC=CH), 7.23 (ddd, ³*J*_{H,H}=8.6 Hz, ³*J*_{H,F}=10.4 Hz, ⁴*J*_{H,F}=8.5 Hz, 1H, CH_{Ar}), 7.37 (ddddd, ³*J*_{H,H}=8.6 Hz, ⁴*J*_{H,H}=2.1 Hz, ⁴*J*_{H,F}=1.3 Hz, ⁴*J*_{H,F}=4.1 Hz, ⁵*J*_{H,F}=1.5 Hz, 1H, CH_{Ar}), 7.51 (dddd, ⁴*J*_{H,H}=2.1 Hz, ⁴*J*_{H,P}=1.3 Hz, ⁴*J*_{H,F}=7.8 Hz, 1H, CH_{Ar}). ¹³C NMR (101 MHz, CD₃OD, δ): 117.74 (dd, ³*J*_{C,F}=5.4 Hz, ²*J*_{C,F}=18.5 Hz, CH_{Ar}), 118.17 (d, ²*J*_{C,F}=17.5 Hz, CH_{Ar}), 125.39 (ddd, ³*J*_{C,F}=6.2 Hz, ³*J*_{C,F}=6.2 Hz, ⁴*J*_{C,F}=4.0 Hz, ⁴*J*_{C,F}=3.6 Hz, CH_{Ar}), 130.00 (d, ²*J*_{C,P}=7.4 Hz, H₂C=), 136.26 (ddd, ²*J*_{C,P}=12.8 Hz, ³*J*_{C,F}=6.3 Hz, ⁴*J*_{C,F}=4.0 Hz, C_{Ar}), 142.61 (d, ¹*J*_{C,F}=17.5 Hz, CF_{Ar}). ¹⁹F NMR (376 MHz, CD₃OD, δ): -141.63 (ddddd, ³*J*_{F,F}=20.8 Hz, ³*J*_{H,F}=10.4 Hz, ⁴*J*_{H,F}=7.8 Hz, C(3')F). HRMS (ESI): found 221.0171, calcd. for [M + H]⁺ (C₈H₇O₃F₂P) 221.0174.

[1-(3-Nitrophenyl)vinyl]phosphonic acid. PCl₃ was added at 80°C, the resulting O_2N PO₃H₂ mixture was stirred at 80°C for 30 min, then cooled to 45°C. After the addition of AcOH, the reaction mixture was stirred at 45°C for 5 h, then left overnight at room temperature. The time of the reflux with conc. HCl was 3 h. After the removal of volatiles, the residue was diluted with toluene (100 ml) and the mixture was refluxed with a Dean-Stark trap for 15 h. The solvent was removed by rotary evaporation and the residue was recrystallized twice from water (the first time using hot filtration). The product was obtained as beige flaky crystals in 54% yield; mp 150-152°C, Rf 0.28 (MeOH/CHCl₃ 2 : 1). ³¹P NMR (162 MHz, CD₃OD, δ): 13.4. ¹H NMR (400 MHz, CD₃OD, δ): 6.16 (dd, ${}^{2}J_{H,H}$ =1.2 Hz, ${}^{3}J_{H,P}$ =43.1 Hz, 1H, trans-PC=CH), 6.31 (dd, ${}^{2}J_{H,H}$ =1.2 Hz, ${}^{3}J_{H,P}$ =21.5 Hz, 1H, cis-PC=CH), 7.61 (dddd, 1H, ${}^{3}J_{H,H}$ =8.3 Hz, ${}^{3}J_{H,H}$ =7.8 Hz, ${}^{5}J_{H,H}$ =0.4 Hz, ${}^{5}J_{H,P}$ =0.8 Hz, 1H, CH_{Ar}), 7.96 (dddd, ${}^{3}J_{H,H}$ =7.8 Hz, ${}^{4}J_{H,H}$ =1.7 Hz, ${}^{4}J_{H,H}$ =0.9 Hz, ${}^{4}J_{H,P}$ =1.5 Hz, 1H, CH_{Ar}), 8.20 (dddd, ${}^{3}J_{H,H}$ =8.3 Hz, ${}^{4}J_{H,H}$ =2.3 Hz, ${}^{4}J_{H,H}$ =0.9 Hz, ${}^{6}J_{H,P}$ =0.9 Hz, 1H, CH_{Ar}), 8.48 (dddd, ${}^{4}J_{H,H}$ =2.3 Hz, ${}^{4}J_{H,H}$ =1.7 Hz, ${}^{5}J_{H,H}$ =0.4 Hz, ${}^{4}J_{H,P}$ =1.3 Hz, 1H, CH_{Ar}). ¹³C NMR (101 MHz, CD₃OD, δ): 123.49 (d, ³J_{CP}=5.3 Hz, CH_{Ar}), 123.75 (d, ⁵J_{CP}=0.8 Hz, CH_{Ar}), 130.67 (CH_{Ar}), 131.07 (d, ${}^{2}J_{C,P}$ =7.2 Hz, H₂C=), 134.88 (d, ${}^{3}J_{C,P}$ =5.6 Hz, CH_{Ar}), 140.87 (d, ${}^{2}J_{C,P}$ =12.6 Hz, C_{Ar}), 143.03 (d, ${}^{3}J_{C,P}=177.1$ Hz, =CP), 149.62 (CN_{Ar}). HRMS (ESI): found 230.0216, calcd. for [M + H]⁺ (C₈H₉NO₅P) 230.0213.

[1-(4-Cyclohexylphenyl)vinyl]phosphonic acid. PCl₃ was added at 80°C, the resulting mixture was stirred at 80°C for 1 h, then cooled to 30°C. After the addition of AcOH, the reaction mixture was stirred at 30°C for 5 h, then left overnight at room temperature. The

CH_{Ar}). ¹³C NMR (101 MHz, CD₃OD, δ): 27.24 (CH_{2 Cy}), 27.97 (2CH_{2 Cy}), 35.62 (2CH_{2 Cy}), 45.71 (CH_{Cy}), 127.75 (CH_{Ar}), 128.34 (d, ²*J*_{C,P}=7.9 Hz, H₂C=), 128.65 (d, ³*J*_{C,P}=5.7 Hz, CH_{Ar}), 136.38 (d, ²*J*_{C,P}=11.9 Hz, C_{Ar}), 144.25 (d, ¹*J*_{C,P}=174.3 Hz, =CP), 149.24 (C_{Ar}). HRMS (ESI): found 267.1147, calcd. for [M + H]⁺ (C₈H₉NO₅P) 267.1145.

[1-(5,6,7,8-Tetrahydronaphthalen-2-yl)vinyl]phosphonic. PCl₃ was added at 80°C,
 ^{H2} the resulting mixture was stirred at 80°C for 1 h, then cooled to 35°C. After the addition of AcOH, the reaction mixture was stirred at 35°C for 2.5 h, then left overnight at room

temperature. The time of the reflux with conc. HCl was 3 h. The product was obtained as a grayish solid in 74% yield after recrystallization from toluene; mp 188°C, R_f 0.31 (MeOH/CHCl₃ 2 : 1). ³¹P NMR (162 MHz, CD₃OD, δ): 15.9. ¹H NMR (400 MHz, CD₃OD, δ): 1.77 (m, 4H, CH₂), 2.73 (m, 4H, CH₂), 5.95 (dd, ²J_{H,H}=1.6 Hz, ³J_{H,P}=44.6 Hz, 1H, *trans*-PC=CH), 6.11 (dd, ²J_{H,H}=1.6 Hz, ³J_{H,P}=21.8 Hz, 1H, *cis*-PC=CH), 6.99 (d, ³J_{H,H}=8.4 Hz, 1H, CH_{Ar}) 7.25-7.28 (m, 2H, CH_{Ar}). ¹³C NMR (101 MHz, CD₃OD, δ): 24.37 (2CH₂), 30.10 (CH₂), 30.41 (CH₂), 125.78 (d, ³J_{C,P}=5.9 Hz, CH_{Ar}), 128.12 (d, ²J_{C,P}=7.9 Hz, H₂C=), 129.19 (d, ³J_{C,P}=5.6 Hz, CH_{Ar}), 129.94 (CH_{Ar}), 135.90 (d, ¹J_{C,P}=12.0 Hz, C_{Ar}), 137.92 (C_{Ar}), 138.11 (C_{Ar}), 144.22 (d, ¹J_{C,P}=173.4 Hz, =CP). HRMS (ESI): found 239.0834, calcd. for [M + H]⁺ (C₁₂H₁₆O₃P) 239.0832.

(*E*)-(1-Phenylprop-1-en-1-yl)phosphonic acid.¹⁸ The time of the reflux with conc. HCl was 5 h. The mixture of (*E*)- and (*Z*)-isomers (in a ratio of 65% *E* to 35% *Z*) was collected as a white solid in 88% yield. (*E*)-Isomer was isolated by fractional crystallization from chloroform; mp 174°C, R_f 0.74 (MeOH/CHCl₃ 2 : 1). ³¹P NMR (162 MHz, CD₃OD, δ): 16.5. ¹H NMR (400 MHz, CD₃OD, δ): 1.65 (dd, ³*J*_{H,H}=6.9 Hz, ⁴*J*_{H,P}=3.3 Hz, 3H, CH₃), 6.81 (dq, ³*J*_{H,H}=6.9 Hz, ³*J*_{H,P}=22.6 Hz, 1H, =CH), 7.25 (m, 2H, CH_{Ph}), 7.29 (m, 1H, CH_{Ph}), 7.36 (m, 2H, CH_{Ph}). ¹³C NMR (101 MHz, CD₃OD, δ): 15.49 (d, ³*J*_{C,P}=18.3 Hz, CH₃), 128.36 (CH_{Ph}), 129.22 (CH_{Ph}), 130.65 (CH_{Ph}), 136.97 (d, ²*J*_{C,P}=10.6 Hz, C_{Ph}), 137.08 (d, ¹*J*_{C,P}=180.8 Hz, =CP), 141.04 (d, ²*J*_{C,P}=9.2 Hz, =CHMe).

3. Synthesis of diisopropyl (1-arylvinyl)phosphonates

Method A

General procedure: A mixture of (1-arylvinyl)phosphonic acid (4 mmol, 1 equiv.) and triisopropyl orthoformate (2.7 ml, 12 mmol, 3 equiv.) was slowly heated under an inert atmosphere, isopropyl formate and propanol-2 being allowed to distil off. After the removal of volatiles, the reaction mixture was heated at 150°C for 3-12 h until the reaction was complete (TLC control). The excess triisopropyl orthoformate was

removed under reduced pressure, and the residue was purified by vacuum distillation or by column chromatography to afford pure diisopropyl 1-arylvinylphosphonate as a viscous oil.

Diisopropyl (1-phenylvinyl)phosphonate (3a). The synthesis was carried out on a 16 mmol scale, the reaction time was 8 h. The product was isolated by vacuum distillation as a colorless viscous oil in 65% yield; bp 114-117°C/0.6 torr. ³¹P NMR (162 MHz, CDCl₃,

b): 15.5. ¹H NMR (400 MHz, CDCl₃, δ): 1.18 (d, ${}^{3}J_{H,H}$ =6.2 Hz, 6H, CH₃), 1.32 (d, ${}^{3}J_{H,H}$ =6.2 Hz, 6H, CH₃), 4.69 (m, 2H, OCH), 6.12 (dd, ${}^{2}J_{H,H}$ =1.6 Hz, ${}^{3}J_{H,P}$ =45.6 Hz, 1H, *trans*-PC=CH), 6.33 (dd, ${}^{2}J_{H,H}$ =1.6 Hz, ${}^{3}J_{H,P}$ =21.9 Hz, 1H, *cis*-PC=CH), 7.28-7.36 (m, 3H, CH_{Ph}), 7.54 (m, ${}^{3}J_{H,H}$ =8.0 Hz, ${}^{4}J_{H,H}$ =1.3 Hz, ${}^{4}J_{H,P}$ =1.3 Hz, 2H, CH_{Ph}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.54 (d, ${}^{3}J_{C,P}$ =5.0 Hz, CH₃), 23.96 (d, ${}^{3}J_{C,P}$ =3.8 Hz, CH₃), 70.84 (d, ${}^{2}J_{C,P}$ =5.9 Hz, OCH), 127.43 (d, ${}^{3}J_{C,P}$ =5.7 Hz, CH_{Ph}), 128.16 (CH_{Ph}), 127.97 (d, ${}^{5}J_{C,P}$ =1.1 Hz, CH_{Ph}), 130.99 (d, ${}^{2}J_{C,P}$ =8.0 Hz, H₂C=), 136.91 (d, ${}^{2}J_{C,P}$ =11.7 Hz, C_{Ph}), 140.90 (d, ${}^{1}J_{C,P}$ =175.3 Hz, =CP). HRMS (ESI): found 269.1302, calcd. for [M + H]⁺ (C₁₄H₂₂O₃P) 269.1301.

 $\begin{array}{l} \textbf{Diisopropyl [1-(4-bromophenyl)vinyl]phosphonate (3b). The reaction time was 10} \\ \textbf{h. The product was isolated by column chromatography on silica gel (EtOAc/petroleum ether 1 : 2) as a colorless viscous oil in 83% yield; <math>R_{\rm f}$ 0.25 (EtOAc/petroleum ether 1 : 2), $R_{\rm f}$ 0.29 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 14.6. ¹H NMR (400 MHz, CDCl₃, δ): 1.13 (d, ³J_{H,H}=6.2 Hz, 6H, CH₃), 1.24 (d, ³J_{H,H}=6.2 Hz, 6H, CH₃), 4.62 (m, 2H, OCH), 6.03 (dd, ²J_{H,H}=1.5 Hz, ³J_{H,P}=45.2 Hz, 1H, *trans*-PC=CH), 6.26 (dd, ²J_{H,H}=1.5 Hz, ³J_{H,P}=21.9 Hz, 1H, *cis*-PC=CH), 7.35 (dd, ³J_{AB}=8.9 Hz, ⁴J_{H,P}=1.0 Hz, 2H, CH_{Ar}), 7.38 (d, ³J_{AB}=8.5 Hz, 2H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.39 (d, ³J_{C,P}=4.8 Hz, CH₃), 23.76 (d, ³J_{C,P}=3.1 Hz, CH₃), 70.76 (d, ²J_{C,P}=5.9 Hz, OCH), 122.05 (CBr_{Ar}), 128.89 (d, ³J_{C,P}=5.9 Hz, CH_{Ar}), 131.00 (d, ²J_{C,P}=8.2 Hz, H₂C=), 131.12 (CH_{Ar}), 135.60 (d, ²J_{C,P}=11.9 Hz, C_{Ar}), 139.76 (d, ¹J_{C,P}=176.9 Hz, =CP). HRMS (ESI): found 347.0409, calcd. for [M + H]⁺ (C₁₄H₂₁BrO₃P) 347.0406.

Diisopropyl [1-(3-chlorophenyl)vinyl]phosphonate (3c). The reaction time was 10 h. The product was isolated by column chromatography on silica gel (*i*-PrOH/ petroleum ether 1 : 15) as a colorless viscous oil in 82% yield; $R_{\rm f}$ 0.27 (*i*-PrOH/ petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 14.1. ¹H NMR (400 MHz, CDCl₃, δ): 1.19 (d, ³ $J_{\rm H,H}$ =6.2 Hz, 6H, CH₃), 1.30 (d, ³ $J_{\rm H,H}$ =6.2 Hz, 6H, CH₃), 4.67 (m, 2H, OCH), 6.09 (dd, ² $J_{\rm H,H}$ =1.5 Hz, ³ $J_{\rm H,P}$ =45.0 Hz, 1H, *trans*-PC=CH), 6.33 (dd, ² $J_{\rm H,H}$ =1.5 Hz, ³ $J_{\rm H,P}$ =21.8 Hz, 1H, *cis*-PC=CH), 7.23 (t, ³ $J_{\rm H,H}$ =8.0 Hz, CH_{Ar}), 7.25 (m, ³ $J_{\rm H,H}$ =8.0 Hz, CH_{Ar}), 7.40 (m, CH_{Ar}), 7.50 (m, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.63 (d, ³ $J_{\rm C,P}$ =4.9 Hz, CH₃) 23.98 (d, ³ $J_{\rm C,P}$ =3.8 Hz, CH₃), 71.12 (d, ² $J_{\rm C,P}$ =6.0 Hz, OCH), 125.74 (d, ³ $J_{\rm C,P}$ =5.3 Hz, CH_{Ar}), 127.58 (d, ³ $J_{\rm C,P}$ =6.0 Hz, CH_{Ar}), 128.07 (CH_{Ar}), 129.45 (CH_{Ar}), 131.80 (d, ² $J_{\rm C,P}$ =7.8 Hz, H₂C=), 134.09 (CCl_{Ar}), 138.77 (d, ² $J_{\rm C,P}$ =11.9 Hz, C_{Ar}), 140.04 (d, ¹ $J_{\rm C,P}$ =177.4 Hz, =CP). HRMS (ESI): found 303.0913, caled. for [M + H]⁺ (C₁₄H₂₁ClO₃P) 303.0911. P(O)(OⁱPr)₂

Diisopropyl [1-(4-chlorophenyl)vinyl]phosphonate (3d). The reaction time was 4 h. The product was isolated by column chromatography on silica gel (EtOAc/petroleum ether 1 : 2) as a colorless viscous oil in 87% yield; R_f 0.21 (EtOAc/petroleum ether

1 : 2), $R_{\rm f}$ 0.28 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 14.9. ¹H NMR (400 MHz, CDCl₃, δ): 1.18 (d, ³ $J_{\rm H,H}$ =6.2 Hz, 6H, CH₃), 1.30 (d, ³ $J_{\rm H,H}$ =6.2 Hz, 6H, CH₃), 4.67 (m, 2H, OCH), 6.08 (dd, ² $J_{\rm H,H}$ =1.4 Hz, ³ $J_{\rm H,P}$ =45.2 Hz, 1H, *trans*-PC=CH), 6.31 (dd, ² $J_{\rm H,H}$ =1.4 Hz, ³ $J_{\rm H,P}$ =21.9 Hz, 1H, *cis*-PC=CH), 7.29 (d, ³ $J_{\rm AB}$ =8.5 Hz, 2H, CH_{Ar}), 7.46 (dd, ³ $J_{\rm AB}$ =8.5 Hz, ⁴ $J_{\rm H,P}$ =1.2 Hz, 2H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.64 (d, ³ $J_{\rm C,P}$ =5.2 Hz, CH₃), 24.01 (d, ³ $J_{\rm C,P}$ =3.6 Hz, CH₃), 71.06 (d, ² $J_{\rm C,P}$ =5.9 Hz, OCH), 128.43 (CH_{Ar}), 128.83 (d, ³ $J_{\rm C,P}$ =5.7 Hz, CH_{Ar}), 131.25 (d, ² $J_{\rm C,P}$ =7.6 Hz, H₂C=), 134.08 (CCl_{Ar}), 135.40 (d, ² $J_{\rm C,P}$ =11.6 Hz, C_{Ar}), 139.97 (d, ¹ $J_{\rm C,P}$ =176.9 Hz, =CP). HRMS (ESI): found 303.0909, calcd. for [M + H]⁺ (C₁₄H₂₁ClO₃P) 303.0911.

Diisopropyl [1-(4-fluorophenyl)vinyl]phosphonate (3e). The reaction time was 9 h. $P(O)(O^{i}Pr)_2$ The product was isolated by column chromatography on silica gel (6-7 vol.% *i*-PrOH in petroleum ether) as a colorless viscous oil in 61% yield; R_f 0.27 (*i*-PrOH/petroleum

ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 15.1 (${}^{6}J_{P,F}$ =1.7 Γµ). ¹H NMR (400 MHz, CDCl₃, δ): 1.19 (d, ³J_{H,H}=6.2 Hz, 6H, CH₃), 1.32 (d, ³J_{H,H}=6.2 Hz, 6H, CH₃), 4.69 (m, 2H, OCH), 6.07 (dd, ²J_{H,H}=1.2 Hz, ³J_{H,P}=45.4 Hz, 1H, *trans*-PC=CH), 6.30 (dd, ²J_{H,H}=1.2 Hz, ³J_{H,P}=21.8 Hz, 1H, *cis*-PC=CH), 7.02 (dd, ³J_{H,H}=8.9 Hz, ³J_{H,F}=8.4 Hz, 2H, CH_{Ar}), 7.52 (ddd, ³J_{H,H}=8.9 Hz, ⁴J_{H,P}=1.1 Hz, ⁴J_{H,F}=5.4 Hz, 2H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.50 (d, ³J_{C,P}=5.3 Hz, CH₃), 23.89 (d, ³J_{C,P}=3.3 Hz, CH₃), 71.90 (d, ²J_{C,P}=5.9 Hz, OCH), 115.05 (d, ²J_{C,F}=21.5 Hz, CH_{Ar}), 129.18 (dd, ³J_{C,P}=5.5 Hz, ³J_{C,F}=8.0 Hz, CH_{Ar}), 130.71 (d, ²J_{C,P}=7.7 Hz, H₂C=), 132.88 (dd, ²J_{C,P}=12.2 Hz, ⁴J_{C,F}=3.2 Hz, C_{Ar}), 139.87 (d, ¹J_{C,P}=176.7 Hz, =CP), 162.53 (d, ¹J_{C,F}=247.7 Hz, CF_{Ar}). ¹⁹F NMR (376 MHz, CDCl₃, δ): -113.96 (dtt, ³J_{H,F}=8.4 Hz, ⁴J_{H,F}=5.4 Hz, ⁶J_{P,F}=1.7 Hz). HRMS (ESI): found 287.1206, calcd. for [M + H]⁺ (C₁₄H₂₁FO₃P) 287.1207.

Diisopropyl [1-(3,4-difluorophenyl)vinyl]phosphonate (3f). The reaction time was 8 h. The product was isolated by column chromatography on silica gel (20–33 vol.% EtOAc in petroleum ether) as a colorless viscous oil in 90% yield; R_f 0.30 (EtOAc/petroleum ether 1 : 2). ³¹P NMR (162 MHz, CDCl₃, δ): 14.4 (${}^{6}J_{P,F}$ =1.7 Гц). ¹H NMR (400 MHz, CDCl₃, δ): 1.21 (d, ${}^{3}J_{H,H}$ =6.2 Hz, 6H, CH₃), 1.32 (d, ${}^{3}J_{H,H}$ =6.2 Hz, 6H, CH₃), 4.70 (m, 2H, OCH), 6.08 (dd, ${}^{2}J_{H,H}$ =1.3 Hz, ${}^{3}J_{H,P}$ =44.8 Hz, 1H, *trans*-PC=CH), 6.32 (dd, ${}^{2}J_{H,H}$ =1.3 Hz, ${}^{3}J_{H,P}$ =21.7 Hz, 1H, *cis*-PC=CH), 7.11 (dddd, ${}^{3}J_{H,H}$ =6.4 Hz, ${}^{5}J_{H,P}$ =10.1 Hz, ${}^{4}J_{H,F}$ =8.3 Hz, 1H, CH_{Ar}) 7.26 (ddddd, ${}^{3}J_{H,H}$ =8.5 Hz, ${}^{4}J_{H,H}$ =2.2 Hz, ${}^{4}J_{H,F}$ =4.2 Hz, ${}^{5}J_{H,P}$ =10.1 Hz, ${}^{4}J_{H,F}$ =8.3 Hz, 1H, CH_{Ar}) 7.26 (ddddd, ${}^{3}J_{H,H}$ =8.5 Hz, ${}^{3}J_{H,F}$ =11.6 Hz, ${}^{4}J_{H,F}$ =7.6 Hz, 1H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.56 (d, ${}^{3}J_{C,P}$ =4.9 Hz), 23.90 (d, ${}^{3}J_{C,P}$ =3.9 Hz, CH₃), 71.14 (d, ${}^{2}J_{C,P}$ =5.9 Hz, OCH), 116.59 (dd, ${}^{3}J_{C,P}$ =3.6 Hz, CH_{Ar}), 131.45 (dd, ${}^{2}J_{C,P}$ =7.8 Hz, ${}^{4}J_{C,F}$ =10.9 Hz, H₂C=), 133.86 (ddd, ${}^{2}J_{C,P}$ =12.2 Hz, ${}^{4}J_{C,F}$ =4.1 Hz, CA_Ar), 139.27 (ddd, ${}^{1}J_{C,P}$ =178.3 Hz, ${}^{4}J_{C,F}$ =1.5 Hz, ${}^{5}J_{C,F}$ =0.9 Hz, CCP), 149.78 (dd, ${}^{1}J_{C,F}$ =247.6 Hz, 2 $J_{C,F}$ =12.4 Hz, CF_{Ar}), 150.12 (ddd, ${}^{5}J_{C,P}=1.1$ Hz, ${}^{1}J_{C,F}=249.5$ Hz, ${}^{2}J_{C,F}=12.4$ Hz, CF_{Ar}). ${}^{19}F$ NMR (376 MHz, CDCl₃, δ): -138.38 (ddddd, ${}^{3}J_{F,F}=21.4$ Hz, ${}^{3}J_{H,F}=10.1$ Hz, ${}^{4}J_{H,F}=7.6$ Hz, ${}^{4}J_{H,F}=4.2$ Hz, ${}^{6}J_{P,F}=1.7$ Hz, C(4')F), -137.53 (dddd, ${}^{3}J_{F,F}=21.4$ Hz, ${}^{3}J_{H,F}=11.6$ Hz, ${}^{4}J_{H,F}=8.3$ Hz, ${}^{5}J_{H,F}=1.1$ Hz, C(3')F). HRMS (ESI): found 305.1109, calcd. for [M + H]⁺ (C₁₄H₂₀F₂O₃P) 305.1113.

0₂N P(0)(0ⁱF

Diisopropyl [1-(3-nitrophenyl)vinyl]phosphonate (3h). The reaction time was 12 $P(O)(O'Pr)_2$ h. The product was isolated by column chromatography on silica gel (*i*-PrOH/petroleum ether 1 : 15) as a yellowish viscous oil in 78% yield; R_f 0.24 (*i*-

PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 13.9. ¹H NMR (400 MHz, CDCl₃, δ): 1.21 (d, ³ $J_{H,H}$ =6.2 Hz, 6H, CH₃), 1.32 (d, ³ $J_{H,H}$ =6.2 Hz, 6H, CH₃), 4.72 (m, 2H, OCH), 6.20 (dd, ² $J_{H,H}$ =1.1 Hz, ³ $J_{H,P}$ =44.6 Hz, 1H, *trans*-PC=CH), 6.44 (dd, ² $J_{H,H}$ =1.1 Hz, ³ $J_{H,P}$ =21.8 Hz, 1H, *cis*-PC=CH), 7.51 (br dd, ³ $J_{H,H}$ =8.2 Hz, ³ $J_{H,H}$ =7.8 Hz, 1H, CH_{Ar}), 7.86 (dddd, ³ $J_{H,H}$ =7.8 Hz, ⁴ $J_{H,H}$ =0.9 Hz, ⁴ $J_{H,H}$ =0.9 Hz, ⁴ $J_{H,P}$ =1.5 Hz, 1H, CH_{Ar}), 8.15 (dddd, ³ $J_{H,H}$ =8.2 Hz, ⁴ $J_{H,H}$ =2.2 Hz, ⁴ $J_{H,H}$ =1.7 Hz, ⁴ $J_{H,H}$ =1.7 Hz, ⁴ $J_{H,P}$ =1.2 Hz, 1H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.69 (d, ³ $J_{C,P}$ =4.8 Hz, CH₃) 23.97 (d, ³ $J_{C,P}$ =4.0 Hz, CH₃), 71.51 (d, ² $J_{C,P}$ =6.1 Hz, OCH), 122.49 (d, ³ $J_{C,P}$ =5.7 Hz, CH_{Ar}), 122.85 (d, ⁵ $J_{C,P}$ =0.9 Hz, CH_{Ar}), 129.27 (CH_{Ar}), 132.87 (d, ² $J_{C,P}$ =7.6 Hz, H₂C=), 133.50 (d, ³ $J_{C,P}$ =5.4 Hz, CH_{Ar}), 138.67 (d, ² $J_{C,P}$ =12.1 Hz, CH_{Ar}), 139.43 (d, ¹ $J_{C,P}$ =179.6 Hz, =CP), 148.16 (CN_{Ar}). HRMS (ESI): found 314.1153, calcd. for [M + H]⁺ (C₁₄H₂₁NO₅P) 314.1152.

Diisopropyl [1-(4-methylphenyl)vinyl]phosphonate (31). The reaction time was 10 h. The product was isolated by column chromatography on silica gel (EtOAc/petroleum ether 1 : 2) as a colorless viscous oil in 90% yield; R_f 0.36 (EtOAc/petroleum ether 1 : 2), R_f 0.23 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 15.8. ¹H NMR (400 MHz, CDCl₃, δ): 1.18 (d, ³J_{H,H}=6.2 Hz, 6H, CH₃), 1.31 (d, ³J_{H,H}=6.2 Hz, 6H, CH₃), 2.34 (s, 3H, CH₃), 4.68 (m, 2H, OCH), 6.10 (dd, ²J_{H,H}=1.7 Hz, ³J_{H,P}=45.7 Hz, 1H, *trans*-PC=CH), 6.29 (dd, ²J_{H,H}=1.7 Hz, ³J_{H,P}=21.9 Hz, 1H, *cis*-PC=CH), 7.13 (d, ³J_{AB}=8.0 Hz, 2H, CH_{Ar}), 7.43 (dd, ³J_{AB}=8.0 Hz, ⁴J_{H,P}=1.1 Hz, 2H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 20.86 (CH₃), 23.39 (d, ³J_{C,P}=5.0 Hz, CH₃) 23.81 (d, ³J_{C,P}=3.8 Hz, CH₃), 70.55 (d, ²J_{C,P}=5.8 Hz, OCH), 127.12 (d, ³J_{C,P}=5.8 Hz, CH_{Ar}), 128.70 (CH_{Ar}), 130.02 (d, ²J_{C,P}=8.3 Hz, H₂C=), 133.75 (d, ²J_{C,P}=11.7 Hz, C_{Ar}), 137.61 (d, ⁵J_{C,P}=1.0 Hz, CMe_{Ar}), 140.45 (d, ¹J_{C,P}=174.6 Hz, =CP). HRMS (ESI): found 283.1454, calcd. for [M + H]⁺ (C₁₅H₂₄O₃P) 283.1458.

P(O)(OⁱPr)₂

Diisopropyl [1-(4-isobuthylphenyl)vinyl]phosphonate (3m). The reaction time was $10^{1/2}$ 10 h. The product was isolated by column chromatography on silica gel (EtOAc/petroleum ether 1 : 2) as a colorless viscous oil in 83% yield; $R_{\rm f}$ 0.39

(EtOAc/petroleum ether 1 : 2), R_f 0.42 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 16.0. ¹H NMR (400 MHz, CDCl₃, δ): 0.86 (d, ³J_{H,H}=6.6 Hz, 6H, CH_{3 *i*-Bu}), 1.15 (d, ³J_{H,H}=6.2 Hz, 6H, CH₃), 1.29 (d, ³J_{H,H}=6.2 Hz, 6H, CH₃), 1.82 (m, 1H, CH_{*i*-Bu}), 2.43 (d, ³J_{H,H}=7.2 Hz, 2H, CH_{2 *i*-Bu}), 4.65 (m, 2H, OCH), 6.08 (dd, ²J_{H,H}=1.7 Hz, ³J_{H,P}=45.7 Hz, 1H, *trans*-PC=CH), 6.26 (dd, ²J_{H,H}=1.7 Hz, ³J_{H,P}=21.9 Hz, 1H, *cis*-PC=CH), 7.08 (d, ${}^{3}J_{H,H}$ =8.0 Hz, 2H, CH_{Ph}), 7.43 (dd, ${}^{3}J_{H,H}$ =8.0 Hz, ${}^{4}J_{H,P}$ =1.3 Hz, 2H, CH_{Ph}). ${}^{13}C$ NMR (101 MHz, CDCl₃, δ): 22.24 (2CH_{3 *i*-Bu}), 23.56 (d, ${}^{3}J_{C,P}$ =5.1 Hz, CH₃), 24.02 (d, ${}^{3}J_{C,P}$ =3.8 Hz, CH₃), 30.08 (CH_{*i*-Bu}), 44.99 (CH_{2 *i*-Bu}), 70.78 (d, ²J_{C,P}=5.8 Hz, OCH), 127.18 (d, ³J_{C,P}=5.8 Hz, CH_{Ar}), 128.95 (CH_{Ar}), 130.26 (d, ${}^{2}J_{C,P}$ =8.2 Hz, H₂C=), 134.20 (d, ${}^{2}J_{C,P}$ =11.8 Hz, C_{Ar}), 140.69 (d, ${}^{1}J_{C,P}$ =174.4 Hz, =CP), 141.64 (d, ${}^{5}J_{C,P}$ =1.1 Hz, C_{Ar}). HRMS (ESI): found 325.1921, calcd. for [M + H]⁺ (C₁₈H₃₀O₃P) 325.1927.

Diisopropyl [1-(4-cyclohexylphenyl)vinyl]phosphonate (3n). The reaction time was P(O)(OⁱPr)₂ 7 h. The product was isolated by column chromatography on silica gel (i-PrOH/petroleum ether 1:15) as a colorless viscous oil in 83% yield; $R_{\rm f}$ 0.29 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 15.9. ¹H NMR (400 MHz, CDCl₃, δ): 1.18 (d, ${}^{3}J_{H,H}$ =6.2 Hz, 6H, CH₃), 1.25 (m, 1H, CH_{2 Cv}), 1.29-1.49 (m, 4H, CH_{2 Cv}), 1.32 (d, ${}^{3}J_{H,H}$ =6.2 Hz, 6H, CH₃), 1.73 (m, 1H, CH_{2 Cv}), 1.80-1.88 (m, 4H, CH_{2 Cv}), 2.48 (m, 1H, CH_{Cv}), 4.67 (m, 2H, OCH), 6.10 (dd, $^{2}J_{H,H}$ =1.7 Hz, $^{3}J_{H,P}$ =45.8 Hz, 1H, trans-PC=CH), 6.28 (dd, $^{2}J_{H,H}$ =1.7 Hz, $^{3}J_{H,P}$ =21.9 Hz, 1H, cis-PC=CH),

7.16 (d, ³*J*_{H,H}=8.1 Hz, 2H, CH_{Ar}), 7.46 (dd, ³*J*_{H,H}=8.1 Hz, ⁴*J*_{H,P}=1.2 Hz, 2H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.45 (d, ${}^{3}J_{C,P}$ =5.0 Hz, CH₃), 23.89 (br, CH₃), 25.93 (CH_{2 Cv}), 26.64 (2CH_{2 Cv}), 34.15 (2CH_{2 Cv}), 44.05 (CH_{Cv}), 70.63 (d, ${}^{2}J_{C,P}$ =5.8 Hz, OCH), 126.53 (CH_{Ar}), 127.24 (d, ${}^{3}J_{C,P}$ =5.9 Hz, CH_{Ar}), 130.07 (d, $^{2}J_{C,P}$ =7.9 Hz, H₂C=), 134.13 (d, $^{2}J_{C,P}$ =11.6 Hz, C_{Ar}), 140.59 (d, $^{1}J_{C,P}$ =173.6 Hz, =CP), 147.88 (C_{Ar}). HRMS (ESI): found 351.2077, calcd. for $[M + H]^+$ (C₂₀H₃₂O₃P) 351.2084,.

Diisopropyl [1-(5,6,7,8-Tetrahydronaphthalen-2-yl)vinyl]phosphonate (30). The reaction time was 8 h. The product was isolated by column chromatography on silica gel (EtOAc/petroleum ether 1 : 2) as a colorless viscous oil in 89% yield; $R_{\rm f}$ 0.3

(EtOAc/petroleum ether 1 : 2). ³¹P NMR (162 MHz, CDCl₃, δ): 16.1. ¹H NMR (400 MHz, CDCl₃, δ): 1.21 (d, ${}^{3}J_{H,H}$ =6.2 Hz, 6H, CH₃), 1.33 (d, ${}^{3}J_{H,H}$ =6.2 Hz, 6H, CH₃), 1.78 (m, 4H, CH₂), 2.75 (m, 4H, CH₂), 4.68 (m, 2H, OCH), 6.09 (dd, ${}^{2}J_{H,H}$ =1.8 Hz, ${}^{3}J_{H,P}$ =45.8 Hz, 1H, trans-PC=CH), 6.27 (dd, ${}^{2}J_{H,H}$ =1.8 Hz, ${}^{3}J_{H,P}$ =21.9 Hz, 1H, cis-PC=CH), 7.01 (d, ${}^{3}J_{H,H}$ =7.8 Hz, 1H, CH_{Ar}) 7.24-7.27 (m, 2H, CH_{Ar}). ${}^{13}C$ NMR (101 MHz, CDCl₃, δ): 23.05 (2CH₂), 23.61 (d, ${}^{3}J_{C,P}$ =5.0 Hz, CH₃), 24.01 (d, ${}^{3}J_{C,P}$ =3.4 Hz, CH₃), 29.03 (CH₂), 29.35 (CH₂), 70.74 (d, ${}^{2}J_{C,P}$ =5.8 Hz, OCH), 124.55 (d, ${}^{3}J_{C,P}$ =5.9 Hz, CH_{Ar}), 128.02 (d, ${}^{3}J_{C,P}$ =6.1 Hz, CH_{Ar}), 128.91 (CH_{Ar}), 130.18 (d, ²*J*_{C,P}=8.1 Hz, H₂C=), 133.90 (d, ¹*J*_{C,P}=11.9 Hz, C_{Ar}), 136.85 (C_{Ar}), 137.16 (C_{Ar}), 140.64 (d, ${}^{1}J_{C,P}$ =174.7 Hz, =CP). HRMS (ESI): found 323.1768, calcd. for [M + H]⁺ (C₁₈H₂₈O₃P) 323.1771.

 $P(O)(OⁱPr)_2$

Diisopropyl [1-(4-diphenyl)vinyl]phosphonate (3p). The reaction time was 10 h. The product was isolated by column chromatography on silica gel (i-PrOH/petroleum ether 1 : 15) as a yellowish viscous oil in 88% yield; $R_f 0.31$ (*i*-PrOH/petroleum ether

1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 15.3. ¹H NMR (400 MHz, CDCl₃, δ): 1.22 (d, ³J_{H,H}=6.2 Hz, 6H, CH₃), 1.34 (d, ${}^{3}J_{H,H}$ =6.2 Hz, 6H, CH₃), 4.72 (m, 2H, OCH), 6.19 (dd, ${}^{2}J_{H,H}$ =1.6 Hz, ${}^{3}J_{H,P}$ =45.5 Hz, 1H, *trans*-PC=CH), 6.36 (dd, ²*J*_{H,H}=1.6 Hz, ³*J*_{H,P}=21.9 Hz, 1H, *cis*-PC=CH), 7.34 (t, ³*J*_{H,H}=7.4 Hz, 2H, CH_{Ph}), 7.44 (t, ${}^{3}J_{H,H}$ =7.4 Hz, 1H, CH_{Ph}), 7.56-7.65 (m, 6H, CH_{Ph} and CH_{Ar}). 13 C NMR (101 MHz, CDCl₃, δ): 23.58 (d, ${}^{3}J_{C,P}$ =4.7 Hz, CH₃), 23.98 (d, ${}^{3}J_{C,P}$ =3.7 Hz, CH₃), 70.98 (d, ${}^{2}J_{C,P}$ =5.8 Hz, OCH), 126.85 (2CH_{Ph} and 2CH_{Ar}), 127.35 (CH_{Ph}), 127.83 (d, ${}^{3}J_{C,P}$ =5.8 Hz, 2CH_{Ar}), 128.69 (2CH_{Ph}), 130.90 (d, ${}^{2}J_{C,P}$ =8.5 Hz, H₂C=), 135.71 (d, ${}^{2}J_{C,P}$ =11.9 Hz, C_{Ar}), 140.31 (C_{Ph}), 140.32 (d, ${}^{1}J_{CP}$ =175.6 Hz, =CP), 140.74 (br, C_{Ar}). HRMS (ESI): found 345.1615, calcd. for [M + H]⁺ (C₂₀H₂₆O₃P) 345.1614.

Diisopropyl [1-(naphthalen-2-yl)vinyl]phosphonate (3q). The reaction time was 3 h. The product was isolated by column chromatography on silica gel (EtOAc/petroleum ether 1:2) as a colorless viscous oil in 83% yield; $R_{\rm f}$ 0.3

(EtOAc/petroleum ether 1 : 2), R_f 0.27 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 15.6. ¹H NMR (400 MHz, CDCl₃, δ): 1.18 (d, ³ $J_{H,H}$ =6.2 Hz, 6H, CH₃), 1.32 (d, ³ $J_{H,H}$ =6.2 Hz, 6H, CH₃), 4.72 (m, 2H, OCH), 6.23 (dd, ² $J_{H,H}$ =1.6 Hz, ³ $J_{H,P}$ =45.5 Hz, 1H, *trans*-PC=CH), 6.42 (dd, ² $J_{H,H}$ =1.6 Hz, ³ $J_{H,P}$ =21.9 Hz, 1H, *cis*-PC=CH), 7.44 (m, 2H, CH_{Ar}), 7.64 (ddd, ³ $J_{H,H}$ =8.6 Hz, ⁴ $J_{H,H}$ =1.6 Hz, ⁴ $J_{H,P}$ =1.2 Hz, 1H, CH_{Ar}), 7.75-7.87 (m, 3H, CH_{Ar}), 8.06 (br s, 1H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.56 (d, ³ $J_{C,P}$ =5.0 Hz, CH₃), 23.95 (d, ³ $J_{C,P}$ =3.8 Hz, CH₃), 70.87 (d, ² $J_{C,P}$ =5.9 Hz, OCH), 125.16 (d, ³ $J_{C,P}$ =6.0 Hz, CH_{Ar}), 126.07 (CH_{Ar}), 126.13 (CH_{Ar}), 126.77 (d, ³ $J_{C,P}$ =5.8 Hz, CH_{Ar}), 127.37 (CH_{Ar}), 127.73 (CH_{Ar}), 128.21 (CH_{Ar}), 131.22 (d, ² $J_{C,P}$ =8.0 Hz, H₂C=), 132.77 (d, ⁵ $J_{C,P}$ =0.8 Hz, C_{Ar}), 132.97 (C_{Ar}), 134.12 (d, ² $J_{C,P}$ =11.9 Hz, C_{Ar}), 140.73 (d, ¹ $J_{C,P}$ =175.3 Hz, =CP). HRMS (ESI): found 319.1455, calcd. for [M + H]⁺ (C₁₈H₂₄O₃P) 319.1458.

Diisopropyl [1-(naphthalen-1-yl)vinyl]phosphonate (3s). The reaction time was 3 h. $P(O)(O'Pr)_2$ The product was isolated by column chromatography on silica gel (EtOAc/petroleum ether 1 : 2) as a colorless viscous oil in 85% yield; $R_f 0.3$ (EtOAc/petroleum ether 1 : 2),

*R*_f 0.26 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 14.3. ¹H NMR (400 MHz, CDCl₃, δ): 1.10 (d, ³*J*_{H,H}=6.2 Hz, 6H, CH₃), 1.22 (d, ³*J*_{H,H}=6.2 Hz, 6H, CH₃), 4.65 (m, 2H, OCH), 5.96 (dd, ²*J*_{H,H}=2.1 Hz, ³*J*_{H,P}=47.0 Hz, 1H, *trans*-PC=CH), 6.62 (dd, ²*J*_{H,H}=2.1 Hz, ³*J*_{H,P}=22.4 Hz, 1H, *cis*-PC=CH), 7.43 (t, ³*J*_{H,H}=7.5 Hz, 1H, CH_{Ar}) 7.44-7.48 (m, 3H, CH_{Ar}), 7.79 (br d, ³*J*_{H,H}=8.1 Hz, 1H, CH_{Ar}), 7.82 (m, 1H, CH_{Ar}), 8.04 (m, 1H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.62 (d, ³*J*_{C,P}=5.6 Hz, CH₃), 23.99 (d, ³*J*_{C,P}=3.4 Hz, CH₃), 71.03 (d, ²*J*_{C,P}=6.3 Hz, OCH), 124.83 (br, CH_{Ar}), 125.69 (CH_{Ar}), 125.81 (CH_{Ar}), 125.92 (br, CH_{Ar}), 126.42 (d, ³*J*_{C,P}=4.8 Hz, CH_{Ar}), 127.99 (CH_{Ar}), 128.03 (CH_{Ar}), 131.62 (d, ³*J*_{C,P}=5.3 Hz, C_{Ar}), 133.58 (C_{Ar}), 133.62 (d, ²*J*_{C,P}=7.0 Hz, H₂C=), 134.89 (d, ²*J*_{C,P}=10.0 Hz, C_{Ar}), 140.10 (d, ¹*J*_{C,P}=180.0 Hz, =CP). HRMS (ESI): found 319.1456, calcd. for [M + H]⁺ (C₁₈H₂₄O₃P) 319.1458.

Diisopropyl (E)-(1-phenylprop-1-en-1-yl)phosphonate (3v). The reaction time was 10 h. The product was isolated by column chromatography on silica gel (*i*-PrOH/petroleum ether 1 : 20) as a colorless viscous oil in 82% yield; R_f 0.3 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 16.1. ¹H NMR (400 MHz, CDCl₃, δ): 1.17 (d, ³J_{H,H}=6.2 Hz, 6H, OCHC<u>H</u>₃), 1.26 (d, ³J_{H,H}=6.2 Hz, 6H, OCHC<u>H</u>₃), 1.72 (dd, ³J_{H,H}=6.9 Hz, ⁴J_{H,P}=3.4 Hz, 3H, =CHC<u>H</u>₃), 4.62 (m, 2H, OCH), 6.93 (dq, ³J_{H,H}=6.9 Hz, ³J_{H,P}=23.1 Hz, 1H, =CH), 7.23 (m, 2H, CH_{Pb}), 7.27 (m, 1H, CH_{Pb}),

7,33 (m, 2H, CH_{Ph}). ¹³C NMR (101 MHz, CDCl₃, δ): 15.59 (d, ³J_{C,P}=18.8 Hz, =CH<u>C</u>H₃), 23.74 (d, ³J_{C,P}=5.2

Hz, OCH<u>C</u>H₃), 24.00 (d, ${}^{3}J_{C,P}$ =2.5 Hz, OCH<u>C</u>H₃), 70.47 (d, ${}^{2}J_{C,P}$ =5.8 Hz, OCH), 127.23 (CH_{Ph}), 128.05 (CH_{Ph}), 129.45 (d, ${}^{3}J_{C,P}$ =5.3 Hz, CH_{Ph}), 133.83 (d, ${}^{1}J_{C,P}$ =183.0 Hz, =CP), 135.08 (d, ${}^{2}J_{C,P}$ =10.1 Hz, C_{Ph}), 142.70 (d, ${}^{2}J_{C,P}$ =10.1 Hz, =CHMe). HRMS (ESI): found 283.1461, calcd. for [M + H]⁺ (C₁₅H₂₄O₃P) 283.1458.

Method B

General procedure: Triisopropyl phosphite (3.3 mmol, 1.1 equiv.) was added to a stirred solution of β -substituted nitroethene (3.0 mmol, 1 equiv.) in absolute DME (7 ml) under argon. The mixture was stirred at room temperature for 48-96 h. Volatile materials were removed on a rotary evaporator and then *in vacuo* (0.05 Torr) at 80°C. The product was isolated by vacuum distillation or column chromatography.

Diisopropyl [1-(4-dimethylaminophenyl)vinyl]phosphonate (3g). The reaction was carried out at 45°C for 48 h. The reaction mixture was then diluted with petroleum ether (10 ml) and filtered through a short pad of Celite to remove unreacted (*E*)-*N*,*N*-dimethyl-4-(2-nitrovinyl)aniline. After the removal of the volatile components *in vacuo*, the product was isolated as an amber viscous oil in 54% yield by column chromatography on silica gel (*i*-PrOH/petroleum ether 1 : 40); R_f 0.21 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 16.8. ¹H NMR (400 MHz, CDCl₃, δ): 1.17 (d, ³J_{H,H}=6.2 Hz, 6H, CH₃), 1.31 (d, ³J_{H,H}=6.2 Hz, 6H, CH₃), 2.94 (s, 6H, N(CH₃)₂), 4.66 (m, 2H, OCH), 6.03 (dd, ²J_{H,H}=1.7 Hz, ³J_{H,P}=46.2 Hz, 1H, *trans*-PC=CH), 6.15 (dd, ²J_{H,H}=1.7 Hz, ³J_{H,P}=22.0 Hz, 1H, *cis*-PC=CH), 6.65 (d, ³J_{H,H}=8.8 Hz, 2H, CH_{Ar}), 7.45 (dd, ³J_{AB}=8.8 Hz, ⁴J_{H,P}=1.1 Hz, 2H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.62 (d, ³J_{C,P}=4.9 Hz, CH₃), 24.06 (br, CH₃),

40.27 (N(CH₃)₂), 70.61 (d, ${}^{2}J_{C,P}$ =5.7 Hz, OCH), 111.82 (CH_{Ar}), 124.47 (d, ${}^{2}J_{C,P}$ =11.5 Hz, C_{Ar}), 127.55 (d, ${}^{2}J_{C,P}$ =8.6 Hz, H₂C=), 128.25 (d, ${}^{3}J_{C,P}$ =6.0 Hz, CH_{Ar}), 139.88 (d, ${}^{1}J_{C,P}$ =172.1 Hz, =CP), 150.21 (CN_{Ar}). HRMS (ESI): found 312.1723, calcd. for [M + H]⁺ (C₁₆H₂₇NO₃P) 312.1723.

Diisopropyl [1-(2-methoxyphenyl)vinyl]phosphonate (3i). The reaction time was 48 h. The product was isolated as a colorless viscous oil in 78% yield by vacuum distillation; bp 110-114°C/0.05 torr; R_f 0.18 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 15.2. ¹H NMR (400 MHz, CDCl₃, δ): 1.18 (d, ³J_{H,H}=6.2 Hz, 6H, CH₃), 1.27 (d, ³J_{H,H}=6.2 Hz, 6H, CH₃), 3.77 (s, 3H, OCH₃), 4.65 (m, 2H, OCH), 6.02 (dd, ²J_{H,H}=2.0 Hz, ³J_{H,P}=46.8 Hz, 1H, *trans*-PC=CH), 6.42 (dd, ²J_{H,H}=2.0 Hz, ³J_{H,P}=22.4 Hz, 1H, *cis*-PC=CH), 6.87 (d, ³J_{H,H}=8.0 Hz, 1H, CH_{Ar}), 6.90 (m, 1H, CH_{Ar}), 7.24 (m, 1H, CH_{Ar}), 7.32 (ddd, ³J_{H,H}=7.5 Hz, ⁴J_{H,H}=1.7 Hz, ⁴J_{H,P}=1.7 Hz, 2H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.62 (d, ³J_{C,P}=5.6 Hz, CH₃), 24.04 (d, ³J_{C,P}=3.2 Hz, CH₃), 55.33 (OCH₃), 70.60 (d, ²J_{C,P}=6.0 Hz, OCH), 110.87 (CH_{Ar}), 120.13 (CH_{Ar}), 126.42 (d, ²J_{C,P}=11.6 Hz, C_{Ar}), 129.03 (CH_{Ar}), 130.27 (d, ${}^{3}J_{C,P}=4.0$ Hz, CH_{Ar}), 133.63 (d, ${}^{2}J_{C,P}=7.1$ Hz, H₂C=), 137.42 (d, ${}^{1}J_{C,P}=179.0$ Hz, =CP), 156.63 (d, ${}^{3}J_{C,P}=5.7$ Hz, CO_{Ar}). HRMS (ESI): found 299.1408, calcd. for [M + H]⁺ (C₁₅H₂₄O₄P) 299.1407.

MeO

Diisopropyl [1-(3-methoxyphenyl)vinyl]phosphonate (3j). The reaction time was 48 h. The product was isolated as a colorless viscous oil in 81% yield by vacuum distillation; bp 116-118°C/0.05 torr; R_f 0.21 (*i*-PrOH/petroleum ether 1 : 10). ³¹P

NMR (162 MHz, CDCl₃, δ): 15.4. ¹H NMR (400 MHz, CDCl₃, δ): 1.20 (d, ³*J*_{H,H}=6.2 Hz, 6H, CH₃), 1.32 (d, ³*J*_{H,H}=6.2 Hz, 6H, CH₃), 3.80 (s, 3H, OCH₃), 4.69 (m, 2H, OCH), 6.12 (dd, ²*J*_{H,H}=1.7 Hz, ³*J*_{H,P}=45.4 Hz, 1H, *trans*-PC=CH), 6.32 (dd, ²*J*_{H,H}=1.7 Hz, ³*J*_{H,P}=21.9 Hz, 1H, *cis*-PC=CH), 6.85 (ddt, ³*J*_{H,H}=8.2 Hz, ⁴*J*_{H,H}=0.9 Hz, ⁶*J*_{H,P}=2.5 Hz, 1H, CH_{Ar}), 7.10-7.13 (m, 2H, CH_{Ar}), 7.24 (dt, ³*J*_{H,H}=8.2 Hz, ⁵*J*_{H,H}=0.9 Hz, 1H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.68 (d, ³*J*_{C,P}=5.1 Hz, CH₃), 24.08 (d, ³*J*_{C,P}=3.1 Hz, CH₃), 55.18 (OCH₃), 70.97 (d, ²*J*_{C,P}=6.0 Hz, OCH), 112.99 (d, ³*J*_{C,P}=5.6 Hz, CH_{Ar}), 113.83 (CH_{Ar}), 120.02 (d, ³*J*_{C,P}=6.0 Hz, CH_{Ar}), 129.25 (CH_{Ar}), 131.32 (d, ²*J*_{C,P}=7.7 Hz, H₂C=), 138.34 (d, ²*J*_{C,P}=11.6 Hz, C_{Ar}), 140.63 (d, ¹*J*_{C,P}=176.0 Hz, =CP), 159.31 (CO_{Ar}). HRMS (ESI): found 299.1408, calcd. for [M + H]⁺ (C₁₅H₂₄O₄P) 299.1407.

МеО

Diisopropyl [1-(4-methoxyphenyl)vinyl]phosphonate (3k). The reaction time was $P^{(O)(O'Pr)_2}$ 96 h. The product was isolated as a colorless viscous oil in 52% yield by vacuum distillation; bp 118-120°C/0.05 torr; R_f 0.14 (EtOAc/petroleum ether 1 : 2). ³¹P NMR

(162 MHz, CDCl₃, δ): 15.8. ¹H NMR (400 MHz, CDCl₃, δ): 1.18 (d, ³*J*_{H,H}=6.2 Hz, 6H, CH₃), 1.32 (d, ³*J*_{H,H}=6.2 Hz, 6H, CH₃), 3.80 (s, 3H, OCH₃), 4.68 (m, 2H, OCH), 6.06 (dd, ²*J*_{H,H}=1.6 Hz, ³*J*_{H,P}=45.7 Hz, 1H, *trans*-PC=CH), 6.24 (dd, ²*J*_{H,H}=1.6 Hz, ³*J*_{H,P}=21.9 Hz, 1H, *cis*-PC=CH), 6.86 (d, ³*J*_{AB}=8.7 Hz, 2H, CH_{Ar}), 7.49 (dd, ³*J*_{AB}=8.7 Hz, ⁴*J*_{H,P}=1.1 Hz, 2H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.67 (d, ³*J*_{C,P}=5.0 Hz, CH₃), 24.10 (d, ³*J*_{C,P}=3.8 Hz, CH₃), 55.24 (d, *J*_{C,P}=1.4 Hz, OCH₃), 70.88 (d, ²*J*_{C,P}=5.8 Hz, OCH), 113.64 (CH_{Ar}), 128.76 (d, ³*J*_{C,P}=6.0 Hz, CH_{Ar}), 129.32 (d, ²*J*_{C,P}=12.1 Hz, C_{Ar}), 129.53 (d, ²*J*_{C,P}=8.4 Hz, H₂C=), 140.09 (d, ¹*J*_{C,P}=174.6 Hz, =CP), 159.53 (d, ⁵*J*_{C,P}=0.9 Hz, CO_{Ar}). HRMS (ESI): found 299.1409, calcd. for [M + H]⁺ (C₁₅H₂₄O₄P) 299.1407.

Diisopropyl [1-(6-methoxynaphthalen-2-yl)vinyl]phosphonate (3r). The reaction time was 96 h. The product was isolated as a pale yellowish solid in 80% yield by column chromatography on silica gel (EtOAc/petroleum ether

1 : 2); mp 58°C; R_f 0.32 (EtOAc/petroleum ether 1 : 1). ³¹P NMR (162 MHz, CDCl₃, δ): 15.5. ¹H NMR (400 MHz, CDCl₃, δ): 1.19 (d, ³*J*_{H,H}=6.2 Hz, 6H, CH₃), 1.33 (d, ³*J*_{H,H}=6.2 Hz, 6H, CH₃), 3.92 (s, 3H, OCH₃), 4.72 (m, 2H, OCH), 6.23 (dd, ²*J*_{H,H}=1.6 Hz, ³*J*_{H,P}=45.6 Hz, 1H, *trans*-PC=CH), 6.38 (dd, ²*J*_{H,H}=1.6 Hz, ³*J*_{H,P}=21.9 Hz, 1H, *cis*-PC=CH), 7.11 (d, ⁴*J*_{H,H}=2.5 Hz, 1H, CH_{Ar}), 7.14 (dd, ³*J*_{H,H}=8.8 Hz, ⁴*J*_{H,H}=2.5 Hz, 1H, CH_{Ar}), 7.63 (ddd, ³*J*_{H,H}=8.6 Hz, ⁴*J*_{H,H}=1.8 Hz, ⁴*J*_{H,P}=1.1 Hz, 1H, CH_{Ar}), 7.70 (br d, ³*J*_{H,H}=8.6 Hz, 1H, CH_{Ar}), 7.73 (d, ³*J*_{H,H}=8.8 Hz, CH_{Ar}), 7.99 (br s, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.68 (d, ³*J*_{C,P}=5.2 Hz, CH₃), 24.08 (d, ³*J*_{C,P}=5.7 Hz, CH₃), 52.26 (OCH₃), 70.97 (d, ²*J*_{C,P}=5.8 Hz, OCH), 105.44 (CH_{Ar}), 119.05 (CH_{Ar}), 125.79 (d, ³*J*_{C,P}=5.7 Hz, CH_{Ar}), 126.69 (CH_{Ar}), 126.71 (d, ³*J*_{C,P}=5.8 Hz, CH_{Ar}), 128.55 (C_{Ar}), 129.89 (C_{Ar}), 130.68

(d, ${}^{2}J_{C,P}=8.3$ Hz, H₂C=), 132.00 (d, ${}^{2}J_{C,P}=11.9$ Hz, C_{Ar}), 134.13 (C_{Ar}), 140.67 (d, ${}^{1}J_{C,P}=174.7$ Hz, =CP), 157.98 (CO_{Ar}). HRMS (ESI): found 349.1557, calcd. for [M + H]⁺ (C₁₉H₂₆O₄P) 349.1563.

P(O)(OⁱPr)₂

Diisopropyl [1-(1*H***-indol-3-yl)vinyl]phosphonate (3t)**. The reaction time was 48 h. The product was isolated as an ochre-colored solid in 75% yield by column chromatography on silica gel (EtOAc/petroleum ether 1 : 1); mp 95-96°C; $R_{\rm f}$ 0.22

(EtOAc/petroleum ether 1 : 1). ³¹P NMR (162 MHz, CDCl₃, δ): 16.3. ¹H NMR (400 MHz, CDCl₃, δ): 1.20 (d, ³ $J_{H,H}$ =6.2 Hz, 6H, CH₃), 1.32 (d, ³ $J_{H,H}$ =6.2 Hz, 6H, CH₃), 4.71 (m, 2H, OCH), 6.33 (dd, ² $J_{H,H}$ =1.7 Hz, ³ $J_{H,P}$ =23.1 Hz, 1H, *cis*-PC=CH), 6.40 (dd, ² $J_{H,H}$ =1.7 Hz, ³ $J_{H,P}$ =47.6 Hz, 1H, *trans*-PC=CH), 7.14-7.22 (m, 2H, CH_{Ar}), 7.40 (m, ³ $J_{H,H}$ =7.8 Hz, 1H, CH_{Ar}), 7.67 (dd, ³ $J_{H,H}$ =2.7 Hz, ⁴ $J_{H,P}$ =1.2 Hz, 1H, CH_{Ar}), 7.84 (m, ³ $J_{H,H}$ =7.7 Hz, 1H, CH_{Ar}), 9.25 (br s, 1H, NH). ¹³C NMR (101 MHz, CDCl₃, δ): 23.70 (d, ³ $J_{C,P}$ =5.3 Hz, CH₃), 24.10 (d, ³ $J_{C,P}$ =3.8 Hz, CH₃), 71.97 (d, ² $J_{C,P}$ =5.6 Hz, OCH), 111.45 (d, ² $J_{C,P}$ =13.0 Hz, C_{Ar}), 111.64 (CH_{Ar}), 119.72 (CH_{Ar}), 120.29 (CH_{Ar}), 122.20 (CH_{Ar}), 125.74 (d, ³ $J_{C,P}$ =12.4 Hz, C_{Ar}), 125.76 (d, ³ $J_{C,P}$ =2.1 Hz, CH_{Ar}), 126.45 (d, ² $J_{C,P}$ =7.0 Hz, H₂C=), 133.38 (d, ¹ $J_{C,P}$ =173.1 Hz, =CP), 136.45 (C_{Ar}). HRMS (ESI): found 308.1413, calcd. for [M + H]⁺ (C₁₆H₂₃NO₃P) 308.1410.

Diisopropyl (3-phenylprop-1-en-2-yl)phosphonate (3u). The reaction time was 96 h. The product was isolated as a colorless oil in 68% yield by column chromatography on silica gel (Et₂O/CHCl₃ 1 : 20); R_f 0.19 (Et₂O/CHCl₃ 1 : 8). ³¹P NMR (162 MHz, CDCl₃, δ): 17.1. ¹H NMR (400 MHz, CDCl₃, δ): 1.23 (d, ³J_{H,H}=6.2 Hz, 6H, CH₃), 1.31 (d, ³J_{H,H}=6.2 Hz, 6H, CH₃), 3.53 (m, 2H, ³J_{H,P}=10.3 Hz, PhCH₂), 4.64 (m, 2H, OCH), 5.44 (m, ³J_{H,P}=48.0 Hz, 1H, *trans*-PC=CH), 6.08 (m, ³J_{H,P}=22.5 Hz, 1H, *cis*-PC=CH), 7.17 (m, 2H, CH_{Ph}), 7.21 (m, 1H, CH_{Ph}), 7.29 (m, 2H, CH_{Ph}). ¹³C NMR (101 MHz, CDCl₃, δ): 23.75 (d, ³J_{C,P}=4.9 Hz, CH₃), 24.06 (d, ³J_{C,P}=3.9 Hz, CH₃), 38.22 (d, ²J_{C,P}=11.4 Hz, PhCH₂), 70.52 (d, ²J_{C,P}=5.8 Hz, OCH), 126.44 (CH_{Ph}), 128.37 (2CH_{Ph}), 129.52 (2CH_{Ph}), 129.61 (d, ²J_{C,P}=10.9 Hz, =CH₂), 137.89 (d, ³J_{C,P}=8.1 Hz, C_{Ph}), 140.61 (d, ¹J_{C,P}=175.3 Hz, =CP). HRMS (ESI): found 283.1461, calcd. for [M + H]⁺ (C₁₅H₂₄O₃P) 283.1458.

4. Rh(I)-catalyzed asymmetric hydrogenation of substrates 3 and characterization of products 6

General procedure: All glassware was dried at 200°C for 1.5 h. A sample bottle equipped with a magnetic stir bar was charged with α,β -unsaturated phosphonate **3** (0.40 mmol, 1 equiv.) and placed in a wide-neck Schlenk tube. The tube was sealed with a rubber septum and then evacuated and filled with dry argon three times. In another Schlenk tube, ligand L3 (1.3 mg, 0.002 mmol, 0.5 mol%) and [Rh(COD)₂]BF₄ (0.8 mg, 0.002 mmol, 0.5 mol%) were dissolved in deaerated absolute DCM (4 ml) under dry argon atmosphere. The solution was stirred for 10 min and transferred into the sample bottle using a syringe. The bottle was quickly transported into a stainless-steel autoclave filled with hydrogen. The autoclave was sealed, purged with hydrogen three times, and pressurized with H₂ to 10 atm. The reaction mixture was stirred at room temperature for the time indicated in Table 2. At the end of the experiment, the reaction mixture was

evaporated on a rotavapor. The residue was dissolved in CDCl₃ and analyzed by ³¹P NMR spectroscopy to determine the conversion of **3** and the yield of product **6**. The spectrally pure products **6a-r,t,u** were isolated in almost quantitative yields (94-99%) by column chromatography on silica gel, using 2-3 vol.% *i*-PrOH in petroleum ether as an eluent. The enantiomeric excess for the isolated sample was determined by HPLC analysis (see data for individual compounds for details).

Diisopropyl (*R***)-(+)-(1-phenylethyl)phosphonate (6a**). Colorless oil, 95% *ee*. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 2 : 98, flow rate = 1.5 ml/min, $t_R = 10.0$ min (minor), 15.8 min (major). [α]_D²³ = +7.0 (*c* = 1.15, CHCl₃) (lit.^{6,19} [α]_D²⁰ = +6.7 (*c* = 2.0, CHCl₃) for 94% *ee* (*R*); [α]_D²⁵ = -6.9 (*c* = 1.1, CHCl₃) for 95% *ee* (*S*)). *R*_f 0.3 (EtOAc/petroleum ether 1 : 2). ³¹P NMR (162 MHz, CDCl₃, δ): 28.8. ¹H NMR (400 MHz, CDCl₃, δ): 0.94 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.22 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.24 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.26 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.55 (dd, ³*J*_{H,H}=7.4 Hz, ³*J*_{H,P}=18.4 Hz, 3H, CH₃), 3.08 (dq, ³*J*_{H,H}=7.4 Hz, ²*J*_{H,P}=22.7 Hz, 1H, PCH), 4.43 (m, 1H, OCH), 4.61 (m, 1H, OCH), 7.22 (m, 1H, CH_{Ph}), 7.29 (t, ³*J*_{H,H}=7.6 Hz, 2H, CH_{Ph}), 7.34 (m, ³*J*_{H,H}=7.6 Hz, 2H, CH_{Ph}). ¹³C NMR (101 MHz, CDCl₃, δ): 15.82 (d, ²*J*_{C,P}=5.1 Hz, CH₃), 23.27 (d, ³*J*_{C,P}=5.6 Hz, CH₃), 23.88 (d, ³*J*_{C,P}=5.5 Hz, CH₃) 23.94 (d, ³*J*_{C,P}=3.1 Hz, CH₃) 24.18 (d, ³*J*_{C,P}=2.5 Hz, CH₃), 38.99 (d, ¹*J*_{C,P}=139.7 Hz, PC), 70.02 (d, ²*J*_{C,P}=7.1 Hz, OCH), 70.73 (d, ²*J*_{C,P}=7.1 Hz, OCH), 126.81 (CH_{Ph}), 128.20 (CH_{Ph}), 128.75 (d, ³*J*_{C,P}=6.4 Hz, CH_{Ph}), 138.32 (d, ²*J*_{C,P}=6.0 Hz, C_{Ph}). HRMS (ESI): found 271.1458, calcd. for [M + H]⁺ (C₁₄H₂₄O₃P) 271.1458.

Diisopropyl (R)-(+)-[1-(4-bromophenyl)ethyl]phosphonate (6b). Colorless oil, 93% *ee.* HPLC conditions: Chiralcel OD-H, *i*-PrOH/*n*-hexane 1 : 200, flow rate = 1.5 ml/min, $t_{\rm R}$ = 11.1 min (major), 12.1 min (minor). [α]_D²³ = +11.2 (*c* = 1.0, CHCl₃) (lit.¹⁹

[α]_D²⁰ = +18.2 (*c* = 0.6, CHCl₃) for 92% *ee* (*R*)). *R*_f 0.25 (EtOAc/petroleum ether 1 : 2), *R*_f 0.3 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 27.4. ¹H NMR (400 MHz, CDCl₃, δ): 0.99 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.21 (d, ³*J*_{H,H}=6.1 Hz, 3H, CH₃), 1.22 (d, ³*J*_{H,H}=6.1 Hz, 3H, CH₃), 1.25 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.50 (dd, ³*J*_{H,H}=7.4 Hz, ³*J*_{H,P}=18.3 Hz, 3H, CH₃), 3.03 (dq, ³*J*_{H,H}=7.4 Hz, ²*J*_{H,P}=22.8 Hz, 1H, PCH), 4.46 (m, 1H, OCH), 4.60 (m, 1H, OCH), 7.20 (dd, ³*J*_{AB}=8.5 Hz, ⁴*J*_{H,P}=2.2 Hz, 2H, CH_{Ar}), 7.40 (d, ³*J*_{AB}=8.5 Hz, 2H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 15.69 (d, ²*J*_{C,P}=5.1 Hz, CH₃), 23.46 (d, ³*J*_{C,P}=5.5 Hz, CH₃), 23.92 (d, ³*J*_{C,P}=5.2 Hz, CH₃) 24.01 (d, ³*J*_{C,P}=3.6 Hz, CH₃) 24.16 (d, ³*J*_{C,P}=3.3 Hz, CH₃), 35.53 (d, ¹*J*_{C,P}=140.2 Hz, PCH), 70.26 (d, ²*J*_{C,P}=7.4 Hz, OCH), 70.79 (d, ²*J*_{C,P}=7.2 Hz, OCH), 120.71 (d, ⁵*J*_{C,P}=4.1 Hz, CBr_{Ar}), 130.44 (d, ³*J*_{C,P}=6.6 Hz, CH_{Ar}), 131.29 (d, ⁴*J*_{C,P}=2.6 Hz, CH_{Ar}), 137.55 (d, ²*J*_{C,P}=6.7 Hz, C_{Ar}). HRMS (ESI): found 349.0551, calcd. for [M + H]⁺ (C₁₄H₂₃BrO₃P) 349.0563.

(d, ${}^{3}J_{H,H}$ =6.2 Hz, 3H, CH₃), 1.20 (d, ${}^{3}J_{H,H}$ =6.2 Hz, 3H, CH₃), 1.21 (d, ${}^{3}J_{H,H}$ =6.2 Hz, 3H, CH₃), 1.23 (d, ${}^{3}J_{H,H}$ =6.2 Hz, 3H, CH₃), 1.49 (dd, ${}^{3}J_{H,H}$ =7.4 Hz, ${}^{3}J_{H,P}$ =18.3 Hz, 3H, CH₃), 3.02 (dq, ${}^{3}J_{H,H}$ =7.4 Hz, ${}^{2}J_{H,P}$ =22.8 Hz, 1H, PCH), 4.44 (m, 1H, OCH), 4.58 (m, 1H, OCH), 7.14-7.22 (m, 3H, CH_Ar), 7.28 (m, 1H, CH_Ar). 13 C NMR (101 MHz, CDCl₃, δ): 15.53 (d, ${}^{2}J_{C,P}$ =5.6 Hz, CH₃), 23.32 (d, ${}^{3}J_{C,P}$ =5.5 Hz, CH₃), 23.80 (d, ${}^{3}J_{C,P}$ =5.5 Hz, CH₃), 23.92 (d, ${}^{3}J_{C,P}$ =3.5 Hz, CH₃) 24.07 (br, CH₃), 38.74 (d, ${}^{1}J_{C,P}$ =140.0 Hz, PCH), 70.23 (d, ${}^{2}J_{C,P}$ =7.0 Hz, OCH), 70.77 (d, ${}^{2}J_{C,P}$ =6.9 Hz, OCH), 126.88-126.93 (2CH_Ar), 129.32 (CH_Ar), 128.81 (d, ${}^{3}J_{C,P}$ =6.5 Hz, CH_Ar), 133.88 (CCl_Ar), 140.45 (d, ${}^{2}J_{C,P}$ =6.5 Hz, C_Ar). HRMS (ESI): found 305.1069, calcd. for [M + H]⁺ (C₁₄H₂₃ClO₃P) 305.1068.

Diisopropyl (*R*)-(+)-[1-(4-chlorophenyl)ethyl]phosphonate (6d). Colorless oil, 94% ee. HPLC conditions: Chiralcel OD-H, *i*-PrOH/*n*-hexane 1 : 300, flow rate = 1.5 ml/min, t_R = 15.8 min (major), 17.0 min (minor). [α]_D²⁴ = +10.7 (*c* = 1.11, CHCl₃) (lit.¹⁹ [α]_D²⁰ = +11.9 (*c* = 1.1, CHCl₃) for 94% ee (*R*)). *R*_f 0.21 (EtOAc/petroleum ether 1 : 2), *R*_f 0.29 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 27.9. ¹H NMR (400 MHz, CDCl₃, δ): 1.00 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.22 (d, ³*J*_{H,H}=6.1 Hz, 3H, CH₃), 1.23 (d, ³*J*_{H,H}=6.1 Hz, 3H, CH₃), 1.26 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.51 (dd, ³*J*_{H,H}=7.4 Hz, ³*J*_{H,P}=18.3 Hz, 3H, CH₃), 3.05 (dq, ³*J*_{H,H}=7.4 Hz, ²*J*_{H,P}=22.8 Hz, 1H, PCH), 4.47 (m, 1H, OCH), 4.61 (m, 1H, OCH), 7.25 (br s, 4H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 15.75 (d, ²*J*_{C,P}=5.1 Hz, CH₃), 23.45 (d, ³*J*_{C,P}=5.4 Hz, CH₃), 23.90 (d, ³*J*_{C,P}=5.2 Hz, CH₃) 24.00 (d, ³*J*_{C,P}=3.6 Hz, CH₃) 24.14 (d, ³*J*_{C,P}=3.3 Hz, CH₃), 38.51 (d, ¹*J*_{C,P}=140.3 Hz, PCH), 70.24 (d, ²*J*_{C,P}=7.5 Hz, OCH), 70.75 (d, ²*J*_{C,P}=7.3 Hz, OCH), 128.34 (d, ⁴*J*_{C,P}=2.6 Hz, CH_{Ar}), 130.07 (d, ³*J*_{C,P}=6.7 Hz, CH_{Ar}), 132.65 (d, ⁵*J*_{C,P}=3.9 Hz, CCl_{Ar}), 137.09 (d, ²*J*_{C,P}=6.8 Hz, C_{Ar}). HRMS (ESI): found 305.1064, calcd. for [M + H]⁺ (C₁₄H₂₃ClO₃P) 305.1068.

Diisopropyl (R)-(+)-[1-(4-fluorophenyl)ethyl]phosphonate (6e). Colorless oil, 89% ee. HPLC conditions: Chiralpak AD-H, i-PrOH/n-hexane 5:95, flow rate = 1.5 P(O)(OⁱPr)₂ ml/min, $t_{\rm R} = 4.8$ min (minor), 6.2 min (major). $[\alpha]_{\rm D}^{26} = +4.3$ (c = 0.9, CHCl₃) (lit.¹⁹ $[\alpha]_{D}^{20} = +4.6$ (c = 1.0, CHCl₃) for 93% ee (R)). R_f 0.3 (EtOAc/petroleum ether 1:2), R_f 0.28 (i-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 28.0 (⁶J_{P,F}=4.7 Hz). ¹H NMR (400 MHz, CDCl₃, δ): 0.97 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.22 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.24 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.26 (d, ${}^{3}J_{H,H}$ =6.2 Hz, 3H, CH₃), 1.52 (dd, ${}^{3}J_{H,H}$ =7.4 Hz, ${}^{3}J_{H,P}$ =18.3 Hz, 3H, CH₃), 3.06 (dq, ${}^{3}J_{H,H}$ =7.4 Hz, ²*J*_{H,P}=22.7 Hz, 1H, PCH), 4.45 (m, 1H, OCH), 4.61 (m, 1H, OCH), 6.98 (dd, ³*J*_{H,H}=8.5 Hz, ³*J*_{H,F}=8.8 Hz, 2H, CH_{Ar}), 7.30 (ddd, ${}^{3}J_{H,H}$ =8.5 Hz, ${}^{4}J_{H,F}$ =5.4 Hz, ${}^{4}J_{H,P}$ =2.2 Hz, 2H, CH_{Ar}). 13 C NMR (101 MHz, CDCl₃, δ): 15.86 (d, ${}^{2}J_{C,P}$ =4.9 Hz, CH₃), 23.34 (d, ${}^{3}J_{C,P}$ =5.5 Hz, CH₃), 23.85 (d, ${}^{3}J_{C,P}$ =5.2 Hz, CH₃) 23.95 (d, ${}^{3}J_{C,P}$ =3.6 Hz, CH₃) 24.12 (d, ³*J*_{C,P}=3.3 Hz, CH₃), 38.18 (d, ¹*J*_{C,P}=140.6 Hz, PCH), 70.10 (d, ²*J*_{C,P}=7.4 Hz, OCH), 70.69 (d, ${}^{2}J_{CP}$ =7.3 Hz, OCH), 114.98 (dd, ${}^{4}J_{CP}$ =2.5 Hz, ${}^{2}J_{CF}$ =21.3 Hz, CH_{Ar}), 130.15 (dd, ${}^{3}J_{CP}$ =6.7 Hz, ${}^{3}J_{CF}$ =7.9 Hz, CH_{Ar}), 134.06 (dd, ²*J*_{C,P}=6.6 Hz, ⁴*J*_{C,F}=3.3 Hz, C_{Ar}), 161.76 (dd, ⁵*J*_{C,P}=3.5 Hz, ¹*J*_{C,F}=245.0 Hz, CF_{Ar}). ¹⁹F NMR (376 MHz, CDCl₃, δ): -116.12 (dtt, ${}^{3}J_{HF}$ =8.8 Hz, ${}^{4}J_{HF}$ =5.4 Hz, ${}^{6}J_{PF}$ =4.7 Hz). HRMS (ESI): found 289.1363, calcd. for $[M + H]^+$ (C₁₄H₂₃FO₃P) 289.1363.

Diisopropyl (*R*)-(+)-[1-(3,4-difluorophenyl)ethyl]phosphonate (6f). Colorless oil, 90% *ee.* HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5 ml/min, $t_{\rm R}$ = 4.5 min (minor), 5.3 min (major). [α]_D²⁶ = +7.1 (*c* = 1.15, CHCl₃). *R*_f 0.3

(EtOAc/petroleum ether 1 : 2), $R_{\rm f}$ 0.27 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 27.4 (${}^{6}J_{\rm P,F}$ =5.0 Hz). ¹H NMR (400 MHz, CDCl₃, δ): 1.04 (d, ${}^{3}J_{\rm H,H}$ =6.2 Hz, 3H, CH₃), 1.24 (m, 6H, CH₃), 1.27 (d, ${}^{3}J_{\rm H,H}$ =6.2 Hz, 3H, CH₃), 1.50 (dd, ${}^{3}J_{\rm H,H}$ =7.4 Hz, ${}^{3}J_{\rm H,P}$ =18.2 Hz, 3H, CH₃), 3.04 (dq, ${}^{3}J_{\rm H,H}$ =7.4 Hz, ${}^{2}J_{\rm H,P}$ =22.7 Hz, 1H, PCH), 4.50 (m, 1H, OCH), 4.62 (m, 1H, OCH), 7.01-7.11 (m, 2H, CH_{Ar}) 7.40 (dddd, ${}^{4}J_{\rm H,H}$ =2.2 Hz, ${}^{4}J_{\rm H,P}$ =2.2 Hz, ${}^{3}J_{\rm H,F}$ =11.5 Hz, ${}^{4}J_{\rm H,F}$ =7.7 Hz, 1H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 15.71 (d, ${}^{2}J_{\rm C,P}$ =4.9 Hz, CH₃), 23.45 (d, ${}^{3}J_{\rm C,P}$ =5.3 Hz, CH₃), 23.85 (d, ${}^{3}J_{\rm C,P}$ =4.8 Hz, CH₃) 23.94 (d, ${}^{3}J_{\rm C,P}$ =3.4 Hz, CH₃) 24.08 (d, ${}^{3}J_{\rm C,P}$ =3.7 Hz, CH₃), 38.20 (ddd, ${}^{1}J_{\rm C,P}$ =141.1 Hz, ${}^{4}J_{\rm C,F}$ =3.0 Hz, ${}^{5}J_{\rm C,F}$ =1.1 Hz, PCH), 70.40 (d, ${}^{2}J_{\rm C,P}$ =7.4 Hz, OCH), 70.85 (d, ${}^{2}J_{\rm C,P}$ =7.2 Hz, OCH), 116.81 (dd, ${}^{2}J_{\rm C,F}$ =6.6 Hz, ${}^{3}J_{\rm C,F}$ =3.6 Hz, CH_{Ar}), 135.47 (ddd, ${}^{2}J_{\rm C,P}$ =6.8 Hz, ${}^{3}J_{\rm C,F}$ =5.6 Hz, ${}^{4}J_{\rm C,F}$ =3.8 Hz, C_{Ar}), 149.28 (ddd, ${}^{5}J_{\rm C,P}$ =3.6 Hz, ${}^{1}J_{\rm C,F}$ =247.2 Hz, ${}^{2}J_{\rm C,F}$ =12.6 Hz, CF_{Ar}), 149.94 (ddd, ${}^{4}J_{\rm C,P}$ =2.9 Hz, ${}^{1}J_{\rm C,F}$ =247.6 Hz, ${}^{2}J_{\rm C,F}$ =12.7 Hz, CF_{Ar}). ¹⁹F NMR (376 MHz, CD₃CI, δ): -140.67÷-140.54 (m, C(4')F), -138.08÷-137.97 (m, C(3')F). HRMS (ESI): found 307.1266, calcd. for [M + H]⁺ (C₁H₂₂F₂O₃P) 307.1269.

Diisopropyl (*R*)-(+)-[1-(4-dimethylaminophenyl)ethyl]phosphonate (6g). $P(O)(O'Pr)_2$ Colorless oil, 93% *ee.* HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5 ml/min, t_R = 13.1 min (minor), 25.2 min (major). $[\alpha]_D^{26}$ = +8.0 (c =

0.9, CHCl₃). $R_{\rm f}$ 0.21 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 29.3. ¹H NMR (400 MHz, CDCl₃, δ): 0.99 (d, ³ $J_{\rm H,H}$ =6.2 Hz, 3H, CH₃), 1.22 (d, ³ $J_{\rm H,H}$ =6.2 Hz, 3H, CH₃), 1.24 (d, ³ $J_{\rm H,H}$ =6.2 Hz, 3H, CH₃), 1.26 (d, ³ $J_{\rm H,H}$ =6.2 Hz, 3H, CH₃), 1.50 (dd, ³ $J_{\rm H,H}$ =7.4 Hz, ³ $J_{\rm H,P}$ =18.4 Hz, 3H, CH₃), 2.91 (s, 6H, N(CH₃)₂), 2.99 (dq, ³ $J_{\rm H,H}$ =7.4 Hz, ² $J_{\rm H,P}$ =22.4 Hz, 1H, PCH), 4.43 (m, 1H, OCH), 4.60 (m, 1H, OCH), 6.70 (d, ³ $J_{\rm AB}$ =8.8 Hz, 2H, CH_{Ar}), 7.20 (dd, ³ $J_{\rm AB}$ =8.8 Hz, ⁴ $J_{\rm H,P}$ =2.3 Hz, 2H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 15.88 (d, ² $J_{\rm C,P}$ =4.4 Hz, CH₃), 23.41 (d, ³ $J_{\rm C,P}$ =5.5 Hz, CH₃), 23.90 (d, ³ $J_{\rm C,P}$ =5.2 Hz, CH₃) 23.99 (d, ³ $J_{\rm C,P}$ =7.5 Hz, OCH), 70.63 (d, ² $J_{\rm C,P}$ =7.3 Hz, OCH), 112.80 (d, ⁴ $J_{\rm C,P}$ =140.2 Hz, PCH), 40.81 (N(CH₃)₂), 69.90 (d, ² $J_{\rm C,P}$ =7.5 Hz, OCH), 70.63 (d, ² $J_{\rm C,P}$ =7.3 Hz, OCH), 112.80 (d, ⁴ $J_{\rm C,P}$ =2.2 Hz, CH_{Ar}), 126.25 (d, ² $J_{\rm C,P}$ =7.0 Hz, C_{Ar}), 129.30 (d, ³ $J_{\rm C,P}$ =6.6 Hz, CH_{Ar}), 149.33 (d, ⁵ $J_{\rm C,P}$ =2.6 Hz, CN_{Ar}). HRMS (ESI): found 314.1881, calcd. for [M + H]⁺ (C₁₆H₂₉NO₃P) 314.1880.

0₂N P(O)(OⁱPr

Me₂N

Diisopropyl (R)-(+)-[1-(3-nitrophenyl)ethyl]phosphonate (6h). Colorless oil, 81% $P^{(O)(O'Pr)_2}$ *ee.* HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5 ml/min, $t_{\rm R}$ = 7.4 min (minor), 8.6 min (major). $[\alpha]_{\rm D}^{26}$ = +7.1 (*c* = 0.9, CHCl₃). $R_{\rm f}$ 0.24

(*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 28.8. ¹H NMR (400 MHz, CDCl₃, δ): 1.07 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.24 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.25 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.27 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.59 (dd, ³*J*_{H,H}=7.4 Hz, ³*J*_{H,P}=18.1 Hz, 3H, CH₃), 3.21 (dq, ³*J*_{H,H}=7.4 Hz, ²*J*_{H,P}=23.0 Hz, 1H, PCH), 4.54 (m, 1H, OCH), 4.63 (m, 1H, OCH), 7.47 (m, ³*J*_{H,H}=8.2 Hz, ³*J*_{H,H}=7.7 Hz, 1H, CH_{Ar}),

7.70 (m, ${}^{3}J_{H,H}=7.7$ Hz, ${}^{4}J_{H,H}=2.2$ Hz, ${}^{4}J_{H,H}=1.1$ Hz, ${}^{5}J_{H,H}=0.4$ Hz, ${}^{4}J_{H,P}=1.9$ Hz, 1H, CH_{Ar}), 8.09 (dddd, ${}^{3}J_{H,H}=8.2$ Hz, ${}^{4}J_{H,H}=2.1$ Hz, ${}^{4}J_{H,H}=1.1$ Hz, 1H, ${}^{6}J_{H,P}=2.1$ Hz, CH_{Ar}), 8.16 (m, ${}^{4}J_{H,H}=2.2$ Hz, ${}^{4}J_{H,H}=2.1$ Hz, ${}^{4}J_{H,P}=2.1$ Hz, 1H, CH_{Ar}). 13 C NMR (101 MHz, CDCl₃, δ): 15.40 (d, ${}^{2}J_{C,P}=5.1$ Hz, CH₃), 23.58 (d, ${}^{3}J_{C,P}=4.9$ Hz, CH₃), 23.88 (d, ${}^{3}J_{C,P}=4.8$ Hz, CH₃) 23.98 (d, ${}^{3}J_{C,P}=3.9$ Hz, CH₃) 24.07 (d, ${}^{3}J_{C,P}=3.7$ Hz, CH₃), 38.87 (d, ${}^{1}J_{C,P}=140.0$ Hz, PCH), 70.74 (d, ${}^{2}J_{C,P}=7.4$ Hz, OCH), 70.99 (d, ${}^{2}J_{C,P}=7.3$ Hz, OCH), 121.94 (d, ${}^{5}J_{C,P}=2.9$ Hz, CH_{Ar}), 123.62 (d, ${}^{3}J_{C,P}=6.8$ Hz, CH_{Ar}), 129.12 (d, ${}^{4}J_{C,P}=1.6$ Hz, CH_{Ar}), 135.03 (d, ${}^{3}J_{C,P}=6.1$ Hz, CH_{Ar}), 140.77 (d, ${}^{2}J_{C,P}=7.1$ Hz, CA_A), 148.08 (CN_{Ar}). HRMS (ESI): found 316.1308, calcd. for [M + H]^+ (C₁₄H₂₃NO₅P) 316.1310.

Diisopropyl (R)-(+)-[1-(2-methoxyphenyl)ethyl]phosphonate (6i). Colorless oil, 82% ee. HPLC conditions: Chiralpak AD-H, i-PrOH/n-hexane 5:95, flow rate = 1.5 ml/min, P(O)(OⁱPr)₂ $t_{\rm R} = 5.8 \text{ min (minor)}, 17.2 \text{ min (major)}, [\alpha]_{\rm D}^{26} = +6.5 (c = 1.1, \text{CHCl}_3), R_{\rm f} 0.25 (i-1)$ PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 30.0. ¹H NMR (400 MHz, CDCl₃, δ): 0.89 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.17 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.24 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.25 (d, ${}^{3}J_{\text{H,H}}=6.2$ Hz, 3H, CH₃), 1.45 (dd, ${}^{3}J_{\text{H,H}}=7.4$ Hz, ${}^{3}J_{\text{H,P}}=18.5$ Hz, 3H, CH₃), 3.77 (s, 3H, OCH₃), 3.78 (dq, ${}^{3}J_{HH}=7.4$ Hz, ${}^{2}J_{HP}=22.7$ Hz, 1H, PCH), 4.39 (m, 1H, OCH), 4.64 (m, 1H, OCH), 6.80 (m, ${}^{3}J_{HH}=8.2$ Hz, 1H, CH_{Ar}), 6.90 (m, ${}^{3}J_{H,H}$ =7.7 Hz, ${}^{3}J_{H,H}$ =7.4 Hz, 1H, CH_{Ar}), 7.16 (m, ${}^{3}J_{H,H}$ =8.2 Hz, ${}^{3}J_{H,H}$ =7.4 Hz, ${}^{4}J_{H,H}$ =1.8 Hz, ${}^{6}J_{\text{H,P}}$ =1.8 Hz, 1H, CH_{Ar}), 7.48 (m, ${}^{3}J_{\text{H,H}}$ =7.7 Hz, ${}^{4}J_{\text{H,H}}$ =1.8 Hz, ${}^{4}J_{\text{H,P}}$ =2.5 Hz, 1H, CH_{Ar}). 13 C NMR (101 MHz, CDCl₃, δ): 15.86 (d, ²*J*_{C,P}=4.7 Hz, CH₃), 23.12 (d, ³*J*_{C,P}=5.5 Hz, CH₃), 23.83 (d, ³*J*_{C,P}=5.2 Hz, CH₃) 23.97 (d, ${}^{3}J_{C,P}$ =3.4 Hz, CH₃) 24.16 (d, ${}^{3}J_{C,P}$ =3.1 Hz, CH₃), 29.21 (d, ${}^{1}J_{C,P}$ =141.9 Hz, PCH), 55.40 (OCH₃), 69.79 (d, ²J_{C,P}=7.2 Hz, OCH), 70.48 (d, ²J_{C,P}=7.2 Hz, OCH), 110.25 (d, ⁴J_{C,P}=1.9 Hz, CH_{Ar}), 120.50 (d, ${}^{4}J_{C,P}$ =3.0 Hz, CH_{Ar}), 127.03 (d, ${}^{2}J_{C,P}$ =5.6 Hz, C_{Ar}), 127.59 (d, ${}^{5}J_{C,P}$ =2.9 Hz, CH_{Ar}), 128.93(d, ${}^{3}J_{C,P}$ =4.9 Hz, CH_{Ar}), 156.55 (d, ${}^{3}J_{C,P}$ =8.2 Hz, CO_{Ar}). HRMS (ESI): found 301.1565, calcd. for [M + H]⁺ (C₁₅H₂₆O₄P) 301.1563.

0.25 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 28.4. ¹H NMR (400 MHz, CDCl₃, δ): 0.98 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.23 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.25 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.27 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.53 (dd, ³*J*_{H,H}=7.4 Hz, ³*J*_{H,P}=18.4 Hz, 3H, CH₃), 3.06 (dq, ³*J*_{H,H}=7.4 Hz, ²*J*_{H,P}=22.6 Hz, 1H, PCH), 3.79 (s, 3H, OCH₃), 4.46 (m, 1H, OCH), 4.62 (m, 1H, OCH), 6.75-6.78 (m, 1H, CH_{Ar}), 6.90-6.94 (m, 2H, CH_{Ar}), 7.20 (ddd, ³*J*_{H,H}=8.2 Hz, ³*J*_{H,H}=7.4 Hz, ⁵*J*_{H,H}=0.8 Hz, ⁵*J*_{H,P}=0.8 Hz, 1H, CH_{Ar}). ¹³C NMR (151 MHz, CDCl₃, δ): 15.79 (d, ²*J*_{C,P}=5.1 Hz, CH₃), 23.23 (d, ³*J*_{C,P}=5.5 Hz, CH₃), 23.79 (d, ³*J*_{C,P}=5.3 Hz, CH₃) 23.89 (d, ³*J*_{C,P}=3.4 Hz, CH₃) 24.09 (d, ³*J*_{C,P}=3.1 Hz, CH₃), 38.96 (d, ¹*J*_{C,P}=139.7 Hz, PCH), 55.01 (OCH₃), 70.00 (d, ²*J*_{C,P}=7.4 Hz, OCH), 70.70 (d, ²*J*_{C,P}=7.3 Hz, OCH), 112.38 (d, ⁵*J*_{C,P}=3.0 Hz, CH_{Ar}), 114.20 (d, ³*J*_{C,P}=6.5 Hz, CH_{Ar}), 121.10 (d, ³*J*_{C,P}=6.8 Hz, CH_{Ar}), 129.03 (d, ⁴*J*_{C,P}=2.5 Hz, CH_{Ar}), 139.74 (d,

 ${}^{2}J_{C,P}=6.4$ Hz, C_{Ar}), 159.31 (d, ${}^{4}J_{C,P}=2.6$ Hz, CO_{Ar}). HRMS (ESI): found 301.1564, calcd. for $[M + H]^{+}$ ($C_{15}H_{26}O_{4}P$) 301.1563.

Diisopropyl (*R***)-(+)-[1-(4-methoxyphenyl)ethyl]phosphonate (6k)**. Colorless oil, 95% *ee*. HPLC conditions: Chiralcel OD-H, *i*-PrOH/*n*-hexane 1 : 200, flow rate = 1.5 ml/min, $t_R = 5.5$ min (major), 24.2 min (minor). [α]_D²³ = +8.7 (c = 0.9, CHCl₃) (lit.¹⁹ [α]_D²⁰ = +9.4 (c = 1.1, CHCl₃) for 94% *ee* (*R*)). R_f 0.25 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 29.1. ¹H NMR (400 MHz, CDCl₃, δ): 0.98 (d, ³ $J_{H,H}$ =6.2 Hz, 3H, CH₃), 1.22 (d, ³ $J_{H,H}$ =6.2 Hz, 3H, CH₃), 1.24 (d, ³ $J_{H,H}$ =6.2 Hz, 3H, CH₃), 1.27 (d, ³ $J_{H,H}$ =6.2 Hz, 3H, CH₃), 1.51 (dd, ³ $J_{H,H}$ =7.4 Hz, ³ $J_{H,P}$ =18.4 Hz, 3H, CH₃), 3.03 (dq, ³ $J_{H,H}$ =7.4 Hz, ² $J_{H,P}$ =22.5 Hz, 1H, PCH), 3.78 (s, 3H, OCH₃), 4.43 (m, 1H, OCH), 4.60 (m, 1H, OCH), 6.83 (d, ³ $J_{H,H}$ =8.6 Hz, 2H, CH_{Ar}), 7.26 (dd, ³ $J_{H,H}$ =8.6 Hz, ⁴ $J_{H,P}$ =2.3 Hz, 2H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 15.99 (d, ² $J_{C,P}$ =4.7 Hz, CH₃), 23.44 (d, ³ $J_{C,P}$ =5.5 Hz, CH₃), 23.94 (d, ³ $J_{C,P}$ =5.2 Hz, CH₃) 24.04 (d, ³ $J_{C,P}$ =7.6 Hz, OCH), 70.65 (d, ² $J_{C,P}$ =7.3 Hz, OCH), 113.64 (d, ⁴ $J_{C,P}$ =2.4 Hz, CH_{Ar}), 129.71 (d, ³ $J_{C,P}$ =6.6 Hz, CH_{Ar}), 130.31 (d, ² $J_{C,P}$ =6.8 Hz, C_{Ar}), 158.47 (d, ⁵ $J_{C,P}$ =3.4 Hz, CO_{Ar}). HRMS (ESI): found 301.1563, calcd. for [M + H]⁺ (C₁₅H₂₆O₄P) 301.1563.

Diisopropyl (*R***)-(+)-[1-(4-methylphenyl)ethyl]phosphonate (6l)**. Colorless oil, 96% ee. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.0 ml/min, $t_R = 9.8$ min (minor), 18.6 min (major). [α]_D²⁴ = +10.9 (c = 1.0, CHCl₃) (lit.¹⁹ [α]_D²⁰ = +12.6 (c = 1.0, CHCl₃) for 93% ee (*R*)). R_f 0.3 (EtOAc/petroleum ether 1 : 2). ³¹P NMR (162 MHz, CDCl₃, δ): 29.0. ¹H NMR (400 MHz, CDCl₃, δ): 0.97 (d, ³ $J_{H,H}$ =6.2 Hz, 3H, CH₃), 1.22 (d, ³ $J_{H,H}$ =6.3 Hz, 3H, CH₃), 1.24 (d, ³ $J_{H,H}$ =6.4 Hz, 3H, CH₃), 1.26 (d, ³ $J_{H,H}$ =6.2 Hz, 3H, CH₃), 1.52 (dd, ³ $J_{H,H}$ =7.4 Hz, ³ $J_{H,P}$ =18.4 Hz, 3H, CH₃), 2.31 (d, $J_{H,P}$ =1.8 Hz, 3H, CH₃), 3.04 (dq, ³ $J_{H,H}$ =7.4 Hz, ² $J_{H,P}$ =22.5 Hz, 1H, PCH), 4.44 (m, 1H, OCH), 4.61 (m, 1H, OCH), 7.09 (d, ³ $J_{H,H}$ =8.0 Hz, 2H, CH_A), 7.22 (dd, ³ $J_{H,H}$ =8.0 Hz, ⁴ $J_{H,P}$ =2.2 Hz, 2H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 15.88 (d, ² $J_{C,P}$ =4.9 Hz, CH₃), 20.92 (CH₃), 23.32 (d, ³ $J_{C,P}$ =5.5 Hz, CH₃), 23.85 (d, ³ $J_{C,P}$ =5.2 Hz, CH₃) 23.96 (d, ³ $J_{C,P}$ =3.5 Hz, CH₃) 24.14 (d, ³ $J_{C,P}$ =3.2 Hz, CH₃), 39.59 (d, ¹ $J_{C,P}$ =139.9 Hz, PCH), 69.91 (d, ² $J_{C,P}$ =7.4 Hz, OCH), 70.55 (d, ² $J_{C,P}$ =7.3 Hz, OCH), 128.55 (d, ³ $J_{C,P}$ =6.7 Hz, CH_{Ar}), 128.84 (d, ⁴ $J_{C,P}$ =2.5 Hz, CH_{Ar}), 135.25 (d, ² $J_{C,P}$ =6.8 Hz, C_{Ar}), 136.27 (d, ⁵ $J_{C,P}$ =3.4 Hz, CMe_{Ar}).

Diisopropyl (*R*)-(+)-[1-(4-isobutylphenyl)ethyl]phosphonate (6m). Colorless oil,
97% ee. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5
ml/min,
$$t_{\rm R}$$
 = 5.8 min (minor), 13.6 min (major). [α]_D²⁴ = +8.4° (*c* = 1.1, CHCl₃) (lit.¹⁹

HRMS (ESI): found 285.1611, calcd. for $[M + H]^+$ (C₁₅H₂₆O₃P) 285.1614.

 $[\alpha]_D{}^{20} = +8.2$ (*c* = 1.1, CHCl₃) for 93% *ee* (*R*)). *R*_f 0.33 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 29.2. ¹H NMR (400 MHz, CDCl₃, δ): 0.86 (br d, ³*J*_{H,H}=6.6 Hz, 6H, CH_{3 *i*-Bu}), 0.90 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.21 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.23 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.26 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.53 (dd, ³*J*_{H,H}=7.4 Hz, ³*J*_{H,P}=18.5 Hz, 3H, CH₃), 1.82 (m, 1H, CH_{*i*-Bu}), 2.43 (br d, ³*J*_{H,H}=7.2

Hz, 2H, CH_{2 *i*-Bu}), 3.05 (dq, ${}^{3}J_{H,H}$ =7.2 Hz, ${}^{2}J_{H,P}$ =22.6 Hz, 1H, PCH), 4.00 (m, 1H, OCH), 4.60 (m, 1H, OCH), 7.06 (d, ${}^{3}J_{H,H}$ =8.0 Hz, 2H, CH_{Ar}), 7.24 (dd, ${}^{3}J_{H,H}$ =8.0 Hz, ${}^{4}J_{H,P}$ =2.2 Hz, 2H, CH_{Ar}). 13 C NMR (101 MHz, CDCl₃, δ): 15.89 (d, ${}^{2}J_{C,P}$ =4.9 Hz, CH₃), 22.26 (2CH_{3 *i*-Bu}), 23.27 (d, ${}^{3}J_{C,P}$ =5.5 Hz, CH₃), 23.93 (d, ${}^{3}J_{C,P}$ =5.1 Hz, CH₃) 24.04 (d, ${}^{3}J_{C,P}$ =3.5 Hz, CH₃) 24.26 (br s, CH₃), 30.19 (CH_{*i*-Bu}), 38.61 (d, ${}^{1}J_{C,P}$ =139.5 Hz, PCH), 44.99 (CH_{2 *i*-Bu}), 69.93 (d, ${}^{2}J_{C,P}$ =7.0 Hz, OCH), 70.75 (d, ${}^{2}J_{C,P}$ =6.9 Hz, OCH), 128.51 (d, ${}^{3}J_{C,P}$ =6.5 Hz, CH_{Ar}), 129.00 (CH_{Ar}), 135.44 (d, ${}^{2}J_{C,P}$ =6.1 Hz, C_{Ar}), 140.26 (C_{Ar}). HRMS (ESI): found 327.2079, calcd. for [M + H]⁺ (C₁₈H₃₂O₃P) 327.2084.

Diisopropyl (*R*)-(+)-[1-(4-cyclohexylphenyl)ethyl]phosphonate (6n). Colorless oil, 99% *ee.* HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5 ml/min, $t_{\rm R}$ = 3.9 min (minor), 5.3 min (major). [α]_D²³ = +10.6 (*c* = 1.0, CHCl₃). *R*_f 0.3

(EtOAc/petroleum ether 1 : 2). ³¹P NMR (162 MHz, CDCl₃, δ): 29.1. ¹H NMR (400 MHz, CDCl₃, δ): 0.90 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.21 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.22 (m, 1H, CH_{2 Cy}), 1.23 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.26 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.31-1.43 (m, 4H, CH_{2 Cy}), 1.53 (dd, ³*J*_{H,H}=7.4 Hz, ³*J*_{H,P}=18.5 Hz, 3H, CH₃), 2.45 (m, 1H, CH_{Cy}), 3.05 (dq, ³*J*_{H,H}=7.4 Hz, ²*J*_{H,P}=22.6 Hz, 1H, PCH), 4.41 (m, 1H, OCH), 4.60 (m, 1H, OCH), 7.12 (d, ³*J*_{H,H}=8.0 Hz, 2H, CH_{Ar}), 7.24 (dd, ³*J*_{H,H}=8.0 Hz, ⁴*J*_{H,P}=2.2 Hz, 2H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 15.78 (d, ²*J*_{C,P}=4.9 Hz, CH₃), 23.17 (d, ³*J*_{C,P}=5.5 Hz, CH₃), 23.86 (d, ³*J*_{C,P}=5.2 Hz, CH₃) 23.98 (d, ³*J*_{C,P}=3.5 Hz, CH₃) 24.20 (d, ³*J*_{C,P}=3.1 Hz, CH₃), 26.12 (CH_{2 Cy}), 26.85 (2CH_{2 cy}), 34.43 (d, *J*_{C,P}=1.0 Hz, 2CH_{2 Cy}), 38.64 (d, ¹*J*_{C,P}=139.7 Hz, PCH), 44.14 (d, *J*_{C,P}=0.7 Hz, CH_{Cy}), 69.91 (d, ²*J*_{C,P}=7.5 Hz, OCH), 70.68 (d, ²*J*_{C,P}=7.2 Hz, OCH), 126.61 (d, ⁴*J*_{C,P}=2.4 Hz, CH_{Ar}), 128.59 (d, ³*J*_{C,P}=6.6 Hz, CH_{Ar}), 135.48 (d, ²*J*_{C,P}=6.6 Hz, CA_{Ar}), 146.35 (d, ⁵*J*_{C,P}=3.3 Hz, CA_A). HRMS (ESI): found 353.2234, calcd. for [M + H]⁺ (C₂₀H₃₃O₃P) 353.2240.

Diisopropyl (R)-(+)-[1-(5,6,7,8-Tetrahydronaphthalen-2-yl)ethyl]phosphonate

(**60**). Colorless oil, 98% *ee*. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5 ml/min, $t_{\rm R}$ = 5.8 min (minor), 13.6 min (major). [α]_D²³ = +7.3 (*c* = 0.95, CHCl₃). *R*_f 0.3 (EtOAc/petroleum ether 1 : 2), *R*_f 0.26 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 29.2. ¹H NMR (400 MHz, CDCl₃, δ): 1.01 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.23 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.25 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.27 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.51 (dd, ³*J*_{H,H}=7.4 Hz, ³*J*_{H,P}=18.4 Hz, 3H, CH₃), 1.76 (m, 4H, CH₂), 2.72 (m, 4H, CH₂), 3.00 (dq, ³*J*_{H,H}=7.4 Hz, ²*J*_{H,P}=22.5 Hz, 1H, PCH), 4.45 (m, 1H, OCH), 4.61 (m, 1H, OCH), 6.97 (d, ³*J*_{H,H}=7.9 Hz, 1H, CH_{Ar}) 7.01 (dd, ⁴*J*_{H,H}=2.0 Hz, ⁴*J*_{H,P}=2.0 Hz, 1H, CH_{Ar}) 7.05 (ddd, ³*J*_{H,H}=7.9 Hz, ⁴*J*_{H,H}=2.0 Hz, ⁴*J*_{H,P}=2.0 Hz, 1H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 15.85 (d, ²*J*_{C,P}=5.0 Hz, CH₃), 23.15 (CH₂), 23.19 (CH₂), 23.35 (d, ³*J*_{C,P}=5.6 Hz, CH₃), 23.88 (d, ³*J*_{C,P}=5.3 Hz, CH₃) 24.03 (d, ³*J*_{C,P}=3.4 Hz, CH₃) 24.22(d, ³*J*_{C,P}=3.2 Hz, CH₃), 28.97 (d, *J*_{C,P}=7.2 Hz, OCH), 125.73 (d, ³*J*_{C,P}=6.4 Hz, CH_{Ar}), 128.93 (d, ⁴*J*_{C,P}=2.6 Hz, CH_{Ar}), 129.40 (d, ³*J*_{C,P}=6.9 Hz, CH_{Ar}), 135.05 (d, ²*J*_{C,P}=6.6 Hz, C_{Ar}), 135.62 (d, ⁵*J*_{C,P}=3.5 Hz, C_{Ar}), 136.78 (d, ⁴*J*_{C,P}=2.5 Hz, C_{Ar}). HRMS (ESI): found 325.1927, calcd. for $[M + H]^+$ (C₁₈H₃₀O₃P) 325.1927. When stored for a long time at room temperature, the substance **60** crystallizes, forming crystals suitable for X-ray structural analysis.

Diisopropyl (*R*)-(+)-[1-(4-diphenyl)ethyl]phosphonate (6p). Colorless oil, 96% *ee.* $_{Ph}$ $_{R} = 15.2 \text{ min} (\text{minor}), 16.9 \text{ min} (\text{major}). [\alpha]_{D}^{26} = +8.6 (c = 0.9, CHCl_3). R_{f} 0.31 (i-$ PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl_3, δ): 28.2. ¹H NMR (400 MHz, CDCl_3, δ): 1.00 (d, $_{J}J_{H,H}=6.2$ Hz, 3H, CH₃), 1.24 (d, $_{J}J_{H,H}=6.2$ Hz, 3H, CH₃), 1.26 (d, $_{J}J_{H,H}=6.2$ Hz, 3H, CH₃), 1.29 (d, $_{3}J_{H,H}=6.2$ Hz, 3H, CH₃), 1.59 (dd, $_{3}J_{H,H}=7.4$ Hz, $_{3}J_{H,P}=18.4$ Hz, 3H, CH₃), 3.14 (dq, $_{3}J_{H,H}=7.4$ Hz, $_{2}J_{H,P}=22.7$ Hz, 1H, PCH), 4.49 (m, 1H, OCH), 4.64 (m, 1H, OCH), 7.31 (m, $_{3}J_{H,H}=7.4$ Hz, $_{1}H$, CH_{ph}), 7.43 (m, 2H, CH_{ph}), 7.44 (dd, $_{3}J_{H,H}=8.4$ Hz, $_{4}J_{H,P}=2.3$ Hz, 2H, CH_Ar), 7.54 (d, $_{3}J_{H,H}=8.4$ Hz, 2H, CH_Ar), 7.58 (m, 2H, CH_{ph}). ¹³C NMR (101 MHz, CDCl₃, δ): 15.74 (d, $_{2}J_{C,P}=5.2$ Hz, CH₃), 23.32 (d, $_{3}J_{C,P}=5.5$ Hz, CH₃), 23.87 (d, $_{3}J_{C,P}=5.4$ Hz, CH₃) 23.99 (d, $_{3}J_{C,P}=3.1$ Hz, CH₃) 24.16 (br, CH₃), 38.67 (d, $_{1}J_{C,P}=139.6$ Hz, PCH), 70.09 (d, $_{2}J_{C,P}=7.1$ Hz, OCH), 70.72 (d, $_{2}J_{C,P}=7.1$ Hz, OCH), 126.83 (d, $_{4}J_{C,P}=2.6$ Hz, 2CH_{Ar}), 126.86 (2CH_{Ph}), 127.08 (CH_{Ph}), 128.63 (CH_{Ph}), 129.03 (d, $_{3}J_{C,P}=6.6$ Hz, 2CH_{Ar}), 137.37 (d, $_{2}J_{CP}=6.7$ Hz, C_{Ar}), 139.61 (br, C_{Ar}), 140.70 (C_{ph}). HRMS (ESI): found 347.1770, calcd. for [M + H]⁺ (C₂₀H₂₇O₃P) 347.1771.

Diisopropyl (*R***)-(+)-[1-(naphthalen-2-yl)ethyl]phosphonate (6q)**. Colorless oil, 97% *ee.* HPLC conditions: Chiralcel OD-H, *i*-PrOH/*n*-hexane 1 : 200, flow rate = 1.0 ml/min, $t_{\rm R}$ = 34.9 min (major), 39.7 min (minor). [α]_D²⁴ = +11.8 (*c* = 0.94, CHCl₃) (lit.¹⁹ [α]_D²⁰ = +8.0 (*c* = 1.0, CHCl₃) for 91% *ee* (*R*)). *R*_f 0.3 (EtOAc/petroleum ether 1 : 2), *R*_f 0.27 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 28.2. ¹H NMR (400 MHz, CDCl₃, δ): 0.93 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.21 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.25 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.27 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.64 (dd, ³*J*_{H,H}=7.4 Hz, ³*J*_{H,P}=18.3 Hz, 3H, CH₃), 3.26 (dq, ³*J*_{H,H}=7.4 Hz, ²*J*_{H,P}=22.7 Hz, 1H, PCH), 4.44 (m, 1H, OCH), 4.63 (m, 1H, OCH), 7.44 (m, 2H, CH_{Ar}), 7.51 (ddd, ³*J*_{H,H}=8.6 Hz, ⁴*J*_{H,H}=1.7 Hz, ⁴*J*_{H,P}=1.7 Hz, 1H, CH_{Ar}), 7.76-7.82 (m, 4H, CH_{Ar}). ¹³C NMR (101 MHz, CDCl₃, δ): 15.85 (d, ²*J*_{C,P}=5.3 Hz, CH₃), 23.33 (d, ³*J*_{C,P}=5.6 Hz, CH₃), 23.86 (d, ³*J*_{C,P}=5.4 Hz, CH₃) 23.97 (d, ³*J*_{C,P}=3.7 Hz, CH₃) 24.12 (d, ³*J*_{C,P}=2.6 Hz, CH₃), 39.11 (d, ¹*J*_{C,P}=139.5 Hz, PCH), 70.09 (d, ²*J*_{C,P}=7.0 Hz, OCH), 70.67 (d, ²*J*_{C,P}=7.1 Hz, OCH), 125.51 (CH_{Ar}), 125.86 (CH_{Ar}), 127.05 (d, ³*J*_{C,P}=5.3 Hz, CH_{Ar}), 127.29 (d, ³*J*_{C,P}=8.5 Hz, CH_{Ar}), 127.47 (CH_{Ar}), 127.61 (CH_{Ar}), 127.69 (CH_{Ar}), 132.36 (C_{Ar}), 133.23 (C_{Ar}), 135.88 (d, ²*J*_{C,P}=6.9 Hz, C_{Ar}). HRMS (ESI): found 321.1614, calcd. for [M + H]⁺ (C₁₈H₂₆O₃P) 321.1614.

 $\begin{array}{l} \textbf{Diisopropyl} \quad (R)-(+)-[1-(6-methoxynaphthalen-2-yl)ethyl]phosphonate \quad (6r). \\ \textbf{White solid, 96\% $ee.$ HPLC conditions: Chiralpak AD-H, i-PrOH/n-hexane \\ 2:98, flow rate = 1.5 ml/min, $t_{\rm R}$ = 18.9 min (minor), 34.2 min (major). [α]_{D}^{24} = \end{array}$

+15.2 (c = 1.0, CHCl₃) (lit.¹⁹ [α]_D²⁰ = +15.4 (c = 1.0, CHCl₃) for 92% *ee* (*R*)). Mp 82-84°C; *R*_f 0.32 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 28.4. ¹H NMR (400 MHz, CDCl₃, δ): 0.92 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.21 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.24 (d, ³*J*_{H,H}=6.2 Hz, 3H, CH₃), 1.27 (d,

 ${}^{3}J_{\text{H,H}}$ =6.2 Hz, 3H, CH₃), 1.62 (dd, ${}^{3}J_{\text{H,H}}$ =7.3 Hz, ${}^{3}J_{\text{H,P}}$ =18.4 Hz, 3H, CH₃), 3.22 (dq, ${}^{3}J_{\text{H,H}}$ =7.3 Hz, ${}^{2}J_{\text{H,P}}$ =22.7 Hz, 1H, PCH), 4.42 (m, 1H, OCH), 4.62 (m, 1H, OCH), 7.10 (br s, 1H, CH_{Ar}), 7.11 (dd, ${}^{3}J_{\text{H,H}}$ =8.8 Hz, ${}^{4}J_{\text{H,H}}$ =2.4 Hz, 1H, CH_{Ar}), 7.47 (ddd, ${}^{3}J_{\text{H,H}}$ =8.5 Hz, ${}^{4}J_{\text{H,H}}$ =1.5 Hz, ${}^{4}J_{\text{H,P}}$ =1.5 Hz, 1H, CH_{Ar}), 7.67 (d, ${}^{3}J_{\text{H,H}}$ =8.8 Hz, 1H, CH_{Ar}), 7.69 (d, ${}^{3}J_{\text{H,H}}$ =8.5 Hz, 1H, CH_{Ar}), 7.70 (br s, 1H, CH_{Ar}). 13 C NMR (101 MHz, CDCl₃, δ): 15.94 (d, ${}^{2}J_{\text{C,P}}$ =5.0 Hz, CH₃), 23.99 (d, ${}^{3}J_{\text{C,P}}$ =5.5 Hz, CH₃), 23.93 (d, ${}^{3}J_{\text{C,P}}$ =5.2 Hz, CH₃) 24.03 (d, ${}^{3}J_{\text{C,P}}$ =3.4 Hz, CH₃) 24.20 (d, ${}^{3}J_{\text{C,P}}$ =3.1 Hz, CH₃), 38.92 (d, ${}^{1}J_{\text{C,P}}$ =139.8 Hz, PCH), 55.21 (OCH₃), 70.08 (d, ${}^{2}J_{\text{C,P}}$ =7.5 Hz, OCH), 70.70 (d, ${}^{2}J_{\text{C,P}}$ =7.2 Hz, OCH), 105.47 (CH_{Ar}), 118.74 (CH_{Ar}), 126.60 (d, ${}^{4}J_{\text{C,P}}$ =1.7 Hz, CH_{Ar}), 127.17 (d, ${}^{3}J_{\text{C,P}}$ =8.3 Hz, CH_{Ar}), 127.60 (d, ${}^{3}J_{\text{C,P}}$ =5.2 Hz, CH_{Ar}), 128.78 (d, ${}J_{\text{C,P}}$ =2.3 Hz, C_{Ar}), 133.51 (d, ${}^{2}J_{\text{C,P}}$ =6.8 Hz, C_{Ar}), 157.43 (CO_{Ar}). HRMS (ESI): found 351.1714, calcd. for [M + H]⁺ (C₁₉H₂₈O₄P) 351.1720.

Diisopropyl [1-(naphthalen-1-yl)ethyl]phosphonate (6s). Colorless oil, 5% *ee*. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5 ml/min, $t_{\rm R}$ = 6.0 min (minor), 15.6 min (major). $R_{\rm f}$ 0.31 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 29.1. ¹H NMR (400 MHz, CDCl₃, δ): 0.55 (d, ³J_{H,H}=6.2 Hz, 3H, CH₃), 1.13 (d, ³J_{H,H}=6.2 Hz, 3H, CH₃), 1.26 (d, ³J_{H,H}=6.2 Hz, 3H, CH₃), 1.27 (d, ³J_{H,H}=6.2 Hz, 3H, CH₃), 1.68 (dd, ³J_{H,H}=7.3 Hz,

¹¹*L*, 511, CH₃), 1.20 (d, $J_{H,H}=0.2$ Hz, 511, CH₃), 1.27 (d, $J_{H,P}=0.2$ Hz, 511, CH₃), 1.08 (dd, $J_{H,H}=7.5$ Hz, $^{3}J_{H,P}=18.3$ Hz, 3H, CH₃), 4.02 (dq, $^{3}J_{H,H}=7.3$ Hz, $^{2}J_{H,P}=23.2$ Hz, 1H, PCH), 4.32 (m, 1H, OCH), 4.67 (m, 1H, OCH), 7.44-7.48 (m, 2H, CH_{Ar}) 7.51 (m, 1H, CH_{Ar}), 7.72-7.75 (m, 2H, CH_{Ar}), 7.84 (dd, $^{3}J_{H,H}=8.0$ Hz, J=1.4 Hz, 1H, CH_{Ar}), 8.11 (d, $^{3}J_{H,H}=8.5$ Hz, 1H, CH_{Ar}). 13 C NMR (101 MHz, CDCl₃, δ): 16.57 (d, $^{2}J_{C,P}=5.0$ Hz, CH₃), 22.88 (d, $^{3}J_{C,P}=5.5$ Hz, CH₃), 23.97 (d, $^{3}J_{C,P}=5.3$ Hz, CH₃) 24.05 (d, $^{3}J_{C,P}=3.5$ Hz, CH₃) 24.21 (d, $^{3}J_{C,P}=3.1$ Hz, CH₃), 32.80 (br d, $^{1}J_{CP}=140.4$ Hz, PCH), 70.05 (d, $^{2}J_{C,P}=7.5$ Hz, OCH), 70.93 (d, $^{2}J_{C,P}=7.4$ Hz, OCH), 123.45 (CH_{Ar}), 125.35 (CH_{Ar}), 125.37 (d, $J_{C,P}=4.8$ Hz, CH_{Ar}), 125.85 (CH_{Ar}), 126.03 (d, $J_{C,P}=6.4$ Hz, CH_{Ar}), 127.26 (d, $J_{C,P}=3.3$ Hz, CH_{Ar}), 128.78 (d, $J_{C,P}=0.8$ Hz, CH_{Ar}), 131.87 (d, $J_{C,P}=7.4$ Hz, C_{Ar}), 133.82 (d, $J_{C,P}=1.7$ Hz, C_{Ar}), 134.89 (d, $J_{C,P}=6.1$ Hz, C_{Ar}). HRMS (ESI): found 321.1610, calcd. for [M + H]⁺ (C₁₈H₂₆O₃P) 321.1614.

Diisopropyl (*R***)-(+)-[1-(1***H***-indol-3-yl)ethyl]phosphonate (6t). White solid, 47%** *ee.* **^{TP(O)(O'Pr)2} HPLC conditions: Chiralpak AD-H,** *i***-PrOH/***n***-hexane 5 : 95, flow rate = 1.5 ml/min, t_R = 9.6 min (minor), 21.3 min (major). [\alpha]_D²⁶ = +3.9 (***c* **= 1.2, CHCl₃). Mp 85-87°C;** *R***_f**

0.35 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 29.8. ¹H NMR (400 MHz, CDCl₃, δ): 0.75 (d, ³ $J_{H,H}$ =6.2 Hz, 3H, CH₃), 1.20 (d, ³ $J_{H,H}$ =6.2 Hz, 3H, CH₃), 1.30 (d, ³ $J_{H,H}$ =6.2 Hz, 3H, CH₃), 1.33 (d, ³ $J_{H,H}$ =6.2 Hz, 3H, CH₃), 1.60 (dd, ³ $J_{H,H}$ =7.4 Hz, ³ $J_{H,P}$ =18.3 Hz, 3H, CH₃), 3.45 (dq, ³ $J_{H,H}$ =7.4 Hz, ² $J_{H,P}$ =22.0 Hz, 1H, PCH), 4.43 (m, 1H, OCH), 4.72 (m, 1H, OCH), 7.04 (dd, ³ $J_{H,H}$ =2.9 Hz, ⁴ $J_{H,P}$ =2.9 Hz, 1H, CH_{Ar}), 7.08 (ddd, ³ $J_{H,H}$ =7.8 Hz, ³ $J_{H,H}$ =7.0 Hz, ⁴ $J_{H,H}$ =1.0 Hz, 1H, CH_{Ar}), 7.14 (ddd, ³ $J_{H,H}$ =7.9 Hz, ³ $J_{H,H}$ =7.0 Hz, ⁴ $J_{H,H}$ =1.1 Hz, 1H, CH_{Ar}), 7.33 (br. d, ³ $J_{H,H}$ =7.9 Hz, 1H, CH_{Ar}), 7.66 (br d, ³ $J_{H,H}$ =7.8 Hz, 1H, CH_{Ar}), 9.49 (br s, 1H, NH). ¹³C NMR (101 MHz, CDCl₃, δ): 16.25 (d, ² $J_{C,P}$ =3.8 Hz, CH₃), 23.20 (d, ³ $J_{C,P}$ =5.3 Hz, CH₃) 24.04 (d, ³ $J_{C,P}$ =5.5 Hz, CH₃) 24.09 (d, ³ $J_{C,P}$ =4.0 Hz, CH₃), 29.57 (d, ¹ $J_{C,P}$ =144.8 Hz), 70.10 (d, ² $J_{C,P}$ =7.6 Hz, OCH), 70.95 (d, ² $J_{C,P}$ =7.4 Hz, OCH), 111.20 (CH_{Ar}), 112.38 (d, ² $J_{C,P}$ =7.6 Hz,

 C_{Ar}), 119.07 (CH_{Ar}), 119.28 (CH_{Ar}), 121.74 (CH_{Ar}), 122.93 (d, ${}^{3}J_{C,P}$ =6.9 Hz, CH_{Ar}), 127.10 (d, ${}^{3}J_{C,P}$ =6.5 Hz, C_{Ar}), 135.92 (C_{Ar}). HRMS (ESI): found 310.1570, calcd. for [M + H]⁺ (C₁₆H₂₅NO₃P) 310.1567.

Diisopropyl (1-phenylpropan-2-yl)phosphonate (6u). Colorless oil, 13% *ee*. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5 ml/min, $t_R = 5.8$ min (minor), 15.3 min (major). R_f 0.35 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 32.5. ¹H NMR (400 MHz, CDCl₃, δ): 1.02 (dd, ³ $J_{H,H}$ =7.1 Hz, ³ $J_{P,H}$ =18.5 Hz, 3H, PCHC<u>H₃</u>), 1.31-1.34 (m, 12H, OCHC<u>H₃</u>), 2.00 (m, ³ $J_{H,H}$ = $^{3}J_{H,H}$ =7.1 Hz, ³ $J_{H,H}$ =3.2 Hz, ² $J_{P,H}$ =24.0 Hz, 1H, PCH), 2.42 (ddd, ² $J_{H,H}$ =13.6 Hz, ³ $J_{H,H}$ =7.1 Hz, ³ $J_{P,H}$ =11.6 Hz, 1H, PhCH₂), 3.22 (ddd, ² $J_{H,H}$ =13.6 Hz, ³ $J_{H,H}$ =3.2 Hz, ³ $J_{P,H}$ =9.4 Hz, 1H, PhCH₂), 4.73 (m, 2H, OCH), 7.16 (d, ³ $J_{H,H}$ =7.5 Hz, 2H, CH_{Ph}), 7.20 (t, ³ $J_{H,H}$ =7.1 Hz, 1H, CH_{Ph}), 7.28 (t, ³ $J_{H,H}$ =7.3 Hz, 2H, CH_{Ph}). ¹³C NMR (101 MHz, CDCl₃, δ): 12.49 (d, ² $J_{P,C}$ =6.3 Hz, PCH<u>C</u>H₃), 23.96-24.13 (m, 4OCH<u>C</u>H₃), 33.54 (d, ¹ $J_{P,C}$ =142.3 Hz, PCH), 36.13 (br, PhCH₂), 69.82 (d, ² $J_{P,C}$ =6.6 Hz, OCH), 126.16 (CH_{Ph}), 128.29 (2CH_{Ph}), 128.99 (2CH_{Ph}), 139.59 (d, ³ $J_{P,C}$ =17.2 Hz, C_{Ph}). HRMS (ESI): found 285.1617, calcd. for [M + H]⁺ (C₁₅H₂₆O₃P) 285.1614.

Diisopropyl (+)-(1-phenylpropyl)phosphonate (6v). Colorless oil, 46% yield, 55% *ee*. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5 ml/min, t_R = 4.3 min (minor), 6.1 min (major). $[\alpha]_D^{23} = +2.1^\circ$ (c = 0.95, CHCl₃). R_f 0.38 (*i*-PrOH/petroleum ether 1 : 10). ³¹P NMR (162 MHz, CDCl₃, δ): 27.6. ¹H NMR (400 MHz, CDCl₃, δ): 0.81 (dt, ³ $J_{H,H}$ =7.3 Hz, ⁴ $J_{P,H}$ =0.6 Hz, CH₂C<u>H</u>₃), 0.85 (d, ³ $J_{H,H}$ =6.2 Hz, 3H, CHC<u>H</u>₃), 1.19 (d, ³ $J_{H,H}$ =6.2 Hz, 3H, CHC<u>H</u>₃), 1.26 (d, ³ $J_{H,H}$ =6.2 Hz, 3H, CHC<u>H</u>₃), 1.27 (d, ³ $J_{H,H}$ =6.2 Hz, 3H, CHC<u>H</u>₃), 1.92 (m,1H, CH₂), 2.13 (m, 1H, CH₂), 2.79 (ddd, ³ $J_{H,H}$ =3.9 Hz, ³ $J_{H,H}$ =11.3 Hz, ² $J_{P,H}$ =22.3 Hz, 1H, PCH), 4.38 (m, 1H), 4.64 (m, 1H), 7.19-7.24 (m, 1H, CH_{Ph}), 7.25-7.32 (m, 4H, CH_{Ph}). ¹³C NMR (101 MHz, CDCl₃, δ): 12.52 (d, ³ $J_{C,P}$ =16.5 Hz, CH₂CH₃), 23.13 (d, ³ $J_{C,P}$ =5.6 Hz, CHC<u>H</u>₃), 23.32 (d, ² $J_{C,P}$ =3.2 Hz, CH₂), 23.94 (d, ³ $J_{C,P}$ =5.6 Hz, CHC<u>H</u>₃), 24.24 (d, ³ $J_{C,P}$ =4.5 Hz, CHC<u>H</u>₃), 47.09 (d, ¹ $J_{C,P}$ =138.9 Hz, PCH), 69.82 (d, ² $J_{C,P}$ =7.4 Hz, OCH), 70.81 (d, ² $J_{C,P}$ =6.4 Hz, C_{Ph}). HRMS (ESI): found 285.1617, calcd. for [M + H]⁺ (C₁₅H₂₆O₃P) 285.1614.

Table S1. L3/[Rh(COD)₂]BF₄-catalyzed asymmetric hydrogenation of α , β -unsaturated phosphonates 3u, v^a

	R ² 31	R ¹ P(O)(O ⁱ Pr) ₂ 1,v	H ₂ (10	atm), [Rh(COD) ₂ CH ₂ Cl ₂]BF ₄ , L3 (L3 /Rh = 1) , rt	$\rightarrow \begin{array}{c} R^{1} \\ R^{2} \\ \bullet \\ \mathbf{P}(O)(O'Pr)_{2} \\ \mathbf{6u,v} \end{array}$	
Entry	Substrate	R ¹	R ²	S/C	Time [h]	Conversion [%] ^b	<i>ee</i> [%] ^{<i>c</i>}
1	3u	Bn	Н	200	3	24	10
2					24	100	13
3	3v	Ph	Me	200	3	<1	n/d^d
4				20	16	50	55

^{*a*} The catalyst precursor was prepared *in situ* from $[Rh(COD)_2]BF_4$ and the ligand L3 (L3/Rh = 1); reactions were carried out with substrate 3 (0.4 mmol) in CH₂Cl₂ (4 mL) at the specified substrate/catalyst ratio (S/C) for the indicated time. ^{*b*} Conversions were determined by ³¹P NMR analysis of the crude reaction mixture. ^{*c*} Determined by chiral HPLC. ^{*d*} Not determined because of low conversion.

5. Synthesis of (R)-(+)-[1-(4-chlorophenyl)ethyl]phosphonic acid ((R)-(+)-7)

A solution of **6d** (126 mg, 0.413 mmol) in a mixture of water (150 µl) and conc. HCl (150 µl) was heated under reflux for 16 h. Volatile materials were thoroughly removed on a rotary evaporator and then *in vacuo* (0.05 Torr). The spectrally pure product (*R*)-(+)-7 was obtained in quantitative yield (91 mg) as a white solid; $[\alpha]_D^{23} = +6.7$ (c = 1.1, MeOH) (lit.²⁰ $[\alpha]_D^{20} = -6.5$ (c = 1.1, MeOH) for 94% *ee* (*S*)). ³¹P NMR (162 MHz, CD₃OD, δ): 29.3. ¹H NMR (400 MHz, CD₃OD, δ): 1.57 (dd, ³*J*_{H,H}=7.6 Hz, ³*J*_{P,H}=18.0 Hz, CH₃), 3.17 (dd, ³*J*_{H,H}=7.6 Hz, ²*J*_{P,H}=22.4 Hz, CH), 7.32 (d, ³*J*_{H,H}=8.4 Hz, 2H, CH_{Ar}), 7.37 (d, ³*J*_{H,H}=8.4 Hz, 2H, CH_{Ar}). Single crystals suitable for X-ray diffraction analysis were grown by slow diffusion of petroleum ether into a solution of the product in chloroform.

6. Synthesis and characterization of [Rh(COD)L3]BF₄

A solution of $[Rh(COD)_2]BF_4$ (40.6 mg, 0.100 mmol) and L3 (66.2 mg, 0.100 mmol) in absolute DCM (3 ml) was stirred for 30 min at room temperature under an inert atmosphere. The solution was then concentrated under reduced pressure to a volume of ~1 ml and added dropwise to absolute petroleum ether (10 ml). The resulting precipitate was filtered off, washed with petroleum ether and dried in vacuo. The product was obtained as a mustard yellow solid (92.0 mg, 96% yield); $[\alpha]_D^{23} = -37.8$ (c = 0.77, CH₂Cl₂). ³¹P NMR (162 MHz, CDCl₃, δ): 96.3 (d, ²J_{P Rh} = 232.2). ¹H NMR (400 MHz, CDCl₃, δ): 0.23 (s, 3H, CH₃), 0.32 (s, 3H, CH₃), 1.45 (br m, 1H, CH_{2 COD}), 1.90 (br m, 2H, CH_{2 COD}), 2.03 (br m, 2H, CH_{2 COD}), 2.29 (br m, 1H, $CH_{2 COD}$, 2.41 (s, 3H, SCH₃), 2.51 (br m, 1H, CH_{2 COD}), 2.71 (m, 1H, CH_{2 COD}), 2.99 (ddd, ${}^{3}J_{H,H} = 11.9$ Hz, ${}^{2}J_{\text{H,H}} = 11.3 \text{ Hz}, {}^{3}J_{\text{H,H}} = 4.3 \text{ Hz}, 1\text{H}, \text{SCH}_{2}$, 3.05 (dd, ${}^{2}J_{\text{H,H}} = 11.3 \text{ Hz}, {}^{3}J_{\text{H,H}} = 4.0 \text{ Hz}, 1\text{H}, \text{SCH}_{2}$), 3.21 (ddd, ${}^{3}J_{P,H} = 27.8 \text{ Hz}, {}^{2}J_{H,H} = 15.2 \text{ Hz}, {}^{3}J_{H,H} = 4.3 \text{ Hz}, 1\text{H}, \text{NCH}_{2}, 4.24 \text{ (br m, 1H, =CH(COD))}, 4.53 \text{ (dddd, } {}^{2}J_{H,H} = 15.2 \text{ Hz}, {}^{3}J_{H,H} = 4.3 \text{ Hz}, 1\text{H}, \text{NCH}_{2}, 4.24 \text{ (br m, 1H, =CH(COD))}, 4.53 \text{ (dddd, } {}^{2}J_{H,H} = 15.2 \text{ Hz}, {}^{3}J_{H,H} = 4.3 \text{ Hz}, 1\text{H}, \text{NCH}_{2}, 4.24 \text{ (br m, 1H, =CH(COD))}, 4.53 \text{ (dddd, } {}^{2}J_{H,H} = 15.2 \text{ Hz}, {}^{3}J_{H,H} = 4.3 \text{ Hz}, 1\text{H}, \text{NCH}_{2}, 4.24 \text{ (br m, 1H, =CH(COD))}, 4.53 \text{ (dddd, } {}^{2}J_{H,H} = 15.2 \text{ Hz}, {}^{3}J_{H,H} = 4.3 \text{ Hz}, 1\text{H}, \text{NCH}_{2}, 4.24 \text{ (br m, 1H, =CH(COD))}, 4.53 \text{ (dddd, } {}^{2}J_{H,H} = 15.2 \text{ Hz}, {}^{3}J_{H,H} = 4.3 \text{ Hz}, 1\text{H}, \text{NCH}_{2}, 4.24 \text{ (br m, 1H, =CH(COD))}, 4.53 \text{ (dddd, } {}^{2}J_{H,H} = 15.2 \text{ Hz}, {}^{3}J_{H,H} = 4.3 \text{ Hz}, 1\text{H}, \text{NCH}_{2}, 4.24 \text{ (br m, 1H, =CH(COD))}, 4.53 \text{ (dddd, } {}^{2}J_{H,H} = 15.2 \text{ Hz}, {}^{3}J_{H,H} = 4.3 \text{ Hz}, 1\text{H}, {}^{3}J_{H,H} = 15.2 \text{ Hz}, {}^{3}J_{H$ = 15.2 Hz, ${}^{3}J_{P,H}$ = 13.4 Hz, ${}^{3}J_{H,H}$ = 11.9 Hz, ${}^{3}J_{H,H}$ = 4.0 Hz, 1H, NCH₂), 4.91 (d, ${}^{3}J_{H,H}$ = 7.8 Hz, 1H, OCH), 5.07 (br m, 1H, =CH_{COD}), 5.22 (d, ${}^{3}J_{H,H}$ = 7.8 Hz, 1H, OCH), 5.44 (br m, 1H, =CH_{COD}), 5.61 (br m, 1H, =CH_{COD}), 6.04 (br d, ${}^{3}J_{H,H}$ = 6.8 Hz, 2H, CH_{Ph}), 6.17 (dd, ${}^{3}J_{H,H}$ = 8.0 Hz, ${}^{4}J_{H,H}$ = 0.9 Hz, 2H, CH_{Ph}), 6.88 (t, ${}^{3}J_{\text{H,H}} = 7.8 \text{ Hz}, 2\text{H}, \text{CH}_{\text{Ph}}), 7.00-7.02 \text{ (m, 2H, CH}_{\text{Ph}}), 7.06 \text{ (t, } {}^{3}J_{\text{H,H}} = 7.4 \text{ Hz}, 1\text{H}, \text{CH}_{\text{Ph}}), 7.15-7.22 \text{ (m, 5H, 7.16)}$ CH_{Ph}), 7.30 (t, ${}^{3}J_{H,H} = 7.3$ Hz, 1H, CH_{Ph}), 7.54-7.60 (m, 6H, CH_{Ph}), 7.65 (t, ${}^{3}J_{H,H} = 7.4$ Hz, 2H, CH_{Ph}), 7.78 (d, ${}^{3}J_{H,H} = 7.3$ Hz, 2H, CH_{Ph}). ${}^{13}C$ NMR (101 MHz, CDCl₃, δ): 14.80 (d, J = 3.9 Hz, SCH₃), 26.24 (CH₃), 26.34 (CH₃), 28.44 (CH_{2 COD}), 28.90 (CH_{2 COD}), 29.57 (d, J = 3.3 Hz, CH_{2 COD}), 33.15 (CH_{2 COD}), 38.30 (SCH₂), 52.46 (d, *J* = 36.0 Hz, NCH₂), 79.28 (d, *J* = 2.8 Hz, OCH), 79.55 (d, *J* = 2.2 Hz, OCH), 79.69 (d, *J* = 11.1 Hz, = CH_{COD}), 88.09 (d, J = 2.7 Hz, CPh_2), 89.14 (d, J = 11.15 Hz, = CH_{COD}), 89.84 (d, J = 20.8 Hz, CPh_2), 102.90 (dd, J = 14.3 Hz, J = 5.7 Hz, = CH_{COD}), 109.32 (dd, J = 12.3 Hz, J = 5.9 Hz, = CH_{COD}), 115.52 (CMe₂), 126.89 (CH_{Ph}), 127.26 (CH_{Ph}), 127.41 (CH_{Ph}), 127.41 (CH_{Ph}), 127.45 (CH_{Ph}), 127.48 (CH_{Ph}), 127.71 (CH_{Ph}), 127.76 (CH_{Ph}), 128.40 (CH_{Ph}), 128.77 (CH_{Ph}), 129.00 (CH_{Ph}), 129.03 (CH_{Ph}), 129.39 (br, CH_{Ph}), 130.70 (CH_{Ph}), 139.58 (d, J = 6.2 Hz, C_{Ph}), 139.79 (d, J = 7.3 Hz, C_{Ph}), 140.58 (d, J = 7.9 Hz, C_{Ph}), 143.75 (C_{Ph}), 143.85 (C_{Ph}). HRMS (ESI): found 872.2410, calcd. for [M + H]⁺ (C₄₈H₅₂NO₄PRhS) 872.2406.

Single crystals suitable for X-ray diffraction analysis were grown by slow diffusion of diethyl ether into a solution of $[Rh(COD)L3]BF_4$ in CH_2Cl_2 .

7. References

- [1] G. M. Sheldrick, A short history of SHELX, Acta Crystallogr., 2008, A64, 112–122.
- [2] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, 2016.
- [3] (a) J. P. Foster, F. Weinhold, Natural Hybrid Orbitals, J. Am. Chem. Soc., 1980, 102, 7211–7218; (b) A.
 E. Reed, F. Weinhold, Natural Bond Orbital Analysis of Near-Hartree–Fock Water Dimer, J. Chem. Phys., 1983, 78, 4066–4073.
- [4] K. N. Gavrilov, I. V. Chuchelkin, I. D. Firsin, V. M. Trunina, V. K. Gavrilov, S. V. Zheglov, D. A. Fedorov, V. A. Tafeenko, I. A. Zamilatskov, V. S. Zimarev, N. S. Goulioukina, TADDOL-based *P*,*S*-bidentate phosphoramidite ligands in palladium-catalyzed asymmetric allylic substitution, *Org. Biomol. Chem.*, 2024, 22, 538–549.
- [5] T. V. RajanBabu, T. A. Ayers, G. A. Halliday, K. K. You, J. C. Calabrese, Carbohydrate phosphinites as practical ligands in asymmetric catalysis: electronic effects and dependence of backbone chirality in Rh-catalyzed asymmetric hydrogenations. Synthesis of *R*- or *S*-amino acids using natural sugars as ligand precursors, *J. Org. Chem*, 1997, **62**, 6012–6028.
- [6] D.-Y. Wang, X.-P. Hu, J. Deng, S.-B. Yu, Z.-C. Duan, Z. Zheng, Enantioselective synthesis of chiral αaryl or α-alkyl substituted ethylphosphonates via Rh-catalyzed asymmetric hydrogenation with a *P*stereogenic BoPhoz-type ligand, *J. Org. Chem.*, 2009, 74, 4408–4410.
- [7] N. S. Goulioukina, T. M. Dolgina, G. N. Bondarenko, I. P. Beletskaya, M. M. Ilyin, V. A. Davankov, A. Pfaltz, Highly enantioselective hydrogenation of α,β-unsaturated phosphonates with iridium-phosphinooxazoline complex: synthesis of a phosphorus analogue of naproxen, *Tetrahedron: Asymmetry*, 2003, 14, 1397–1401.

- [8] N. S. Gulyukina, T.M. Dolgina, G. N. Bondarenko, I. P. Beletskaya, N. A. Bondarenko, J.-C. Henry, D. Lavergne, V. Ratovelomanana-Vidal, J.-P. Genet, Synthesis of biologically active 1-arylethylphosphonates, *Russ. J. Org. Chem.*, 2002, **38**, 573–587.
- [9] N. S. Goulioukina, T. M. Dolgina, I. P. Beletskaya, J.-C. Henry, D. Lavergne, V. Ratovelomanana-Vidal, J.-P. Genet, A practical synthetic approach to chiral α-aryl substituted ethylphosphonates, *Tetrahedron: Asymmetry*, 2001, **12**, 319–327.
- [10] T. Ya. Safonova, N. S. Gulyukina, Yu. V. Novakovskaya, E. A. Astaf'ev, G. N. Bondarenko, O. A. Petrii, G. A. Tsirlina, I. P. Beletskaya, Electrochemical hydrogenation of substituted α-phenylvinylphosphonic acids: general characteristics of the reaction layer and prediction of preparative electrolysis conditions, *Russ. J. Electrochem.*, 2002, **38**, 457–466.
- [11]K. Dong, Z. Wang, K. Ding, Rh(I)-Catalyzed enantioselective hydrogenation of α-substituted ethenylphosphonic acids, *J. Am. Chem. Soc.*, 2012, **134**, 12474–12477.
- [12] V. K. Gupta, R. A. Singh, An investigation on single crystal growth, structural, thermal and optical properties of a series of organic D– π –A push–pull materials, *RSC Adv.*, 2015, **5**, 38591–38600.
- [13] J. Gao, Z.-P. Ye, Y.-F. Liu, X.-C. He, J.-P. Guan, F. Liu, K. Chen, H.-Y. Xiang, X.-Q. Chen, H. Yang, Visible-light-promoted cross-coupling of *O*-aryl oximes and nitrostyrenes to access cyanoalkylated alkenes, *Org. Lett*, 2022, 24, 4640–4644.
- [14]B. Balachandra, S. Shanmugam, T. Muneeswaran, M. Ramakritinan, Iodine catalyzed one-pot synthesis of highly substituted *N*-methyl pyrroles *via* [3 + 2] annulation and their *in vitro* evaluation as antibacterial agents, *RSC Adv.*, 2015, 5, 64781–64789.
- [15] S. P. Midya, J. Rana, T. Abraham, B. Aswina, E. Balaraman, Metal-free radical trifluoromethylation of β-nitroalkenes through visible-light photoredox catalysis, *Chem. Commun.*, **2017**, *53*, 6760–6763.
- [16] A. Abdelwaly, I. Salama, M. S. Gomaa, M. A. Helal, Discovery of tetrahydro-β-carboline derivatives as a new class of phosphodiesterase 4 inhibitors, *Med. Chem. Res.*, 2017, 26, 3173–3187.
- [17] D.-Q. Zheng, Y. Jing, B.-Y. Zheng, Y.-F. Ye, S. Xu, W.-S. Tian, H.-Y. Ma, K. Ding, Eco-friendly synthesis of 3-etherified estrones, *Tetrahedron*, 2016, 72, 2164–2169.
- [18] A. C. Satterthwait, F. H. Westheimer, Monomeric methyl metaphosphate. 3. Electrophilic aromatic substitution in solution, J. Am. Chem. Soc., 1978, 100, 3197–3203.
- [19] H. Wei, H. Chen, J. Chen, I. D. Gridnev, W. Zhang, Nickel-catalyzed asymmetric hydrogenation of αsubstituted vinylphosphonates and diarylvinylphosphine oxides, *Angew. Chem. Int. Ed.*, 2023, 62, e202214990.
- [20] X. Yin, C. Chen, X. Li, X.-Q. Dong, X. Zhang, Rh/SPO-WudaPhos-catalyzed asymmetric hydrogenation of α-substituted ethenylphosphonic acids via noncovalent ion-pair interaction, *Org. Lett.*, 2017, **19**, 4375–4378.

8. X-Ray structure determinations

Crystallographic study of the product 60

CCDC number	2420900	
Empirical formula	$C_{18}H_{29}O_{3}P$	
Formula weight	324.38	
Temperature	295(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 8.9119(8) Å	$\alpha = 90^{\circ}$.
	b = 11.3949(7) Å	$\beta = 90^{\circ}$.
	c = 18.6150(11) Å	$\gamma = 90^{\circ}$.
Volume	1890.4(2) Å ³	
Ζ	4	
Density (calculated)	1.140 Mg/m ³	
Absorption coefficient	0.155 mm ⁻¹	
F(000)	704	
Theta range for data collection	2.096 to 28.238°.	
Index ranges	-11<=h<=11, -15<=k<=14, -24	<=l<=24
Reflections collected	50009	
Independent reflections	4607 [R(int) = 0.1778]	
Completeness to theta = 25.242°	99.8 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4607 / 0 / 205	
Goodness-of-fit on F ²	0.652	
Final R indices [I>2sigma(I)]	R1 = 0.0426, $wR2 = 0.0619$	
R indices (all data)	R1 = 0.1853, wR2 = 0.0779	
Absolute structure parameter	-0.29(14)	
Extinction coefficient	0.0030(5)	
Largest diff. peak and hole	0.141 and -0.159 e·Å ⁻³	

Table S3. Bond lengths [Å] and angles $[\circ]$ for 60.

P(1)-O(1)	1.461(3)	C(1)-C(7)	1.499(5)
P(1)-O(3)	1.572(3)	C(2)-C(3)	1.387(5)
P(1)-O(2)	1.573(3)	C(2)-C(10)	1.516(5)
P(1)-C(11)	1.804(4)	C(3)-C(4)	1.399(5)
O(2)-C(13)	1.469(5)	C(3)-H(3)	0.9300
O(3)-C(16)	1.445(5)	C(4)-C(5)	1.368(5)
C(1)-C(2)	1.373(5)	C(4)-C(11)	1.507(5)
C(1)-C(6)	1.397(5)	C(5)-C(6)	1.380(5)

C(5)-H(5)	0.9300	C(8)-C(7)-H(7A)	109.2
C(6)-H(6)	0.9300	C(1)-C(7)-H(7B)	109.2
C(7)-C(8)	1.521(5)	C(8)-C(7)-H(7B)	109.2
C(7)-H(7A)	0.9700	H(7A)-C(7)-H(7B)	107.9
C(7)-H(7B)	0.9700	C(9)-C(8)-C(7)	111.0(4)
C(8)-C(9)	1.485(6)	C(9)-C(8)-H(8A)	109.4
C(8)-H(8A)	0.9700	C(7)-C(8)-H(8A)	109.4
C(8)-H(8B)	0.9700	C(9)-C(8)-H(8B)	109.4
C(9)-C(10)	1.510(6)	C(7)-C(8)-H(8B)	109.4
C(9)-H(9A)	0.9700	H(8A)-C(8)-H(8B)	108.0
C(9)-H(9B)	0.9700	C(8)-C(9)-C(10)	110.6(4)
C(10)-H(10A)	0.9700	C(8)-C(9)-H(9A)	109.5
C(10)-H(10B)	0.9700	C(10)-C(9)-H(9A)	109.5
C(11)-C(12)	1.532(5)	C(8)-C(9)-H(9B)	109.5
C(11)-H(11)	0.9800	C(10)-C(9)-H(9B)	109.5
C(12)-H(12A)	0.9600	H(9A)-C(9)-H(9B)	108.1
C(12)-H(12B)	0.9600	C(9)-C(10)-C(2)	113.4(4)
C(12)-H(12C)	0.9600	C(9)-C(10)-H(10A)	108.9
C(13)-C(15)	1.458(6)	C(2)-C(10)-H(10A)	108.9
C(13)-C(14)	1.481(6)	C(9)-C(10)-H(10B)	108.9
C(13)-H(13)	0.9800	C(2)-C(10)-H(10B)	108.9
C(14)-H(14A)	0.9600	H(10A)-C(10)-H(10B)	107.7
C(14)-H(14B)	0.9600	C(4)-C(11)-C(12)	112.8(3)
C(14)-H(14C)	0.9600	C(4)-C(11)-P(1)	112.0(3)
C(15)-H(15A)	0.9600	C(12)-C(11)-P(1)	112.0(3)
C(15)-H(15B)	0.9600	C(4)-C(11)-H(11)	106.5
C(15)-H(15C)	0.9600	C(12)-C(11)-H(11)	106.5
C(16)-C(18)	1.480(6)	P(1)-C(11)-H(11)	106.5
C(16)-C(17)	1.490(6)	C(11)-C(12)-H(12A)	109.5
C(16)-H(16)	0.9800	C(11)-C(12)-H(12B)	109.5
C(17)-H(17A)	0.9600	H(12A)-C(12)-H(12B)	109.5
C(17)-H(17B)	0.9600	C(11)-C(12)-H(12C)	109.5
C(17)-H(17C)	0.9600	H(12A)-C(12)-H(12C)	109.5
C(18)-H(18A)	0.9600	H(12B)-C(12)-H(12C)	109.5
C(18)-H(18B)	0.9600	C(15)-C(13)-O(2)	109.5(4)
C(18)-H(18C)	0.9600	C(15)-C(13)-C(14)	113.8(4)
O(1)-P(1)-O(3)	110.06(18)	O(2)-O(13)-O(14)	107.4(3)
O(1)-P(1)-O(2) O(2) P(1) O(2)	114.23(17) 101.51(15)	C(13)-C(13)-H(13)	108.7
O(3)-P(1)-O(2) O(1) P(1) C(11)	101.51(15) 114.85(10)	O(2)-O(13)-H(13) O(14) O(12) H(12)	108.7
O(1)-P(1)-C(11) O(2) P(1) C(11)	114.83(19)	C(14)-C(15)-H(15) C(12)-C(14)-H(14A)	108.7
O(3)-P(1)-C(11) O(2) P(1) C(11)	102.51(18) 106.25(17)	$C(13)-C(14)-\Pi(14A)$ $C(12)-C(14)-\Pi(14B)$	109.5
O(2)- $F(1)$ - $O(11)O(2)$ $P(1)$	100.23(17) 121.2(2)	C(13)-C(14)-ff(14B) H(14A) C(14) H(14B)	109.5
C(13)-O(2)-I(1) C(16) O(3) P(1)	121.2(2) 122.8(3)	C(12) C(14) H(14C)	109.5
C(10)-O(3)-I(1) C(2) C(1) C(6)	122.8(3) 118.8(4)	H(14A) C(14) H(14C)	109.5
C(2)-C(1)-C(0) C(2)-C(1)-C(7)	1226(4)	H(14R)-C(14)-H(14C) H(14R)-C(14)-H(14C)	109.5
C(2)-C(1)-C(7)	122.0(4) 118 6(4)	C(13)-C(15)-H(15A)	109.5
C(0)-C(1)-C(3)	110.0(4) 110 7(4)	C(13)-C(15)-H(15R)	109.5
C(1)-C(2)-C(10)	120.9(4)	H(15A)-C(15)-H(15B)	109.5
C(3)-C(2)-C(10)	120.9(4) 119 4(4)	C(13)-C(15)-H(15C)	109.5
C(2)-C(2)-C(10)	122 4(4)	H(15A)-C(15)-H(15C)	109.5
C(2)-C(3)-U(4) C(2)-C(3)-H(3)	1122.7(7)	H(15R)-C(15)-H(15C)	109.5
C(4)-C(3)-H(3)	118.8	O(3)-C(16)-C(18)	109.5
C(5)-C(4)-C(3)	116.5(4)	O(3) - C(16) - C(17)	107.3(4) 107.4(4)
C(5)- $C(4)$ - $C(11)$	122 8(4)	C(18) - C(16) - C(17)	113 6(5)
C(3)-C(4)-C(11)	120.7(4)	Q(3)-C(16)-H(16)	108.8
C(4)-C(5)-C(6)	122.3(4)	C(18)-C(16)-H(16)	108.8
C(4)-C(5)-H(5)	118.8	C(17)-C(16)-H(16)	108.8
C(6)-C(5)-H(5)	118.8	C(16)-C(17)-H(17A)	109.5
C(5)-C(6)-C(1)	120.3(4)	C(16)-C(17)-H(17B)	109.5
C(5)-C(6)-H(6)	119.9	H(17A)-C(17)-H(17B)	109.5
C(1)-C(6)-H(6)	119.9	C(16)-C(17)-H(17C)	109.5
C(1)-C(7)-C(8)	112.1(4)	H(17A)-C(17)-H(17C)	109.5
C(1)-C(7)-H(7A)	109.2	H(17B)-C(17)-H(17C)	109.5

C(16)-C(18)-H(18A)	109.5	C(16)-C(18)-H(18C)	109.5
C(16)-C(18)-H(18B)	109.5	H(18A)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18B)	109.5	H(18B)-C(18)-H(18C)	109.5

Table S4. Torsion angles [°] for 60.

O(1)-P(1)-O(2)-C(13)	45.8(4)
O(3)-P(1)-O(2)-C(13)	171.5(3)
C(11)-P(1)-O(2)-C(13)	-81.9(3)
O(1)-P(1)-O(3)-C(16)	41.0(4)
O(2)-P(1)-O(3)-C(16)	-83.5(4)
C(11)-P(1)-O(3)-C(16)	166.8(3)
C(6)-C(1)-C(2)-C(3)	0.2(6)
C(7)-C(1)-C(2)-C(3)	-178.2(4)
C(6)-C(1)-C(2)-C(10)	179.3(4)
C(7)-C(1)-C(2)-C(10)	0.9(6)
C(1)-C(2)-C(3)-C(4)	0.7(6)
C(10)-C(2)-C(3)-C(4)	-178.5(4)
C(2)-C(3)-C(4)-C(5)	-1.3(6)
C(2)-C(3)-C(4)-C(11)	179.4(4)
C(3)-C(4)-C(5)-C(6)	1.3(7)
C(11)-C(4)-C(5)-C(6)	-179.5(4)
C(4)-C(5)-C(6)-C(1)	-0.5(7)
C(2)-C(1)-C(6)-C(5)	-0.2(6)
C(7)-C(1)-C(6)-C(5)	178.2(4)
C(2)-C(1)-C(7)-C(8)	15.6(6)
C(6)-C(1)-C(7)-C(8)	-162.8(4)
C(1)-C(7)-C(8)-C(9)	-47.3(6)
C(7)-C(8)-C(9)-C(10)	63.1(5)
C(8)-C(9)-C(10)-C(2)	-45.4(5)
C(1)-C(2)-C(10)-C(9)	14.0(6)
C(3)-C(2)-C(10)-C(9)	-166.9(4)
C(5)-C(4)-C(11)-C(12)	-55.5(6)
C(3)-C(4)-C(11)-C(12)	123.6(4)
C(5)-C(4)-C(11)-P(1)	71.9(5)
C(3)-C(4)-C(11)-P(1)	-108.9(4)
O(1)-P(1)-C(11)-C(4)	50.9(4)
O(3)-P(1)-C(11)-C(4)	-75.7(3)
O(2)-P(1)-C(11)-C(4)	178.2(3)
O(1)-P(1)-C(11)-C(12)	178.8(3)
O(3)-P(1)-C(11)-C(12)	52.2(3)
O(2)-P(1)-C(11)-C(12)	-53.9(3)
P(1)-O(2)-C(13)-C(15)	-102.8(4)
P(1)-O(2)-C(13)-C(14)	133.2(3)
P(1)-O(3)-C(16)-C(18)	100.8(4)
P(1)-O(3)-C(16)-C(17)	-135.5(4)

Crystallographic study of the substance (*R*)-(+)-7

Table S5. Crystal data and structure refinement for (R)-(+)-7.

CCDC number	2207923	
Empirical formula	$C_8H_{10}ClO_3P$	
Formula weight	220.58	
Temperature	295(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	I 2	
Unit cell dimensions	a = 15.5220(10) Å	$\alpha = 90^{\circ}$.
	b = 5.6987(4) Å	$\beta = 94.618(10)^{\circ}.$
	c = 26.800(3) Å	$\gamma = 90^{\circ}$.
Volume	2362.9(3) Å ³	
Z	8	
Density (calculated)	1.240 Mg/m ³	
Absorption coefficient	0.435 mm ⁻¹	
F(000)	912	
Theta range for data collection	2.546 to 28.351°.	
Index ranges	-18<=h<=20, -7<=k<=7, -35<=	=l<=35
Reflections collected	16165	
Independent reflections	5274 [R(int) = 0.0968]	
Completeness to theta = 25.242°	99.9 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5274 / 1 / 246	
Goodness-of-fit on F ²	0.466	
Final R indices [I>2sigma(I)]	R1 = 0.0442, wR2 = 0.0736	
R indices (all data)	R1 = 0.2280, wR2 = 0.0988	
Absolute structure parameter	0.26(16)	
Largest diff. peak and hole	0.141 and -0.132 e·Å ⁻³	

Table S6. Bond lengths [Å] and angles $[\circ]$ for (*R*)-(+)-7.

Cl(1A)-C(1A)	1.755(9)	C(4A)-C(7A)	1.502(11)
P(1A)-O(1A)	1.496(6)	C(5A)-C(6A)	1.362(12)
P(1A)-O(2A)	1.540(5)	C(5A)-H(5A)	0.9300
P(1A)-O(3A)	1.541(5)	C(6A)-H(6A)	0.9300
P(1A)-C(7A)	1.786(9)	C(7A)-C(8A)	1.537(11)
O(2A)-H(2A1)	0.9839	C(7A)-H(7A)	1.26(6)
O(3A)-H(3A1)	0.9727	C(8A)-H(8A1)	0.9600
C(1A)-C(2A)	1.381(13)	C(8A)-H(8A2)	0.9600
C(1A)-C(6A)	1.383(12)	C(8A)-H(8A3)	0.9600
C(2A)-C(3A)	1.387(12)	Cl(1B)-C(1B)	1.739(10)
C(2A)-H(2A)	0.9300	P(1B)-O(2B)	1.509(5)
C(3A)-C(4A)	1.383(11)	P(1B)-O(3B)	1.557(5)
C(3A)-H(3A)	0.9300	P(1B)-O(1B)	1.567(5)
C(4A)-C(5A)	1.400(11)	P(1B)-C(7B)	1.768(10)

O(1B)-H(1B1)	0.9764	C(4A)-C(7A)-H(7A)	105(3)
O(3B)-H(3B1)	0.9746	C(8A)-C(7A)-H(7A)	107(3)
C(1B)-C(6B)	1.342(14)	P(1A)-C(7A)-H(7A)	110(3)
C(1B)-C(2B)	1.376(14)	C(7A)-C(8A)-H(8A1)	109.5
C(2B)-C(3B)	1.386(14)	C(7A)-C(8A)-H(8A2)	109.5
C(2B)-H(2B)	0.9300	H(8A1)-C(8A)-H(8A2)	109.5
C(3B)-C(4B)	1.341(11)	C(7A)-C(8A)-H(8A3)	109.5
C(3B)-H(3B)	0.9300	H(8A1)-C(8A)-H(8A3)	109.5
C(4B)-C(5B)	1.367(11)	H(8A2)-C(8A)-H(8A3)	109.5
C(4B)-C(7B)	1.518(12)	O(2B)-P(1B)-O(3B)	115.1(3)
C(5B)-C(6B)	1.353(12)	O(2B)-P(1B)-O(1B)	112.7(3)
C(5B)-H(5B)	0.9300	O(3B)-P(1B)-O(1B)	105.5(3)
C(6B)-H(6B)	0.9300	O(2B)-P(1B)-C(7B)	110.8(4)
C(7B)-C(8B)	1.524(13)	O(3B)-P(1B)-C(7B)	102.9(4)
C(7B)-H(7B)	0.86(4)	O(1B)-P(1B)-C(7B)	109.3(4)
C(8B)-H(8B1)	0.9600	P(1B)-O(1B)-H(1B1)	106.5
C(8B)-H(8B2)	0.9600	P(1B)-O(3B)-H(3B1)	107.4
C(8B)-H(8B3)	0.9600	C(6B)-C(1B)-C(2B)	119.3(10)
O(1A)-P(1A)-O(2A)	112.8(3)	C(6B)-C(1B)-Cl(1B)	120.4(12)
O(1A)-P(1A)-O(3A)	113.4(3)	C(2B)-C(1B)-Cl(1B)	120.2(13)
O(2A) - P(1A) - O(3A)	107.2(3)	C(1B)-C(2B)-C(3B)	120.0(10)
O(1A)-P(1A)-C(7A)	111.2(4)	C(1B)-C(2B)-H(2B)	120.0
O(2A)-P(1A)-C(7A)	106.3(4)	C(3B)-C(2B)-H(2B)	120.0
O(3A)-P(1A)-C(7A)	105.4(4)	C(4B)-C(3B)-C(2B)	119.7(10)
P(1A)-O(2A)-H(2A1)	106.7	C(4B)-C(3B)-H(3B)	120.2
P(1A)-O(3A)-H(3A1)	108.0	C(2B)-C(3B)-H(3B)	120.2
C(2A)-C(1A)-C(6A)	122.2(9)	C(3B)-C(4B)-C(5B)	119.2(9)
C(2A)-C(1A)-Cl(1A)	118.0(9)	C(3B)-C(4B)-C(7B)	119.7(10)
C(6A)-C(1A)-Cl(1A)	119.8(10)	C(5B)-C(4B)-C(7B)	121.0(10)
C(1A)-C(2A)-C(3A)	116.6(9)	C(6B)-C(5B)-C(4B)	121.5(10)
C(1A)-C(2A)-H(2A)	121.7	C(6B)-C(5B)-H(5B)	119.2
C(3A)-C(2A)-H(2A)	121.7	C(4B)-C(5B)-H(5B)	119.2
C(4A)-C(3A)-C(2A)	123.9(9)	C(1B)-C(6B)-C(5B)	120.1(11)
		C(1B)-C(6B)-H(6B)	120.0
C(4A)-C(3A)-H(3A)	118.0	C(5B)-C(6B)-H(6B)	120.0
C(2A)-C(3A)-H(3A)	118.0	C(4B)-C(7B)-C(8B)	115.4(9)
C(3A)-C(4A)-C(5A)	116.0(9)	C(4B)-C(7B)-P(1B)	113.9(7)
C(3A)-C(4A)-C(7A)	119.8(9)	C(8B)-C(7B)-P(1B)	110.3(7)
C(5A)-C(4A)-C(7A)	124.2(8)	C(4B)-C(7B)-H(7B)	102(4)
C(6A)-C(5A)-C(4A)	122.5(9)	C(8B)-C(7B)-H(7B)	106(4)
C(6A)-C(5A)-H(5A)	118.8	P(1B)-C(7B)-H(7B)	109(4)
C(4A)-C(5A)-H(5A)	118.8	C(7B)-C(8B)-H(8B1)	109.5
C(5A)-C(6A)-C(1A)	118.7(9)	C(7B)-C(8B)-H(8B2)	109.5
C(5A)-C(6A)-H(6A)	120.6	H(8B1)-C(8B)-H(8B2)	109.5
C(1A)-C(6A)-H(6A)	120.6	C(7B)-C(8B)-H(8B3)	109.5
C(4A)-C(7A)-C(8A)	109.4(7)	H(8B1)-C(8B)-H(8B3)	109.5
C(4A)-C(7A)-P(1A)	113.3(7)	H(8B2)-C(8B)-H(8B3)	109.5
C(8A)-C(7A)-P(1A)	111.6(6)		

Table S7. Torsion angles [°] for (R)-(+)-7.

C(6A)-C(1A)-C(2A)-C(3A)	-1.4(15)
Cl(1A)-C(1A)-C(2A)-C(3A)	179.2(7)
C(1A)-C(2A)-C(3A)-C(4A)	-1.1(15)
C(2A)-C(3A)-C(4A)-C(5A)	2.0(14)
C(2A)-C(3A)-C(4A)-C(7A)	-178.4(9)
C(3A)-C(4A)-C(5A)-C(6A)	-0.5(14)
C(7A)-C(4A)-C(5A)-C(6A)	179.9(9)
C(4A)-C(5A)-C(6A)-C(1A)	-1.9(15)
C(2A)-C(1A)-C(6A)-C(5A)	2.9(15)
Cl(1A)-C(1A)-C(6A)-C(5A)	-177.8(8)
C(3A)-C(4A)-C(7A)-C(8A)	96.0(9)
C(5A)-C(4A)-C(7A)-C(8A)	-84.4(10)

C(3A)-C(4A)-C(7A)-P(1A)	-138.8(7)
C(5A)-C(4A)-C(7A)-P(1A)	40.7(11)
O(1A)-P(1A)-C(7A)-C(4A)	42.1(7)
O(2A)-P(1A)-C(7A)-C(4A)	165.3(6)
O(3A)-P(1A)-C(7A)-C(4A)	-81.2(7)
O(1A)-P(1A)-C(7A)-C(8A)	166.1(6)
O(2A)-P(1A)-C(7A)-C(8A)	-70.8(7)
O(3A)-P(1A)-C(7A)-C(8A)	42.8(7)
C(6B)-C(1B)-C(2B)-C(3B)	-4.1(16)
Cl(1B)-C(1B)-C(2B)-C(3B)	177.4(8)
C(1B)-C(2B)-C(3B)-C(4B)	2.9(15)
C(2B)-C(3B)-C(4B)-C(5B)	-0.6(14)
C(2B)-C(3B)-C(4B)-C(7B)	178.9(9)
C(3B)-C(4B)-C(5B)-C(6B)	-0.5(14)
C(7B)-C(4B)-C(5B)-C(6B)	180.0(9)
C(2B)-C(1B)-C(6B)-C(5B)	3.0(16)
Cl(1B)-C(1B)-C(6B)-C(5B)	-178.5(8)
C(4B)-C(5B)-C(6B)-C(1B)	-0.7(15)
C(3B)-C(4B)-C(7B)-C(8B)	147.9(9)
C(5B)-C(4B)-C(7B)-C(8B)	-32.6(12)
C(3B)-C(4B)-C(7B)-P(1B)	-83.0(10)
C(5B)-C(4B)-C(7B)-P(1B)	96.5(10)
O(2B)-P(1B)-C(7B)-C(4B)	172.3(7)
O(3B)-P(1B)-C(7B)-C(4B)	-64.2(9)
O(1B)-P(1B)-C(7B)-C(4B)	47.6(9)
O(2B)-P(1B)-C(7B)-C(8B)	-56.1(8)
O(3B)-P(1B)-C(7B)-C(8B)	67.5(8)
O(1B)-P(1B)-C(7B)-C(8B)	179.2(7)

Table S8. Hydrogen bonds for (R)-(+)-7 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(2A)-H(2A1)O(2B)#1	0.98	1.80	2.582(6)	133.5
O(3A)-H(3A1)O(2B)#2	0.97	1.64	2.529(7)	149.8
O(1B)-H(1B1)O(1A)#3	0.98	1.60	2.542(6)	159.4
O(3B)-H(3B1)O(1A)#4	0.97	2.01	2.580(8)	114.9
O(3B)-H(3B1)O(2A)#5	0.97	2.65	3.414(8)	135.7
C(2B)-H(2B)Cl(1A)#3	0.93	2.88	3.784(11)	163.7

Symmetry transformations used to generate equivalent atoms: #1 x-1/2,y+1/2,z-1/2 #2 x-1/2,y-1/2,z-1/2 #3 -x+1/2,y-1/2,-z+1/2 #4 -x+1/2,y+1/2,z+1/2 #5 x+1/2,y+1/2,z+1/2

Crystallographic study of the catalyst precursor [Rh(COD)L3]BF₄

Hydrogen atoms, the BF_4^- counteranion and solvate molecules of CH_2Cl_2 are omitted for clarity.

Table S9. Crystal data and structure refinement for $[Rh(COD)L3]BF_4$.

CCDC number	2420900	
Empirical formula	C51 H55 B C19 F4 N O4 P Rh S	
Formula weight	1317.76	
Temperature	295(2) K	
Wavelength	0.71068 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	$a = 16.8778(8) \text{ Å}$ $\alpha = 90^{\circ}.$	
	$b = 16.9391(8) \text{ Å} \qquad \beta = 90^{\circ}.$	
	$c = 20.3030(7) \text{ Å}$ $\gamma = 90^{\circ}.$	
Volume	5804.5(4) Å ³	
Z	4	
Density (calculated)	1.508 Mg/m^3	
Absorption coefficient	0.828 mm ⁻¹	
F(000)	2680	
Theta range for data collection	2.405 to 28.633°.	
Index ranges	-22<=h<=22, -22<=k<=22, -26<=l<=26	
Reflections collected	80977	
Independent reflections	14049 [R(int) = 0.1356]	
Completeness to theta = 25.240°	99.8 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	14049 / 34 / 657	
Goodness-of-fit on F ²	0.770	
Final R indices [I>2sigma(I)]	R1 = 0.0591, wR2 = 0.1048	
R indices (all data)	R1 = 0.2525, wR2 = 0.1450	
Absolute structure parameter	-0.01(3)	
Largest diff. peak and hole	0.564 and -0.443 e·Å ⁻³	

Table S10. Bond lengths [Å] and angles [°] for [Rh(COD)L3]BF₄.

Rh(1)-C(11)	2.158(13)	Rh(1)-S(1)	2.355(3)
Rh(1)-C(10)	2.165(11)	P(1)-O(1)	1.591(8)
Rh(1)-C(14)	2.254(13)	P(1)-O(4)	1.614(6)
Rh(1)-P(1)	2.270(3)	P(1)-N(1)	1.654(9)
Rh(1)-C(15)	2.284(14)	S(1)-C(3)	1.788(12)

S(1)-C(1)	1.810(13)	C(25)-C(26)	1.336(17)
O(1)-C(48)	1.477(12)	C(25)-C(24)	1.400(17)
O(2)-C(19)	1.411(11)	C(25)-H(25)	0.9300
O(2)-C(18)	1.448(13)	C(24)-H(24)	0.9300
O(3)-C(18)	1.385(14)	C(26)-C(27)	1.378(19)
O(3)-C(20)	1.417(11)	C(26)-H(26)	0.9300
O(4)-C(35)	1.445(11)	C(27)-C(28)	1.361(17)
N(1)-C(2)	1.428(14)	C(27)-H(27)	0.9300
N(1)-C(4)	1.460(12)	C(28)-H(28)	0.9300
C(1)-C(2)	1.496(14)	C(29)-C(34)	1.363(16)
C(1)-H(1A)	0.9700	C(29)-C(30)	1.379(16)
C(1)-H(1B)	0.9700	C(29)-C(48)	1.555(15)
C(2)-H(2A)	0.9700	C(30)-C(31)	1.367(18)
C(2)-H(2B)	0.9700	C(30)-H(30)	0.9300
C(3)-H(3A)	0.9600	C(31)-C(32)	1.30(2)
C(3)-H(3B)	0.9600	C(31)-H(31)	0.9300
C(3)-H(3C)	0.9600	C(32)-C(33)	1.362(19)
C(4) - C(5)	1.339(13) 1.261(12)	$C(32)$ - $\Pi(32)$ C(22) $C(24)$	0.9300
C(4) - C(9)	1.301(13) 1.265(16)	C(33)-C(34)	1.3/4(1/)
C(5) = C(0)	0.0200	$C(33)-\Pi(33)$ $C(24)$ $\Pi(24)$	0.9300
$C(5) - \Pi(5)$	0.9500	$C(34) - \Pi(34)$ C(25) C(26)	0.9300 1 518(14)
C(0)-C(7)	1.508(18)	C(35)-C(30)	1.310(14) 1.552(14)
$C(0)$ - $\Pi(0)$	0.9500 1 221(10)	C(35)-C(42)	1.332(14) 1.376(15)
C(7) = C(8)	0.0300	C(36) - C(41) C(36) - C(37)	1.370(13) 1.308(15)
C(8) C(0)	1.374(16)	C(30)-C(37) C(37) $C(38)$	1.398(13) 1.340(17)
C(8) - C(9)	0.9300	C(37)-H(37)	0.0300
C(0)-H(0)	0.9300	C(38)-C(39)	1.32(2)
C(10)- $C(11)$	1 325(16)	C(38)-H(38)	0.9300
C(10) - C(17)	1.525(10)	C(39)- $C(40)$	1.35(2)
C(10)-H(10)	0.9300	C(39)-H(39)	0.9300
C(11)-C(12)	1.502(17)	C(40)-C(41)	1.379(19)
C(11)-H(11)	0.9300	C(40)-H(40)	0.9300
C(12)-C(13)	1.465(18)	C(41)-H(41)	0.9300
C(12)-H(12A)	0.9700	C(42)-C(43)	1.373(14)
C(12)-H(12B)	0.9700	C(42)-C(46)	1.365(16)
C(13)-C(14)	1.47(2)	C(43)-C(44)	1.404(18)
C(13)-H(13A)	0.9700	C(43)-H(43)	0.9300
C(13)-H(13B)	0.9700	C(44)-C(45)	1.362(15)
C(14)-C(15)	1.34(2)	C(44)-H(44)	0.9300
C(14)-H(14)	0.9300	C(45)-C(47)	1.351(17)
C(15)-C(16)	1.511(19)	C(45)-H(45)	0.9300
C(15)-H(15)	0.9300	C(46)-C(47)	1.367(15)
C(16)-C(17)	1.386(18)	C(46)-H(46)	0.9300
C(16)-H(16A)	0.9700	C(47)-H(47)	0.9300
C(16)-H(16B)	0.9700	Cl(1)-C(60)	1.74(3)
C(17)-H(17A)	0.9700	Cl(2)-C(60)	1.61(2)
C(17)-H(17B)	0.9700	Cl(3)-C(60)	1.76(3)
C(18)-C(21)	1.491(16)	C(60)-H(60)	0.9800
C(18)-C(22)	1.547(15)	C(61)-Cl(5)	1.71(2)
C(19)-C(20)	1.501(13)	C(61)-Cl(6)	1.731(16)
C(19)-C(48)	1.572(13)	C(61)-CI(4)	1.85(2)
C(19)-H(19)	0.9800	C(61)-H(61)	0.9800
C(20)-C(35)	1.518(14)	C(611)-Cl(51)	1.63(2)
C(20)-H(20)	0.9800	C(611)- $Cl(61)$	1.78(2)
C(21)-H(21A) C(21)-H(21D)	0.9000	C(011)-Cl(41)	1.8/(2)
C(21)-H(21B)	0.9000	C(011)-H(011)	0.9801
C(21)-H(21C)	0.9000	$\Gamma(1)$ - $B(1)$ E(2) B(1)	1.31(2) 1.27(2)
$C(22) - \Pi(22A)$ $C(22) - \Pi(22P)$	0.9000	$\Gamma(2)$ -D(1) E(2) D(1)	1.2/(2) 1.24(2)
C(22)-H(22C)	0.9000	F(3)-D(1) F(4)-B(1)	1.34(3) 1.20(2)
$C(22) - \Pi(22C)$ C(23) - C(24)	1 367(16)	$\Gamma(4) - D(1)$ $\Gamma(80) - C1(0)$	1.37(3)
C(23)-C(27)	1 363(14)	C(80)-C1(8)	1.03(3) 1.68(2)
C(23)-C(28)	1.505(14)	C(80)-C1(7)	1.00(2) 1.78(2)
C(23)-C(T0)	1.505(17)		1.70(2)

C(80)-H(80)	0.9800	C(8)-C(7)-H(7)	121.3
C(801)-Cl(81)	1.64(3)	C(6)-C(7)-H(7)	121.3
C(801)-Cl(91)	1.68(3)	C(7)-C(8)-C(9)	122.0(14)
C(801)-Cl(71)	2.01(3)	C(7)-C(8)-H(8)	119.0
C(801)-H(801)	0.9801	C(9)-C(8)-H(8)	119.0
C(11)-Rh(1)-C(10)	35.7(4)	C(4)-C(9)-C(8)	120.3(12)
C(11)-Rh(1)-C(14)	80.0(5)	C(4)-C(9)-H(9)	119.8
C(10)-Rh(1)-C(14)	92.1(5)	C(8)-C(9)-H(9)	119.8
C(11)-Rh(1)-P(1)	97.0(3)	C(11)-C(10)-C(17)	125.4(13)
C(10)-Rh(1)-P(1)	96.1(4)	C(11)-C(10)-Rh(1)	71.8(8)
C(14)-Rh(1)-P(1)	161.2(6)	C(17)-C(10)-Rh(1)	109.0(8)
C(11)-Rh(1)-C(15)	88.0(5)	C(11)-C(10)-H(10)	117.3
C(10)-Rh(1)-C(15)	79.3(5)	C(17)-C(10)-H(10)	117.3
C(14)-Rh(1)-C(15)	34.4(5)	Rh(1)-C(10)-H(10)	89.2
P(1)-Rh(1)-C(15)	164.4(5)	C(10)-C(11)-C(12)	126.1(14)
C(11)-Rh(1)-S(1)	168.8(4)	C(10)-C(11)-Rh(1)	72.5(8)
C(10)-Rh(1)-S(1)	155.5(4)	C(12)-C(11)-Rh(1)	111.9(9)
C(14)-Rh(1)-S(1)	96.2(4)	C(10)-C(11)-H(11)	116.9
P(1)-Rh(1)-S(1)	83.16(12)	C(12)-C(11)-H(11)	116.9
C(15)-Rh(1)-S(1)	94.8(4)	Rh(1)-C(11)-H(11)	85.5
O(1)-P(1)-O(4)	105.2(4)	C(13)-C(12)-C(11)	117.2(13)
O(1)-P(1)-N(1)	96.9(4)	C(13)-C(12)-H(12A)	108.0
O(4)-P(1)-N(1)	111.9(4)	C(11)-C(12)-H(12A)	108.0
O(1)-P(1)-Rh(1)	120.4(3)	C(13)-C(12)-H(12B)	108.0
O(4)-P(1)-Rh(1)	110.7(3)	C(11)-C(12)-H(12B)	108.0
N(1)-P(1)-Rh(1)	111.0(3)	H(12A)-C(12)-H(12B)	107.2
C(3)-S(1)-C(1)	100.4(6)	C(12)-C(13)-C(14)	117.2(13)
C(3)-S(1)-Rh(1)	115.6(5)	С(12)-С(13)-Н(13А)	108.0
C(1)-S(1)-Rh(1)	105.8(4)	C(14)-C(13)-H(13A)	108.0
C(48)-O(1)-P(1)	127.3(6)	C(12)-C(13)-H(13B)	108.0
C(19)-O(2)-C(18)	108.5(9)	C(14)-C(13)-H(13B)	108.0
C(18)-O(3)-C(20)	111.8(9)	H(13A)-C(13)-H(13B)	107.2
C(35)-O(4)-P(1)	131.1(6)	C(15)-C(14)-C(13)	123.4(16)
C(2)-N(1)-C(4)	113.9(9)	C(15)-C(14)-Rh(1)	74.0(9)
C(2)-N(1)-P(1)	114.7(8)	C(13)-C(14)-Rh(1)	108.8(9)
C(4)-N(1)-P(1)	129.1(8)	C(15)-C(14)-H(14)	118.3
C(2)-C(1)-S(1)	109.0(9)	C(13)-C(14)-H(14)	118.3
C(2)-C(1)-H(1A)	109.9	Rh(1)-C(14)-H(14)	8/.1
S(1)-C(1)-H(1A)	109.9	C(14)-C(15)-C(16)	124.6(17)
C(2)-C(1)-H(1B)	109.9	C(14)-C(15)-Kn(1)	/1.0(9)
$S(1)-C(1)-\Pi(1D)$	109.9	C(10)-C(15)-KII(1) C(14)-C(15)-II(15)	109.7(9)
$\Pi(1A) - C(1) - \Pi(1D)$ N(1) C(2) C(1)	108.3 115.4(11)	$C(14)-C(15)-\Pi(15)$ $C(16)-C(15)-\Pi(15)$	11/./
N(1) - C(2) - C(1) N(1) - C(2) - H(2A)	108.4	C(10)-C(15)-H(15) Pb(1) $C(15)$ H(15)	11/./ QQ Q
$\Gamma(1) - C(2) - \Pi(2A)$ $C(1) - C(2) - \Pi(2A)$	108.4	C(17) C(15) - C(15)	1161(13)
N(1)-C(2)-H(2R)	108.4	C(17)-C(16)-H(16A)	108.3
C(1)-C(2)-H(2B)	108.4	C(15) - C(16) - H(16A)	108.3
H(2A) - C(2) - H(2B)	107.5	C(17) - C(16) - H(16R)	108.3
S(1)-C(3)-H(3A)	109.5	C(15)-C(16)-H(16B)	108.3
S(1)-C(3)-H(3R)	109.5	H(16A)-C(16)-H(16B)	107.4
H(3A) - C(3) - H(3B)	109.5	C(16)-C(17)-C(10)	110 1(13)
S(1)-C(3)-H(3C)	109.5	C(16)-C(17)-E(10) C(16)-C(17)-H(17A)	107.5
H(3A)-C(3)-H(3C)	109.5	C(10) - C(17) - H(17A)	107.5
H(3R)-C(3)-H(3C)	109.5	C(16) - C(17) - H(17R)	107.5
C(5)-C(4)-C(9)	118 4(10)	C(10) - C(17) - H(17B)	107.5
C(5)-C(4)-N(1)	121 6(10)	H(17A)-C(17)-H(17B)	107.0
C(9)-C(4)-N(1)	120.0(10)	O(3)-C(18)-O(2)	106.3(10)
C(4)-C(5)-C(6)	119.5(12)	O(3)-C(18)-C(21)	112.1(11)
C(4)-C(5)-H(5)	120.3	O(2)-C(18)-C(21)	108.7(10)
C(6)-C(5)-H(5)	120.3	O(3)-C(18)-C(22)	111.1(12)
C(5)-C(6)-C(7)	122.2(13)	O(2)-C(18)-C(22)	106.3(10)
C(5)-C(6)-H(6)	118.9	C(21)-C(18)-C(22)	111.9(12)
C(7)-C(6)-H(6)	118.9	O(2)-C(19)-C(20)	105.6(8)
C(8)-C(7)-C(6)	117.3(14)	O(2)-C(19)-C(48)	108.1(8)
	· /		× /

C(20)-C(19)-C(48)	112.1(8)	C(41)-C(36)-C(37)	117.0(11)
O(2)-C(19)-H(19)	110.3	C(41)-C(36)-C(35)	123.4(12)
C(20)-C(19)-H(19)	110.3	C(37)-C(36)-C(35)	119.5(11)
C(48)-C(19)-H(19)	110.3	C(38)-C(37)-C(36)	120.0(14)
O(3)-C(20)-C(19)	104.0(8)	C(38)-C(37)-H(37)	120.0
O(3)-C(20)-C(35)	112.7(8)	C(36)-C(37)-H(37)	120.0
C(19)-C(20)-C(35)	112.5(9)	C(39)-C(38)-C(37)	122.4(18)
O(3)-C(20)-H(20)	109.1	C(39)-C(38)-H(38)	118.8
C(19)-C(20)-H(20)	109.1	C(37)-C(38)-H(38)	118.8
C(35)-C(20)-H(20)	109.1	C(38)-C(39)-C(40)	120(2)
C(18)-C(21)-H(21A)	109.5	C(38)-C(39)-H(39)	120.1
C(18)-C(21)-H(21B)	109.5	C(40)-C(39)-H(39)	120.1
H(21A)-C(21)-H(21B)	109.5	C(39)-C(40)-C(41)	120.3(19)
C(18)-C(21)-H(21C)	109.5	C(39)-C(40)-H(40)	119.8
H(21A)-C(21)-H(21C)	109.5	C(41)-C(40)-H(40)	119.8
H(21B)-C(21)-H(21C)	109.5	C(36)-C(41)-C(40)	120.4(15)
C(18)-C(22)-H(22A)	109.5	C(36)-C(41)-H(41)	119.8
C(18)-C(22)-H(22B)	109.5	C(40)-C(41)-H(41)	119.8
H(22A)-C(22)-H(22B)	109.5	C(43)-C(42)-C(46)	117.9(10)
C(18)-C(22)-H(22C)	109.5	C(43)-C(42)-C(35)	119.2(11)
H(22A)-C(22)-H(22C)	109.5	C(46)-C(42)-C(35)	122.7(10)
H(22B)-C(22)-H(22C)	109.5	C(42)-C(43)-C(44)	118.0(13)
C(24)-C(23)-C(28)	116.9(11)	C(42)-C(43)-H(43)	121.0
C(24)-C(23)-C(48)	123.1(10)	C(44)-C(43)-H(43)	121.0
C(28)-C(23)-C(48)	119.7(11)	C(45)-C(44)-C(43)	123.0(15)
C(26)-C(25)-C(24)	118.6(13)	C(45)-C(44)-H(44)	118.5
C(26)-C(25)-H(25)	120.7	C(43)-C(44)-H(44)	118.5
C(24)-C(25)-H(25)	120.7	C(47)-C(45)-C(44)	117.9(14)
C(23)-C(24)-C(25)	122.0(10)	C(47)-C(45)-H(45)	121.1
C(23)-C(24)-H(24)	119.0	C(44)-C(45)-H(45)	121.1
C(25)-C(24)-H(24)	119.0	C(47)-C(46)-C(42)	123.3(10)
C(25)-C(26)-C(27)	120.8(14)	C(47)-C(46)-H(46)	118.4
C(25)-C(26)-H(26)	119.6	C(42)-C(46)-H(46)	118.4
C(27)-C(26)-H(26)	119.6	C(45)-C(47)-C(46)	120.0(12)
C(28)-C(27)-C(26)	119.1(11)	C(45)-C(47)-H(47)	120.0
C(28)-C(27)-H(27)	120.5	C(46)-C(47)-H(47)	120.0
C(26)-C(27)-H(27)	120.5	O(1)- $C(48)$ - $C(23)$	109.9(8)
C(27)-C(28)-C(23)	122.5(12)	O(1)-C(48)-C(29)	105.6(9)
C(27)-C(28)-H(28)	118.7	C(23)-C(48)-C(29)	111.3(9)
C(23)-C(28)-H(28)	118.7	O(1)-C(48)-C(19)	105.6(8)
C(34)- $C(29)$ - $C(30)$	121.1(13)	C(23)-C(48)-C(19)	112.6(9)
C(34)- $C(29)$ - $C(48)$	121.6(13)	C(29)-C(48)-C(19)	111.3(8)
C(30)- $C(29)$ - $C(48)$	11/.3(13)	CI(2)- $C(60)$ - $CI(1)$	113.3(14)
C(31)- $C(30)$ - $C(29)$	11/.0(14)	CI(2)-C(60)-CI(3)	114(2)
C(31)-C(30)-H(30)	121.5	CI(1)-C(60)-CI(3)	108.6(14)
C(29)-C(30)-H(30)	121.5	CI(2)- $C(60)$ - $H(60)$	106.8
C(32) - C(31) - C(30)	123.0(10)	CI(1)-C(60)-H(60)	106.8
C(32)- $C(31)$ - $H(31)$	118.5	CI(3)-C(60)-H(60)	100.8
C(30)-C(31)-H(31)	118.5	CI(5) - C(61) - CI(6)	112.3(11)
C(31)-C(32)-C(33)	120.3(10)	CI(3)-C(61)-CI(4)	99.1(9)
C(31)-C(32)-H(32)	119.8	C1(0)-C(01)-C1(4) C1(5) C(61) U(61)	100.1(11)
$C(33)-C(32)-\Pi(32)$	119.0	C1(6) C(61) U(61)	112.7
C(32) - C(33) - C(34)	119.8(13)	C1(0)-C(01)-H(01) C1(4) C(61) H(61)	112.7
$C(32)$ - $C(33)$ - $\Pi(33)$ $C(34)$ $C(33)$ $\Pi(33)$	120.1	Cl(4)-C(01)-H(01) Cl(51) $C(611)$ $Cl(61)$	112.7 120.4(18)
$C(34)-C(33)-\Pi(33)$ C(20) C(34) C(33)	120.1 118 7(12)	$C_{1}(51) - C_{1}(011) - C_{1}(011)$	120.4(10) 106.8(17)
C(29) - C(34) - C(33) C(20) - C(24) - U(24)	120.7	$C_{1}(51) - C_{0}(011) - C_{1}(41)$ $C_{1}(61) - C_{1}(611) - C_{1}(41)$	100.0(17) 01 1(15)
$C(27)-C(34)-\Pi(34)$ $C(23)-C(24)$ $\Pi(24)$	120.7	Cl(01)-Cl(011)-Cl(41) Cl(51)-Cl(51)-Ul(51)	91.1(13) 112 1
O(3) - O(3+) - O(3+)	120.7 110 $\Delta(0)$	$C_{1}(51) - C_{0}(011) - \Pi_{0}(011)$ $C_{1}(61) - C_{0}(611) - \Pi_{0}(611)$	112.1
O(4) - C(35) - C(30)	110. 7 (7) 107.8(8)	$C[(01)-C(011)-\Pi(011)]$ $C[(A1), C(611), \Pi(611)]$	112.1
C(36) - C(25) - C(20)	107.0(0) 113 8(0)	E(41) - C(011) - E(011)	112.1
$O(4)_{C(35)_{C(42)}}$	104 8(8)	$\Gamma(2) - D(1) - \Gamma(1)$ F(2) - R(1) - F(2)	119.9(10)
C(36) - C(35) - C(42)	107.0(0)	$F(1)_R(1)_F(3)$	10(2)
C(20)=C(33)=C(42) C(20)=C(35)=C(42)	111 1/0)	$F(2)_{R(1)} = F(3)$	109(2) 112(2)
$(20)^{-}(33)^{-}(42)$	111.1(9)	1(2) - D(1) - 1(4)	112(3)

F(1)-B(1)-F(4)	106(2)	Cl(7)-C(80)-H(80)	109.3
F(3)-B(1)-F(4)	98.2(15)	Cl(81)-C(801)-Cl(91)	114.4(19)
Cl(9)-C(80)-Cl(8)	112.3(18)	Cl(81)-C(801)-Cl(71)	103(2)
Cl(9)-C(80)-Cl(7)	113.0(14)	Cl(91)-C(801)-Cl(71)	95.6(14)
Cl(8)-C(80)-Cl(7)	103.4(13)	Cl(81)-C(801)-H(801)	114.0
Cl(9)-C(80)-H(80)	109.3	Cl(91)-C(801)-H(801)	114.0
Cl(8)-C(80)-H(80)	109.3	Cl(71)-C(801)-H(801)	114.0

Table S11. Torsion angles [°] for $[Rh(COD)L3]BF_4$.

O(4)-P(1)-O(1)-C(48)	-53.0(8)
N(1)-P(1)-O(1)-C(48)	-168.0(7)
Rh(1)-P(1)-O(1)-C(48)	72.7(8)
O(1)-P(1)-O(4)-C(35)	-38.7(9)
N(1)-P(1)-O(4)-C(35)	654(10)
$P_{h}(1) P(1) O(4) C(25)$	170.2(8)
NI(1) - F(1) - O(4) - O(55)	-170.2(6)
O(1)-P(1)-N(1)-C(2)	-132.3(7)
O(4)-P(1)-N(1)-C(2)	98.0(8)
Rh(1)-P(1)-N(1)-C(2)	-26.2(8)
O(1)-P(1)-N(1)-C(4)	9.3(9)
O(4)-P(1)-N(1)-C(4)	-100.1(9)
Rh(1)-P(1)-N(1)-C(4)	135.6(8)
C(3)-S(1)-C(1)-C(2)	-157.5(10)
Rh(1)-S(1)-C(1)-C(2)	-36.9(10)
C(4)-N(1)-C(2)-C(1)	-75.7(13)
P(1)-N(1)-C(2)-C(1)	89.0(12)
S(1)-C(1)-C(2)-N(1)	-451(14)
C(2) N(1) C(4) C(5)	00.8(12)
D(1) N(1) C(4) C(5)	71.2(12)
P(1)-N(1)-C(4)-C(5)	-/1.2(13)
C(2)-N(1)- $C(4)$ - $C(9)$	-88.7(12)
P(1)-N(1)-C(4)-C(9)	109.3(11)
C(9)-C(4)-C(5)-C(6)	3.7(17)
N(1)-C(4)-C(5)-C(6)	-175.9(11)
C(4)-C(5)-C(6)-C(7)	-1(2)
C(5)-C(6)-C(7)-C(8)	-3(3)
C(6)-C(7)-C(8)-C(9)	5(3)
C(5)-C(4)-C(9)-C(8)	-2(2)
N(1)-C(4)-C(9)-C(8)	178.0(13)
C(7)-C(8)-C(9)-C(4)	-3(3)
C(17)-C(10)-C(11)-C(12)	4(2)
$B_{h}(1)-C(10)-C(11)-C(12)$	1047(14)
C(17) - C(10) - C(11) - Rh(1)	-100.7(12)
C(10) C(11) C(12) C(12)	-100.7(12)
C(10)-C(11)-C(12)-C(13)	-70(2)
Rn(1)-C(11)-C(12)-C(13)	8(2)
C(11)-C(12)-C(13)-C(14)	10(3)
C(12)-C(13)-C(14)-C(15)	61(2)
C(12)-C(13)-C(14)-Rh(1)	-22(2)
C(13)-C(14)-C(15)-C(16)	-1(2)
Rh(1)-C(14)-C(15)-C(16)	101.6(13)
C(13)-C(14)-C(15)-Rh(1)	-102.3(13)
C(14)-C(15)-C(16)-C(17)	-83(2)
Rh(1)-C(15)-C(16)-C(17)	-2(2)
C(15)-C(16)-C(17)-C(10)	22(3)
C(11)-C(10)-C(17)-C(16)	50(2)
$B_{h}(1)-C(10)-C(17)-C(16)$	-30(2)
C(20) - O(3) - C(18) - O(2)	0.7(12)
C(20) - O(3) - C(18) - O(2)	$110 \ 4(11)$
C(20) - O(3) - C(18) - C(21)	119.4(11) 114.5(11)
C(20) - O(3) - C(10) - C(22)	-114.3(11)
C(19) - O(2) - C(18) - O(3)	11.8(12)
C(19)-O(2)-C(18)-C(21)	-109.1(12)
C(19)-O(2)-C(18)-C(22)	130.3(11)
C(18)-O(2)-C(19)-C(20)	-18.9(10)
C(18)-O(2)-C(19)-C(48)	-139.0(9)
C(18)-O(3)-C(20)-C(19)	-12.0(12)
------------------------------------	------------
C(18)-O(3)-C(20)-C(35)	-134.1(10)
O(2) - C(19) - C(20) - O(3)	18.6(10)
C(48) - C(19) - C(20) - O(3)	136 2(0)
C(48) - C(19) - C(20) - C(3)	130.2(9)
O(2) - O(19) - O(20) - O(33)	140.9(8)
C(48)- $C(19)$ - $C(20)$ - $C(35)$	-101.6(10)
C(28)-C(23)-C(24)-C(25)	-0.4(18)
C(48)-C(23)-C(24)-C(25)	172.7(11)
C(26) - C(25) - C(24) - C(23)	-3(2)
C(24) C(25) C(26) C(27)	4(2)
C(24) - C(23) - C(20) - C(27)	+(2)
C(25)-C(26)-C(27)-C(28)	-3(2)
C(26)-C(27)-C(28)-C(23)	0(2)
C(24)-C(23)-C(28)-C(27)	1.4(18)
C(48)-C(23)-C(28)-C(27)	-171.9(11)
C(34)-C(29)-C(30)-C(31)	-0.1(18)
C(48) - C(29) - C(30) - C(31)	1780(11)
C(20) C(20) C(21) C(22)	0(2)
C(29) - C(30) - C(31) - C(32)	0(2)
C(30)- $C(31)$ - $C(32)$ - $C(33)$	0(3)
C(31)-C(32)-C(33)-C(34)	0(2)
C(30)-C(29)-C(34)-C(33)	-0.2(17)
C(48)-C(29)-C(34)-C(33)	-178.2(10)
C(32) - C(33) - C(34) - C(29)	0.4(18)
P(1) O(4) C(25) C(26)	76.7(11)
P(1) = O(4) = O(35) = O(30)	-70.7(11)
P(1)-O(4)-C(35)-C(20)	48.2(12)
P(1)-O(4)-C(35)-C(42)	166.6(7)
O(3)-C(20)-C(35)-O(4)	154.8(8)
C(19)-C(20)-C(35)-O(4)	37.5(11)
O(3)-C(20)-C(35)-C(36)	-82.5(11)
C(19)-C(20)-C(35)-C(36)	160.3(8)
O(3)-C(20)-C(35)-C(42)	40.5(12)
C(19)-C(20)-C(35)-C(42)	-76.7(11)
O(4) C(25) C(26) C(41)	147.2(10)
O(4) - C(33) - C(30) - C(41)	14/.2(10)
C(20)- $C(35)$ - $C(36)$ - $C(41)$	25.8(14)
C(42)-C(35)-C(36)-C(41)	-98.5(12)
O(4)-C(35)-C(36)-C(37)	-36.5(12)
C(20)-C(35)-C(36)-C(37)	-157.9(9)
C(42)-C(35)-C(36)-C(37)	77.8(11)
C(41)-C(36)-C(37)-C(38)	-2.3(16)
C(35)-C(36)-C(37)-C(38)	-178.8(10)
C(36) C(37) C(38) C(39)	2(2)
C(30)-C(37)-C(38)-C(39)	2(2)
C(37)-C(38)-C(39)-C(40)	-1(3)
C(38)-C(39)-C(40)-C(41)	0(3)
C(37)-C(36)-C(41)-C(40)	1.9(16)
C(35)-C(36)-C(41)-C(40)	178.2(11)
C(39)-C(40)-C(41)-C(36)	-1(2)
O(4) - C(35) - C(42) - C(43)	159.3(10)
C(36)-C(35)-C(42)-C(43)	41 4(14)
C(20) - C(35) - C(42) - C(43)	-84.5(13)
C(20) - C(33) - C(42) - C(43)	-0+.5(13)
O(4) - C(33) - C(42) - C(46)	-24.9(14)
C(36)-C(35)-C(42)-C(46)	-142.8(11)
C(20)-C(35)-C(42)-C(46)	91.3(13)
C(46)-C(42)-C(43)-C(44)	1.5(18)
C(35)-C(42)-C(43)-C(44)	177.5(12)
C(42)-C(43)-C(44)-C(45)	0(2)
C(43)-C(44)-C(45)-C(47)	0(3)
C(13) - C(12) - C(16) - C(17)	-1.8(18)
C(45) - C(42) - C(46) - C(47)	-1.0(10)
C(33)-C(42)-C(46)-C(47)	-1//./(10)
C(44)-C(45)-C(47)-C(46)	0(2)
C(42)-C(46)-C(47)-C(45)	1.0(18)
P(1)-O(1)-C(48)-C(23)	-68.9(10)
P(1)-O(1)-C(48)-C(29)	170.9(7)
P(1)-O(1)-C(48)-C(19)	52.8(10)
C(24)-C(23)-C(48)-O(1)	148.9(10)
C(28)-C(23)-C(48)-O(1)	-38.2(13)
	- ()

-94.4(12)
78.5(13)
31.4(14)
-155.7(10)
-24.5(13)
157.4(9)
-143.8(11)
38.1(13)
89.7(13)
-88.4(12)
155.8(8)
39.8(11)
-84.2(11)
159.8(9)
41.6(12)
-74.4(12)

Table S12. Hydrogen bonds for $[Rh(COD)L3]BF_4$ [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(2)-H(2A)F(1)	0.97	2.45	3.322(16)	149.6
C(3)-H(3B)F(1)#1	0.96	2.45	3.209(16)	136.1
C(5)-H(5)S(1)	0.93	3.00	3.638(13)	126.8
C(21)-H(21C)Cl(51)#2	0.96	2.89	3.51(3)	122.9
C(61)-H(61)F(4)	0.98	2.16	3.11(2)	164.6
C(611)-H(611)F(4)	0.98	2.18	3.11(2)	158.8

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y-1/2,-z+1/2 #2 -x+1,y+1/2,-z+1/2

9. NBO atomic charges on the α-carbon atoms

Diisopropyl (1-arylvinyl)phosphonate 3	Charge [e]
6a	-0.4447
6b	-0.4462
6c	-0.4474
6d	-0.4466
6e	-0.4448
6f	-0.4479
6g	-0.4391
6h	-0.4524
6i	-0.4515
6j	-0.4442
6k	-0.4417
61	-0.4430
6m	-0.4433
6n	-0.4428
60	-0.4417
бр	-0.4451
6q	-0.4441
6r	-0.4427
6s	-0.4458
6t	-0.4394

10. ¹H and ¹³C NMR spectra

(1-Phenylvinyl)phosphonic acid: ¹H NMR (CD₃OD, 400 MHz)

170 160 150 -11-80 70 60 ------- 50 40 20 10 0 140 130 110 1 90 30 120 100 Chemical Shift (ppm)

[1-(4-Bromophenyl)vinyl]phosphonic acid: ¹H NMR (CD₃OD, 400 MHz)

Chemical Shift (ppm)

10

т 0

170 nini

00 90 80 Chemical Shift (ppm)

т 0

00 90 80 Chemical Shift (ppm)

3m: ¹H NMR (CDCl₃, 400 MHz)

Chloroform-d

6i: ¹H NMR (CDCl₃, 400 MHz)

Chemical Shift (ppm)

Chemical Shift (ppm)

11. HPLC data

6a. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 2 : 98, flow rate = 1.5 ml/min.

6b. HPLC conditions: Chiralcel OD-H, *i*-PrOH/*n*-hexane 1 : 200, flow rate = 1.5 ml/min.

N⁰	Retention time	Area	Area, %
1	4.20	440	2.53
2	5.57	16977	97.47

6d. HPLC conditions: Chiralcel OD-H, *i*-PrOH/*n*-hexane 1 : 300, flow rate = 1.5 ml/min.

N⁰	Retention time	Area	Area, %
1	4.83	263	5.61
2	6.15	4425	94.39

№	Retention time	Area	Area, %
1	4.50	242	5.27
2	5.26	4350	94.73

6g. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5 ml/min.

6h. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5 ml/min.

6j. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 2 : 98, flow rate = 1.5 ml/min.

№	Retention time	Area	Area, %
1	5.54	45322	97.38
2	24.24	1219	2.62

61. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.0 ml/min.

N⁰	Retention time	Area	Area, %
1	3.87	45	0.58
2	5.32	7713	99.42

60. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5 ml/min.

6p. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 2 : 98, flow rate = 1.5 ml/min.

№	Retention time	Area	Area, %
1	15.16	36	2.22
2	16.91	1586	97.78

6q. HPLC conditions: Chiralcel OD-H, *i*-PrOH/*n*-hexane 1 : 200, flow rate = 1.0 ml/min.

Nō	Retention time	Area	Area, %
l	34.92	161032	98.47
2	39.72	2502	1.53

6r. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 2 : 98, flow rate = 1.5 ml/min.

JN⊡	Retention time	Area	Area, 70
1	18.86	770	1.83
2	34.24	41174	98.17

6s. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5 ml/min.

6t. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5 ml/min.

6u. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5 ml/min.

6v. HPLC conditions: Chiralpak AD-H, *i*-PrOH/*n*-hexane 5 : 95, flow rate = 1.5 ml/min.

1	4.26	1981	22.29
2	6.14	6907	77.71