Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supplementary Information for

Synthesis of α -trifluoromethoxy-sulfide through the Pummerer

rearrangement

Mingxin Zhao, Ziyang Zhou and Pingping Tang*

*To whom correspondence should be addressed. E-mail: ptang@nankai.edu.cn

Table of Contents

Supp	elementary Notes	1
Supp	plementary Discussion	2
	Effect of temperature on the reaction	2
	Effect of the equivalent of AgF and other fluorine salts on the reaction	2
	Effect of the equivalent of KF on the reaction	3
	Effect of additive on the reaction	4
	Effect of reaction time on the reaction and additives	5
	Substrates for conversion failure	6
	TEMPEO inhibition experiments	7
	Double bond migration experiment	8
	1a Reaction with TFMS	8
	HRMS for identifying intermediate I-2	9
	Kinetic studies	9
Supp	Plementary Methods	10
	Flurbiprofen derivatives (1z)	10
	Naproxen derivatives (1aa)	11
	Fenofibrate derivatives (1bb)	12
	General Procedure A	13
	Phenyl((trifluoromethoxy)methyl)sulfane (3a)	13
	(4-fluorophenyl)((trifluoromethoxy)methyl)sulfane (3b)	13
	(4-chlorophenyl)((trifluoromethoxy)methyl)sulfane (3c)	14
	(4-bromophenyl)((trifluoromethoxy)methyl)sulfane (3d)	14
	(4-iodophenyl)((trifluoromethoxy)methyl)sulfane (3e)	15
	(4-(tert-butyl)phenyl)((trifluoromethoxy)methyl)sulfane (3f)	15
	(4-methoxyphenyl)((trifluoromethoxy)methyl)sulfane (3g)	16
	p-tolyl((trifluoromethoxy)methyl)sulfane (3h)	16
	(2,6-dimethylphenyl)((trifluoromethoxy)methyl)sulfane (3i)	16
	(2,4-dimethylphenyl)((trifluoromethoxy)methyl)sulfane (3j)	17
	<i>m</i> -tolyl((trifluoromethoxy)methyl)sulfane (3k)	17
	[1,1'-biphenyl]-4-yl((trifluoromethoxy)methyl)sulfane (31)	17
	((trifluoromethoxy)methyl)(2-vinylphenyl)sulfane (3m)	18
	Methyl 2-(((trifluoromethoxy)methyl)thio)benzoate (3n)	18
	1-(4-(((trifluoromethoxy)methyl)thio)phenyl)ethan-1-one (30)	19
	Naphthalen-2-yl((trifluoromethoxy)methyl)sulfane (3p)	19
	Anthracen-9-yl((trifluoromethoxy)methyl)sulfane (3q)	20
	2-(((trifluoromethoxy)methyl)thio)pyridine (3r)	20
	2-(((trifluoromethoxy)methyl)thio)thiophene (3s)	21
	2-methyl-3-(((trifluoromethoxy)methyl)thio)furan (3t)	21
	2-(((trifluoromethoxy)methyl)thio)quinoline (3u)	22

((trifluoromethoxy)methyl)(4'-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)sulfane (3v)	22
2-(((trifluoromethoxy)methyl)thio)benzo[b]thiophene (3w)	23
tert-butyl((trifluoromethoxy)methyl)sulfane (3x)	23
Dodecyl((trifluoromethoxy)methyl)sulfane (3y)	23
Flurbiprofen derivatives (3z)	24
Naproxen derivatives (3aa)	25
Fenofibrate derivatives (3bb)	25
Supplementary References	27
Spectra Data	28

Supplementary Notes

All reactions were conducted in oven-dried glassware under an atmosphere of nitrogen unless otherwise noted. EA, Acetone, DCE, 1, 4-dioxane, Et₂O, DMSO and DCM were dried by distillation over CaH₂. DMA used in reactions were dried by stirring over CaH₂ (5%w/v) overnight, and fractional distillation, then bubbled in argon balloon for 0.5 h, THF, dioxane and toluene were dried by distillation over sodium/benzophenone. CDCl₃, CD₃CN was purchased from Sigma-Aldrich. AgF (Cat 7775-41-9) was purchased from Leyan, Shanghai, China. OCF₃ reagents were prepared according to the reported literatures.¹ TLC was performed on silica gel Huanghai HSGF254 plates and visualized by quenching of UV fluorescence (λ_{max} = 254 nm). 200-300 mesh silica gel was purchased from Qingdao Haiyang Chemical Co., China. Unless otherwise noted, all other reagents and starting materials were purchased from commercial sources and used without further purification. The data for NMR spectra (¹H NMR, ¹³C NMR and ¹⁹F NMR) were recorded at 293 K on a Bruker AVANCE AV 400 (400 MHz, 101 MHz and 376 MHz) and chemical shifts were recorded relative to the solvent resonance. Signal positions were recorded in ppm and the following abbreviations are used singularly or in combination to indicate the multiplicity of signals: s singlet, d doublet, t triplet, q quartet, m multiplet, Hz Hertz. For ¹H NMR: CDCl₃ = δ 7.26 ppm. For ¹³C NMR: CDCl₃ = δ 77.16 ppm. Mass spectra were obtained on Agilent 6520 Q-TOF LC/MS and Aligent 7890/5975C-GS/MSD. HRMS were obtained on VG ZAB-HS(ESI), Thermo Fisher Q-Exactive Orbitrap(ESI) and GCT Premier(EI). GCMS analysis was performed on an Aligent 7890/5975C-GS/MSD. HRMS were obtained on VG ZAB-HS(ESI), Thermo Fisher Q-Exactive Orbitrap(ESI) and GCT Premier(EI). GCMS analysis was performed on an Aligent 7890/5975C-GS/MSD. ¹⁹F NMR spectrometer used standard pulse sequences with 16 scans and an optimized relaxation delays (d_1 = 20 s for ¹⁹F NMR).

Supplementary Discussion

Effect of temperature on the reaction

In a nitrogen-filled glovebox, methyl sulfoxide substrate **1** (0.05 mmol, 1.0 equiv.) and AgF (6.1 mg, 0.05 mmol, 1.0 equiv.) were charged into a 2.00 mL sealed vial. Subsequently, acetonitrile (0.2 mL) and trifluoromethyl 4-fluorobenzenesulfonate (TFMS, 32.0μ L, 0.2 mmol, 4.0 equiv.) were added sequentially. The reaction was stirred overnight at different temperatures. The yield of **3a** was determined by comparing the integration of the ¹⁹F NMR resonance of **3a** (-59.8 ppm) with that of benzotrifluoride (-62.8 ppm). Yields are reported in Supplementary Table 1.

O S S	AgF (1.0 equiv.) Me	CN (0.2 mL)
	TFMS (4.0 equiv.), overnight
1a		3a
entry	т	¹⁹ F NMR yield of A
1	-20 °C	trace
2	0 °C	10%
3	10 °C	22%
4	rt	28%
5	30 °C	27%
6	40 °C	27%
7	60 °C	9%
8	80 °C	trace

Supplementary Table 1: Effect of temperature on the reaction

Effect of the equivalent of AgF and other fluorine salts on the reaction

In a nitrogen-filled glovebox, methyl sulfoxide substrate 1 (0.05 mmol, 1.0 equiv.) and AgF or

other fluorine salts were charged into a 2.00 mL sealed vial. Subsequently, acetonitrile (0.2 mL) and trifluoromethyl 4-fluorobenzenesulfonate (TFMS, 32.0 μ L, 0.2 mmol, 4.0 equiv.) were added sequentially. The reaction was stirred overnight at different temperatures. The yield of **3a** was determined by comparing the integration of the ¹⁹F NMR resonance of **3a** (-59.8 ppm) with that of benzotrifluoride (-62.8 ppm). Yields are reported in Supplementary Table 2.

O S S	AgF (x equiv.) MeCN (0.2 mL)	S_OCF3
	TFMS (4.0 equiv.), rt, overnight	
~ 1а		3a
entry	F salt	¹⁹ F NMR yield of 3a
1	AgF 1.0 equiv.	27%
2	AgF 0.8 equiv.	n.d.
3	AgF 0.6 equiv.	30%
4	AgF 0.4 equiv.	31%
5	AgF 0.2 equiv.	28%
6	KF (1.0 equiv.)	34%
7	CsF (1.0 equiv.)	32%
8	LiF (1.0 equiv.)	n.d.
9	NaF (1.0 equiv.)	n.d.
10	w/o AgF	n.d.
11	NBu ₄ BF ₄ (1.0 equiv.)	n.d.

Supplementary Table 2: Effect of the equivalent of AgF and other fluorine salts on the reaction

Effect of the equivalent of KF on the reaction

In a nitrogen-filled glovebox, methyl sulfoxide substrate **1** (0.05 mmol, 1.0 equiv.) and KF were charged into a 2.00 mL sealed vial. Subsequently, acetonitrile (0.2 mL) and trifluoromethyl 4-

fluorobenzenesulfonate (TFMS, 32.0 μ L, 0.2 mmol, 4.0 equiv.) were added sequentially. The reaction was stirred overnight at different temperatures. The yield of **3a** was determined by comparing the integration of the ¹⁹F NMR resonance of **3a** (-59.8 ppm) with that of benzotrifluoride (-62.8 ppm). Yields are reported in Supplementary Table 3.

Supplementary Table 3: Effect of the equivalent of KF on the reaction

	KF (x equiv.) MeCN (0.2 mL)		S_OCF ₃	
	TFMS (4.0) equiv.), rt, overnight		
1a			3a	
entry	KF	other	¹⁹ F NMR yield of 3-3a	
1	1.0 equiv.	-	34%	
2	0.5 equiv.	-	16%	
3	0.2 equiv.	-	n.d.	
4	1.5 equiv.	-	36%	
5	2.0 equiv.	-	37%	
6	3.0 equiv.	-	29%	
7	1.0 equiv.	TFMS (5.0 equiv.)	40%	

Effect of additive on the reaction

In a nitrogen-filled glovebox, methyl sulfoxide substrate **1** (0.05 mmol, 1.0 equiv.), KF (5.8 mg, 0.10 mmol, 2.0 equiv.) and additives (0.05 mmol, 1.0 equiv.) were charged into a 2.00 mL sealed vial. Subsequently, acetonitrile (0.2 mL) and trifluoromethyl 4-fluorobenzenesulfonate (TFMS, 32.0 μ L, 0.2 mmol, 4.0 equiv.) were added sequentially. The reaction was stirred overnight at different temperatures. The yield of **3a** was determined by comparing the integration of the ¹⁹F NMR resonance of **3a** (-59.8 ppm) with that of benzotrifluoride (-62.8 ppm). Yields are reported in Supplementary Table 4.

O S S	KF (2.0 equiv.) MeCN (0.1 r	mL) S_OCF ₃
	TFMS (5.0 equiv.), rt, overni additive (1.0 equiv.)	ght
1a	· · · /	3a
entry	additive	¹⁹ F NMR yield of 3a
1	Benzo-18-crown-6	35%
2	-	33%
3	TMABr	17%
4	TEABr	19%
5	Benzo-15-crown-7	31%
6	18-crown-6	28%
7	TBABr	16%
8	TPABr	24%
9	TMACI	28%
10	TMAF	29%
11	MMC	25%
12	$4 {\rm \AA}$ molecular sieve (5.0 mg)	35%
13	$5 { m \AA}$ molecular sieve (5.0 mg)	34%
14	4Å molecular sieve (5.0 mg) Benzo-18-crown-6	41%

Supplementary Table 4: Effect of additive on the reaction

MMC = (Methoxymethyl)triphenylphosphonium chloride

Effect of reaction time on the reaction and additives

In a nitrogen-filled glovebox, methyl sulfoxide substrate **1** (0.05 mmol, 1.0 equiv.), KF (5.8 mg, 0.10 mmol, 2.0 equiv.) and benzo-18-crown-6 (15.6 mg, 0.05 mmol, 1.0 equiv.) were charged into a 2.00 mL sealed vial. Subsequently, acetonitrile (0.2 mL) and trifluoromethyl 4-fluorobenzenesulfonate (TFMS, 32.0 μ L, 0.2 mmol, 4.0 equiv.) were added sequentially. The

yield of **3a** was determined by comparing the integration of the ¹⁹F NMR resonance of **3a** (-59.8 ppm) with that of benzotrifluoride (-62.8 ppm). Yields are reported in Supplementary Table 5.

	KF (2.0 equiv) Benzo-18-crown-6 (1.0 equiv)		S_OCF	
	TFMS (5.0 equiv), MeCN ((0.2 mL); rt		
─ 1a			3a	
entry	other	T/h	¹⁹ F NMR yield of 3-3a	
1	-	4	24%	
2	-	8	26%	
3	-	12	34%	
4	-	22	49%	
5	-	28	53%	
6	-	34	55%	
7	-	40	55%	
8	4Å molecular sieve (5.0 mg)	28	58%	
9	4Å molecular sieve (5.0 mg)	34	65%	
10	H ₂ O (1.0 equiv)	34	38%	
11	H ₂ O (4.0 equiv)	34	trace	

Supplementary Table 5: Effect of reaction time on the reaction and additives

Substrates for conversion failure

In a nitrogen-filled glovebox, methyl sulfoxide substrate **1** (0.05 mmol, 1.0 equiv.), KF (5.8 mg, 0.10 mmol, 2.0 equiv.) 4Å molecular sieve (5.0 mg), and benzo-18-crown-6 (15.6 mg, 0.05 mmol, 1.0 equiv.) were charged into a 2.00 mL sealed vial. Subsequently, acetonitrile (0.2 mL) and trifluoromethyl 4-fluorobenzenesulfonate (TFMS, 32.0 μ L, 0.2 mmol, 4.0 equiv.) were added sequentially. Yields were determined by ¹⁹F NMR with benzotrifluoride as a standard. Yields are reported in Supplementary Scheme 1. We hypothesized that the presence of KF

preferentially drives E1 elimination over nucleophilic trapping at the secondary carbocation stage, accounting for the diminished yield.

Supplementary Scheme 1: Substrates for conversion failure

TEMPEO inhibition experiments

Under a nitrogen atmosphere in a glovebox, methyl sulfoxide substrate **1a** (0.25 mmol, 1.00 equiv.) was combined with KF (29.1 mg, 0.50 mmol, 2.00 equiv.) and benzo-18-crown-6 (78.0 mg, 0.25 mmol, 1.00 equiv.) in a 4.00 mL sealed vial. Acetonitrile (0.5 mL) and trifluoromethyl 4-fluorobenzenesulfonate (TFMS) (200.0 μ L, 1.25 mmol, 5.0 equiv.) were subsequently added to the reaction mixture. The sealed vial was then transferred out of the glovebox, and the

mixture was stirred at ambient temperature for 34 hours. After completion, the reaction system was diluted with dichloromethane (1.0 mL). The ¹⁹F NMR yield of product **3a** was determined to be 61% through integration comparison between the characteristic resonance of **3a** (-59.5 ppm) and trifluorotoluene (-62.8 ppm) as an internal standard, following TEMPO addition.

Double bond migration experiment

Under a nitrogen atmosphere in a glovebox, (allylsulfinyl)benzene **5a** (0.25 mmol, 1.00 equiv.) was combined with KF (29.1 mg, 0.50 mmol, 2.00 equiv.) and benzo-18-crown-6 (78.0 mg, 0.25 mmol, 1.00 equiv.) in a 4.00 mL sealed vial. Acetonitrile (0.5 mL) and trifluoromethyl 4-fluorobenzenesulfonate (TFMS) (200.0 μ L, 1.25 mmol, 5.0 equiv.) were subsequently added to the reaction mixture. The sealed vial was then transferred out of the glovebox, and the mixture was stirred at ambient temperature for 34 hours. After completion, the reaction system was diluted with dichloromethane (1.0 mL). The ¹⁹F NMR yield of product **6a** was determined to be 20% through integration comparison between the characteristic resonance of **6a** (-60.0 ppm) and trifluorotoluene (-62.8 ppm) as an internal standard. HRMS-EI (*m/z*): Calcd for C₁₀H₉F₃OS⁺ [M]⁺, 234.0321. Found, 234.0321.

1a Reaction with TFMS

Under a nitrogen atmosphere in a glovebox, methyl sulfoxide substrate **1a** (0.25 mmol, 1.00 equiv.) was combined in a 4.00 mL sealed vial. Acetonitrile (0.5 mL) and trifluoromethyl 4-fluorobenzenesulfonate (TFMS) (200.0 μ L, 1.25 mmol, 5.0 equiv.) were subsequently added to the reaction mixture. The sealed vial was then transferred out of the glovebox, and the mixture

was stirred at ambient temperature for 34 hours. After completion, the reaction system was diluted with dichloromethane (1.0 mL). The GC-MS analysis revealed no reaction between **1a** and TFMS, indicating that the TFMS reagent fails to activate the sulfinyl group.

HRMS for identifying intermediate I-2

Under a nitrogen atmosphere in a glovebox, methyl sulfoxide substrate **1b** (15.8 mg, 0.10 mmol, 1.00 equiv.) was combined with KF (11.6 mg, 0.20 mmol, 2.00 equiv.) and benzo-18-crown-6 (31.2 mg, 0.10 mmol, 1.00 equiv.) in a 2.00 mL sealed vial. Acetonitrile (0.2 mL) and trifluoromethyl 4-fluorobenzenesulfonate (TFMS) (80.0 μ L, 0.5 mmol, 5.0 equiv.) were subsequently added to the reaction mixture. The sealed vial was then transferred out of the glovebox, and the mixture was stirred at ambient temperature for 6 hours. HRMS-EI (*m/z*): Calcd for C₇H₆FS⁺ [M]⁺, 141.0169. Found, 141.0167.

Kinetic studies

Under a nitrogen atmosphere in a glovebox, methyl sulfoxide substrate **1b** (15.8 mg, 0.10 mmol, 1.00 equiv.) was combined with KF (11.6 mg, 0.20 mmol, 2.00 equiv.) and benzo-18-crown-6 (31.2 mg, 0.10 mmol, 1.00 equiv.) in a J-Young NMR tube. Acetonitrile (0.4 mL), trifluorotoluene (12 μ L, 0.10 mmol, 1.00 equiv.) and trifluoromethyl 4-fluorobenzenesulfonate (TFMS) (80.0 μ L, 0.5 mmol, 5.0 equiv.) were subsequently added to the reaction mixture. Monitor the reaction process through ¹⁹F NMR.

Time / min	Yield / %	Time / min	Yield / %	Time / min	Yield / %
8	0.9	30	2.8	50	5.4
14	1	34	3.2	54	5.8
18	1.5	38	3.6	58	6.3
22	2.5	42	4.0	62	6.7
26	2.5	46	4.8	66	6.9

Supplementary Scheme 2: Linear fitting of yield with respect to time

Supplementary Methods

Flurbiprofen derivatives (1z)

A 50 mL round-bottom flask was charged with flurbiprofen derivative (366.5 mg, 1.0 mmol, 1.0 equiv.) under 0 °C conditions, followed by sequential addition of dichloromethane (12 mL) and m-chloroperbenzoic acid (m-CPBA) (103.5 mg, 0.6 mmol, 0.6 equiv.). The reaction mixture was stirred at 0 °C for 2 h, after which an additional portion of m-CPBA (86.3 mg, 0.5 mmol, 0.5 equiv.) was introduced. Following 4 h of continuous stirring at 0 °C, the reaction was quenched with saturated aqueous sodium thiosulfate solution (0.1 mL). The organic layer was successively washed with saturated aqueous sodium carbonate solution (10 mL \times 3), dried over anhydrous sodium sulfate, and concentrated under reduced pressure. Purification via flash column chromatography (eluent: hexanes/ethyl acetate) afforded 240.6 mg of pale yellow solid **1z**, representing a 63% yield.

 $R_f = 0.20 [n-hexane : EA = 1 : 1(v/v)]$. NMR Spectroscopy: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 – 7.63 (m, 2H), 7.59 – 7.52 (m, 2H), 7.47 (td, J = 6.8, 6.3, 3.6 Hz, 3H), 7.44 – 7.37 (m, 1H), 7.30 – 7.14 (m, 4H), 4.04 (q, J = 7.1 Hz, 1H), 2.73 (s, 3H), 1.69 (dd, J = 7.2, 1.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 159.9 (d, J = 249.0 Hz), 152.9, 143.2, 140.92 (d, J = 7.6 Hz), 135.4, 131.25 (d, J = 4.2 Hz), 129.06 (d, J = 3.0 Hz), 128.6, 127.9, 125.0, 125.0, 123.68 (d, J = 3.4 Hz), 122.7, 115.6, 115.3, 45.2, 44.3, 18.5. HRMS-ESI (*m/z*): Calcd for C₂₂H₁₉FNaO₃S⁺ [M+Na]⁺, 405.0931. Found, 405.0929.

Naproxen derivatives (1aa)

A 50 mL round-bottom flask was charged with Naproxen derivatives (352.4 mg, 1.0 mmol, 1.0 equiv.) under 0 °C conditions, followed by sequential addition of dichloromethane (12 mL) and m-chloroperbenzoic acid (m-CPBA) (103.5 mg, 0.6 mmol, 0.6 equiv.). The reaction mixture was stirred at 0 °C for 2 h, after which an additional portion of m-CPBA (86.3 mg, 0.5 mmol, 0.5 equiv.) was introduced. Following 4 h of continuous stirring at 0 °C, the reaction was quenched with saturated aqueous sodium thiosulfate solution (0.1 mL). The organic layer was successively washed with saturated aqueous sodium carbonate solution (10 mL \times 3), dried over

anhydrous sodium sulfate, and concentrated under reduced pressure. Purification via flash column chromatography (eluent: hexanes/ethyl acetate) afforded 184.4 mg of pale yellow solid **1aa**, representing a 50% yield.

 $R_f = 0.20 [n-hexane : EA = 1 : 2 (v/v)]$. NMR Spectroscopy: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 – 7.71 (m, 3H), 7.66 – 7.58 (m, 2H), 7.49 (dd, J = 8.5, 1.8 Hz, 1H), 7.22 – 7.12 (m, 4H), 4.11 (q, J = 7.1 Hz, 1H), 3.93 (s, 3H), 2.69 (s, 3H), 1.70 (d, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 157.9, 152.9, 142.8, 134.7, 133.9, 129.3, 129.0, 127.5, 126.2, 126.0, 124.9, 122.6, 119.3, 105.6, 55.4, 45.6, 44.1, 18.4. HRMS-ESI (*m/z*): Calcd for C₂₁H₂₀NaO₄S⁺ [M+Na]⁺, 391.0975. Found, 391.0969.

Fenofibrate derivatives (1bb)

A 50 mL round-bottom flask was charged with Fenofibrate derivatives (440.9 mg, 1.0 mmol, 1.0 equiv.) under 0 °C conditions, followed by sequential addition of dichloromethane (12 mL) and m-chloroperbenzoic acid (m-CPBA) (103.5 mg, 0.6 mmol, 0.6 equiv.). The reaction mixture was stirred at 0 °C for 2 h, after which an additional portion of m-CPBA (86.3 mg, 0.5 mmol, 0.5 equiv.) was introduced. Following 4 h of continuous stirring at 0 °C, the reaction was quenched with saturated aqueous sodium thiosulfate solution (0.1 mL). The organic layer was successively washed with saturated aqueous sodium carbonate solution (10 mL \times 3), dried over anhydrous sodium sulfate, and concentrated under reduced pressure. Purification via flash column chromatography (eluent: hexanes/ethyl acetate) afforded 242.0 mg of pale yellow solid **1bb**, representing a 53% yield.

 $R_f = 0.20 [n-hexane : EA = 1 : 2 (v/v)]$. NMR Spectroscopy: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 – 7.76 (m, 2H), 7.71 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.7 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.20 – 7.12 (m, 2H), 7.02 – 6.95 (m, 2H), 2.71 (s, 3H), 1.84 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 194.3, 172.3, 159.5, 152.5, 143.7, 138.7, 136.3, 132.3, 131.3, 131.0,

128.7, 125.2, 122.5, 117.4, 79.5, 44.3, 25.6, 25.5. HRMS-ESI (*m/z*): Calcd for C₂₄H₂₁ClNaO₅S⁺ [M+Na]⁺, 479.0690. Found, 479.0686.

General Procedure A

$$\begin{array}{c} \mathsf{KF} \ (2.0 \ equiv.); \ \mathsf{Benzo-18-crown-6} \ (1.0 \ equiv.) \\ & 4 \ \mathsf{Molecular} \ \mathsf{sieve} \ (5.0 \ \mathsf{mg}) \\ \hline \mathsf{MeCN} \ (0.5 \ \mathsf{M}); \ \mathsf{TFMS} \ (5.0 \ equiv.); \ \mathsf{rt}; \ \mathsf{34} \ \mathsf{h} \\ \mathbf{1} \\ \end{array} \xrightarrow{\mathsf{R}^1} \begin{array}{c} \mathsf{R}^1 \\ \mathsf{S}^{\mathsf{OCF}_3} \\ \mathsf{3} \end{array}$$

In a nitrogen-filled glovebox, methyl sulfoxide substrate **1** (0.25 mmol, 1.0 equiv.), KF (29.1 mg, 0.50 mmol, 2.0 equiv.), and benzo-18-crown-6 (78.0 mg, 0.25 mmol, 1.0 equiv.) were charged into a 4.00 mL sealed vial. Subsequently, acetonitrile (0.5 mL) and trifluoromethyl 4-fluorobenzenesulfonate (TFMS, 200.0 μ L, 1.25 mmol, 5.0 equiv.) were added sequentially. The sealed vial was then removed from the glovebox, and the reaction mixture was stirred at room temperature for 34 hours. Upon completion, the crude mixture was directly concentrated under reduced pressure. The resulting residue was purified by flash column chromatography using a hexane/ethyl acetate gradient eluent system.

Phenyl((trifluoromethoxy)methyl)sulfane (3a)

According to General Procedure A, methyl phenyl sulfoxide **1a** (35.0 mg, 0.25 mmol, 1.0 equiv.) was employed. The ¹⁹F NMR yield of **3a** was determined to be 65% by comparative integration of its resonance signal at -59.8 ppm with that of trifluorotoluene (-62.8 ppm) in ¹⁹F NMR analysis. HRMS-EI (m/z): Calcd for C₈H₇F₃OS⁺ [M]⁺, 208.0164. Found, 208.0164.

(4-fluorophenyl)((trifluoromethoxy)methyl)sulfane (3b)

S_OCF₃

Following the general synthetic procedure A, methyl(4-fluorophenyl)sulfoxide 1b (39.5

mg, 0.25 mmol, 1.0 equiv.) was employed as the starting material. The ¹⁹F NMR yield of **3b** was determined to be 61% by comparing the integration values of its characteristic resonance at δ –59.9 ppm with that of trifluorotoluene (δ –62.8 ppm) as an internal standard. HRMS-EI (*m/z*): Calcd for C₈H₆F₄OS⁺ [M]⁺, 226.0070. Found, 226.0067.

(4-chlorophenyl)((trifluoromethoxy)methyl)sulfane (3c)

Following General Procedure A, methyl (4-chlorophenyl) sulfoxide **1c** (43.6 mg, 0.25 mmol, 1.0 equiv.) was employed as the starting material. The crude product was purified by flash column chromatography using an n-hexane/ethyl acetate gradient eluent, affording compound **3c** as a colorless oily liquid (36.2 mg, 60% yield).

 $R_f = 0.50 [n-hexane : EA = 200 : 1(v/v)]$. NMR Spectroscopy: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.40 (m, 2H), 7.35 – 7.30 (m, 2H), 5.24 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 134.8, 133.0, 131.7, 129.6, 121.4 (q, *J* = 258.3 Hz), 72.7 (q, *J* = 3.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -59.2. HRMS-EI (*m/z*): Calcd for C₈H₆ClF₃OS⁺ [M]⁺, 241.9775. Found, 241.9770.

(4-bromophenyl)((trifluoromethoxy)methyl)sulfane (3d)

Following the general synthetic procedure A, methyl (4-bromophenyl) sulfoxide **1d** (54.8 mg, 0.25 mmol, 1.0 equiv.) was employed as the starting material. Purification by flash column chromatography using n-hexane/ethyl acetate as eluent afforded the target compound **3d** as a colorless oily liquid (34.5 mg, 48% yield).

 $R_f = 0.50 [n-hexane : EA = 200 : 1(v/v)]$. NMR Spectroscopy: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.40 (m, 2H), 7.35 – 7.30 (m, 2H), 5.24 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 134.8, 133.0, 131.7, 129.6, 121.4 (q, *J* = 258.3 Hz), 72.7 (q, *J* = 3.5 Hz); ¹⁹F NMR

(376 MHz, CDCl₃) δ -59.2. HRMS-ESI (*m/z*): Calcd for C8H6ClF3OS⁺ [M]⁺, 241.9775. Found, 241.9770. HRMS-ESI (*m/z*): Calcd for C₈H₆BrF₃OS⁺ [M]⁺, 285.9269. Found, 285.9269.

(4-iodophenyl)((trifluoromethoxy)methyl)sulfane (3e)

According to the general synthetic procedure A, methyl(4-iodophenyl)sulfoxide **1e** (66.5 mg, 0.25 mmol, 1.0 equiv.) was employed. Purification via flash column chromatography using a hexane/ethyl acetate gradient system afforded compound **3e** as a colorless oily liquid (44.2 mg, 53% yield).

 $R_f = 0.45 [n-hexane : EA = 200 : 1(v/v)]$. NMR Spectroscopy: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 5.25 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 133.2, 132.9, 121.3 (d, J = 258.2 Hz), 94.0, 72.2 (q, J = 3.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -59.1. HRMS-ESI (m/z): Calcd for $C_8H_6F_3IOS^+$ [M]⁺, 333.9131. Found, 333.9130.

(4-(*tert*-butyl)phenyl)((trifluoromethoxy)methyl)sulfane (3f)

Following the general synthetic procedure A, methyl(4-tert-butylphenyl)sulfoxide **1f** (49.1 mg, 0.25 mmol, 1.0 equiv.) was employed. Purification via flash column chromatography using n-hexane/ethyl acetate as the eluent afforded compound **3f** as a colorless oily liquid (51.0 mg, 85% yield).

 $R_f = 0.40 [n-hexane : EA = 200 : 1(v/v)]$. NMR Spectroscopy: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.41 (m, 2H), 7.40 – 7.36 (m, 2H), 5.25 (s, 2H), 1.32 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 131.4, 130.8, 126.4, 126.1, 121.4 (d, *J* = 258.1 Hz), 73.1 (q, *J* = 3.4 Hz), 41.4, 31.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -59.4. HRMS-EI (*m*/*z*): Calcd for C₁₂H₁₅F₃OS⁺ [M]⁺, 264.0790. Found, 264.0792.

(4-methoxyphenyl)((trifluoromethoxy)methyl)sulfane (3g)

М

According to the general synthetic procedure A, methyl(4-methoxyphenyl)sulfoxide **1g** (42.5 mg, 0.25 mmol, 1.0 equiv.) was employed as the starting material. Purification via flash column chromatography using n-hexane/ethyl acetate as eluent afforded the desired product **3g** as a colorless oily liquid (59.1 mg, 99% isolated yield).

 $R_f = 0.20 [n-hexane : EA = 100 : 1(v/v)]$. NMR Spectroscopy: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.43 (m, 2H), 6.95 – 6.84 (m, 2H), 5.16 (s, 2H), 3.82 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 134.9, 123.5, 121.5 (q, J = 257.6 Hz), 115.0, 74.2 (q, J = 3.4 Hz), 55.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -58.7. HRMS-EI (m/z): Calcd for C₉H₉F₃O₂S⁺ [M]⁺, 238.0270. Found, 238.0269.

p-tolyl((trifluoromethoxy)methyl)sulfane (3h)

According to the general synthetic procedure A, methyl(4-methylphenyl)sulfoxide **1h** (38.5 mg, 0.25 mmol, 1.0 equiv.) was employed as the starting material. The ¹⁹F NMR yield of **3h** was determined to be 78% by comparing the integration values of its characteristic resonance at - 59.9 ppm with that of trifluorotoluene (-62.8 ppm) as an internal standard. HRMS-EI (m/z): Calcd for C₉H₉F₃OS⁺ [M]⁺, 222.0321. Found, 222.0317.

(2,6-dimethylphenyl)((trifluoromethoxy)methyl)sulfane (3i)

S_OCF₃

According to the general synthetic procedure A, methyl(2,6-dimethylphenyl)sulfoxide **1i** (42.1 mg, 0.25 mmol, 1.0 equiv.) was employed as the starting material. The 19 F NMR yield of **3i** was determined to be 85% by comparative integration analysis

between its characteristic resonance at -60.0 ppm and the reference signal of trifluorotoluene (-62.8 ppm) in the ¹⁹F NMR spectrum. HRMS-EI (m/z): Calcd for C₁₀H₁₁F₃OS⁺ [M]⁺, 236.0477. Found, 236.0476.

(2,4-dimethylphenyl)((trifluoromethoxy)methyl)sulfane (3j)

S__OCF₃

The compound methyl(2,4-dimethylphenyl)sulfoxide **1j** (38.5 mg, 0.25 mmol, 1.0 equiv.) was employed according to General Procedure A. The ¹⁹F NMR yield of **3j** was determined to be 80% through comparative integration analysis of its characteristic resonance at -59.9 ppm and the reference signal of trifluorotoluene at -62.8 ppm in the ¹⁹F NMR spectrum. HRMS-EI (*m/z*): Calcd for $C_{10}H_{11}F_3OS^+$ [M]⁺, 236.0477. Found, 236.0477.

m-tolyl((trifluoromethoxy)methyl)sulfane (3k)

According to the general synthetic procedure A, methyl(4-methylphenyl)sulfoxide **1k** (38.5 mg, 0.25 mmol, 1.0 equiv.) was employed. The ¹⁹F NMR yield of **3k** was determined to be 69% by comparing the integral values of its ¹⁹F NMR resonance signal at -59.9 ppm with that of trifluorotoluene (-62.8 ppm). HRMS-EI (m/z): Calcd for C₉H₉F₃OS⁺ [M]⁺, 222.0321. Found, 222.0319.

[1,1'-biphenyl]-4-yl((trifluoromethoxy)methyl)sulfane (3l)

Following the general synthetic procedure A, methyl(4-phenylphenyl)sulfoxide **11** (54.0 mg, 0.25 mmol, 1.0 equiv.) was employed as the starting material. Purification by flash column

chromatography using a hexane/ethyl acetate mixture as eluent afforded the desired product **3**l as a white solid (39.8 mg, 56% yield).

 $R_f = 0.30 [n-hexane : EA = 200 : 1(v/v)]$. NMR Spectroscopy: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 – 7.56 (m, 6H), 7.49 – 7.44 (m, 2H), 7.42 – 7.35 (m, 1H), 5.32 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 140.1, 132.1, 131.7, 128.9, 128.0, 128.0, 127.7, 127.1, 121.4 (q, *J* = 258.3 Hz), 72.7 (q, *J* = 3.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -59.0. HRMS-EI (*m/z*): Calcd for C₁₄H₁₁F₃OS⁺ [M]⁺, 284.0477. Found, 236.0478.

((trifluoromethoxy)methyl)(2-vinylphenyl)sulfane (3m)

According to the general synthetic procedure A, methyl(2-vinylphenyl)sulfoxide **1m** (41.6 mg, 0.25 mmol, 1.0 equiv.) was employed as the starting material. Purification by flash column chromatography using n-hexane/ethyl acetate as eluent afforded **3m** as a colorless oily liquid (43.9 mg, 75% yield).

 $R_f = 0.40$ [*n*-hexane : EA = 200 : 1(v/v)]. NMR Spectroscopy: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (dd, *J* = 7.4, 4.8 Hz, 2H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.36 – 7.27 (m, 2H), 5.76 (d, *J* = 17.4 Hz, 1H), 5.42 (d, *J* = 11.0 Hz, 1H), 5.25 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 139.9, 134.5, 134.4, 133.4, 131.2, 129.0, 129.0, 128.5, 126.4, 125.2, 121.4 (q, *J* = 258.0 Hz), 116.8, 72.6 (q, *J* = 3.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -59.6. HRMS-EI (*m/z*): Calcd for $C_{10}H_9F_3OS^+$ [M]⁺, 234.0321. Found, 234.0324.

Methyl 2-(((trifluoromethoxy)methyl)thio)benzoate (3n)

Following the general synthetic procedure A, methyl (2-methoxycarbonylphenyl)sulfoxide 3-1n (49.6 mg, 0.25 mmol, 1.0 equiv.) was employed. Purification by flash column chromatography using hexane/ethyl acetate as eluent afforded compound 3-3n as a colorless oily liquid (39.2 mg, 59% yield).

 $R_f = 0.50$ [*n*-hexane : EA = 50 : 1(v/v)]. NMR Spectroscopy: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.63 – 7.48 (m, 2H), 7.32 – 7.27 (m, 1H), 5.36 (s, 2H), 3.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 138.0, 133.1, 131.3, 127.4, 126.3, 121.5 (q, *J* = 258.1 Hz), 70.2 (q, *J* = 3.5 Hz).52.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -59.7. HRMS-EI (*m/z*): Calcd for C₁₀H₉F₃O₃S⁺ [M]⁺, 266.0219. Found, 266.0220.

1-(4-(((trifluoromethoxy)methyl)thio)phenyl)ethan-1-one (30)

According to the general synthetic procedure A, methyl(4-acetylphenyl)sulfoxide **10** (45.6 mg, 0.25 mmol, 1.0 equiv.) was employed as the starting material. Purification via flash column chromatography using a hexane/ethyl acetate eluent system afforded the desired compound **30** as a colorless oily liquid (19.4 mg, 31% yield).

 $R_f = 0.40$ [*n*-hexane : EA = 100 : 1(v/v)]. NMR Spectroscopy: ¹H NMR (400 MHz, Acetonitrile-*d*₃) δ 7.94 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 8.3 Hz, 2H), 5.57 (s, 2H), 2.55 (s, 3H); ¹³C NMR (151 MHz, CD₃CN) δ 198.1, 140.5, 136.9, 130.0, 129.5, 122.4 (q, *J* = 256.6 Hz), 72.1 (q, *J* = 3.5 Hz). 26.9; ¹⁹F NMR (376 MHz, CD₃CN) δ -60.0. HRMS-EI (*m/z*): Calcd for $C_{10}H_9F_3O_2S^+$ [M]⁺, 250.0270. Found, 250.0268.

Naphthalen-2-yl((trifluoromethoxy)methyl)sulfane (3p)

S_OCF₃

Following the general synthetic procedure A, methyl(2-naphthyl)sulfoxide **1p** (47.6 mg, 0.25 mmol, 1.0 equiv.) was employed. Purification via flash column chromatography using n-hexane/ethyl acetate as the eluent afforded **3p** as a colorless oily liquid (43.2 mg, 67% yield).

 $R_f = 0.40 [n-hexane : EA = 200 : 1(v/v)]$. NMR Spectroscopy: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 – 7.95 (m, 1H), 7.87 – 7.79 (m, 3H), 7.59 – 7.49 (m, 3H), 5.38 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 133.6, 132.7, 130.5, 130.5, 129.1, 128.3, 127.8, 127.7, 126.9, 126.7, 121.4 (q, J = 258.2 Hz), 72.7 (q, J = 3.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -59.4. HRMS-EI (m/z): Calcd for C₁₂H₉F₃OS⁺ [M]⁺, 258.0321. Found, 258.0322.

Anthracen-9-yl((trifluoromethoxy)methyl)sulfane (3q)

According to General Procedure A, methyl(9-anthryl)sulfoxide 1q (60.1 mg, 0.25 mmol, 1.0 equiv.) was employed as the starting material. Purification via flash column chromatography using n-hexane/ethyl acetate as eluent afforded compound 3q as a colorless oily liquid (51.0 mg, 66% yield).

 $R_f = 0.30$ [*n*-hexane : EA = 200 : 1(v/v)]. NMR Spectroscopy: ¹H NMR (600 MHz, Chloroform-*d*) δ 8.87 (d, *J* = 9.0 Hz, 2H), 8.56 (s, 1H), 8.04 (d, *J* = 8.5 Hz, 2H), 7.64 (t, *J* = 7.7 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 2H), 5.27 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 134.8, 131.9, 130.6, 129.1, 127.3, 126.6, 125.7, 125.7, 121.4 (q, *J* = 257.9 Hz), 74.4 (q, *J* = 3.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -59.8. HRMS-EI (*m/z*): Calcd for C₁₆H₁₁F₃OS⁺ [M]⁺, 308.0477. Found, 308.0477.

2-(((trifluoromethoxy)methyl)thio)pyridine (3r)

__OCF₃

According to General Procedure A, methyl(2-pyridyl)sulfoxide **1r** (35.3 mg, 0.25 mmol, 1.0 equiv.) was employed. Purification by flash column chromatography (eluent: n-hexane/ethyl acetate) afforded the target compound **3r** as a colorless oily liquid (26.1 mg, 50% yield).

 $R_f = 0.30$ [*n*-hexane : EA = 100 : 1(v/v)]. NMR Spectroscopy: ¹H NMR (400 MHz, Acetonitrile-*d*₃) δ 8.49 (ddd, *J* = 4.9, 1.9, 0.9 Hz, 1H), 7.68 (td, *J* = 7.8, 1.9 Hz, 1H), 7.34 (dt, *J* = 8.0, 1.1 Hz, 1H), 7.19 (ddd, *J* = 7.4, 4.9, 1.1 Hz, 1H), 5.87 (s, 2H); ¹³C NMR (151 MHz, CD₃CN) δ 155.0, 150.7, 138.3, 123.6, 122.5 (q, *J* = 256.1 Hz), 122.3, 68.6 (q, *J* = 3.5 Hz); ¹⁹F NMR (376 MHz, CD₃CN) δ -58.9. HRMS-EI (*m*/*z*): Calcd for C₇H₆F₃NOS⁺ [M]⁺, 209.0117. Found, 209.0114.

2-(((trifluoromethoxy)methyl)thio)thiophene (3s)

S S OCF₃

According to the general synthetic procedure A, methyl(2-thienyl)sulfoxide **1s** (36.5 mg, 0.25 mmol, 1.0 equiv.) was employed. The ¹⁹F NMR yield of **3s** was determined to be 71% through comparative integration analysis between its characteristic resonance at -59.4 ppm and the reference signal of trifluorotoluene (-62.8 ppm). HRMS-EI (m/z): Calcd for C₆H₅F₃OS₂⁺ [M]⁺, 213.9728. Found, 213.9727.

2-methyl-3-(((trifluoromethoxy)methyl)thio)furan (3t)

Following the general synthetic procedure A, methyl(2-(2-methylfuryl)) sulfoxide **1t** (36.1 mg, 0.25 mmol, 1.0 equiv.) was treated as described. Purification by flash column chromatography using hexanes/EtOAc as eluent afforded colorless oily liquid **3t** (47.6 mg, 80% yield).

 $R_f = 0.40 \ [n-hexane : EA = 200 : 1(v/v)]$. NMR Spectroscopy: ¹H NMR (600 MHz, Chloroform-*d*) δ 7.34 – 7.27 (m, 1H), 6.42 – 6.38 (m, 1H), 5.00 (s, 2H), 2.37 (s, 3H); ¹³C NMR

(151 MHz, CDCl₃) δ 156.6, 141.1, 114.9, 107.9, 121.5 (q, J = 257.7 Hz), 73.7 (t, J = 3.4 Hz), 11.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -59.0. HRMS-EI (*m/z*): Calcd for C₇H₇F₃O₂S⁺ [M]⁺, 212.0113. Found, 212.0112.

2-(((trifluoromethoxy)methyl)thio)quinoline (3u)

Following the general synthetic procedure A, methyl(2-(2-methylfuryl)) sulfoxide **1t** (36.1 mg, 0.25 mmol, 1.0 equiv.) was treated as described. Purification by flash column chromatography using hexanes/EtOAc as eluent afforded colorless oily liquid **3t** (47.6 mg, 80% yield).

 $R_f = 0.30 [n-hexane : EA = 100 : 1(v/v)]$. NMR Spectroscopy: ¹H NMR (600 MHz, Chloroform-*d*) δ 8.01 (d, J = 8.4 Hz, 2H), 7.77 (d, J = 8.1 Hz, 1H), 7.71 (t, J = 7.7 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.31 – 7.26 (m, 1H), 6.00 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 154.2, 148.2, 136.8, 130.2, 128.6, 127.8, 126.7, 126.2, 121.8 (q, J = 257.9 Hz), 120.7, 66.4 (q, J = 3.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -59.8. HRMS-EI (m/z): Calcd for C₁₁H₈F₃NOS⁺ [M]⁺, 259.0273. Found, 259.0273.

((trifluoromethoxy)methyl)(4'-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)sulfane (3v)

Following the general procedure A, methyl(4-(4-(trifluoromethyl)phenyl)phenyl)sulfoxide 1v (71.1 mg, 0.25 mmol, 1.0 equiv.) was employed. Purification by flash column chromatography using hexanes/ethyl acetate as eluent afforded compound 3v as a white solid (30.9 mg, 38% yield).

 $R_f = 0.30 [n-hexane : EA = 100 : 1(v/v)]$. NMR Spectroscopy: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 – 7.66 (m, 4H), 7.59 (s, 4H), 5.33 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 139.8, 133.6, 131.7, 128.2, 127.5, 126.0 (q, *J* = 3.7 Hz), 124.4 (q, *J* = 272.0 Hz), 121.5

(q, J = 258.2 Hz), 72.5 (q, J = 3.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -59.5 (s, 3F), -62.5 (s, 3F). HRMS-EI (*m/z*): Calcd for C₁₅H₁₀F₆OS⁺ [M]⁺, 352.0351. Found, 352.0352.

2-(((trifluoromethoxy)methyl)thio)benzo[b]thiophene (3w)

Following the general procedure A, methyl(2-benzothienyl)sulfoxide 1w (49.1 mg, 0.25 mmol, 1.0 equiv.) was employed. Purification by flash column chromatography using n-hexane/ethyl acetate as eluent afforded the desired product 3w as a white solid (29.0 mg, 44% yield).

 $R_f = 0.40 [n-hexane : EA = 200 : 1(v/v)]$. NMR Spectroscopy: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.69 (m, 2H), 7.51 (s, 1H), 7.41 – 7.34 (m, 2H), 5.23 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 142.5, 139.4, 131.9, 131.6, 125.3, 124.8, 123.8, 122.0, 121.3 (q, *J* = 258.6 Hz), 73.6 (q, *J* = 3.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -59.4. HRMS-EI (*m/z*): Calcd for C₁₀H₇F₃OS₂⁺ [M]⁺, 263.9885. Found, 263.9886.

tert-butyl((trifluoromethoxy)methyl)sulfane (3x)

According to the general synthetic procedure A, methyl tert-butyl sulfoxide 1x (30.1 mg, 0.25 mmol, 1.0 equiv.) was employed. The ¹⁹F NMR yield of 3x was determined to be 78% through comparative integration of its characteristic resonance at -59.3 ppm with that of trifluorotoluene (-62.8 ppm) as an internal standard. HRMS-EI (*m/z*): Calcd for C₆H₁₁F₃OS⁺ [M]⁺, 188.0477. Found, 188.0476.

Dodecyl((trifluoromethoxy)methyl)sulfane (3y)

According to the general synthetic procedure A, methyl(1-dodecyl)sulfoxide 1y (58.1 mg, 0.25 mmol, 1.0 equiv.) was employed. Purification via flash column chromatography using hexane/ethyl acetate as eluent afforded the desired product 3y as a white solid (49.7 mg, 66% yield).

 $R_f = 0.50$ [*n*-hexane : EA = 200 : 1(v/v)]. NMR Spectroscopy: ¹H NMR (400 MHz, Chloroform-*d*) δ 5.04 (s, 2H), 2.69 (t, *J* = 7.4 Hz, 2H), 1.73 – 1.57 (m, 2H), 1.43 – 1.18 (m, 21H); ¹³C NMR (101 MHz, CDCl₃) δ 121.3 (d, *J* = 257.5 Hz), 71.0 (q, *J* = 3.4 Hz).32.0, 31.9, 29.6, 29.6, 29.5, 29.3, 29.3, 29.1, 28.6, 22.7, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -59.7. HRMS-EI (*m/z*): Calcd for C₁₂H₂₅S⁺ [M-CH₂OCF₃]⁺, 201.1671. Found, 201.1669.

Flurbiprofen derivatives (3z)

According to the general synthetic procedure A, flurbiprofen derivative 1z (95.6 mg, 0.25 mmol, 1.0 equiv.) was subjected to the reaction. The crude product was purified by flash column chromatography using a hexane/ethyl acetate eluent system to afford compound 3z as a white solid (68.5 mg, 61% yield).

 $R_f = 0.40$ [*n*-hexane : EA = 5 : 1(v/v)]. NMR Spectroscopy: ¹H NMR (600 MHz, Chloroform-*d*) δ 7.59 (d, *J* = 7.7 Hz, 2H), 7.52 (d, *J* = 8.2 Hz, 2H), 7.49 – 7.44 (m, 3H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.30 – 7.18 (m, 2H), 7.07 (d, *J* = 8.3 Hz, 2H), 5.24 (s, 2H), 4.15 (q, *J* = 7.2 Hz, 1H), 1.68 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.3, 159.9 (d, *J* = 248.8 Hz), 151.0, 141.1 (d, *J* = 7.7 Hz), 135.4, 133.1, 131.2 (d, *J* = 4.1 Hz), 130.5, 129.1 (d, *J* = 2.9 Hz), 128.6, 127.9, 123.7 (d, *J* = 3.2 Hz),122.4, 121.4 (q, *J* = 258.2 Hz), 115.5, 115.3, 73.0 (q, *J* = 3.6 Hz), 45.2, 18.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -59.4 (s, 3F), -117.0 (s, 1F). HRMS-ESI (*m/z*): Calcd for C₂₃H₁₈F₄NaO₃S⁺ [M+Na]⁺, 473.0805. Found, 473.0797.

Naproxen derivatives (3aa)

According to the general procedure A, the naproxen derivative **1aa** (92.1 mg, 0.25 mmol, 1.0 equiv.) was employed. Purification by flash column chromatography using hexanes/ethyl acetate as eluent afforded the desired product **3aa** as a white solid (36.2 mg, 33% yield).

 $R_f = 0.20$ [*n*-hexane : EA = 5 : 1(v/v)]. NMR Spectroscopy: ¹H NMR (600 MHz, Chloroform-*d*) δ 7.80 – 7.72 (m, 3H), 7.56 – 7.44 (m, 3H), 7.20 – 7.11 (m, 2H), 7.00 (d, *J* = 8.2 Hz, 2H), 5.21 (s, 2H), 4.10 (q, *J* = 7.3 Hz, 1H), 3.93 (s, 3H), 1.70 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.9, 157.8, 151.1, 134.9, 133.9, 133.0, 130.2, 129.3, 129.0, 127.5, 126.2, 126.0, 122.4, 121.3 (q, *J* = 258.1 Hz), 119.2, 105.6, 72.98 (q, *J* = 3.5 Hz), 55.3, 45.6, 18.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -59.5. HRMS-ESI (*m*/*z*): Calcd for C₂₂H₁₉F₃NaO₄S⁺ [M+Na]⁺, 459.0848. Found, 459.0844.

Fenofibrate derivatives (3bb)

Following the general synthetic procedure A, fenofibrate derivative **1bb** (92.1 mg, 0.25 mmol, 1.0 equiv.) was employed as the starting material. Purification by flash column chromatography using n-hexane/ethyl acetate as the eluent system afforded the desired product **3bb** as a white solid (45.8 mg, 35% yield).

 $R_f = 0.35$ [*n*-hexane : EA = 5 : 1(v/v)]. NMR Spectroscopy: ¹H NMR (600 MHz, Chloroform-*d*) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.2 Hz, 2H), 7.45 (d, *J* = 8.1 Hz, 2H), 7.02 - 6.86 (m, 4H), 5.23 (s, 2H), 1.82 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 194.2, 172.3, 159.5, 150.6, 138.6, 136.4, 133.1, 132.3, 131.3, 131.1, 130.9, 128.7,

122.3, 121.3 (q, J = 240.4 Hz) 117.4, 79.5, 72.9 (q, J = 3.4 Hz), 25.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -59.4. HRMS-ESI (*m*/*z*): Calcd for C₂₅H₂₁ClF₃O₅S⁺ [M+H]⁺, 525.0745. Found, 525.0743.

Supplementary References

[1] S. Guo, F. Cong, R. Guo, L. Wang and P. Tang, Nat. Chem., 2017, 9, 546–551.

Spectra Data

¹³C NMR spectrum (101 MHz, CDCl₃) of **1z**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1aa**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3c**

 1 H NMR spectrum (400 MHz, CDCl₃) of **3d**

¹H NMR spectrum (400 MHz, CDCl₃) of 3f

¹H NMR spectrum (400 MHz, CDCl₃) of **3**l

¹H NMR spectrum (400 MHz, CDCl₃) of **3n**

¹³C NMR spectrum (151 MHz, CD₃CN) of **30**

¹H NMR spectrum (400 MHz, CDCl₃) of **3p**

 13 C NMR spectrum (151 MHz, CDCl₃) of **3t**

¹H NMR spectrum (600 MHz, CDCl₃) of **3u**

240 230 220 210 200 190 180 170 160 150 140 130 120 110 10 90 80 70 60 50 40 30 20 10 0 -10 11 (pm) -30 -40 -20

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 3v

¹H NMR spectrum (600 MHz, CDCl₃) of 3z

¹H NMR spectrum (600 MHz, CDCl₃) of **3bb**

