Supporting Information

One-pot Synthesis of Sulfonylmethyl Phthalides via K₂S₂O₈/DMSO-Mediated Methylenylation/Sulfonylation of Eudesmic Acid with Sulfinates

Meng-Yang Chang*a,b,c and Chen-Yo Ou^a

^aDepartment of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan ^bDepartment of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan. ^cNPUST College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan. *Corresponding author, email: mychang@kmu.edu.tw

Table of Contents

1.	Seneral information, experimental procedures, characterization data for all compounds	
	and large scale-up synthesis of 4a	S2~S18
2.	¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra copies of 4a-4k , 4m-4y	S19~S69
3.	¹ H NMR and ¹³ C NMR spectra copies of 5a-5d , 5g , C , 6a-6c , 7a-7f	S70~S99
4.	¹ H NMR and ¹³ C NMR spectra copies of 8a-8d , 9a , 10a-10b	S100~S113
5.	X-ray crystal data of 4a and 10a	S114~S117

Experimental section

General. All reagents and solvents were obtained from commercial sources and used without further purification. Reactions were routinely carried out under an atmosphere of dry nitrogen with magnetic stirring. Products in organic solvents were dried with anhydrous magnesium sulfate before concentration in vacuo. Melting points were determined with a SMP3 melting apparatus. ¹H and ¹³C NMR spectra were recorded on a Varian INOVA-400 spectrometer operating at 400 and at 100 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) and the coupling constants (*J*) are given in Hertz. High resolution mass spectra (HRMS) were measured with a mass spectrometer Finnigan/Thermo Quest MAT 95XL. X-ray crystal structures were obtained with an Enraf-Nonius FR-590 diffractometer (CAD4, Kappa CCD).

A representative synthetic procedure of skeleton 4 is as follows: $K_2S_2O_8$ (120 mg, 0.44 mmol) was added to a solution of 3 (0.2 mmol) in DMSO (5 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 5 min. RSO₂Na (0.24 mmol) was added to the reaction mixture at 25 °C. The reaction mixture was stirred at 100 °C for 10 h. The reaction mixture was cooled to 25 °C and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = $20/1 \sim 4/1$) afforded **4**.

4,5,6-Trimethoxy-7-((phenylsulfonyl)methyl)isobenzofuran-1(3*H***)-one (4a). Yield = 81% (61 mg); White solid; mp = 97-99 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₁₈H₁₉O₇S 379.0852, found 379.0855; ¹H NMR (400 MHz, CDCI₃): \delta 7.91-7.89 (m, 2H), 7.64-7.60 (m, 1H), 7.53-7.49 (m, 2H), 5.18 (s, 2H), 4.96 (s, 2H), 4.01 (s, 3H), 4.00 (s, 3H), 3.91 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCI₃): \delta 169.5, 155.2, 149.7, 148.2, 139.5, 133.6, 133.5, 128.9 (2x), 128.5 (2x), 120.0, 115.5, 66.9, 61.7, 60.8, 60.3, 51.2. Single-crystal X-Ray diagram: crystal of compound 4a** was grown by slow diffusion of EtOAc into a solution of compound **4a** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the triclinic crystal system, space group P-1, *a* = 10.5691(4) Å, *b* = 12.9071(5) Å, *c* = 14.2075(4) Å, *V* = 1737.72(12) Å³, *Z* = 4, *d*_{calcd} = 1.446 g/cm³, *F*(000) = 792.0, 2 θ range 6.696~134.156°, R indices (all data) R1 = 0.0520, wR2 = 0.1163.

7-(((4-Fluorophenyl)sulfonyl)methyl)-4,5,6-trimethoxyisobenzofuran-1(3*H***)-one (4b). Yield = 76% (60 mg); White solid; mp = 125-127 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF)** *m/z***: [M + H]⁺ calcd for C₁₈H₁₉FO₇S 397.0757, found 397.0759; ¹H NMR (400 MHz, CDCl₃): δ 7.95-7.90 (m, 2H), 7.22-7.16 (m, 2H), 5.20 (s, 2H), 4.97 (s, 2H), 4.03 (s, 3H), 4.02 (s, 3H), 3.92 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.5, 165.9 (d,** *J* **= 254.7 Hz), 155.3, 149.8, 148.3, 135.6 (d,** *J* **= 3.0 Hz), 133.6, 131.4 (d,** *J* **= 9.9 Hz, 2x), 120.0, 116.2 (d,** *J* **= 22.0 Hz, 2x), 115.4, 66.9, 61.8, 60.9, 60.4, 51.4; ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ -103.65~-103.72 (m, 1F).**

7-(((4-Chlorophenyl)sulfonyl)methyl)-4,5,6-trimethoxyisobenzofuran-1(3*H***)-one (4c). Yield = 73% (60 mg); Colorless oil; HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₁₈H₁₈ClO₇S 413.0462, found 413.0460; ¹H NMR (400 MHz, CDCl₃): \delta 7.87 (d,** *J* **= 8.8 Hz, 2H), 7.50 (d,** *J* **= 8.8 Hz, 2H), 5.21 (s, 2H), 4.97 (s, 2H), 4.03 (s, 3H), 4.02 (s, 3H), 3.93 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 169.6, 155.3, 149.8, 148.3, 140.4, 138.1, 133.7, 130.0 (2x), 129.2 (2x), 120.0, 115.3, 67.0, 61.8, 60.9, 60.4, 51.3.**

7-(((4-Bromophenyl)sulfonyl)methyl)-4,5,6-trimethoxyisobenzofuran-1(3*H***)-one (4d). Yield = 72% (66 mg); Colorless oil; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₈H₁₈BrO₇S 456.9957, found 456.9961; ¹H NMR (400 MHz, CDCl₃): \delta 7.80 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 5.22 (s, 2H), 4.97 (s, 2H), 4.03 (s, 3H), 4.02 (s, 3H), 3.93 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 169.6, 155.3, 149.8, 148.4, 138.7, 133.7, 132.2 (2x), 130.1 (2x), 129.0, 120.1, 115.2, 67.0, 61.8, 60.9, 60.4, 51.3.**

4,5,6-Trimethoxy-7-((m-tolylsulfonyl)methyl)isobenzofuran-1(3H)-one (4e). Yield = 77%

(60 mg); Colorless oil; HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₁₉H₂₁O₇S 393.1008, found 393.1010; ¹H NMR (400 MHz, CDCl₃): δ 7.75 (s, 1H), 7.74 (dd, *J* = 1.6, 8.8 Hz, 1H), 7.45-7.39 (m, 2H), 5.20 (s, 2H), 4.96 (s, 2H), 4.04 (s, 3H), 4.02 (s, 3H), 3.93 (s, 3H), 2.43 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.5, 155.3, 149.8, 148.2, 139.5, 139.2, 134.4, 133.6, 128.82, 128.80, 125.6, 120.2, 115.7, 66.9, 61.8, 60.9, 60.4, 51.3, 21.3.

4,5,6-Trimethoxy-7-((*p*-tolyIsulfonyI)methyI)isobenzofuran-1(3*H*)-one (4f). Yield = 80% (63 mg); White solid; mp = 117-119 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₁₉H₂₁O₇S 393.1008, found 393.1007; ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 5.19 (s, 2H), 4.95 (s, 2H), 4.03 (s, 3H), 4.01 (s, 3H), 3.92 (s, 3H), 2.43 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.5, 155.2, 149.7, 148.1, 144.6, 136.7, 133.6, 129.5 (2x), 128.5 (2x), 120.1, 115.8, 66.8, 61.8, 60.8, 60.3, 51.3, 21.6.

4,5,6-Trimethoxy-7-(((4-methoxyphenyl)sulfonyl)methyl)isobenzofuran-1(3*H***)-one (4g). Yield = 76% (62 mg); Colorless oil; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₉H₂₁O₈S 409.0957, found 409.0962; ¹H NMR (400 MHz, CDCl₃): \delta 7.84 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 9.2 Hz, 2H), 5.19 (s, 2H), 4.96 (s, 2H), 4.05 (s, 3H), 4.02 (s, 3H), 3.94 (s, 3H), 3.88 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 169.5, 163.7, 155.3, 149.8, 148.1, 133.6, 131.3, 130.7 (2x), 120.1, 116.1, 114.1 (2x), 66.9, 61.9, 60.9, 60.4, 55.7, 51.5.**

7-(((4-Ethylphenyl)sulfonyl)methyl)-4,5,6-trimethoxyisobenzofuran-1(3*H***)-one (4h). Yield = 70% (57 mg); Colorless oil; HRMS (ESI-TOF)** *m/z***: [M + H]⁺ calcd for C₂₀H₂₃O₇S 407.1165, found 407.1168; ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d,** *J* **= 8.0 Hz, 2H), 7.33 (d,** *J* **= 8.0 Hz, 2H), 5.18 (s, 2H), 4.95 (s, 2H), 4.02 (s, 3H), 4.00 (s, 3H), 3.91 (s, 3H), 2.72 (q,** *J* **= 7.6 Hz, 2H), 1.24 (t,** *J* **= 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.5, 155.2, 150.7, 149.7, 148.1, 136.8, 133.6, 128.6 (2x), 128.4 (2x), 120.1, 115.8, 66.8, 61.8, 60.8, 60.3, 51.3, 28.9, 15.2.**

7-(((4-Isopropylphenyl)sulfonyl)methyl)-4,5,6-trimethoxyisobenzofuran-1(3*H***)-one (4i). Yield = 73% (61 mg); White solid; mp = 84-86 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₂₁H₂₅O₇S 421.1321, found 421.1325; ¹H NMR (400 MHz, CDCI₃): \delta 7.84 (d,** *J* **= 8.4 Hz, 2H), 7.37 (d,** *J* **= 8.0 Hz, 2H), 5.19 (s, 2H), 4.96 (s, 2H), 4.03 (s, 3H), 4.01 (s, 3H), 3.92 (s, 3H), 3.02-2.95 (m, 1H), 1.27 (d,** *J* **= 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCI₃): \delta 169.5, 155.3, 155.2, 149.7, 148.2, 136.9, 133.6, 128.7 (2x), 127.0 (2x), 120.2, 115.8, 66.8, 61.8, 60.9, 60.4, 51.3, 34.3, 23.6 (2x).**

7-(((4-*n***-Butylphenyl)sulfonyl)methyl)-4,5,6-trimethoxyisobenzofuran-1(3***H***)-one (4j). Yield = 72% (62 mg); Colorless oil; HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₂₂H₂₇O₇S 435.1478, found 435.1481; ¹H NMR (400 MHz, CDCl₃): \delta 7.81 (d,** *J* **= 8.4 Hz, 2H), 7.31 (d,** *J* **= 8.4 Hz, 2H), 5.18 (s, 2H), 4.96 (s, 2H), 4.03 (s, 3H), 4.01 (s, 3H), 3.92 (s, 3H), 2.68 (t,** *J* **= 7.6 Hz, 2H), 1.64-1.57 (m, 2H), 1.37-1.32 (m, 2H), 0.93 (t,** *J* **= 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 169.5, 155.2, 149.7, 149.5, 148.1, 136.8, 133.6, 128.9 (2x), 128.5 (2x), 120.2, 115.8, 66.8, 61.8, 60.8, 60.4, 51.3, 35.6, 33.2, 22.1, 13.8.**

7-(((4-*t***-Butylphenyl)sulfonyl)methyl)-4,5,6-trimethoxyisobenzofuran-1(3***H***)-one (4k). Yield = 71% (62 mg); White solid; mp = 118-120 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF)** *m/z***: [M + H]⁺ calcd for C₂₂H₂₇O₇S 435.1478, found 435.1477; ¹H NMR (400 MHz, CDCl₃): \delta 7.83 (d,** *J* **= 8.4 Hz, 2H), 7.52 (d,** *J* **= 8.4 Hz, 2H), 5.18 (s, 2H), 4.95 (s, 2H), 4.01 (s, 3H), 4.00 (s, 3H), 3.91 (s, 3H), 1.33 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 169.4, 157.5, 155.1, 149.7, 148.1, 136.5, 133.5, 128.4 (2x), 125.9 (2x), 120.2, 115.8, 66.8, 61.7, 60.8, 60.3, 51.3, 35.2, 31.0 (3x).**

4,5,6-Trimethoxy-7-(((3-(trifluoromethyl)phenyl)sulfonyl)methyl)isobenzofuran-1(3*H***)-o ne (4m). Yield = 63% (56 mg); Colorless oil; HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₁₉H₁₈F₃O₇S 447.0725, found 447.0728; ¹H NMR (400 MHz, CDCl₃): \delta 8.18 (d,** *J* **= 7.6 Hz, 1H), 7.90 s, 1H), 7.88 (d,** *J* **= 7.6 Hz, 1H), 7.71 (t,** *J* **= 7.6 Hz, 1H), 5.16 (s, 2H), 5.01 (s, 2H), 4.04 (s, 3H), 4.02 (s, 3H), 3.92 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 169.3, 155.3, 149.8, 148.5, 140.2, 133.6, 132.2, 131.1 (q,** *J* **= 33.4 Hz), 130.3 (q,** *J* **= 3.8 Hz), 130.0, 125.9 (q,** *J* **= 271.4 Hz), 125.8 (q,** *J* **= 3.8 Hz), 119.7, 115.2, 66.9, 61.8, 60.9, 60.4, 51.3; ¹⁹F{¹H} NMR (376 MHz, CDCl₃): \delta -62.77 (s, 3F).**

4,5,6-Trimethoxy-7-(((4-(trifluoromethyl)phenyl)sulfonyl)methyl)isobenzofuran-1(3*H***)-o ne (4n). Yield = 68% (61 mg); White solid; mp = 104-106 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₁₉H₁₈F₃O₇S 447.0725, found 447.0724; ¹H NMR (400 MHz, CDCl₃): \delta 8.08 (d,** *J* **= 8.0 Hz, 2H), 7.81 (d,** *J* **= 8.4 Hz, 2H), 5.21 (s, 2H), 5.00 (s, 2H), 4.020 (s, 3H), 4.018 (s, 3H), 3.91 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 169.6, 155.2, 149.7, 148.5, 143.1, 135.3 (q,** *J* **= 33.3 Hz), 133.7, 129.2 (2x), 126.0 (q,** *J* **= 3.8 Hz, 2x), 123.2 (q,** *J* **= 271.4 Hz), 120.1, 114.8, 67.0, 61.8, 60.9, 60.3, 51.3; ¹⁹F{¹H} NMR (376 MHz, CDCl₃): \delta -63.23 (s, 3F).**

7-(([1,1'-Biphenyl]-4-ylsulfonyl)methyl)-4,5,6-trimethoxyisobenzofuran-1(3*H***)-one (4o). Yield = 70% (64 mg); Colorless oil; HRMS (ESI-TOF) m/z: [M + H]^+ calcd for C₂₄H₂₃O₇S 455.1165, found 455.1168; ¹H NMR (400 MHz, CDCl₃): \delta 8.01 (d, J = 8.8 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.63-7.60 (m, 2H), 7.51-7.41 (m, 3H), 5.21 (s, 2H), 5.03 (s, 2H), 4.06 (s, 3H), 4.02 (s, 3H), 3.94 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 169.6, 155.3, 149.8, 148.3, 146.6, 139.3, 138.3, 133.7, 129.1 (2x), 129.0 (2x), 128.5, 127.6 (2x), 127.4 (2x), 120.3, 115.7, 66.9, 61.9, 60.9, 60.4, 51.4.**

7-(((3,4-Dichlorophenyl)sulfonyl)methyl)-4,5,6-trimethoxyisobenzofuran-1(3*H***)-one (4p). Yield = 73% (65 mg); White solid; mp = 108-110 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₁₈H₁₇Cl₂O₇S 447.0072, found 447.0070; ¹H NMR (400 MHz, CDCl₃): \delta 7.87 (d,** *J* **= 2.0 Hz, 1H), 7.76 (dd,** *J* **= 2.0, 8.4 Hz, 1H), 7.61 (d,** *J* **= 8.4 Hz, 1H), 5.21 (s, 2H), 4.97 (s, 2H), 4.01 (s, 3H), 4.00 (s, 3H), 3.91 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 169.5, 155.2, 149.7, 148.5, 139.1, 138.6, 133.6, 133.3, 131.1, 130.5, 137.7, 119.9, 114.8, 67.0, 61.7, 60.9, 60.3, 51.3.**

4,5,6-Trimethoxy-7-((naphthalen-2-ylsulfonyl)methyl)isobenzofuran-1(3*H***)-one (4q). Yield = 70% (60 mg); White solid; mp = 165-167 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF)** *m/z***: [M + H]⁺ calcd for C₂₂H₂₁O₇S 429.1008, found 429.1002; ¹H NMR (400 MHz, CDCl₃): \delta 8.45 (s, 1H), 7.99-7.90 (m, 4H), 7.65 (dt,** *J* **= 0.8, 7.2 Hz, 1H), 7.59 (dt,** *J* **= 1.2, 8.0 Hz, 1H), 5.16 (s, 2H), 5.04 (s, 2H), 4.01 (s, 3H), 4.00 (s, 3H), 3.87 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 169.5, 155.2, 149.7, 148.2, 136.5, 135.2, 133.6, 132.0, 130.2, 129.3, 129.2, 129.1, 127.9, 127.4, 123.2, 120.2, 115.5, 66.8, 61.7, 60.8, 60.3, 51.3.**

4,5,6-Trimethoxy-7-((thiophen-2-ylsulfonyl)methyl)isobenzofuran-1(3*H***)-one (4r). Yield = 67% (51 mg); Colorless oil; HRMS (ESI-TOF) m/z: [M + H]^+ calcd for C₁₆H₁₇O₇S₂ 385.0416, found 385.0421; ¹H NMR (400 MHz, CDCl₃): \delta 7.68 (dd, J = 0.8, 4.4 Hz, 1H), 7.63 (dd, J = 0.8, 4.0 Hz, 1H), 7.12 (t, J = 4.0, 4.4 Hz, 1H), 5.19 (s, 2H), 5.10 (s, 2H), 4.01 (s, 3H), 4.00 (s, 3H), 3.91 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 169.4, 155.3, 149.7, 148.3, 140.2, 134.7, 134.2, 133.5, 127.8, 120.0, 115.7, 66.9, 61.7, 60.9, 60.4, 52.5.**

7-(((4-Acetylphenyl)sulfonyl)methyl)-4,5,6-trimethoxyisobenzofuran-1(3*H***)-one (4s). Yield = 65% (55 mg); Colorless oil; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₀H₂₁O₈S 421.0957, found 421.0961; ¹H NMR (400 MHz, CDCl₃): \delta 8.09 (d, J = 8.8 Hz, 2H), 8.04 (d, J = 8.8 Hz, 2H), 5.20 (s, 2H), 5.01 (s, 2H), 4.05 (s, 3H), 4.03 (s, 3H), 3.94 (s, 3H), 2.67 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 196.9, 169.6, 155.4, 149.8, 148.4, 143.5, 140.8, 133.7, 129.0 (2x), 128.7 (2x), 120.0, 115.0, 67.0, 61.9, 60.9, 60.4, 51.3, 27.0.**

4,5,6-Trimethoxy-7-((methylsulfonyl)methyl)isobenzofuran-1(3*H***)-one (4t).** Yield = 76% (48 mg); Colorless oil; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₃H₁₇O₇S 317.0695, found 317.0700; ¹H NMR (400 MHz, CDCl₃): δ 5.26 (s, 2H), 4.89 (s, 2H), 4.01 (s, 6H), 3.94 (s, 3H), 2.93 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.2, 155.3, 150.1, 148.3, 133.9, 119.1, 116.5, 67.2, 61.7, 60.9, 60.4, 49.9, 41.2.

7-((*n***-ButyIsulfonyI)methyI)-4,5,6-trimethoxyisobenzofuran-1(3***H***)-one (4u). Yield = 77% (55 mg); Colorless oil; HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₁₆H₂₃O₇S 359.1165, found 359.1169; ¹H NMR (400 MHz, CDCl₃): \delta 5.25 (s, 2H), 4.87 (s, 2H), 4.03 (s, 3H), 4.01 (s, 3H), 3.94 (s, 3H), 3.10-3.06 (m, 2H), 1.91-1.83 (m, 2H), 1.52-1.42 (m, 2H), 0.95 (t,** *J* **=7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 170.2, 155.4, 150.1, 148.2, 133.9, 119.3, 116.5, 67.2, 61.8, 60.9, 60.4, 53.6, 48.5, 28.9, 21.7, 13.6.**

4,5,6-Tri-*n*-butoxy-7-((phenylsulfonyl)methyl)isobenzofuran-1(3*H*)-one (4v). Yield = 70% (71 mg); Colorless oil; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₇H₃₇O₇S 505.2260, found 505.2263; ¹H NMR (400 MHz, CDCl₃): δ 7.88-7.86 (m, 2H), 7.63-7.60 (m, 1H), 7.52-7.48 (m, 2H), 5.16 (s, 2H), 4.97 (s, 2H), 4.16-4.13 (m, 4H), 3.99 (t, *J* = 6.8 Hz, 2H), 1.78-1.68 (m, 6H), 1.53-1.42 (m, 6H), 1.00-0.96 (m, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.7, 154.7, 149.8, 147.8, 139.6, 134.4, 133.5, 128.8 (2x), 128.6 (2x), 120.0, 115.9, 73.9, 73.7, 73.2, 66.9, 51.5, 32.24, 32.22, 32.17, 19.1 (2x), 19.0, 14.0, 13.84, 13.78.

4,5,6-Tri-*n*-butoxy-7-((naphthalen-2-ylsulfonyl)methyl)isobenzofuran-1(3*H*)-one (4w). Yield = 73% (81 mg); Colorless oil; HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₃₁H₃₉O₇S 555.2417, found 555.2421; ¹H NMR (400 MHz, CDCl₃): δ 8.38 (s, 1H), 7.97-7.89 (m, 4H), 7.66 (dt, *J* = 0.8, 7.2 Hz, 1H), 7.59 (t, *J* = 8.0 Hz, 1H), 5.15 (s, 2H), 5.04 (s, 2H), 4.13 (t, *J* = 6.4 Hz, 2H), 4.08 (t, *J* = 6.4 Hz, 2H), 3.84 (t, *J* = 6.8 Hz, 2H), 1.75-1.62 (m, 6H), 1.50-1.37 (m, 6H), 1.01-0.92 (m, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.8, 154.6, 149.7, 147.8, 136.6, 135.3, 134.5, 132.0, 130.4, 129.3, 129.0 (2x), 127.9, 127.4, 123.4, 120.1, 116.0, 73.9, 73.7, 73.0, 66.9, 51.6, 32.2 (2x), 32.1, 19.1, 19.0 (2x), 14.0, 13.83, 13.79.

4,5,6-Tri-*n*-butoxy-7-((thiophen-2-ylsulfonyl)methyl)isobenzofuran-1(3*H*)-one (4x). Yield = 68% (69 mg); Colorless oil; HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₂₅H₃₅O₇S₂ 511.1824, found 511.1830; ¹H NMR (400 MHz, CDCl₃): δ 7.66 (dd, J = 1.2, 4.8 Hz, 1H), 7.59 (dd, J = 1.2, 4.0 Hz, 1H), 7.10 (dd, J = 3.6, 4.8 Hz, 1H), 5.17 (s, 2H), 5.09 (s, 2H), 4.16-4.10 (m, 4H), 4.00 (t, J = 6.8 Hz, 2H), 1.77-1.68 (m, 6H), 1.51-1.44 (m, 6H), 1.00-0.96 (m, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.6, 154.8, 149.7, 147.9, 140.4, 134.6, 134.3, 134.0, 127.7, 119.9, 116.0, 77.9, 73.7, 73.0, 66.9, 52.8, 32.24, 32.22, 32.16, 19.1 (2x), 19.0, 14.0, 13.9, 13.8.

4,5,6-Tri-*n*-butoxy-7-((methylsulfonyl)methyl)isobenzofuran-1(3*H*)-one (4y). Yield = 67% (59 mg); Colorless oil; HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₂H₃₅O₇S 443.2104, found 443.2108; ¹H NMR (400 MHz, CDCl₃): δ 5.23 (s, 2H), 4.89 (s, 2H), 4.18-4.13 (m, 4H), 4.05 (t, *J* = 6.8 Hz, 2H), 2.93 (s, 3H), 1.83-1.69 (m, 6H), 1.54-1.42 (m, 6H), 1.00-0.95 (m, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.3, 154.8, 150.2, 147.9, 134.7, 119.0, 116.8, 74.1, 73.8, 73.1, 67.3, 50.2, 41.4, 32.21 (2x), 32.19, 19.14, 19.10, 19.0, 13.9, 13.83, 13.77.

A representative synthetic procedure of skeleton 5 is as follows: K₂S₂O₈ (120 mg, 0.44 mmol) was added to a solution of **3** (0.2 mmol) in DMSO (5 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 5 min. NaOEt, NaOH KCl or NaSPh (0.66 mmol) was added to the reaction mixture at 25 °C. The reaction mixture was stirred at 100 °C for 10 h. The reaction

mixture was cooled to 25 °C and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 10/1~4/1) afforded **5**.

7-(Ethoxymethyl)-4,5,6-trimethoxyisobenzofuran-1(3*H***)-one (5a). Yield = 66% (37 mg); White solid; mp = 67-69 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₁₄H₁₉O₆ 283.1182, found 283.1180; ¹H NMR (400 MHz, CDCl₃): \delta 5.18 (s, 2H), 4.84 (s, 2H), 3.944 (s, 3H), 3.938 (s, 3H), 3.90 (s, 3H), 3.63 (q,** *J* **= 7.2 Hz, 2H), 1.19 (t,** *J* **= 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 169.8, 154.8, 150.2, 147.3, 134.2, 126.8, 119.3, 66.7, 66.1, 62.0, 60.9, 60.30, 60.26, 15.2.**

7-(Hydroxymethyl)-4,5,6-trimethoxyisobenzofuran-1(3*H***)-one (5b). Yield = 69% (35 mg); White solid; mp = 89-91 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₁₂H₁₅O₆ 255.0869, found 255.0871; ¹H NMR (400 MHz, CDCI₃): \delta 5.30 (s, 2H), 4.93 (s, 2H), 3.97 (s, 3H), 3.96 (s, 3H), 3.87 (s, 3H), 3.40 (br s, 1H); ¹³C{¹H} NMR (100 MHz, CDCI₃): \delta 172.0, 152.8, 150.4, 146.6, 135.0, 130.4, 119.2, 68.3, 62.0, 61.1, 60.4, 55.4.**

7-(Chloromethyl)-4,5,6-trimethoxyisobenzofuran-1(3*H***)-one (5c). Yield = 40% (22 mg); White solid; mp = 83-85 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₁₂H₁₄ClO₅ 273.0530, found 273.0533; ¹H NMR (400 MHz, CDCl₃): \delta 5.21 (s, 2H), 5.00 (s, 2H), 3.97 (s, 3H), 3.95 (s, 3H), 3.93 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 169.3, 154.1, 149.8, 147.8, 134.0, 125.7, 118.1, 67.0, 61.7, 60.9, 60.2, 33.9.**

4,5,6-Tri-*n***-butoxy-7-(chloromethyl)isobenzofuran-1(3***H***)-one (5d).** Yield = 33% (26 mg); Colorless oil; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₁H₃₂ClO₅ 399.1938, found 399.1942; ¹H NMR (400 MHz, CDCl₃): δ 5.21 (s, 2H), 5.07 (s, 2H), 4.14 (t, *J* = 6.8 Hz, 2H), 4.12 (t, *J* = 6.8 Hz, 2H), 4.07 (t, *J* = 6.4 Hz, 2H), 1.86-1.68 (m, 6H), 1.59-1.43 (m, 6H), 1.00 (t, *J* = 7.6 Hz, 3H), 0.99 (t, *J* = 7.2 Hz, 3H), 0.96 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.7, 153.8, 150.0, 147.6, 134.9, 126.2, 118.3, 103.2, 74.4, 73.8, 73.0, 67.1, 34.2, 32.3, 32.2, 19.2, 19.12, 19.06, 13.95, 13.85, 13.79.

4,5,6-Trimethoxy-7-((phenylthio)methyl)isobenzofuran-1(3*H***)-one (5g).** Yield = 76% (55 mg); Colorless oil; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₈H₁₉O₅S 365.0953, found 365.0955; ¹H NMR (400 MHz, CDCl₃): δ 7.93-7.91 (m, 2H), 7.65-7.61 (m, 1H), 7.54-7.50 (m, 2H), 5.19 (s, 2H), 4.98 (s, 2H), 4.03 (s, 3H), 4.01 (s, 3H), 3.92 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.5, 155.2, 149.7, 148.2, 139.6, 133.7, 133.6, 128.9 (2x), 128.5 (2x), 120.1, 115.6, 66.9, 61.8, 60.9, 60.4, 51.2.

4,5,6-Trimethoxy-7-((methylthio)methyl)isobenzofuran-1(3*H***)-one (intermediate C). K_2S_2O_8 (120 mg, 0.44 mmol) was added to a solution of 3a** (0.2 mmol) in DMSO (5 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 5 min. The reaction mixture was stirred at 100 °C for 10 h. The reaction mixture was cooled to 25 °C and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 10/1~4/1) afforded **C**. Yield = 76% (43 mg); Colorless oil; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₃H₁₇O₅S 285.0797, found 285.0802; ¹H NMR (400 MHz, CDCl₃): δ 5.21 (s, 2H), 4.13 (s, 2H), 3.97 (s, 3H), 3.96 (s, 3H), 3.94 (s, 3H), 2.11 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.2, 153.5, 150.3, 146.3, 133.9, 128.8, 118.1, 66.8, 61.5, 60.9, 60.4, 25.8, 15.6.

A representative synthetic procedure of skeleton 6 is as follows: $K_2S_2O_8$ (120 mg, 0.44 mmol) was added to a solution of **3a** (42 mg, 0.2 mmol) in DMSO (5 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 5 min. β -Ketosulfones (0.3 mmol) and K_2CO_3 (70 mg, 0.5 mmol) were added to the reaction mixture at 25 °C. The reaction mixture was stirred at 100 °C for 10 h.The reaction mixture was cooled to 25 °C and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 10/1~4/1) afforded **6**.

7-(3-(Benzo[*d*][1,3]dioxol-5-yl)-3-oxo-2-(phenylsulfonyl)propyl)-4,5,6-trimethoxyisoben zofuran-1(3*H*)-one (6a). Yield = 45% (49 mg); Colorless oil; HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₇H₂₅O₁₀S 541.1169, found 541.1174; ¹H NMR (400 MHz, CDCl₃): δ 7.87-7.85 (m, 2H), 7.63-7.60 (m, 1H), 7.52-7.48 (m, 2H), 7.47 (dd, *J* = 1.6, 8.4 Hz, 1H), 7.29 (d, *J* = 1.6 Hz, 1H), 6.75 (d, *J* = 8.4 Hz, 1H), 6.03 (dd, *J* = 6.0, 8.4 Hz, 1H), 6.00 (d, *J* = 1.2 Hz, 1H), 5.99 (d, *J* = 1.2 Hz, 1H), 5.10 (s, 2H), 3.91 (s, 3H), 3.87 (s, 6H), 3.82 (dd, *J* = 8.4, 14.0 Hz, 1H), 3.68 (dd, *J* = 6.0, 14.0 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 189.8, 170.3, 154.1, 152.4, 150.2, 148.1, 146.4, 137.2, 134.4, 133.9, 131.9, 129.6 (2x), 128.7 (2x), 126.0, 125.4, 118.5, 108.3, 107.8, 102.0, 68.3, 67.0, 61.2, 60.8, 60.3, 23.1.

7-(3-(3,4-Dimethoxyphenyl)-3-oxo-2-(phenylsulfonyl)propyl)-4,5,6-trimethoxyisobenzof uran-1(3*H***)-one (6b). Yield = 42% (47 mg); Colorless oil; HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₂₈H₂₉O₁₀S 557.1482, found 557.1485; ¹H NMR (400 MHz, CDCl₃): \delta 7.88-7.85 (m, 2H), 7.63-7.58 (m, 1H), 7.52-7.47 (m, 3H), 7.37 (d,** *J* **= 2.0 Hz, 1H), 6.80 (d,** *J* **= 8.4 Hz, 1H), 6.15 (dd,** *J* **= 6.4, 8.8 Hz, 1H), 5.09 (s, 2H), 3.899 (s, 3H), 3.896 (s, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 3.86 (s, 3H), 3.84 (dd,** *J* **= 8.8, 14.0 Hz, 1H), 3.68 (dd,** *J* **= 6.0, 14.0 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 190.1, 170.4, 154.1, 153.8, 150.2, 148.8, 146.3, 137.3, 134.4, 133.8, 130.2, 129.5 (2x), 128.7 (2x), 125.4, 124.3, 118.6, 110.5, 110.0, 67.9, 67.0, 61.3, 60.8, 60.3, 56.1, 55.9, 23.1.**

4,5,6-Trimethoxy-7-(3-oxo-3-phenyl-2-tosylpropyl)isobenzofuran-1(3*H***)-one (6c). Yield = 51% (52 mg); Colorless oil; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₇H₂₇O₈S 511.1427, found 511.1432; ¹H NMR (400 MHz, CDCl₃): \delta 7.83-7.72 (m, 2H), 7.73 (d, J = 8.4 Hz, 2H), 7.51-7.47 (m, 1H), 7.37-7.33 (m, 2H), 7.27 (d, J = 8.4 Hz, 2H), 6.09 (dd, J = 6.0, 8.8 Hz, 1H), 5.09 (s, 2H), 3.89 (s, 3H), 3.87 (s, 3H), 3.85 (s, 3H), 3.87-3.85 (m, 1H), 3.71 (dd, J = 2.0, 13.6 Hz, 1H), 2.40 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 192.2, 170.3, 154.1, 150.2, 146.4, 145.0, 137.1, 134.4, 134.1, 133.5, 129.6 (2x), 129.4 (2x), 128.8 (2x), 128.4 (2x), 125.5, 118.5, 66.5, 67.0, 61.2, 60.8, 60.3, 22.9, 21.6.**

A representative synthetic procedure of skeleton 7 is as follows: Oxygenated benzenes (0.12 mmol) was added to a solution of 4a o 4v (0.1 mmol) in CHCl₃ (10 mL) at 25 °C. The

reaction mixture was stirred at 25 °C for 5 min. BF_3 -OEt₂ (22 mg, 0.15 mmol) was added to the reaction mixture at 25 °C. The reaction mixture was stirred at 61 °C (reflux) for 10 h. The reaction mixture was cooled to 25 °C and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = $20/1 \sim 4/1$) afforded **7**.

7-(3,4-Dimethoxybenzyl)-4,5,6-trimethoxyisobenzofuran-1(3*H***)-one (7a). Yield = 68% (25 mg); Colorless oil; HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₂₀H₂₃O₇ 375.1444, found 375.1438; ¹H NMR (400 MHz, CDCl₃): \delta 7.03 (d,** *J* **= 2.0 Hz, 1H), 6.89 (dd,** *J* **= 2.0, 8.0 Hz, 1H), 6.72 (d,** *J* **= 8.4 Hz, 1H), 5.19 (s, 2H), 4.34 (s, 2H), 3.95 (s, 3H), 3.93 (s, 3H), 3.83 (s, 3H), 3.80 (s, 3H), 3.78 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 170.5, 153.2, 150.4, 148.5, 147.1, 145.7, 134.2, 133.4, 131.2, 120.8, 118.0, 112.5, 110.9, 66.6, 61.0, 60.8, 60.3, 55.7 (2x), 29.1.**

4,5,6-Trimethoxy-7-(2,3,4-trimethoxybenzyl)isobenzofuran-1(3*H***)-one (7b).** Yield = 70% (28 mg); Colorless oil; HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₂₁H₂₅O₈ 405.1550, found 405.1555; ¹H NMR (400 MHz, CDCl₃): δ 6.49 (d, J = 8.8 Hz, 1H), 6.44 (d, J = 8.4 Hz, 1H), 5.24 (s, 2H), 4.39 (s, 2H), 3.97 (s, 3H), 3.94 (s, 3H), 3.92 (s, 3H), 3.88 (s, 3H), 3.78 (s, 3H), 3.56 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.3, 153.9, 151.8, 151.7, 150.4, 145.9, 142.2, 134.0, 130.6, 126.6, 123.1, 118.8, 106.9, 66.6, 60.9, 60.8 (2x), 60.7, 60.4, 55.9, 23.4.

4,5,6-Trimethoxy-7-(2,4,6-trimethoxybenzyl)isobenzofuran-1(3*H***)-one (7c). Yield = 72% (29 mg); Colorless oil; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₅O₈ 405.1550, found 405.1548; ¹H NMR (400 MHz, CDCl₃): \delta 6.08 (s, 2H), 5.19 (s, 2H), 4.41 (s, 2H), 3.91 (s, 3H), 3.87 (s, 3H), 3.76 (s, 3H), 3.70 (s, 6H), 3.36 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 170.5, 159.3, 159.1 (2x), 153.6, 150.2, 144.8, 133.3, 132.9, 118.8, 110.2, 90.8 (2x), 66.1, 60.7, 60.3,**

7-(3,4-Di-*n*-butoxybenzyl)-4,5,6-trimethoxyisobenzofuran-1(3*H*)-one (7d). Yield = 66% (30 mg); Colorless oil; HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₆H₃₅O₇ 459.2383, found 459.2385; ¹H NMR (400 MHz, CDCl₃): δ 7.00 (d, *J* = 2.0 Hz, 1H), 6.85 (dd, *J* = 2.0, 8.0 Hz, 1H), 6.74 (d, *J* = 8.4 Hz, 1H), 5.20 (s, 2H), 4.33 (s, 2H), 3.97 (t, *J* = 6.4 Hz, 2H), 3.95 (s, 3H), 3.94 (s, 3H), 3.92 (t, *J* = 6.4 Hz, 2H), 3.75 (s, 3H), 1.79-1.71 (m, 4H), 1.50-1.42 (m, 4H), 0.95 (t, *J* = 7.2 Hz, 3H), 0.94 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.6, 153.3, 150.5, 148.8, 147.4, 145.8, 134.2, 133.6, 131.5, 121.1, 118.1, 115.2, 113.9, 69.0, 68.9, 66.6, 61.0, 60.8, 60.4, 31.34, 31.31, 29.1, 19.18, 19.16, 13.84, 13.81.

4,5,6-Trimethoxy-7-(2,3,4-tri-*n***-butoxybenzyl)isobenzofuran-1(3***H***)-one (7e). Yield = 65% (34 mg); Colorless oil; HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₃₀H₄₃O₈ 531.2958, found 531.2962; ¹H NMR (400 MHz, CDCl₃): \delta 6.33 (d,** *J* **= 8.8 Hz, 1H), 6.29 (d,** *J* **= 8.8 Hz, 1H), 5.23 (s, 2H), 4.40 (s, 2H), 4.10 (t,** *J* **= 6.8 Hz, 2H), 3.98 (t,** *J* **= 6.8 Hz, 2H), 3.97 (s, 3H), 3.94 (s, 3H), 3.87 (t,** *J* **= 6.8 Hz, 2H), 3.53 (s, 3H), 1.80-1.71 (m, 6H), 1.54-1.45 (m, 6H), 0.971 (t,** *J* **= 7.2 Hz, 3H), 0.965 (t,** *J* **= 7.2 Hz, 3H), 0.94 (t,** *J* **= 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 170.3, 153.9, 151.6, 151.1, 150.5, 145.8, 141.8, 133.9, 130.9, 126.6, 122.4, 118.9, 107.8, 73.10, 73.06, 68.3, 66.5, 60.9, 60.7, 60.4, 32.5, 32.4, 31.4, 23.4, 19.32, 19.25, 19.22, 14.0, 13.9, 13.8.**

4,5,6-Tri-*n*-butoxy-7-(3,4-dimethoxybenzyl)isobenzofuran-1(3*H*)-one (7f). Yield = 71% (36 mg); Colorless oil; HRMS (ESI-TOF) *m*/*z*: $[M + H]^+$ calcd for C₂₉H₄₁O₇ 501.2852, found 501.2856; ¹H NMR (400 MHz, CDCl₃): δ 7.08 (d, *J* = 2.0 Hz, 1H), 6.93 (dd, *J* = 2.0, 8.4 Hz, 1H), 6.72 (d, *J* = 8.4 Hz, 1H), 5.16 (s, 2H), 4.34 (s, 2H), 4.07 (t, *J* = 6.8 Hz, 2H), 4.06 (t, *J* = 6.8 Hz, 2H), 3.93 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 3.80 (s, 3H), 1.81-1.67 (m, 6H), 1.55-1.42 (m, 6H), 0.97 (t, *J* = 7.2 Hz, 6H), 0.96 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.7,

152.7, 150.4, 148.4, 147.1, 145.4, 134.9, 133.7, 131.4, 120.8, 117.9, 112.5, 110.9, 73.6, 73.5, 72.9, 66.7, 55.7, 55.6, 32.4, 32.2 (2x), 29.2, 19.3, 19.1, 19.0, 13.9, 13.80, 13.76.

A representative synthetic procedure of skeleton 8 is as follows: Oxygenated benzenes (0.05 mmol) was added to a solution of 4a o 4v (0.1 mmol) in CHCl₃ (10 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 5 min. BF₃-OEt₂ (45 mg, 0.3 mmol) was added to the reaction mixture at 25 °C. The reaction mixture was stirred at 61 °C (reflux) for 10 h. The reaction mixture was cooled to 25 °C and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = $20/1 \sim 4/1$) afforded 8.

7,7'-((4,5-Dimethoxy-1,2-phenylene)bis(methylene))bis(4,5,6-trimethoxyisobenzofuran-1(3*H***)-one) (8a). Yield = 66% (20 mg); White solid; mp = 169-171 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₃₂H₃₅O₁₂ 611.2129, found 611.2133; ¹H NMR (400 MHz, CDCI₃): \delta 6.46 (s, 2H), 5.25 (s, 4H), 4.56 (s, 4H), 3.98 (s, 6H), 3.95 (s, 6H), 3.64 (s, 6H), 3.61 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCI₃): \delta 170.6 (2x), 154.2 (2x), 150.6 (2x), 146.9 (2x), 146.0 (2x), 134.0 (2x), 131.2 (2x), 130.9 (2x), 118.6 (2x), 112.8 (2x), 66.6 (2x), 60.9 (2x), 60.8 (2x), 60.5 (2x), 56.0 (2x), 26.5 (2x).**

7,7'-((2,4,6-Trimethoxy-1,3-phenylene)bis(methylene))bis(4,5,6-trimethoxyisobenzofura n-1(3*H***)-one) (8b). Yield = 56% (18 mg); White solid; mp = 177-179 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF)** *m/z***: [M + H]⁺ calcd for C₃₃H₃₇O₁₃ 641.2234, found 641.2236; ¹H NMR (400 MHz, CDCl₃): δ 6.19 (s, 1H), 5.20 (s, 4H), 4.45 (s, 4H), 3.92 (s, 6H), 3.82 (s, 6H), 3.68 (s, 3H), 3.64 (s, 6H), 3.24 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.7 (2x), 158.5, 157.5 (2x), 153.7 (2x), 150.2 (2x), 145.1 (2x), 133.3 (2x), 132.7 (2x), 118.8, 115.0 (2x), 92.5 (2x), 66.3 (2x), 61.9, 60.6 (2x), 60.4 (2x), 60.0 (2x), 55.9 (2x), 19.0 (2x).**

7,7'-((4,5-Di-*n*-butoxy-1,2-phenylene)bis(methylene))bis(4,5,6-trimethoxyisobenzofuran -1(3*H*)-one) (8c). Yield = 54% (19 mg); Colorless oil; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₃₈H₄₇O₁₂ 695.3068, found 695.3071; ¹H NMR (400 MHz, CDCl₃): δ 6.40 (s, 2H), 5.24 (s, 4H), 4.53 (s, 4H), 3.98 (s, 6H), 3.95 (s, 6H), 3.77 (t, *J* = 6.4 Hz, 4H), 3.57 (s, 6H), 1.65-1.58 (m, 4H), 1.42-1.33 (m, 4H), 0.87 (t, *J* = 7.2 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.5 (2x), 154.2 (2x), 150.6 (2x), 147.0 (2x), 145.9 (2x), 133.9 (2x), 131.4 (2x), 131.2 (2x), 118.6 (2x), 116.0 (2x), 69.5 (2x), 66.6 (2x), 60.9 (2x), 60.8 (2x), 60.5 (2x), 31.3 (2x), 26.4 (2x), 19.1 (2x), 13.8 (2x).

7,7'-((4,5-Dimethoxy-1,2-phenylene)bis(methylene))bis(4,5,6-tri-*n***-butoxyisobenzofuran -1(***3H***)-one) (8d). Yield = 40% (17 mg); White solid; mp = 120-122 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF)** *m/z***: [M + H]^+ calcd for C₅₀H₇₁O₁₂ 863.4946, found 863.4951; ¹H NMR (400 MHz, CDCl₃): \delta 6.42 (s, 2H), 5.19 (s, 4H), 4.55 (s, 4H), 4.13 (t,** *J* **= 6.8 Hz, 4H), 4.08 (t,** *J* **= 6.8 Hz, 4H), 3.77 (t,** *J* **= 6.8 Hz, 4H), 3.62 (s, 6H), 1.77-1.69 (m, 8H), 1.64-1.57 (m, 4H), 1.52-1.46 (m, 8H), 1.35-1.30 (m, 4H), 0.98 (t,** *J* **= 7.2 Hz, 6H), 0.96 (t,** *J* **= 7.2 Hz, 6H), 0.86 (t,** *J* **= 7.2 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): \delta 170.3 (2x), 153.7 (2x), 150.4 (2x), 146.7 (2x), 145.5 (2x), 134.6 (2x), 131.3 (2x), 130.9 (2x), 118.8 (2x), 112.7 (2x), 73.8 (2x), 73.6 (2x), 73.0 (2x), 66.6 (2x), 56.0 (2x), 32.33 (2x), 32.30 (2x), 32.1 (2x), 26.8 (2x), 19.2 (2x), 19.12 (2x), 19.06 (2x), 13.89 (2x), 13.86 (2x), 13.8 (2x).**

7,7'-(Thiobis(methylene))bis(4,5,6-trimethoxyisobenzofuran-1(3*H***)-one) (9a). BF₃-OEt₂ (14 mg, 0.1 mmol) was added to a solution of intermediate C** (28 mg, 0.1 mmol) in CHCl₃ (10 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 10 h. The reaction mixture was cooled to 25 °C and the solvent was concentrated. The residue was diluted with water (10 mL)

and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 20/1 - 4/1) afforded **9a**. Yield = 56% (14 mg); Colorless oil; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₄H₂₇O₁₀S 507.1325, found 507.1331; ¹H NMR (400 MHz, CDCl₃): δ 5.18 (s, 4H), 4.30 (s, 4H), 3.95 (s, 6H), 3.94 (s, 6H), 3.92 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.9 (2x), 153.7 (2x), 150.2 (2x), 146.4 (2x), 134.0 (2x), 128.3 (2x), 118.2 (2x), 66.7 (2x), 61.7 (2x), 60.9 (2x), 60.4 (2x), 25.4 (2x).

5,6-Dimethoxy-1*H***-[1,3]dioxino[5,4-e]isobenzofuran-9(7***H***)-one (10a). DDQ (90 mg, 0.4 mmol) was added to a solution of 5b** (50 mg, 0.2 mmol) in MeNO₂ (5 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 6 h and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 10/1~4/1) afforded **10a**. Yield = 45% (23 mg); White solid; mp = 152-154 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₂H₁₃O₆ 253.0712, found 253.0718; ¹H NMR (400 MHz, CDCl₃): δ 5.32 (s, 2H), 5.27 (s, 2H), 5.22 (s, 2H), 3.97 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.1, 147.9, 145.8, 145.0, 131.5, 116.5, 116.4, 91.6, 68.0, 64.1, 61.3, 60.4. Single-crystal X-Ray diagram: crystal of compound **10a** was grown by slow diffusion of EtOAc into a solution of compound **10a** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P2₁/c, *a* = 3.8823(2) Å, *b* = 30.4422(18) Å, *c* = 9.0099(6) Å, *V* = 1061.18(11) Å³, *Z* = 4, *d*_{calcd} = 1.579 g/cm³, *F*(000) = 528.0, 2*θ* range 10.272~146.476°, R indices (all data) R1 = 0.0781, wR2 = 0.1881.

5,6,7-Trimethoxy-3-oxo-1,3-dihydroisobenzofuran-4-carbaldehyde (10b). DMP (90 mg, 0.21 mmol) was added to a solution of **5b** (50 mg, 0.2 mmol) in CH₂Cl₂ (5 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 6 h and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 15/1~8/1) afforded **10b**. Yield = 75% (38 mg); White solid; mp = 131-133 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₂H₁₃O₆ 253.0712, found 253.0718; ¹H NMR (400 MHz, CDCl₃): δ 10.88 (s, 1H), 5.29 (s, 2H), 4.12 (s, 3H), 3.95 (s, 3H), 3.92 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 187.6, 169.2, 156.4, 151.0, 149.2, 134.4,

123.4, 121.8, 67.8, 62.3, 61.6, 60.4.

Large-scale synthesis of compound 4a. $K_2S_2O_8$ (1.2 g, 4.4 mmol) was added to a solution of eudesmic acid (3a, 420 mg, 2.0 mmol) in DMSO (10 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 5 min. PhSO₂Na (400 mg, 2.4 mmol) was added to the reaction mixture at 25 °C. The reaction mixture was stirred at 100 °C for 10 h. The reaction mixture was cooled to 25 °C and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = $20/1 \sim 4/1$) afforded 4a (65%, 490 mg).

Compound 4a (¹H-NMR spectral data)

Compound 4a (¹³C-NMR spectral data)

.

.

Compound 4b (¹H-NMR spectral data)

.

Compound 4b (¹³C-NMR spectral data)

S22

Χ.

-

1

Compound 4c (¹H-NMR spectral data)

Compound 4c (¹³C-NMR spectral data)

Compound 4d (¹H-NMR spectral data)

Compound 4d (¹³C-NMR spectral data)

Compound 4e (¹H-NMR spectral data)

Compound 4e (¹³C-NMR spectral data)

Compound 4f (¹H-NMR spectral data)

S30

х.

Compound 4f (¹³C-NMR spectral data)

i.

Compound 4g (¹H-NMR spectral data)

Compound 4g (¹³C-NMR spectral data)

Compound 4h (¹H-NMR spectral data)

Compound 4h (¹³C-NMR spectral data)

Compound 4i (¹H-NMR spectral data)

S37

•

Compound 4j (¹H-NMR spectral data)

S38

Compound 4j (¹³C-NMR spectral data)

S39

.

Compound 4k (¹H-NMR spectral data)

÷.

Compound 4k (¹³C-NMR spectral data)

S41

×

Compound 4m (¹H-NMR spectral data)

S42

.

Compound 4m (¹³C-NMR spectral data)

S43

Compound 4n (¹H-NMR spectral data)

S45

16

S46

Compound 4n (¹⁹F-NMR spectral data)

.

Compound 4o (¹H-NMR spectral data)

¥.

1

Compound 4p (¹H-NMR spectral data)

÷.

Compound 4p (¹³C-NMR spectral data)

S51

.

Compound 4q (¹H-NMR spectral data)

S52

Compound 4q (¹³C-NMR spectral data)

S53

Compound 4r (¹H-NMR spectral data)

.

Compound 4r (¹³C-NMR spectral data)

S55

Compound 4s (¹H-NMR spectral data)

S56

Compound 4s (¹³C-NMR spectral data)

Compound 4t (¹H-NMR spectral data)

Compound 4t (¹³C-NMR spectral data)

S59

Compound 4u (¹H-NMR spectral data)

S60

÷.

Compound 4u (¹³C-NMR spectral data)

Compound 4v (¹H-NMR spectral data)

.

Compound 4v (¹³C-NMR spectral data)

.

Compound 4w (¹H-NMR spectral data)

S64

i.

Compound 4w (¹³C-NMR spectral data)

.

i.

Compound 4x (¹H-NMR spectral data)

S66

Compound 4x (¹³C-NMR spectral data)

S67

Compound 4y (¹H-NMR spectral data)

S68

Compound 4y (¹³C-NMR spectral data)

Pulse Sequence: s2pul UNITYplus-400 "unity400" Date: Nov 15 2024 Solvent: CDCl3 Ambient temperature Total 1407 repetitions

Compound 5a (¹H-NMR spectral data)

S70

Compound 5b (¹H-NMR spectral data)

S72
Compound 5b (¹³C-NMR spectral data)

Compound 5c (¹H-NMR spectral data)

Compound 5d (¹H-NMR spectral data)

Compound 5d (¹³C-NMR spectral data)

÷.

Compound 5g (¹H-NMR spectral data)

S78

x

Compound 5g (¹³C-NMR spectral data)

S79

.

Intermediate C (¹H-NMR spectral data)

S80

1

Intermediate C (¹³C-NMR spectral data)

S81

.

.

Compound 6a (¹H-NMR spectral data)

Compound 6a (¹³C-NMR spectral data)

Compound 6b (¹H-NMR spectral data)

Compound 6b (¹³C-NMR spectral data)

Compound 6c (¹H-NMR spectral data)

Compound 6c (¹³C-NMR spectral data)

S87

.

Compound 7a (¹H-NMR spectral data)

Compound 7a (¹³C-NMR spectral data)

Compound 7b (¹H-NMR spectral data)

Compound 7b (¹³C-NMR spectral data)

0YW312

Pulse Sequence: s2pul UNITYplus-400 "unity400" Date: Mar 12 2024 Solvent: CDC13 Ambient temperature Total 3840 repetitions

Compound 7c (¹H-NMR spectral data)

S92

 \mathcal{X}

Compound 7c (¹³C-NMR spectral data)

S93

 \mathbf{x}

Compound 7d (¹H-NMR spectral data)

Compound 7d (¹³C-NMR spectral data)

0YW326

Pulse Sequence: s2pul UNITYplus-400 "unity400" Date: Mar 26 2024 Solvent: CDCl3 Ambient temperature Total 1488 repetitions

Compound 7e (¹H-NMR spectral data)

S96

i.

Compound 7e (¹³C-NMR spectral data)

S97

ii.

Compound 7f (¹H-NMR spectral data)

Compound 7f (¹³C-NMR spectral data)

S99

.

Compound 8a (¹³C-NMR spectral data)

Compound 8b (¹H-NMR spectral data)

Compound 8b (¹³C-NMR spectral data)

.

à

Compound 8c (¹H-NMR spectral data)

Compound 8c (¹³C-NMR spectral data)

0YW3437

Pulse Sequence: s2pul UNITYplus-400 "unity400" Date: Mar 26 2024 Solvent: CDC13 Ambient temperature Total 3072 repetitions

Compound 8d (¹H-NMR spectral data)

S106

.

.

Compound 8d (¹³C-NMR spectral data)

 \mathbf{x}

.

.

Compound 10a (¹H-NMR spectral data)

S110

÷.

Compound 10a (¹³C-NMR spectral data)

1

Compound 10b (¹H-NMR spectral data)

S112

1

Compound 10b (¹³C-NMR spectral data)

S113

.

1

X-ray crystal data of compound 4a

Sample preparation : A solution of compound **4a** (30 mg) in CH₂Cl₂ (10 mL) was placed in a tube (10 mL). EtOAc (2 mL) was added slowly to the vial with a dropper. The vial was closed with little cotton and kept at room temperature for 2 days. Then, colorless prisms were observed.

Crystal measurement : X-ray crystal structures were determined with a Bruker Enraf-Nonius single-crystal diffractometer (CAD4, Kappa CCD). Thermal ellipsoids are drawn at 50% probability level.

Empirical formula	$C_{18}H_{18}O_7S$
Formula weight	378.38
Temperature/K	99.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	10.5691(4)
b/Å	12.9071(5)
c/Å	14.2075(4)
α/°	109.751(3)
β/°	93.260(3)
γ/°	105.188(4)
Volume/Å ³	1737.72(12)
Z	4
$\rho_{calc}g/cm^3$	1.446
μ/mm^{-1}	2.009
F(000)	792.0
Crystal size/mm ³	$0.16 \times 0.14 \times 0.13$
Radiation	Cu Ka (λ = 1.54184)
2Θ range for data collection/°	6.696 to 134.156
Index ranges	$\textbf{-12} \leq h \leq 12, \textbf{-15} \leq k \leq 15, \textbf{-16} \leq l \leq 16$
Reflections collected	18448
Independent reflections	6117 [$R_{int} = 0.0285, R_{sigma} = 0.0359$]
Data/restraints/parameters	6117/0/476
Goodness-of-fit on F ²	1.077
Final R indexes [I>= 2σ (I)]	$R_1=0.0416,wR_2=0.1108$
Final R indexes [all data]	$R_1 = 0.0520, wR_2 = 0.1163$

X-ray crystal data of compound 10a

Sample preparation : A solution of compound **11a** (30 mg) in CH₂Cl₂ (10 mL) was placed in a tube (10 mL). EtOAc (2 mL) was added slowly to the vial with a dropper. The vial was closed with little cotton and kept at room temperature for 2 days. Then, colorless prisms were observed.

Crystal measurement : X-ray crystal structures were determined with a Bruker Enraf-Nonius single-crystal diffractometer (CAD4, Kappa CCD). Thermal ellipsoids are drawn at 50% probability level.

Empirical formula	$C_{12}H_{12}O_6$
Formula weight	252.22
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	P21/c
a/Å	3.8823(2)
b/Å	30.4422(18)
c/Å	9.0099(6)
α/°	90
β/°	94.758(5)
$\gamma/^{\circ}$	90
Volume/Å ³	1061.18(11)
Z	4
$\rho_{calc}g/cm^3$	1.579
μ/mm^{-1}	1.097
F(000)	528.0
Crystal size/mm ³	$0.23 \times 0.03 \times 0.03$
Radiation	Cu Ka (λ = 1.54184)
2Θ range for data collection/°	10.272 to 146.476
Index ranges	$\textbf{-4} \leq h \leq \textbf{3}, \textbf{-33} \leq k \leq \textbf{37}, \textbf{-10} \leq l \leq \textbf{10}$
Reflections collected	5492
Independent reflections	$2010 \; [R_{int} = 0.0392, R_{sigma} = 0.0532]$
Data/restraints/parameters	2010/0/166
Goodness-of-fit on F ²	1.081
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0622, wR_2 = 0.1719$
Final R indexes [all data]	$R_1=0.0781,wR_2=0.1881$
Largest diff. peak/hole / e Å $^{-3}$	0.33/-0.40