Supporting Infomation

One-Pot Synthesis of Ferrocenyl-Substituted Allylamine Derivatives by Three-Component Reaction of α -(hydroxy) Alkyl Ferrocenes, Aldehydes and Secondary Amines

Hao Yang^{a,‡}, Jia-An Zheng ^{a,b,‡}, Hui Yuan^a, Meimei Zhang^c, Wei-Wei Zhang^d, Zi-Qiang Wang^a, Jia-Xin He^a, Yifan Ouyang^e, Yan-Ru Fan ^{a,*}, Yu Huang ^{a,*}, Qi-Peng Zhao ^{a,*}

^a School of Pharmacy, Ningxia Medical University, 750004 Yinchuan, China.

^b NingCheng Central Hospital of ChiFeng, ChiFeng 024200, China.

° School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China

^d School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.

^e School of Medicine, Ningde Normal University, Ningde, Fujian 352100, China.

Corresponding Author: risefyr@163.com (Y.-R. Fan), huangyunxmu@163.com (Y. Huang), zhqp623@nxmu.edu.cn (Q. Zhao).

[‡] These authors contributed equally to the work.

Table of Contents

1		63
1.	DF I-calculated transition states and energies	53
2.	The change in the Gibbs free energy of the reaction system	S4
3.	General information	S5
4.	Experimental Details and Characterization Data	S5
5.	DFT studies	S10
6.	The change in the Gibbs free energy of the reaction system	S21
7.	References	S21
8.	NMR Spectra	S23

Figure S1. DFT-calculated transition states and energies. The unit of energy is kcal/mol. (a) Several transition states of α -(hydroxy) alkyl ferrocenes to ferrocene ethylene catalyzed by HCl; (b) Several transition states in the reaction of formaldehyde, dimethylamine, and ferrocenylamine to form ferrocenyl-substituted allylamine derivatives.

Thermodynamic properties of the individual components involved in the reaction ^a			
Entry ^b	Gc	U ^d	Ee
A-INT	0.190338	-1804.321509	-1804.320565
B-INT	0.004952	-114.474480	-114.473536
Dimethylamine	0.067354	-135.064841	-135.063896
E-INT	0.204927	-1822.785475	-1822.784530
H ₂ O	0.003433	-76.381529	-76.380585

Table S1. The change in the Gibbs free energy of the reaction system.

^a 1 Hartree per particle is equivalent to 627.51 kcal/mol; ^b A-INT, B-INT, and dimethylamine correspond to the reactants α -(hydroxy) alkyl ferrocenes (1a), formaldehyde (2a), and dimethylamine (3a), respectively, while the products are E-INT (ferrocenyl-substituted allylamine) and H₂O; ^c Thermal correction to the Gibbs free energy; ^d Sum of the electronic and thermal energies; ^e Sum of the electronic and thermal enthalpies.

1. General information

All of the chemical reagent and solvents were obtained from commercial sources and used directly without further purification. 1-(ferrocenyl)-1-propanol, 1-(ferrocenyl)-1-butanol and 1-(ferrocenyl)-1-pentanol were synthesized according to literature with some modification. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AVIII 400 spectrometer and mass spectra were recorded on a Shimadzu LCMS-IT-TOF.

2. Experimental Details and Characterization Data

2.1 General procedure for the one-pot reaction of ferrocenyl-substituted allylamine derivatives

To a solution of α -(hydroxy) alkyl ferrocenes 1 (2.0 mmol, 1 equiv) in 5 mL isopropanol, aldehyde 2 (8.0 mmol, 4 equiv) and amine 3 (4.0 mmol, 2 equiv) were added. After stirring for 5 min, hydrochloric acid (20 μ L) was added into the reaction mixture. Then the reaction mixture was then refluxed in an oil bath for 4 h at 85 °C. After completion of the reaction, the resulting mixture was treated with 20 mL of saturated sodium bicarbonate at room temperature and extracted with 20 mL DCM for 3 times. The organic layer was washed saturated saline, dried over anhydrous sodium sulfate. After removed the solvent in a vacuum, the resulting residue was then purified by column chromatography on silica gel to give the desired products 4.

N-[(2-Ferrocenylvinyl)methyl]dimethylamine (4a)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (65.7 mg, 71% yield). IR (KBr, cm⁻¹): 2971, 2939, 2854 (C-H), 1657 (C=C), 1242 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.23 (dt, J = 15.8, 1.5 Hz, 1H, =CH), 5.80 (dt, J = 15.7, 6.7 Hz, 1H, =CH), 4.41 (t, J = 1.9 Hz, 2H, -ferrocene), 4.21 (t, J = 1.8 Hz, 2H, -ferrocene), 4.16 - 4.00 (m, 5H, -ferrocene), 2.86 (dd, J = 6.7, 1.4 Hz, 2H, -CH₂), 2.15 (s, 6H, -CH₃). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 131.1 (s, 1C, =CH), 123.7 (s, 1C, =CH), 83.03 (s, 1C, -ferrocene), 69.3 (s, 5C, -ferrocene), 68.9 (s, 2C, -ferrocene), 67.1 (s, 2C, -ferrocene), 61.5 (s, 1C, -CH₂), 44.8 (s, 2C, -CH₃). HRMS (ESI) m/z [M + H]⁺ calcd for C₁₅H₂₀FeN⁺ 270.0940; Found 270.0932. *N*-[(2-Ferrocenylvinyl)methyl]diethylamine (**4b**)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (100.2 mg, 58% yield). IR (KBr, cm⁻¹): 3091, 2972, 2799 (C-H), 1662 (C=C), 1241 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.25 (d, J = 15.7 Hz, 1H, =CH), 5.81 (dt, J = 15.7, 6.8 Hz, 1H, =CH), 4.41 (t, J = 1.9 Hz, 2H, -ferrocene), 4.20 (t, J = 1.8 Hz, 2H, -ferrocene), 4.18-4.03 (m, 5H, -ferrocene), 3.06 (d, J = 6.8 Hz, 2H, -CH₂), 0.98 (t, J = 7.1 Hz, 6H, -CH₃). ¹³C {¹H} NMR (100 MHz, DMSO- d_6) δ 129.6 (s, 1C, =CH), 125.1 (s, 1C, =CH), 83.5 (s, 1C, -ferrocene), 69.3 (s, 5C, -ferrocene), 68.8 (s, 2C, -ferrocene), 66.9 (s, 2C, -ferrocene), 55.3 (s, 1C, -CH₂), 46.5 (s, 2C, -CH₃), 12.3 (s, 2C, -CH₂). HR-MS[M+H]⁺ 298.1260 (calcd for C₁₇H₂₄FeN⁺: 298.1246). HRMS (ESI) m/z [M + H]⁺ calcd for C₁₇H₂₄FeN⁺ 298.1253; Found 298.1246.

N-[(2-Ferrocenylvinyl)methyl]di-n-propylamine (4c)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (78.1 mg, 56% yield). IR (KBr, cm⁻¹): 2926, 2873, 2796 (C-H), 1616 (C=C), 1268 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.22 (dt, J = 15.7, 1.5 Hz, 1H, =CH), 5.81 (dt, J = 15.7, 6.7 Hz, 1H, =CH), 4.40 (t, J = 1.9 Hz, 2H, -ferrocene), 4.20 (t, J = 1.9 Hz, 2H, -ferrocene), 4.12 (d, J = 9.4 Hz, 5H, -ferrocene), 3.03 (dd, J = 6.7,

1.4 Hz, 2H, -CH₂), 2.42-2.29 (m, 4H , -CH₂), 1.43 (h, J = 7.4 Hz, 4H, -CH₂), 0.85 (t, J = 7.4 Hz, 6H, -CH₃). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 129.5 (s, 1C, =CH), 125.3 (s, 1C, =CH), 83.5 (s, 1C, -ferrocene), 69.3 (s, 5C, -ferrocene), 68.8 (s, 2C, -ferrocene), 66.9 (s, 2C, -ferrocene), 56.5 (s, 1C, -CH₂), 55.7 (s, 2C, -CH₃), 20.4 (s, 2C, -CH₂), 12.3 (s, 2C, -CH₂). HRMS (ESI) m/z [M + H]⁺ calcd for C₁₉H₂₈FeN⁺ 326.1566; Found 326.1558.

N-[(2-Ferrocenylvinyl)methyl]di-n-butylamine (4d)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (56.9 mg, 49% yield). IR (KBr, cm⁻¹): 2964, 2932, 2868 (C-H), 1630 (C=C), 1277 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.28-6.18 (m, 1H, =CH), 5.80 (dt, J = 15.7, 6.7 Hz, 1H, =CH), 4.40 (t, J = 1.8 Hz, 2H, - ferrocene), 4.23-4.17 (m, 2H, -ferrocene), 4.13-4.05 (m, 5H, -ferrocene), 3.02 (dd, J = 6.8, 1.3 Hz, 2H, -CH₂), 2.44-2.33 (m, 4H, -CH₂), 1.45-1.35 (m, 4H, -CH₂), 1.33-1.24 (m, 4H, -CH₂), 0.89 (t, J = 7.3 Hz, 6H, -CH₃). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 129.0 (s, 1C, =CH), 124.8 (s, 1C, =CH), 83.0 (s, 1C, -ferrocene), 68.8 (s, 5C, -ferrocene), 68.2 (s, 2C, -ferrocene), 66.4 (s, 2C, -ferrocene), 56.0 (s, 1C, -CH₂), 52.8 (s, 2C, -CH₃), 28. 9 (s, 2C, -CH₂), 20.1 (s, 2C, -CH₂), 13.9 (s, 2C, -CH₂). HRMS (ESI) m/z [M + H]⁺ calcd for C₂₁H₃₂FeN⁺ 354.1879; Found 354.1853.

N-[(2-Ferrocenylvinyl)methyl]di-iso-propylamine (4e)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (72.7 mg, 33% yield). IR (KBr, cm⁻¹): 3095, 2966, 2922 (C-H), 1667 (C=C), 1261 (C-N). ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.22 (d, *J* = 15.7 Hz, 1H, =CH), 5.82-5.71 (m, 1H, =CH), 4.38 (t, *J* = 1.8 Hz, 2H, - ferrocene), 4.18 (t, *J* = 1.8 Hz, 2H, -ferrocene), 4.13-4.06 (m, 5H, -ferrocene), 3.13-3.06 (m, 2H, -CH₂), 3.04 (q, *J* = 6.5 Hz, 2H, -CH), 0.99 (d, *J* = 6.7 Hz, 12H, -CH₃). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 129.0 (s, 1C, =CH), 127.4 (s, 1C, =CH), 83.9 (s, 1C, -ferrocene), 69.2 (s, 5C, -ferrocene), 68.7 (s, 2C, -ferrocene), 48.0 (s, 2C, -CH), 47.5 (s, 1C, -CH₂), 21.1 (s, 4C, -CH₃). HRMS (ESI) m/z [M + H]⁺ calcd for C₁₉H₂₈FeN⁺ 326.1566; Found 326.1531.

N-[(2-Ferrocenylvinyl)methyl]di-tert-butyl amine (4f)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (60.0 mg, 19% yield). IR (KBr, cm⁻¹): 2984, 2880, 2812 (C-H), 1682 (C=C), 1234 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.21 (d, J = 15.8 Hz, 1H, =CH), 5.79 (dt, J = 15.7, 6.7 Hz, 1H, =CH), 4.39 (t, J = 1.8 Hz, 2H, -ferrocene), 4.20 (dd, J = 4.0, 2.2 Hz, 2H, -ferrocene), 4.13-4.09 (m, 5H, -ferrocene), 2.99 (dd, J = 6.8, 1.4 Hz, 2H, -CH₂), 2.13 (d, J = 7.2 Hz, 4H, -CH₂), 1.73 (dp, J = 13.6, 6.7 Hz, 2H, -CH), 0.87 (d, J = 6.6 Hz, 12H, -CH₃). ¹³C{¹H}</sup> NMR (100 MHz, DMSO- d_6) δ 129.12(s, 1C, =CH), 124.7 (s, 1C, =CH), 83.0 (s, 1C, -ferrocene), 68.7 (s, 5C, -ferrocene), 68.3 (s, 2C, -ferrocene), 66.4 (s, 2C, -ferrocene), 62.8 (s, 2C, -CH), 57.0 (s, 1C, -CH₂), 26.0 (s, 2C, -CH₂), 20.8 (s, 4C, -CH₃). HRMS (ESI) m/z [M + H]⁺ calcd for C₂₁H₃₂FeN⁺ 354.1879; Found 354.1858.

N-[(2-Ferrocenylvinyl)methyl]di-hydroxyethylamine (4g)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (64.4 mg, 39% yield). IR (KBr, cm⁻¹): 3411(-OH), 2928, 2875 (C-H), 1630 (C=C), 1244 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.23 (d, J = 15.7 Hz, 1H, =CH), 5.82 (dt, J = 15.7, 6.7 Hz, 1H, =CH), 4.40 (t, J = 1.8 Hz, 2H, -ferrocene), 4.14-4.07 (m, 5H, -ferrocene), 3.45 (q, J = 5.9, 4.7 Hz, 4H, -CH₂), 3.17-3.08 (m, 2H, -CH₂), 2.55 (t, J = 6.4 Hz, 4H, -CH₂). ¹³C {¹H} NMR (100 MHz, DMSO- d_6) δ 129.62 (s, 1C, =CH),124.2 (s, 1C, =CH), 82.9 (s, 1C, -ferrocene), 68.9 (s, 5C, -ferrocene), 68.3 (s, 2C, -

ferrocene), 66.5 (s, 2C, -ferrocene), 59.2 (s, 2C, -CH₂), 57.1 (s, 1C, -CH₂), 56.1 (s, 2C, -CH₂). HRMS (ESI) m/z $[M + H]^+$ calcd for $C_{17}H_{24}FeNO_2^+$ 330.1151; Found 330.1125.

N-[(2-Ferrocenylvinyl)methyl] pyrrolidine (4h)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (93.3 mg, 52% yield). IR (KBr, cm⁻¹): 3067, 2890, 2789 (C-H), 1662 (C=C), 1201 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.31 (d, J = 15.7 Hz, 1H, =CH), 5.86 (dt, J = 15.7, 6.8 Hz, 1H, =CH), 4.41 (t, J = 1.9 Hz, 2H, -ferrocene), 4.22 (t, J = 1.8 Hz, 2H, -ferrocene), 4.18-4.07 (m, 5H, -ferrocene), 3.19 (d, J = 6.7 Hz, 2H, -CH₂), 2.60 (d, J = 6.5 Hz, 4H, -pyrrolidine), 1.74 (p, J = 3.2 Hz, 4H, -pyrrolidine). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 129.0 (s, 1C, =CH), 125.6 (s, 1C, =CH), 83.5 (s, 1C, -ferrocene), 69.3 (s, 5C, -ferrocene), 68.7 (s, 2C, -ferrocene), 58.3 (s, 1C, -CH₂), 53.8 (s, 2C, -pyrrolidine), 23.6 (s, 2C, -pyrrolidine). HRMS (ESI) m/z [M + H]⁺ calcd for C₁₇H₂₂FeN⁺ 296.1096; Found 296.1072.

N-[(2-Ferrocenylvinyl)methyl] proline (4i)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (39.8 mg, 16% yield). IR (KBr, cm⁻¹): 2955, 2923 (C-H), 1620 (C=C), 1650 (C=O), 1269 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.48 (d, J = 15.8 Hz, 1H, =CH), 5.85 (d, J = 16.0 Hz, 1H, =CH), 4.43 (d, J = 8.5 Hz, 2H, -ferrocene), 4.26 (s, 2H, -ferrocene), 4.16 (d, J = 19.0 Hz, 5H, -ferrocene), 3.62-3.41 (m, 4H), 2.88 -2.81(t, J = 2.1 Hz, 1H, -proline), 1.94- 1.68 (m, 4H, -proline). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 134.8 (s, 1C, =CH), 117.9 (s, 1C, =CH), 81.5 (s, 1C, -ferrocene), 69.0 (s, 5C, -ferrocene), 68.9 (s, 2C, -ferrocene), 66.9 (s, 2C, -ferrocene), 55.7 (s, 1C, -proline), 55.0 (s, 1C, -CH₂), 53.0 (s, 1C, -proline), 28.8 (s, 1C, -proline), 23.3 (s, 1C, -proline). HRMS (ESI) m/z [M + Na]⁺ calcd for C₁₈H₂₁FeNO₂Na⁺ 362.0814; Found 362.0801. *N-[(2-Ferrocenylvinyl)methyl] proline methyl ester (4j)*

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (58.2 mg, 43% yield). IR (KBr, cm⁻¹): 2986, 2874 (C-H), 1730 (C=O), 1202(C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.22 (d, J = 15.7 Hz, 1H, =CH), 5.88-5.79 (m, 1H, =CH), 4.39 (ddt, J = 21.2, 2.5, 1.4 Hz, 2H, - ferrocene), 4.20 (t, J = 2.5, 1.4 Hz, 2H, -ferrocene), 4.10 (s, 5H, -ferrocene), 3.61 (s, 1H, -proline methyl ester), 3.30-3.24 (m, 1H, -proline methyl ester), 3.21 (dt, J = 9.0, 4.6 Hz, 1H, -proline methyl ester), 3.12-3.01 (m, 1H, -proline methyl ester), 3.01-2.94 (m, 1H, -proline methyl ester), 2.47-2.41 (m, 1H, -proline methyl ester), 2.10 -1.98 (m, 1H, -proline methyl ester), 1.85-1.71 (m, 3H, -CH₃), 1.18 (t, J = 7.1 Hz, 2H, -CH₂). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 129.7 (s, 1C,=CH), 124.6 (s, 1C, =CH), 83.3 (s, 1C, -ferrocene), 69.3 (s, 5C, -ferrocene), 68.7 (s, 1C, -ferrocene), 67.2 (s, 1C, -ferrocene), 66.6 (s, 1C, -ferrocene), 64.4 (s, 1C, -ferrocene), 60.3 (s, 1C, -proline methyl ester), 56.1 (s, 1C, -CH₂), 52.91(s, 1C, -proline methyl ester), 29.33(s, 1C, -proline methyl ester), 23.3 (s, 1C, -proline methyl ester), 14.6 (s, 1C, -CH₃). HRMS (ESI) m/z [M + Na]⁺ calcd for C₁₉H₂₃FeNO₂Na⁺ 376.0970; Found 376.0972.

N-[(2-Ferrocenylvinyl)methyl] piperidine (4k)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (73.6 mg, 58% yield). IR (KBr, cm⁻¹): 2992, 2872, 2865 (C-H), 1635 (C=C), 1205(C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.21 (d, J = 15.8 Hz, 1H, =CH), 5.81 (dt, J = 15.8, 6.8 Hz, 1H, =CH), 4.41 (t, J = 1.9 Hz, 2H, -ferrocene), 4.20 (t, J = 1.8 Hz, 2H, -ferrocene), 4.09 (s, 5H, -ferrocene), 2.90 (d, J = 6.7 Hz, 2H, -CH₂), 2.36 (p, J = 5.4 Hz, 4H, -piperidine), 1.50 (p, J = 5.4 Hz, 4H, -piperidine), 1.38 (d, J = 7.3 Hz, 2H, -piperidine). ¹³C {¹H} NMR (100 MHz, DMSO- d_6) δ 129.9 (s, 1C, =CH), 124.9 (s, 1C, =CH), 83.4 (s, 1C, -ferrocene), 69.3 (s, 5C, -ferrocene), 68.8 (s, 2C, -ferrocene), 67.0 (s, 2C, -ferrocene), 61.6 (s, 1C, -CH₂), 54.3 (s, 2C, -

piperidine), 26.1 (s, 2C, -piperidine), 24.6 (s, 1C, -piperidine). HRMS (ESI) m/z $[M + H]^+$ calcd for $C_{18}H_{24}FeN^+$ 310.1253; Found 310.1217.

N-[(2-Ferrocenylvinyl)methyl] morpholine (41)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (58.1 mg, 37% yield). IR (KBr, cm⁻¹): 2968, 2892, 2815 (C-H), 1636 (C=C), 1206(C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.28-6.21 (m, 1H, =CH), 5.80 (dt, J = 15.8, 6.8 Hz, 1H, =CH), 4.41 (t, J = 1.8 Hz, 2H, - ferrocene), 4.21 (t, J = 1.8 Hz, 2H, -ferrocene), 4.12 - 4.05 (m, 5H, -ferrocene), 3.58 (t, J = 4.6 Hz, 4H, - morpholine), 2.94 (dd, J = 6.8, 1.3 Hz, 2H, -morpholine), 2.37 (d, J = 4.8 Hz, 4H, -morpholine). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 130.7 (s, 1C, =CH), 123.9 (s, 1C, =CH), 83.2 (s, 1C, -ferrocene), 69.3 (s, 5C, - ferrocene), 68.8 (s, 2C, -ferrocene), 67.0 (s, 2C, -ferrocene), 66.7 (s, 2C, -morpholine), 61.2 (s, 1C, -CH₂), 53.6 (s, 2C, -morpholine). HRMS (ESI) m/z [M + H]⁺ calcd for C₁₇H₂₂FeNO⁺ 312.1045; Found 312.1003. *N-[(2-Ferrocenylvinyl)methyl] piperazine (4m)*

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (68.2 mg, 35% yield). IR (KBr, cm⁻¹): 2961, 2813, 2789 (C-H), 1667 (C=C), 1286 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.25-6.18 (m, 1H, =CH), 5.80 (dt, J = 15.7, 6.8 Hz, 1H, =CH), 4.41 (t, J = 1.9 Hz, 2H, -ferrocene), 4.20 (t, J = 1.9 Hz, 2H, -ferrocene), 4.08 (s, 5H, -ferrocene), 2.89 (dd, J = 6.7, 1.3 Hz, 2H, -CH₂), 2.68 (d, J = 9.7 Hz, 4H, -piperazine), 2.29 (s, 4H, -piperazine). ¹³C {¹H} NMR (100 MHz, DMSO- d_6) δ 130.2 (s, 1C, =CH), 124.5 (s, 1C, =CH), 83.3 (s, 1C, -ferrocene), 69.3 (s, 5C, -ferrocene), 68.8 (s, 2C, -ferrocene), 67.0 (s, 2C, -ferrocene), 61.6 (s, 1C, -CH₂), 54.5 (s, 2C, -piperazine), 46.1 (s, 2C, -piperazine). HRMS (ESI) m/z [M + H]⁺ calcd for C₁₇H₂₃FeN₂⁺ 311.1205; Found 311.1182.

N, N'-di-[(2-Ferrocenylvinyl)methyl] piperazine (4n)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (96.2 mg, 20% yield). IR (KBr, cm⁻¹): 2947, 2898, 2884 (C-H), 1657 (C=C), 1258 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.24 (d, J = 15.8 Hz, 2H, =CH), 5.82 (dt, J = 15.7, 6.6 Hz, 2H, =CH), 4.40 (t, J = 1.9 Hz, 4H, -ferrocene), 4.20 (t, J = 1.9 Hz, 4H, -ferrocene), 4.15-4.03 (m, 10H, -ferrocene), 2.95 (d, J = 6.8 Hz, 4H, -CH₂), 2.44 (s, 8H, -piperazine). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 129.5 (s, 2C, =CH),124.1 (s, 2C, =CH),82.7 (s, 2C, -ferrocene), 68.7 (s, 10C, -ferrocene), 68.2 (s, 4C, -ferrocene), 66.4 (s, 4C, -ferrocene), 60.2 (s, 2C, -CH₂), 52.5 (s, 4C, -piperazine). HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₀H₃₄Fe₂N₂Na⁺ 557.1313; Found 557.1324.

N-Methyl-N-[(2-Ferrocenylvinyl)methyl] 1-naphthalenemethylamine (40)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (85.2 mg, 59% yield). IR (KBr, cm⁻¹): 3098 (Ar-H), 2839, 2789 (C-H), 1638 (C=C), 1265 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 8.31 (dd, J = 8.4, 1.3 Hz, 1H, -naphthalene), 7.92 (dd, J = 7.9, 1.6 Hz, 1H, -naphthalene), 7.85 (dd, J = 6.8, 2.7 Hz, 1H, -naphthalene), 7.54 (dddd, J = 19.2, 8.1, 6.8, 1.4 Hz, 2H, -naphthalene), 7.49 - 7.43 (m, 2H, -naphthalene), 6.32 (d, J = 15.7 Hz, 1H, =CH), 5.94 (dt, J = 15.7, 6.8 Hz, 1H, =CH), 4.45 (t, J = 1.8 Hz, 2H, -ferrocene), 4.21 (t, J = 1.8 Hz, 2H, -ferrocene), 4.13-3.98 (m, 5H, -ferrocene), 3.90 (s, 2H, -CH₂), 3.09 (dd, J = 6.8, 1.3 Hz, 2H, -CH₂), 2.16 (s, 3H, -CH₃). ¹³C NMR (100 MHz, DMSO- d_6) δ ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 135.4 (s, 1C, -naphthalene), 128.2 (s, 1C, -naphthalene), 127.8 (s, 1C, -naphthalene), 126.1 (s, 1C, -naphthalene), 125.7 (s, 1C, -naphthalene), 125.4 (s, 1C,=CH), 124.6 (s, 1C,=CH), 83.3 (s, 1C, -ferrocene), 69.3 (s, 5C, -ferrocene), 68.8 (s, 2C, -ferrocene), 67.0

(s, 2C, -ferrocene), 60.3 (s, 1C, -CH₂), 59.68 (s, 1C, -CH₂), 42.35 (s, 1C, -CH₃). HRMS (ESI) m/z $[M + Na]^+$ calcd for C₂₅H₂₅FeNNa⁺ 418.1229; Found 418.1221.

N-[1-(2-Ferrocenylvinyl)ethyl]dimethylamine (4p)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (77.2 mg, 12% yield). IR (KBr, cm⁻¹): 2938, 2867, 2818 (C-H), 1577 (C=C), 1260 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.16 (d, J = 15.8 Hz, 1H, =CH), 5.76 (dd, J = 15.8, 7.7 Hz, 1H, =CH), 4.40 (dq, J = 16.9, 1.8 Hz, 2H, -ferrocene), 4.20 (s, 2H, -ferrocene), 4.17-3.99 (m, 5H, -ferrocene), 2.87 (p, J = 6.8 Hz, 1H, -CH), 2.23-2.10 (m, 6H, -CH₃), 1.09 (d, J = 6.6 Hz, 3H, -CH₃). ¹³C {¹H} NMR (100 MHz, DMSO- d_6) δ 129.3 (s, 1C, =CH), 128.1 (s, 1C, =CH), 83.4 (s, 1C, -ferrocene), 69.3 (s, 5C, -ferrocene), 68.8 (d, J = 5.5 Hz, 2C, -ferrocene), 67.2 (s, 1C, -ferrocene), 66.7 (s, 1C, -ferrocene), 62.3 (s, 1C, -CH₃), 42.1 (s, 2C, -CH₃), 18.2 (s, 1C, -CH). HRMS (ESI) m/z [M - C₂NH₇]⁺ calcd for C₁₄H₁₅Fe⁺ 239.0518; Found 239.0498.

N-[1-(2-Ferrocenylvinyl)-n-propyl]dimethylamine (4q)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (68.8 mg, 9% yield). IR (KBr, cm⁻¹): 2964, 2936, 2857 (C-H), 1634 (C=C), 1279 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.15 (d, J = 15.8 Hz, 1H, =CH), 5.68 (dd, J = 15.8, 8.9 Hz, 1H, =CH), 4.42 (dq, J = 8.1, 1.7 Hz, 2H, -ferrocene), 4.21 (t, J = 1.9 Hz, 2H, -ferrocene), 4.09 (s, 5H, -ferrocene), 2.59 (td, J = 8.6, 5.2 Hz, 1H, -CH), 2.16 (s, 6H, -CH₃), 1.63-1.53 (m, 1H, -CH₂), 1.40 (ddd, J = 15.4, 14.1, 7.5 Hz, 1H, -CH₂), 0.84 (t, J = 7.4 Hz, 3H, -CH₃). ¹³C {¹H} NMR (100 MHz, DMSO- d_6) δ 130.2 (s, 1C, =CH), 126.2 (s, 1C, =CH), 83.4 (s, 1C, -ferrocene), 69.3 (s, 5C, -ferrocene), 69.3 (s, 1C, -CH₃), 68.8 (d, J = 3.3 Hz, 2C, -ferrocene), 67.0 (s, 1C, -ferrocene), 66.9 (s, 1C, -ferrocene), 41.9 (s, 2C, -CH₃), 25.6(s, 1C, -CH₂), 11.4 (s, 1C, -CH). HRMS (ESI) m/z [M + H]⁺ calcd for C₁₇H₂₄FeN⁺ 298.1253; Found 298.1235.

N-(3-Ferrocenyl-2-methyl-allyl)dimethylamine (4r)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (39.7 mg, 47% yield). IR (KBr, cm⁻¹): 2939, 2916, 2864 (C-H), 1621 (C=C), 1260 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.04 (q, J = 1.3 Hz, 1H, =CH), 4.37 (t, J = 1.8 Hz, 2H, -ferrocene), 4.21 (t, J = 1.8 Hz, 2H, -ferrocene), 4.13 (d, J = 16.0 Hz, 5H, -ferrocene), 2.81-2.73 (m, 2H, -CH₂), 2.13 (s, 6H, -2CH₃), 1.78 (d, J = 1.3 Hz, 3H, -CH₃). ¹³C {¹H} NMR (100 MHz, DMSO- d_6) δ 132.9 (s, 1C, C), 123.8 (s, 1C, =CH), 82.3 (s, 1C, -ferrocene), 68.9 (s, 1C, -CH₂), 68.7 (s, 2C, -ferrocene), 68.7 (s, 5C, -ferrocene), 68.1 (s, 2C, -ferrocene), 45.0 (s, 2C, -CH₃), 16.7 (s, 1C, -CH₃). HRMS (ESI) m/z [M - C₂NH₇]⁺ calcd for C₁₄H₁₅Fe⁺ 239.0518; Found 239.0503.

N-(3-Ferrocenyl-2-ethyl-allyl)dimethylamine (4s)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (66.8 mg, 43% yield). IR (KBr, cm⁻¹): 3058, 2942, 2854 (C-H), 1647 (C=C), 1274 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.00 (s, 1H, =CH), 4.39-4.32 (m, 2H, -ferrocene), 4.28-4.20 (m, 2H, -ferrocene), 4.12 (d, J = 10.7 Hz, 5H, -ferrocene), 2.79 (s, 2H, -CH₂), 2.23 (q, J = 7.5 Hz, 2H, -CH₂), 2.14 (s, 6H, -2CH₃), 1.05 (t, 7.5 Hz, 3H, -CH₃). ¹³C {¹H} NMR (100 MHz, DMSO- d_6) δ 138.39 (s, 1C, C), 123.4 (s, 1C, =CH), 81.8 (s, 1C, -ferrocene), 68.8 (d, J = 2.0 H, 5C, -ferrocene), 68.6 (d, J = 3.5 Hz, 2C, -ferrocene), 68.2 (s, 2C, -ferrocene), 66.4 (s, 1C, -CH₂), 45.1 (s, 2C, -CH₃), 22.8(s, 1C, -CH₂), 12.5 (s, 1C, -CH₃). HRMS (ESI) m/z [M - C₂NH₇]⁺ calcd for C₁₅H₁₇Fe⁺ 253.0674; Found 253.0658.

N-(3-Ferrocenyl-2-n-propyl-allyl)dimethylamine (4t)

The title compound was isolated by silica gel flash column chromatography (PE/EA = 2:1-1:1) as a yellow solid (45.3 mg, 42% yield). IR (KBr, cm⁻¹): 3095, 2854, 2811 (C-H), 1677 (C=C), 1257 (C-N). ¹H NMR (400 MHz, DMSO- d_6) δ 6.05 (d, J = 18.3 Hz, 1H, =CH), 4.34 (dt, J = 9.0, 1.9 Hz, 2H, -ferrocene), 4.22 (dt, J = 11.6, 1.8 Hz, 2H, -ferrocene), 4.12 (d, J = 14.1 Hz, 5H, -ferrocene), 2.78 (d, J = 1.2 Hz, 2H, -CH₂), 2.27-2.15 (m, 2H, -CH₂), 2.13 (d, J = 2.5 Hz, 6H, -2CH₃), 1.59-1.41 (m, 2H, -CH₂), 0.95 (t, J = 7.3 Hz, 3H, -CH₃). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 137.0 (s, 1C, C), 124.0 (s, 1C, =CH), 81.9 (s, 1C, -ferrocene), 68.7 (s, 5C, -ferrocene), 68.6 (s, 2C, -ferrocene), 68.2 (s, 2C, -ferrocene), 66.8 (s, 1C, -CH₂), 45.1 (s, 2C, -CH₃), 31.9 (s, 1C, -CH₂), 20.8 (s, 1C, -CH₂), 14.3 (s, 1C, -CH₃). HRMS (ESI) m/z [M - C₂NH₇]⁺ calcd for C₁₆H₁₉Fe⁺ 267.0831; Found 267.0814.

3. DFT studies

3.1 Computational Methods

All DFT calculations were conducted utilizing Gaussian 16 software¹. All molecular structures in this study were thoroughly optimized, frequency calculations were carried out, and transition-state searches were performed at the non-localized B3LYP² functional level, employing hybrid basis sets. The 6-31G(d)³ basis set was applied to all non-metal atoms (C, H, O, and N), whereas the tzvp basis set was employed for all metal atoms (Fe). The DFT-D3⁴ method was employed to apply dispersion corrections, ensuring the accuracy and reliability of the calculations. To mitigate potential errors arising from basis set overlap, all structural optimizations were carried out without imposing geometric constraints. The thermodynamic energies of all structures along the reaction pathway at 298 K were corrected using the Shermo method, maintaining the same computational level throughout the process. All transition-state structures along the reaction pathway underwent Hessian analysis, and each transition state exhibited a single negative frequency. Additionally, all transition states were further validated through Intrinsic Reaction Coordinate (IRC)⁵ calculations.

3.2 Absolute values and cartesian coordinates (Å) for optimised structures

A-INT

Zero-point correction=		0.230397 (Hartree/Particle)	
Thermal correction to En	ergy=	0.243137	
Thermal correction to En	thalpy=	0.244081	
Thermal correction to Gi	bbs Free Energy=	0.190338	
Sum of electronic and ze	ro-point Energies=	-1804.334249	
Sum of electronic and the	ermal Energies=	-1804.321509	
Sum of electronic and the	ermal Enthalpies=	-1804.320565	
Sum of electronic and the	ermal Free Energies=	-1804.374308	
С	-1.15829619	-1.73807502	-0.56541322
С	-1.87225603	-0.80427256	-1.37752604
С	-2.70429720	-0.02059195	-0.52057134
С	-2.50483317	-0.46980771	0.82088567
С	-1.54943465	-1.53162889	0.79377379
Н	-0.44196353	-2.47000426	-0.91843291
Н	-1.78864007	-0.70117584	-2.45246799
Н	-3.36144693	0.78206808	-0.83213394
Н	-2.98488725	-0.06798285	1.70474141
Н	-1.18116540	-2.07769804	1.65371436

Fe	-0.73264486	0.18579161	0.01608000
С	-0.15479986	1.83527418	1.09338316
С	-0.23226682	2.15371319	-0.29708106
С	0.79454622	0.78147115	1.25161213
Н	-0.72757468	2.29926491	1.88717081
С	0.66631289	1.29282239	-0.99322370
Н	-0.87451228	2.90237435	-0.74477983
С	1.30270920	0.43226883	-0.04135648
Н	1.06650382	0.31461025	2.18989474
Н	0.83995791	1.28017573	-2.06259542
С	2.39071380	-0.55470112	-0.37583865
Н	2.12928895	-1.03189126	-1.33654653
С	2.59026857	-1.64781219	0.67622238
Н	1.67394273	-2.22787741	0.82874029
Н	3.37952394	-2.34197757	0.36021793
Н	2.89358249	-1.20822012	1.63260042
0	3.59042737	0.21760480	-0.54071127
Н	4.29253694	-0.39504801	-0.79171300
Dimethylamine			
Ν	-0.00000001	0.56634126	-0.15000218
Н	0.00000069	1.32709316	0.52482224
С	1.21323485	-0.22283961	0.02051162
Н	1.27617498	-0.96893477	-0.78335190
Н	2.09184700	0.42871678	-0.06121228
Н	1.27379490	-0.76848527	0.98409101
С	-1.21323516	-0.22283956	0.02051174
Н	-2.09184761	0.42871437	-0.06122844
Н	-1.27616613	-0.96894482	-0.78334289
Н	-1.27380184	-0.76847325	0.98409732

Zero-point correction=	0.092786 (Hartree/Particle)
Thermal correction to Energy=	0.097152
Thermal correction to Enthalpy=	0.098097
Thermal correction to Gibbs Free Energy=	0.067354
Sum of electronic and zero-point Energies=	-135.069207
Sum of electronic and thermal Energies=	-135.064841
Sum of electronic and thermal Enthalpies=	-135.063896
Sum of electronic and thermal Free Energies=	-135.094639

A1-TS

Zero-point correction=		0.235918 (Hartree	Particle)
Thermal correction to Energ	y=	0.249683	
Thermal correction to Enthal	lpy=	0.250627	
Thermal correction to Gibbs	Free Energy=	0.194348	
Sum of electronic and zero-p	ooint Energies=	-216.442398	
Sum of electronic and therm	al Energies=	-216.428633	
Sum of electronic and therm	al Enthalpies=	-216.427689	
Sum of electronic and therm	al Free Energies=	-216.483968	
С	-2.15929836	-0.68914692	-1.33888310

С	-2.15929836	-0.68914692	-1.33888310
С	-2.87944798	0.10059747	-0.39675447
С	-2.61720566	-0.41748991	0.90554955
С	-1.73420968	-1.52709940	0.76847028
С	-1.44870593	-1.69385245	-0.61888330
Н	-2.14738372	-0.54739080	-2.40831530
Н	-3.50824808	0.94632977	-0.62756531

Н	-3.01294564	-0.03267405	1.83246175
Н	-1.34488265	-2.13057128	1.57396570
Н	-0.80846751	-2.44874310	-1.04956749
Fe	-0.77375936	0.24167480	0.01447618
С	0.06803352	1.92517254	1.05378684
С	-0.01547037	2.22387867	-0.33843557
С	0.91590308	0.79449549	1.21595331
Н	-0.43407308	2.45838380	1.84600166
С	0.77918699	1.27702915	-1.04046820
Н	-0.59370475	3.02007029	-0.78087624
С	1.36573327	0.38247591	-0.08256495
Н	1.17143566	0.32385218	2.15298049
Н	0.91851165	1.22413649	-2.11026594
С	2.28191748	-0.72480711	-0.39385141
Н	2.19071448	-1.05302702	-1.42857991
С	2.33674297	-1.87005309	0.58552378
Н	1.37359556	-2.39006206	0.62471445
Н	3.10807176	-2.58359797	0.29358517
Н	2.57669483	-1.50737930	1.58669139
0	3.80408962	-0.10683259	-0.37325545
Н	3.74733347	0.87137612	-0.32845378
Н	5.08929873	-0.26678911	-0.48377020

A2-INT

Zero-point correction=		0.244405 (Hartree/Pa	rticle)
Thermal correction to Energy	v=	0.258045	,
Thermal correction to Entha	lpy=	0.258990	
Thermal correction to Gibbs	Free Energy=	0.203769	
Sum of electronic and zero-	oint Energies=	-216.299133	
Sum of electronic and therm	al Energies=	-216.285493	
Sum of electronic and therm	al Enthalpies=	-216.284549	
Sum of electronic and therm	al Free Energies=	-216.339770	
С	-2.17022693	-0.65320693	-1.346125

С	-2.17022693	-0.65320693	-1.34612509
С	-2.84640787	0.18495566	-0.40993512
С	-2.61811153	-0.33732523	0.89487273
С	-1.79570426	-1.49522125	0.77140607
С	-1.52467064	-1.69205475	-0.61660853
Н	-2.15828081	-0.52667340	-2.41751676
Н	-3.42909164	1.06102735	-0.64874478
Н	-2.99435978	0.07713155	1.81740141
Н	-1.46087605	-2.12269198	1.58311533
Н	-0.94460581	-2.49667217	-1.04358550
Fe	-0.76220962	0.19731290	0.00550529
С	0.08615243	1.90794009	1.07136665
С	0.01935046	2.21257017	-0.33351747
С	0.89877700	0.77703628	1.25117633
Н	-0.41606184	2.45594166	1.85339527
С	0.78992753	1.27051289	-1.03183547
Н	-0.54160119	3.02370276	-0.77098888
С	1.35288837	0.35017092	-0.05884617
Н	1.13711426	0.30928985	2.19448517
Н	0.93894493	1.22284824	-2.10089593
С	2.14210283	-0.78371627	-0.37091668
Н	2.18901259	-1.05154216	-1.42316219
С	2.38352995	-1.88241672	0.60590213
Н	1.48264176	-2.50547400	0.64804054
Н	3.20542137	-2.52711276	0.29568591

Н	2.57980882	-1.50275352	1.60803842
0	3.90341387	-0.02201818	-0.42804542
Н	3.94111355	0.94062167	-0.32182106
Н	4.75531492	-0.46710226	-0.55385750

A3-TS

Zero-point correction=		0.196424 (Hartree/Particle)	
Thermal correction to Energy=		0.207981	
Thermal correction to En	nthalpy=	0.208925	
Thermal correction to G	ibbs Free Energy=	0.156930	
Sum of electronic and ze	ero-point Energies=	-1727.819705	
Sum of electronic and th	ermal Energies=	-1727.808148	
Sum of electronic and th	ermal Enthalpies=	-1727.807204	
Sum of electronic and th	ermal Free Energies=	-1727.859200	
С	-2.47312567	0.10586384	-0.72644071
С	-2.48172976	0.10718587	0.70008871
С	-1.81144740	-1.07389044	1.14175619
С	-1.40139934	-1.80239279	-0.00446166
С	-1.79683247	-1.07515793	-1.15709295
Н	-2.90530959	0.85916831	-1.36747902
Н	-2.92215418	0.86150266	1.33434391
Н	-1.63869142	-1.35886204	2.16877223
Н	-0.82679543	-2.71712346	-0.00038084
Н	-1.60926739	-1.36114037	-2.18126385
Fe	-0.49653760	0.17154434	0.00103376
С	1.74409484	0.11279175	0.02573542
С	1.16439565	0.77542014	1.16406973
С	1.20102144	0.75560085	-1.13943851
С	0.41235270	1.89788849	0.70285147
Н	1.32397748	0.49815421	2.19538108
С	0.42660176	1.87980887	-0.71949042
Н	1.38835565	0.45739822	-2.15997803
Н	-0.08359962	2.62248237	1.33069220
Н	-0.05780125	2.58681206	-1.37594747
С	2.48403761	-1.10870667	0.00824563
С	3.86706490	-1.12923910	-0.09723479
Н	4.38485697	-2.08565205	-0.14812714
Н	4.48510186	-0.24063653	-0.26406659
Н	3.36109902	-1.25329356	1.04964706

A4-INT

Zero-point correction=		0.202830 (Hartree/Par	rticle)
Thermal correction to Energy=		0.213000	
Thermal correction to Enthalpy=		0.213945	
Thermal correction to Gibbs Free I	Energy=	0.167196	
Sum of electronic and zero-point E	nergies=	-587.769528	
Sum of electronic and thermal Ene	rgies=	-587.759358	
Sum of electronic and thermal Entl	halpies=	-587.758414	
Sum of electronic and thermal Free	e Energies=	-587.805162	
С	-2.48109241	-0.06440091	0.25159224
С	-1.75770207	-0.84640763	1.21947162
С	-0.90317174	-1.75866122	0.50600285
С	-1.10094525	-1.54220029	-0.90292552
С	-2.07570533	-0.49471997	-1.06036667
Н	-3.18857938	0.72271538	0.47155384

Н	-1.82404593	-0.74658353	2.29381448
Н	-0.20292791	-2.45553562	0.94651154
Н	-0.58348844	-2.05722375	-1.70094176
Н	-2.42466685	-0.08688214	-1.99861599
Fe	-0.44385334	0.18485019	0.00836922
С	1.59709518	0.37906228	-0.21858021
С	1.18220663	0.83018503	1.08882666
С	0.89449382	1.18166222	-1.19247049
С	0.24532579	1.90676600	0.91819040
Н	1.50040316	0.40938045	2.03334580
С	0.06604767	2.12383859	-0.49363333
Н	0.97604754	1.06856515	-2.26594249
Н	-0.25642833	2.44210645	1.71194049
Н	-0.59080674	2.85247244	-0.94702383
С	2.48859577	-0.73199973	-0.54515950
Н	2.51723387	-1.00837830	-1.60124114
С	3.25422236	-1.40958341	0.33376438
Н	3.89076559	-2.23023867	0.01825543
Н	3.27045777	-1.15774861	1.39246936

B-INT

Zero-point correction=		0.026613 (Hartree/Par	ticle)
Thermal correction to Energy=	=	0.029481	,
Thermal correction to Enthalp	y=	0.030425	
Thermal correction to Gibbs F	ree Energy=	0.004952	
Sum of electronic and zero-po	int Energies=	-114.477348	
Sum of electronic and thermal	Energies=	-114.474480	
Sum of electronic and thermal	Enthalpies=	-114.473536	
Sum of electronic and thermal	Free Energies=	-114.499009	
С	-0.0000533	0 52683613	0.000000

С	-0.00000533	0.52683613	0.00000000
Н	0.93918978	1.12431070	0.00000000
Н	-0.93911521	1.12445570	0.00000000
0	-0.00000533	-0.67622290	0.00000000

B-TS

Zero-point correction=		0.028711 (Hartree/Par	rticle)
Thermal correction to Energy	/=	0.032315	
Thermal correction to Enthal	py=	0.033259	
Thermal correction to Gibbs	Free Energy=	0.005353	
Sum of electronic and zero-p	oint Energies=	-23.290177	
Sum of electronic and therma	l Energies=	-23.286573	
Sum of electronic and therma	l Enthalpies=	-23.285629	
Sum of electronic and therma	ll Free Energies=	-23.313535	
С	0.64828202	0.00005738	0.05404883
TT	1 10460707	0.02707252	0 100 400 50

0	0.01020202	0.00000750	0.05 10 1005
Н	1.19469707	0.93707253	0.18242859
Н	1.19475427	-0.93676040	0.18360202
0	-0.57071573	-0.00018238	-0.20022195
Н	-1.71341765	0.00080261	0.91145205

B1-INT

Zero-point correction=	0.040633 (Hartree/Particle)
Thermal correction to Energy=	0.043553
Thermal correction to Enthalpy=	0.044497
Thermal correction to Gibbs Free Energy=	0.018612
Sum of electronic and zero-point Energies=	-114.750553

Sum of electronic and thermal Energies=	-114.747633
Sum of electronic and thermal Enthalpies=	-114.746689
Sum of electronic and thermal Free Energies=	-114.772573

С	0.04874331	0.62410321	-0.00000000	
С		0.04874331	0.62410321	-0.00000000
Н	-(0.87999024	1.20627340	-0.00000000
Н		1.03422188	1.09903690	0.00000000
0	(0.04874331	-0.62457596	0.00000000
Н	_(0.83663804	-1.05332190	0.00000000

Formaldehyde

Zero-point correction=		0.112555 (Hartree/Pa	rticle)
Thermal correction to Energy=		0.119076	
Thermal correction to Enthal	py=	0.120021	
Thermal correction to Gibbs	Free Energy=	0.082291	
Sum of electronic and zero-p	oint Energies=	-633.969392	
Sum of electronic and therma	al Energies=	-633.962870	
Sum of electronic and thermal Enthalpies=		-633.961926	
Sum of electronic and thermal Free Energies=		-633.999656	
Ν	0.00000000	0.56634100	-0.15000200
Н	0.00000000	1.32709400	0.52482200
С	1.21323500	-0.22283900	0.02051200
Н	1.27616700	-0.96894400	-0.78334400

С	1.21323500	-0.22283900	0.02051200
Н	1.27616700	-0.96894400	-0.78334400
Н	2.09184700	0.42871500	-0.06122700
Н	1.27380200	-0.76847500	0.98409600
С	-1.21323500	-0.22283900	0.02051200
Н	-2.09184700	0.42871400	-0.06122800
Н	-1.27616600	-0.96894400	-0.78334300
Н	-1.27380200	-0.76847400	0.98409700

BC-TS1

Zero-point correction=		0.126027 (Hartree/Par	rticle)
Thermal correction to En	ergy=	0.133367	
Thermal correction to En	thalpy=	0.134311	
Thermal correction to Gil	bbs Free Energy=	0.095416	
Sum of electronic and zer	o-point Energies=	-249.917196	
Sum of electronic and thermal Energies=		-249.909856	
Sum of electronic and thermal Enthalpies=		-249.908912	
Sum of electronic and the	ermal Free Energies=	-249.947808	
С	-0 77064812	-0 30877759	1 07853059

C	-0.7700+012	-0.308///39	1.0/055059
Н	-0.98219677	0.67170677	1.57343438
Н	-2.26739646	-0.80214738	-0.38578089
0	-1.69235630	-0.00401313	-0.41815327
Н	-2.17391162	0.63955535	-1.50330337
Ν	0.67974726	-0.01268617	0.45773269
Н	1.28877769	-0.02909005	1.28486177
С	0.85127752	1.31511009	-0.25391608
Н	0.10396488	1.35667365	-1.04903253
Н	0.65952594	2.11884871	0.46238610
Н	1.86341401	1.41196710	-0.66825820
С	1.06579054	-1.16386913	-0.43351003
Н	0.94334681	-2.08499833	0.13868715
Н	0.36863166	-1.16794503	-1.27260824
Н	2.09794379	-1.04844280	-0.78591571

BC-INT1

Zero-point correction=		0.142506 (Hartree/Particle)	
Thermal correction to En	nergy=	0.151107	
Thermal correction to En	nthalpy=	0.152052	
Thermal correction to G	ibbs Free Energy=	0.109238	
Sum of electronic and ze	ero-point Energies=	-250.449814	
Sum of electronic and th	ermal Energies=	-250.441213	
Sum of electronic and th	ermal Enthalpies=	-250.440268	
Sum of electronic and th	ermal Free Energies=	-250.483082	
N	0.62366353	0.05015312	0 30308/10
н	0.02500555	0.15068705	-1 25805064
II C	1 68026824	-0.95540112	-0.19562440
н	1.00020024	-1 16510715	0.85880015
Н	1 36255472	-1 87229071	-0.69062272
Н	2 60626315	-0 59938826	-0.65645268
C	0.97003512	1 36564859	0.27330375
H	0.16598038	2 08002013	0.09443266
Н	1.12524588	1.25335858	1.34710132
Н	1.88807794	1.75780371	-0.17490956
C	-0.97442861	-0.79672613	0.73311704
Н	-1.31943468	-1.75101660	0.35064228
Н	-1.41781756	-0.37554525	1.62977239
0	-1.98803657	0.20928117	-0.44092581
Н	-2.28877277	1.03556817	-0.03124761
Н	-2.78980061	-0.28353886	-0.67894870

BC-TS2

Zero-point correction=	0.143652 (Hartree/Particle)
Thermal correction to Energy=	0.152080
Thermal correction to Enthalpy=	0.153024
Thermal correction to Gibbs Free Energy=	0.111630
Sum of electronic and zero-point Energies=	-250.617959
Sum of electronic and thermal Energies=	-250.609531
Sum of electronic and thermal Enthalpies=	-250.608587
Sum of electronic and thermal Free Energies=	-250.649981

Ν	1.00812722	0.07142081	-0.51103437
Н	1.61211296	0.17849591	-1.32391946
С	1.24416348	-1.25026892	0.10002945
Н	0.51874261	-1.36635925	0.91186293
Н	1.07194603	-2.03278883	-0.64776818
Н	2.26848769	-1.35007083	0.49466205
С	1.26269595	1.16791197	0.44330678
Н	1.15296964	2.13089493	-0.07052056
Н	0.50235227	1.09000339	1.22944566
Н	2.27284632	1.11515411	0.88087521
С	-1.87513218	-0.18357164	0.87385886
Н	-2.19553107	-1.23493811	0.72064597
Н	-2.85848904	0.33322160	0.92938020
0	-1.59759792	0.13221614	-0.79244742
Н	-0.55206501	0.11795737	-0.79810179
Н	-1.85984303	1.05632647	-0.91291262
BC-INT2			

Zero-point correction= Thermal correction to Energy=

nthalpy=	0.153987	
ibbs Free Energy=	0.113930	
ero-point Energies=	-250.659988	
ermal Energies=	-250.652063	
ermal Enthalpies=	-250.651119	
ermal Free Energies=	-250.691177	
-0.00570658	0.00009918	1.41575733
0.30301226	0.88359509	1.99738989
-1.49755104	0.00020740	0.48739961
-2.12366276	0.00009515	-0.34551136
-3.03499140	-0.00005749	-0.02487304
0.94338272	-0.00004926	0.20751603
1.94036537	-0.00010856	0.46118933
0.70924469	1.22807220	-0.61267438
-0.34905561	1.22917993	-0.89046414
0.93595454	2.09913114	0.00836735
1.36192996	1.21483008	-1.49332885
0.70900578	-1.22820897	-0.61254294
0.93544888	-2.09925515	0.00861546
-0.34929294	-1.22905556	-0.89036044
1.36174927	-1.21523190	-1.49315234
0.30279036	-0.88342583	1.99745567
	$\begin{array}{l} \mbox{thalpy}=\\ \mbox{ibbs Free Energy}=\\ \mbox{erro-point Energies}=\\ \mbox{ermal Energies}=\\ \mbox{ermal Enthalpies}=\\ \mbox{ermal Free Energies}=\\ \mbox{-}0.00570658\\ \mbox{0.30301226}\\ \mbox{-}1.49755104\\ \mbox{-}2.12366276\\ \mbox{-}3.03499140\\ \mbox{0.94338272}\\ \mbox{1.94036537}\\ \mbox{0.70924469}\\ \mbox{-}0.34905561\\ \mbox{0.93595454}\\ \mbox{1.36192996}\\ \mbox{0.70900578}\\ \mbox{0.93544888}\\ \mbox{-}0.34929294\\ \mbox{1.36174927}\\ \mbox{0.30279036}\\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

BC-TS3

Zero-point correction=		0.107518 (Hartree/Particle)	
Thermal correction to I	Energy=	0.113297	
Thermal correction to I	Enthalpy=	0.114241	
Thermal correction to (Gibbs Free Energy=	0.079120	
Sum of electronic and a	zero-point Energies=	-174.244585	
Sum of electronic and t	thermal Energies=	-174.238805	
Sum of electronic and t	thermal Enthalpies=	-174.237861	
Sum of electronic and t	thermal Free Energies=	-174.272982	
Ν	-0.03627316	-0.06351894	0.27613121
Н	0.02229143	0.03258746	1.51342978
С	-0.29871439	1.33680797	-0.11213058
Н	-0.24475276	1.44690169	-1.20016573
Н	-1.30252070	1.58971713	0.24173638
Н	0.42728420	2.00333864	0.39653470
C	1.32424110	-0.45307547	-0.10027474
Н	1.41695841	-1.51758474	0.11450779
Н	1.50609939	-0.27680524	-1.16607260
Н	2.04019812	0.13074625	0.51534901

-1.10052454

-0.83862125

-0.82489513

-0.08499590

-1.11927207

0.55544162

D-INT

С

Н

Η

0.111060 (Hartree/Particle)
0.116305
0.117249
0.083657
-173.510835
-173.505590
-173.504646
-173.538238

-1.07283931

-1.38987258

-1.93789779

С	-0.0000002	1.40217652	-0.00005565
Н	-0.94251399	1.94564922	-0.00006181
Н	0.94251395	1.94564923	-0.00006181
Ν	-0.00000000	0.12245424	0.00021570
С	-1.25279042	-0.66514664	-0.00002356
Н	-2.11374823	0.00551542	0.00035702
Н	-1.26385290	-1.29725619	-0.89369412
Н	-1.26381939	-1.29814815	0.89295227
С	1.25279044	-0.66514661	-0.00002356
Н	1.26385311	-1.29725590	-0.89369431
Н	2.11374823	0.00551547	0.00035739
Н	1.26381924	-1.29814839	0.89295209

D-TS

Zero-point correction=		0.112555 (Hartree/Par	ticle)
Thermal correction to Energy	=	0.119076	
Thermal correction to Enthalp	y=	0.120021	
Thermal correction to Gibbs H	Free Energy=	0.082291	
Sum of electronic and zero-po	oint Energies=	-633.969392	
Sum of electronic and thermal	Energies=	-633.962870	
Sum of electronic and thermal	Enthalpies=	-633.961926	
Sum of electronic and thermal	Free Energies=	-633.999656	
N	0.08770025	0.0000000	0 201207

Ν	0.98779925	-0.00000000	0.39130765
С	1.38171907	-1.22327193	-0.29894837
Н	2.46430608	-1.20864792	-0.47053894
Н	1.14153640	-2.09088578	0.32585160
Н	0.86935155	-1.33823869	-1.26815833
C	1.38171905	1.22327195	-0.29894835
Н	1.14153635	2.09088578	0.32585163
Н	2.46430606	1.20864796	-0.47053892
Н	0.86935152	1.33823872	-1.26815831
C	-0.27590638	-0.00000002	0.96127542
Н	-0.47145783	-0.90490183	1.53646394
Н	-0.47145784	0.90490177	1.53646397
Cl	-1.75572103	0.00000000	-0.30392132

D1-INT

Zero-point correction=		0.113751 (Hartree/Par	ticle)
Thermal correction to Energy=		0.123078	
Thermal correction to Enthalpy=		0.120021	
Thermal correction to Gibbs Free Ene	ergy=	0.080251	
Sum of electronic and zero-point Energies=		-633.969392	
Sum of electronic and thermal Energies=		-633.957843	
Sum of electronic and thermal Enthalpies=		-633.954723	
Sum of electronic and thermal Free Energies=		-633.998736	
N	1.09025052	-0.00032846	0.53161394

IN	1.09023032	-0.00032840	0.33101394
С	1.36814422	-1.20036568	-0.27062403
Н	2.39608819	-1.20065427	-0.56766126
Н	1.16517383	-2.07417161	0.31261368
Н	0.74544700	-1.19976766	-1.14076645
С	1.36909769	1.20013388	-0.26965657
Н	1.16682133	2.07363036	0.31428536
Н	2.39704166	1.19984530	-0.56669379
Н	0.74640048	1.20073191	-1.13979898

С	-0.32197157	0.00006800	0.93969311
Н	-0.52494196	-0.87373792	1.52293082
Н	-0.52424793	0.87356448	1.52363503
Cl	-1.34622119	0.00105167	-0.49156918

D1-TS

Zero-point correction=		0.311890 (Hartree/Particle)	
Thermal correction to En	nergy=	0.331611	
Thermal correction to En	nthalpy=	0.332555	
Thermal correction to G	ibbs Free Energy=	0.259638	
Sum of electronic and ze	ero-point Energies=	-2361.932228	
Sum of electronic and th	ermal Energies=	-2361.912506	
Sum of electronic and th	ermal Enthalpies=	-2361.911562	
Sum of electronic and th	ermal Free Energies=	-2361.984480	
С	3.84513894	1.17600441	-0.16224563
С	3.47663272	0.98740796	1.19055190
С	2.13228519	1.47129577	1.35340310
С	1.68125002	1.95336548	0.09471619
С	2.72955739	1.73766966	-0.84426587
Н	4.78612673	0.89365361	-0.61110566
Н	4.09915985	0.56913330	1.96738904
Н	1.57903558	1.49532236	2.28010664
Н	0.70208402	2.35520156	-0.12681555
Н	2.68464248	1.96537330	-1.89939009
Fe	2.09423009	-0.14948531	0.01438039
С	0.20671280	-1.45400532	-0.24863609
С	1.06096128	-1.80128882	0.87810972
С	1.06398346	-1.51247553	-1.41726436
С	2.32463320	-2.19514321	0.38315526
Н	0.75440447	-1.85165449	1.91167604
С	2.31984959	-2.00807689	-1.04551920
Н	0.75675592	-1.24256905	-2.41755084
Н	3.14228682	-2.59102506	0.96655017
Н	3.14707082	-2.20336664	-1.71203549
С	-1.13864040	-1.10535930	-0.26401218
Н	-1.56324969	-0.84334719	-1.22545662
С	-2.04043262	-1.09144353	0.93075169
Н	-1.45081840	-0.96517554	1.84159005
Н	-2.52846168	-2.07181352	1.03551573
Ν	-4.37423461	-0.28887446	0.36842194
С	-5.45393055	0.65213151	0.64318661
Н	-6.41404017	0.16449052	0.47132016
Н	-5.39986245	0.98680837	1.67843025
Н	-5.37690679	1.52676263	-0.01681731
С	-4.46709773	-1.00103158	-0.89639305
Н	-3.81401718	-1.87303859	-0.89873459
Н	-5.49342866	-1.33448306	-1.04734098
Н	-4.18549247	-0.33960279	-1.72826113
С	-3.11542702	0.01260452	0.92306399
Н	-3.25477346	0.43386401	1.91977871
Н	-2.65848907	0.91398442	0.29217644
Cl	-1.82913085	2.05825237	-0.86738124

CI-

Zero-point correction= Thermal correction to Energy=

0.000000 (Hartree/Particle) 0.001416

Thermal correction to Enthalpy=	0.002360
Thermal correction to Gibbs Free Energy=	-0.015677
Sum of electronic and zero-point Energies=	-460.136242
Sum of electronic and thermal Energies=	-460.134826
Sum of electronic and thermal Enthalpies=	-460.133882
Sum of electronic and thermal Free Energies=	-460.151919

E-INT

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies=		0.247197 (Hartree/Particle) 0.261129 0.262073 0.204927 -1822.799407 -1822.785475 -1822.784530	
Sum of electronic and the	rmal Free Energies=	-1822.841676	
С	-3.04818064	-0.71174070	-0.47182236
С	-2.79744641	-0.85720913	0.92442131
С	-1.60512893	-1.62461903	1.08046835
С	-1.11936541	-1.95293013	-0.21876015
С	-2.01048294	-1.38818007	-1.17857659
Н	-3.86702560	-0.16613807	-0.91577936
Н	-3.39368381	-0.44170628	1.72261036
Н	-1.13945481	-1.89086749	2.01712488
Н	-0.21638050	-2.50312486	-0.43603344
Н	-1.90699916	-1.44529231	-2.25156009
Fe	-1.20038422	0.11036046	0.01163159
С	0.72939272	0.88070522	-0.23415249
С	0.21166121	1.20817956	1.06262950
С	-0.17393271	1.44271187	-1.19742096
С	-0.97553016	1.97637801	0.89465574
Н	0.63881920	0.90609734	2.00654120
С	-1.21521540	2.12118099	-0.50344563
Н	-0.07376151	1.35860100	-2.26960003
Н	-1.60026773	2.35742116	1.68835246
Н	-2.04991085	2.63522965	-0.95542536
С	1.93904568	0.12789157	-0.56122864
Н	2.01472896	-0.20285113	-1.59619901
С	2.94199984	-0.15967243	0.27548444
Н	2.91827596	0.18939067	1.30499615
С	4.16844764	-0.93480723	-0.10582486
Н	4.10380842	-1.21873231	-1.16893285
Н	4.19611633	-1.87009300	0.46823590
Ν	5.37953744	-0.17950086	0.24938223
Н	6.20839311	-0.73809161	0.07158282
Н	5.44898280	0.64996027	-0.33257669
Н	-0.37794300	0.46464424	0.00608250

H_2O

Zero-point correction=0.021088 (Hartree/Particle)Thermal correction to Energy=0.023922Thermal correction to Enthalpy=0.024866Thermal correction to Gibbs Free Energy=0.003433Sum of electronic and zero-point Energies=-76.384364Sum of electronic and thermal Energies=-76.381529Sum of electronic and thermal Enthalpies=-76.380585

Sum of electronic and thermal Free Energies=		-76.402018	3
0	0.00000000	0.00000000	0.11751800
Н	0.00000000	0.76688000	-0.47007200
Н	0.00000000	-0.76688000	-0.47007200
\mathbf{H}^{+}			
Zero-point correction=		0.000000 (Hartree/Particle)	
Thermal correction to Energy=		0.001416	,
Thermal correction to Enthalpy=		0.002360	
Thermal correction to Gibbs Free Energy=		-0.010000	
Sum of electronic and zero-point Energies=		0.000000	
Sum of electronic and thermal Energies=		0.001416	
Sum of electronic and thermal Enthalpies=		0.002360	

4. The change in the Gibbs free energy of the reaction system.

Table S1. Thermodynamic properties of the individual components involved in the reaction ^a			
Entry ^b	G¢	$\mathbf{U}^{\mathbf{d}}$	Ee
A-INT	0.190338	-1804.321509	-1804.320565
B-INT	0.004952	-114.474480	-114.473536
Dimethylamine	0.067354	-135.064841	-135.063896
E-INT	0.204927	-1822.785475	-1822.784530
H ₂ O	0.003433	-76.381529	-76.380585

^a 1 Hartree per particle is equivalent to 627.51 kcal/mol; ^b **A-INT**, **B-INT**, and dimethylamine correspond to the reactants α -(hydroxy) alkyl ferrocenes (1a), formaldehyde (2a), and dimethylamine (3a), respectively, while the products are **E-INT** (ferrocenyl-substituted allylamine) and H₂O; ^c Thermal correction to the Gibbs free energy; ^d Sum of the electronic and thermal energies; ^c Sum of the electronic and thermal enthalpies.

 $\Delta G = [G (E-INT) + 2*G (H_2O)] - [G (Dimethylamine) + G (B-INT) + G (A-INT)] * 627.51 \text{ kcal/mol} = 31.9 \text{ kcal/mol}$

5. Refences

(1) Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene,

C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

(2) (a) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, *38*, 3098-3100; (b) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, *98*, 5648-5652; (c) Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, *37*, 785-789; (d) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980, *58*, 1200-1211.

(3) (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A., Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. **1971**, *54*, 724-728. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A., Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. **1972**, *56*, 2257-2261. (c) Hariharan, P. C.; Pople, J. A., The influence of polarization functions on molecular orbital hydrogenation energies. Theoret. Chim. Acta. **1973**, *28*, 213-222.

(4) (a) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, *132*, 154104-154119. (b) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, *32*, 1456-1465.

(5) (a) For the IRC method: Gonzalez, C.; Schlegel, H. B., An improved algorithm for reaction path following. J. Chem. Phys. **1989**, *90*, 2154-2161. (b) Gonzalez, C.; Schlegel, H. B., Improved algorithms for reaction path following: Higher-order implicit algorithms. J. Chem. Phys. **1991**, *95*, 5853-5860. For the IRC-implemented Hessian predictor-corrector and update algorithms: (c) Hratchian, H. P.; Schlegel, H. B., Accurate reaction paths using a Hessian based predictor– corrector integrator. J. Chem. Phys. **2004**, *120*, 9918-9924. (d) Hratchian, H. P.; Schlegel, H. B., Using Hessian Updating to Increase the Efficiency of a Hessian Based Predictor-Corrector Reaction Path Following Method. J. Chem. Theory Comput. **2005**, *1*, 61-69.

6. NMR Spectra

¹H NMR Spectrum of 4a

¹³C NMR Spectrum of 4a

¹H NMR Spectrum of **4b**

¹³C NMR Spectrum of **4b**

¹H NMR Spectrum of **4c**

¹³C NMR Spectrum of **4c**

¹H NMR Spectrum of 4d

¹³C NMR Spectrum of 4d

¹H NMR Spectrum of **4e**

¹³C NMR Spectrum of **4e**

¹H NMR Spectrum of 4f

 ^{13}C NMR Spectrum of 4f

¹H NMR Spectrum of **4g**

¹³C NMR Spectrum of **4g**

¹H NMR Spectrum of **4h**

¹³C NMR Spectrum of **4h**

¹³C NMR Spectrum of 4i

¹H NMR Spectrum of 4j

¹H NMR Spectrum of **4**k

¹³C NMR Spectrum of 4k

¹H NMR Spectrum of **4**l

¹³C NMR Spectrum of 41

¹H NMR Spectrum of 4m

¹³C NMR Spectrum of **4m**

¹H NMR Spectrum of 4n

¹³C NMR Spectrum of **4n**

¹H NMR Spectrum of 40

¹³C NMR Spectrum of **40**

¹H NMR Spectrum of **4p**

¹³C NMR Spectrum of **4p**

¹H NMR Spectrum of **4**q

¹³C NMR Spectrum of **4q**

¹H NMR Spectrum of 4r

¹³C NMR Spectrum of 4r

¹H NMR Spectrum of 4s

¹³C NMR Spectrum of **4s**

¹H NMR Spectrum of 4t

¹³C NMR Spectrum of 4t

