Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Microwave-Assisted One-Pot Synthesis of Dibenzo[b,d]oxepines via Domino

C–C Coupling and Cyclo-condensation Pathway

Pradip S. Waghmare, and Gedu Satyanarayana*

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana - 502284, India.

Phone: (040) 2301 6251; Fax: (040) 2301 6003/32, E-mail: gvsatya@chy.iith.ac.in

Table of Contents:

1	General information	S02-S03
2	Experimental section and General procedure for the synthesis	S03-S05
3	Characterization data	S06-S28
4	¹ H NMR and ¹³ C NMR Spectra	S29-S69
5	X-Ray data	S70-S71

EXPERIMENTAL SECTION

General: IR spectra were recorded on a Bruker Tensor 37 (FTIR) spectrophotometer. ¹H NMR spectra were recorded on Bruker Avance 400 (400 MHz) and 600 (600 MHz) spectrometers at 295 K in CDCl₃; chemical shifts (δ ppm) and coupling constants (Hz) are reported in standard fashion with reference to either internal standard tetramethylsilane (TMS) ($\delta H = 0.00$ ppm) or CHCl₃ (δ H = 7.26 ppm). ¹³C{1H} NMR spectra were recorded on Bruker Avance 400 (101 MHz) and 600 (151 MHz) spectrometers at RT in CDCl₃; chemical shifts (δ ppm) are reported relative to CHCl₃ [$\delta C = 77.16$ ppm (central line of triplet)]. In the ¹³C{1H} NMR, the nature of carbons (C, CH, CH₂, and CH₃) was determined by recording the DEPT-135 spectra and is given in parentheses and noted as s = singlet (for C), d = doublet (for CH), t = triplet (for CH₂) and q = quartet (for CH₃). In the ¹H-NMR, the following abbreviations were used throughout: s = singlet, d = doublet, t = triplet, q = quartet, qui = quintet, sept = septet, dd = doublet of doublet, m = multiplet, and brs = broad singlet. The assignment of signals was confirmed by 1H, ¹³C{¹H} CPD, and DEPT spectra. High-resolution mass spectra (HR-MS) were recorded on an Agilent 6538 UHD Q-TOF electron spray ionization (ESI) mode. Melting points are recorded using the Tempo and Mettler FP1 melting point apparatus in capillary tubes and are uncorrected. A single crystal of **3aa** was selected and mounted on an Oxford SuperNova, Dual, Cu at zero, Eos diffractometer. The crystal was kept at 298 K during data collection. Using Olex2, the structure was solved with Olex2.solve, structure solution program using direct methods, and refined with the olex2. Refinement package using Gauss-Newton minimization. All small-scale dry reactions were carried out using Schlenk tubes under an inert atmosphere. Reactions were monitored by TLC on silica gel using a combination of hexane and ethyl acetate as eluents. Reactions generally run under argon or a nitrogen atmosphere. Solvents were distilled before use; petroleum ether with a boiling range of 60 to 80 °C was used. Palladiumcatalyzed reactions were done in DMF and EtOH. Acme's silica gel (60-120 mesh) was used for column chromatography (approximately 20 g per gram of crude material). The microwave irradiation experiments were carried out in a dedicated CEM- Discover monomode microwave apparatus, operating at a frequency of 2.45 GHz with continuous irradiation power from 0 to 300 W and utilization of the standard absorbance level of 100 W. The reactions were carried out in 10 mL glass tubes, sealed with a Teflon septum, and placed in the microwave cavity. The reactions were irradiated at the required set temperature for the stipulated time and then cooled to ambient temperature with air jet cooling. Reactions were monitored by TLC on silica gel using a combination of hexane and ethyl acetate as eluents. Reactions were generally run

under argon or a nitrogen atmosphere. Solvents were distilled prior to use; petroleum ether with a boiling range of 60 to 80 °C was used. Pd(OAc)₂, potassium carbonate, Pd(PPh₃)₄, and Caesium Carbonate were purchased from Sigma-Aldrich and used as received. Substituted 2formylphenyl boronic acids, 2-indophenols, 2-bromophenols, and 2-bromoacetophenones were purchased from TCI/local sources and used as received. Acme's silica gel (100–200 mesh) was used for column chromatography (approximately 20 g per gram of crude material).

The following 2-bromo-1-phenylethan-1-ones/2-bromoacetonitrile/ethyl 2-bromoacetates (1a-1j) are purchased and used as received, as shown in Table-1S.

Table-1S: 2-Bromo-1-phenylethan-1-ones/2-bromoacetonitrile/ethyl 2-bromoacetates (1a-1j).

The following 2-bromophenols/2-iodophenols (**2a–2m**) are purchased and used as received,

 Table-2S: 2-Bromophenols/ 2-Iodophenols (2a-2m).

as shown in Table-2S.

The following 2-formylphenyl boronic acids **4a-4f** are purchased and used as received, as shown in Table 3S.

General Procedure – 1 (GP-1) for the Preparation of *o*-Alkylphenyl ethers/2-(2-bromophenoxy)acetonitrile/alkyl 2-(2-bromophenoxy)acetate (3a-3t):

In an oven-dried round-bottom flask equipped with a magnetic stir bar, were added 2bromophenols/2-iodophenols **2a-2m** (1 mmol) in acetone (2 mL), 2-bromo-1-phenylethan-1ones/2-bromoacetonitrile/ethyl 2-bromoacetates **1a-1j** (1 mmol), and K₂CO₃ (2 mmol). The resultant reaction mixture was stirred in an oil bath preheated to 60 °C for 12 h. The progress of the reaction was monitored by thin-layer chromatography. The reaction was cooled to room temperature, quenched with 70 mL of water, and extracted with ethyl acetate (3 × 50 mL). The combined organic layers solution was washed with a brine solution and dried over anhydrous sodium sulphate. The solvent was removed in vacuo, and the residue was purified by chromatography (petroleum ether/ ethyl acetate: 99:01 to 90:10) furnished the products **3a-3x** (76%-90%) as white/yellow solids or oil.

General Procedure - 2 (GP-2) General strategy for the preparation of dibenzo[*b*,*d*]oxepins (5aa-5le):

To an oven-dried 10 mL glass tube sealed with Teflon septum equipped with a magnetic stir bar, were added 2-(2-bromophenoxy)-1-phenylethan-1-ones **3a-3x** (0.2 mmol), (2formylphenyl)boronic acid **4a-4f** (0.3 mmol), followed by Pd(PPh₃)₄ (5 mol%), Cs₂CO₃ (4 mmol) and solvent DMF:EtOH (3:1, 2 mL), at room temperature under inert atmosphere. The resultant reaction mixture was subjected to microwave irradiation at 120 °C for 15 min with 100 W in a closed vessel. The completion of the reaction was monitored by TLC (98:02 to 75:25 hexane and ethyl acetate). The reaction mixture was cooled to room temperature and extracted with ethyl acetate (3 × 15 mL). The combined organic layers were washed with a brine solution, dried (Na₂SO₄), and filtered. Evaporation of organic solvents under reduced pressure and purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate) furnished dibenzo[*b,d*]oxepine **5aa-5le** (70% to 94%) as a colourless/brown/greenish liquid, colourless gel, *or* white solid. The following starting material is reported in the literature excluding **3i**, **3k**, **3l**, **3p**, **3t**, **3u**, **3v**, **3s**, and **3w** (Table 3S).

Table-4S: Keto-ethers (3a-3x).¹

^{*a*}**Reaction conditions**: all reactions were performed using **1a-1j** (0.1 mmol), **2a-2m** (0.1 mmol), K₂CO₃ (2 equiv), acetone (5 mL), 60 °C, 3 h. ^{*b*}Isolated yields of **3a-3x**.

Reference:

 Kishore, D. R.; Satyanarayana, G. Intermolecular Sonogashira Coupling and Intramolecular 5-Exo-Dig Cycloisomerization Cascade: A One-Pot Pathway for Accessing (3-Benzylbenzofuran-2-Yl)(Phenyl)Methanones. J. Org. Chem. 2022, 87 (15), 10158–10172. https://doi.org/10.1021/acs.joc.2c01101.

1-(4-Bromophenyl)-2-(2-iodophenoxy)ethan-1-one (3i): GP-1 was carried out with **1g** (278 mg, 1 mmol) **2a** (220 mg, 1 mmol), K₂CO₃ (276 mg, 2 mmol), and acetone (5 mL) at 60 °C for 12 h. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 90/10) furnished the product **3i** (366 mg, 88%) as a white solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (**1g**) = 0.40, R_f (**2a**) = 0.30, R_f (**3i**) = 0.50, UV detection. Melting point: 58-60 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3065, 2922, 1699, 1582, 1221, 1014, 970, 821, 750 cm⁻¹. ¹H **NMR** (600 MHz, CDCl₃) δ = 7.89 (dd, *J* = 8.7, 1.9 Hz, 2H), 7.76 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.61 (dd, *J* = 8.7, 1.9 Hz, 2H), 7.23 (ddd, *J* = 8.3, 7.5, 1.6 Hz, 1H), 6.77 – 6.68 (m, 2H), 5.22 (s, 2H). ¹³C {¹H} **NMR** (151 MHz, CDCl₃) δ = 193.6, 156.6, 139.9, 133.0, 132.2 (2C), 130.1 (2C), 129.6, 129.3, 123.7, 112.5, 86.4, 72.0 ppm. **HRMS** (ESI) m/z: [(M+Na)]⁺ Calcd for C₁₄H₁₀⁷⁹BrINaO₂⁺ 438.8801; Found: 438.8770; Calcd for C₁₄H₁₀⁸¹BrINaO₂⁺ 440.8781; Found: 440.8752.

2-(2-Bromo-4-ethylphenoxy)-1-phenylethan-1-one (3k): GP-1 was carried out with **1a** (199 mg, 1 mmol), **2d** (201 mg, 1 mmol), K_2CO_3 (276 mg, 2 mmol), and acetone (5 mL) 60 °C for 12 h. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 90/10) furnished the product **3k** (280 mg, 88%) as a yellow oil. TLC (petroleum ether/ethyl acetate 98:2, R_f (**1a**) = 0.40, R_f (**2d**) = 0.50, R_f (**3k**) = 0.50, UV detection. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3748, 2964, 2343, 1701, 1598, 1494, 1224, 1085, 970, 810, 754, 688 cm⁻¹. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.02 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.65 - 7.56 (m, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 7.39 (d, *J* = 2.1 Hz, 1H), 7.02 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.76 (d, *J* = 8.4 Hz, 1H), 5.30 (s, 2H), 2.56 (q, *J* = 7.6 Hz, 2H), 1.19 (t, *J* = 7.6 Hz, 3H). ¹³C {¹H} **NMR** (151 MHz, CDCl₃) δ = 194.4, 152.7, 139.3, 134.5, 134.0, 133.0, 128.9 (2C), 128.4 (2C), 127.8, 114.1, 112.3, 72.3, 27.8, 15.6 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₁₆H₁₆⁷⁹BrO₂⁺ 319.0328; Found: 319.0332; Calcd for C₁₆H₁₆⁸¹BrO₂⁺ 321.0308; Found: 321.0310.

2-(2-Bromo-4-(tert-butyl)phenoxy)-1-phenylethan-1-one (31): GP-1 was carried out with **1a** (199 mg, 1 mmol), **2l** (229 mg, 1 mmol), K₂CO₃ (276 mg, 2 mmol), and Acetone (5 mL). Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **1v** (246 mg, 85%) as a colourless oil. TLC (petroleum ether/ethyl acetate 98:2, R_f (**1a**) = 0.40, R_f (**2l**) = 0.50, R_f (**3l**) = 0.50, UV detection. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3739, 3598, 2960, 2345, 2241, 2174, 1701, 1496, 1224, 1087, 971, 757, 693 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.77 (dd, *J* = 8.5, 1.4 Hz, 2H), 7.39 – 7.33 (m, 1H), 7.30 (d, *J* = 2.4 Hz, 1H), 7.27 – 7.21 (m, 2H), 6.95 (dd, *J* = 8.6, 2.4 Hz, 1H), 6.51 (d, *J* = 8.6 Hz, 1H), 5.05 (s, 2H), 1.01 (s, 9H). ¹³C {¹H} **NMR** (100 MHz, CDCl₃) δ = 194.42, 152.40, 146.33, 134.54, 134.06, 130.90, 128.9 (2C), 128.4(2C), 125.38, 113.68, 112.11, 72.22, 34.35, 31.4 (3C) ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₁₈H₂₀⁷⁹BrO₂⁺ 347.0641; Found: 347.0643; Calcd for C₁₈H₂₀⁸¹BrO₂⁺ 349.0621; Found: 349.0623.

2-(2-Bromo-4-(trifluoromethyl)phenoxy)-1-phenylethan-1-one (3p): GP-1 was carried out with **1a** (199 mg, 1 mmol), **2h** (241 mg, 1 mmol), K₂CO₃ (276 mg, 2 mmol), and Acetone (5 mL). Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 90/10) furnished the product **1x** (305 mg, 85%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, Rf (**1a**) = 0.40, R_{*f*} (**2h**) = 0.50, R_{*f*} (**3p**) = 0.50, UV detection. Melting point: 78-80 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} =3739, 3598, 2960, 2345, 2241, 2174, 1701, 1496, 1224, 1087, 971, 757, 693 cm⁻¹. ¹H **NMR** (400 MHz, CDCl₃) δ = 8.00 (dd, *J* = 8.5, 1.4 Hz, 2H), 7.67 (dd, *J* = 8.2, 0.7 Hz, 1H), 7.65 – 7.60 (m, 1H), 7.53 – 7.47 (m, 1H), 7.12 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.01 (d, *J* = 1.6 Hz, 1H), 5.42 (s, 2H). ¹³C {¹H} **NMR** (101 MHz, CDCl₃) δ = 192.9, 154.9, 134.3, 134.2, 134.1, 130.90 (q, *J*_{C-F} = 32.9 Hz), 129.04, 128.2, 120.8 (q, *J*_{C-F} = 272.5 Hz), 119.55 (q, *J*_{C-F} = 3.8 Hz), 116.65, 110.27 (q, *J*_{C-F} = 3.8 Hz), 71.64 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₁₅H₁₁⁷⁹BrF₃O₂⁺ 358.9889; Found: 358.9886; C₁₅H₁₁⁸¹BrF₃O₂⁺ 360.9869; Found: 360.9870.

2-(2-Bromo-4-(*tert*-**butyl**)**phenoxy**)-**1-(4-fluorophenyl**)**ethan-1-one (3s): GP-1** was carried out with **1f** (217 mg, 1 mmol), **2l** (229 mg, 1 mmol), K₂CO₃ (276 mg, 2 mmol), and Acetone (5 mL). Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 90/10) furnished the product **3s** (246 mg, 80%) as a colourless oil. TLC (petroleum ether/ethyl acetate 98:2, R_f (**1f**) = 0.40, R_f (**2l**) = 0.50, R_f (**3s**) = 0.50, UV detection. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3055, 2918, 1695, 1602, 1226, 1099, 985, 758 cm⁻¹. ¹H **NMR** (400 MHz, CDCl₃) δ = 8.10 – 7.96 (m, 2H), 7.48 (d, *J* = 2.4 Hz, 1H), 7.14 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.12–7.05 (m, 2H), 6.69 (d, *J* = 8.6 Hz, 1H), 5.16 (s, 2H), 1.20 (s, 9H). ¹³C {¹H} **NMR** (101 MHz, CDCl₃) δ = 193.3, 166.3 (d, *J*_{C-F} = 256.3 Hz), 152.2, 146.5, 131.3 (d, *J*_{C-F} = 9.5 Hz, 2C), 131.0 (d, *J*_{C-F} = 3.0 Hz), 130.9, 125.4, 116.1 (d, *J* = 21.9 Hz, 2C), 113.5, 112.0, 72.3, 72.3, 31.4 (3C) ppm. **HRMS** (ESI) m/z: [(M+Na)]⁺ Calcd for C₁₈H₁₈⁷⁹BrFNaO₂⁺ 387.0366; Found: 387.0370; Calcd for C₁₈H₁₈⁸¹BrFNaO₂⁺ 389.0346; Found: 389.0359.

2-(2-Bromo-4-methylphenoxy)-1-(4-fluorophenyl)ethan-1-one (3t): GP-1 was carried out with **1f** (217 mg, 1 mmol), **2c** (187 mg, 1 mmol), K₂CO₃ (276 mg, 2 mmol), and Acetone (5 mL). Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 90/10) furnished the product **3t** (271 mg, 84%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (**1f**) = 0.40, R_f (**2c**) = 0.50, R_f (**3t**) = 0.50, UV detection. Melting point: 60-62 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3711, 3640, 3529, 2702, 2343, 2246, 2125, 2039, 1700, 1495, 1232, 756, 687 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 8.11 – 8.03 (m, 2H), 7.36 – 7.33 (m, 1H), 7.17 – 7.11 (m, 2H), 7.01 – 6.95 (m, 1H), 6.72 (d, *J* = 8.3 Hz, 1H), 5.22 (s, 1H), 2.24 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 193.1, 166.2 (d, *J*_{C-F} = 256.1 Hz), 152.3, 134.1, 132.9, 131.3 (d, *J*_{C-F} = 9.5 Hz), 130.9 (d, *J*_{C-F} = 3.0 Hz), 128.9, 116.0 (d, *J*_{C-F} = 21.9 Hz), 113.8, 112.0, 72.2, 20.2 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₁₅H₁₃⁷⁹BrFO₂⁺ 323.0077; Found: 323.0074; Calcd for C₁₅H₁₃⁸¹BrFO₂⁺ 325.0057; Found: 325.0056.

2-(2-Bromo-4-chlorophenoxy)-1-(*p***-tolyl)ethan-1-one (3u): GP-1** was carried out with **1b** (213 mg, 1 mmol), **2j** (207 mg, 1 mmol), K₂CO₃ (276 mg, 2 mmol), and Acetone (5 mL). Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 90/10) furnished the product **3u** (267 mg, 79%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, $R_f(1b) = 0.40$, $R_f(2j) = 0.50$, $R_f(3u) = 0.50$, UV detection. Melting point: 78-80 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} =2922, 1695, 1604, 1475, 1226, 1087, 970, 809 cm⁻¹. ¹H **NMR** (400 MHz, CDCl₃) δ = 7.78 (d, *J* = 8.3 Hz, 2H), 7.40 (d, *J* = 2.5 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.03 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.61 (d, *J* = 8.8 Hz, 1H), 5.19 (s, 2H), 2.31 (s, H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ = 193.1, 153.5, 145.1, 133.0, 131.7, 129.6, 128.3 (2C), 128.2 (2C), 126.94, 114.4, 112.8, 71.8, 21.8 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₁₅H₁₃⁷⁹BrClO₂⁺ 338.9782; Found: 338.9787; [(M+H)]⁺ Calcd for C₁₅H₁₃⁸¹BrClO₂⁺ 340.9761; Found: 340.9763.

1-([1,1'-Biphenyl]-4-yl)-2-(2-bromo-4-chlorophenoxy)ethan-1-one (3v): GP-1 was carried out with **1e** (275 mg, 1 mmol), **2j** (207 mg, 1 mmol), K₂CO₃ (276 mg, 2 mmol), and Acetone (5 mL). Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 90/10) furnished the product **3v** (384 mg, 87%) as a yellow viscous oil. TLC (petroleum ether/ethyl acetate 98:2, R_f (**1e**) = 0.40, R_f (**2j**) = 0.50, R_f (**3v**) = 0.50, UV detection. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3066, 2857, 1694, 1600, 1476, 1229, 973, 735, 694, cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) δ = 8.09 (d, *J* = 8.6 Hz, 2H), 7.73 (d, *J* = 8.6 Hz, 2H), 7.64 (dd, *J* = 7.1, 1.4 Hz, 2H), 7.56 (d, *J* = 2.5 Hz, 1H), 7.50 (d, *J* = 7.1 Hz, 1H), 7.53 – 7.345 (m, 2H), 7.45 – 7.37 (m, 1H), 7.19 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.77 (d, *J* = 8.8 Hz, 1H), 5.35 (s, 2H). ¹³C {¹H} **NMR** (100 MHz, CDCl₃) δ = 193.4, 153.6, 146.9, 139.7, 133.3, 132.9, 129.2 (2C), 129.0 (2C), 128.7, 128.4, 127.6 (2C), 127.4 (2C), 127.3, 114.6, 113.0, 72.2 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₂₀H₁₅⁷⁹BrClO₂⁺ 400.9938; Found: 400.9942; Calcd for C₂₀H₁₅⁸¹BrClO₂⁺ 402.9918; Found: 402.9930.

Dibenzo[*b,d*]**oxepin-6-yl(phenyl)methanone (5aa): GP-2** was carried out with **3a** (67 mg, 0.2 mmol), **4a** (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5aa** (55 mg, 94%) as a white crystalline solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (**3a**) = 0.40, R_f (**5aa**) = 0.50, UV detection. Melting point: 128-130 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3846, 3747, 3629, 3358, 3251, 2347, 2231, 2172, 2134, 1905, 1664, 1526, 1261, 759 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.91 – 7.86 (m, 2H), 7.67 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.62 – 7.56 (m, 1H), 7.52 – 7.43 (m, 4H), 7.39 (td, *J* = 7.5, 1.3 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.26 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.17 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.14 (s, 1H). ¹³C {¹H} **NMR** (100 MHz, CDCl₃) δ = 190.3, 159.9, 154.7, 138.5, 137.3, 132.7, 132.5, 132.4, 130.7, 129.97, 129.8, 129.6, 129.5 (2C), 129.2, 128.8, 128.3 (2C), 127.9, 125.9, 121.9 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₂₁H₁₅O₂⁺ 299.1067; Found: 299.1066.

Dibenzo[*b,d*]**oxepin-6-yl**(*p*-tolyl)methanone (5ba): GP-2 was carried out with 3b (61 mg, 0.2 mmol), 4a (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product 5ba (56 mg, 90%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (1b) = 0.40, R_f (5ba) = 0.50, UV detection. Melting point: 128-130 °C. IR (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3734, 3582, 3052, 2359, 1655, 1609, 1485, 1434, 1274, 1196, 966, 758 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.82 (d, *J* = 8.2 Hz, 2H), 7.65 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.49 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.44 (td, *J* = 7.6, 1.5 Hz, 1H), 7.37 (td, *J* = 7.5, 1.3 Hz, 1H), 3.34 – 7.25 (m, 4H), 7.24 (td, *J* = 7.5, 1.4 Hz, 1H), 7.17 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.12 (s, 1H), 2.43 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 189.9, 160.1, 154.9, 143.3, 138.5, 134.6, 132.8, 132.6, 130.75, 130.0, 129.9, 129.8 (2C), 129.5, 129.2, 129.1 (2C), 128.3,

127.91, 125.9, 121.9, 21.8 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₂₂H₁₇O₂⁺ 313.1223; Found: 313.1223.

Dibenzo[*b,d*]**oxepin-6-yl(4-methoxyphenyl)methanone (5ca):** GP-2 was carried out with 3c (64 mg, 0.2 mmol), 4a (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product 5ca (60 mg, 93%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, $R_f(3c) = 0.50$, $R_f(5ca) = 0.50$, UV detection. Melting point: 98-100 °C. IR (MIR-ATR, 4000-600 cm–1) $v_{max} = 3738$, 3604, 3061, 2354, 1650, 16001497, 1435, 1259, 1177, 965, 762 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.99$ (d, J = 8.9 Hz, 2H), 7.67 (dd, J = 7.8, 1.0 Hz, 1H), 7.51 (dd, J = 7.7, 1.7 Hz, 1H), 7.46 (td, J = 7.6, 1.6 Hz, 1H), 7.39 (td, J = 7.5, 1.3 Hz, 1H), 6.98 (d, J = 8.9 Hz, 2H), 3.89 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) $\delta = 188.6$, 163.4, 160.1, 155.3, 138.5, 132.8, 132.7, 132.3 (2 C), 130.7, 130.0, 129.8, 129.7, 129.4, 129.2, 127.9, 127.4, 125.9, 121.7, 113.6 (2 C), 55.6 ppm. HRMS (ESI) m/z: [(M+H)]⁺ Calcd for C₂₂H₁₇O₃⁺ 329.1172; Found: 329.1172.

Dibenzo[*b,d*]**oxepin-6-yl(naphthalen-1-yl)methanone (5da): GP-2** was carried out with **3d** (68 mg, 0.2 mmol), **4a** (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5da** (52 mg, 76%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (**3d**) = 0.50, R_f (**5da**) = 0.50, UV detection. Melting point: 80-82 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) ν_{max} = 3059, 2320, 1732, 1653, 1481, 1435, 1283, 1195, 942, 761 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) δ = 8.48 (s, 1H), 7.97 – 7.93 (m, 2H),

7.91 (d, J = 8.8 Hz, 1H), 7.69 (dd, J = 7.8, 0.9 Hz, 1H), 7.64 – 7.59 (m, 1H), 7.59 – 7.55 (m, 1H), 7.55 – 7.50 (m, 1H), 7.47 (dd, J = 7.7, 1.4 Hz, 1H), 7.40 (td, J = 7.5, 1.3 Hz, 1H), 7.35 – 7.31 (m, 2H), 7.29 (dd, J = 7.8, 1.7 Hz, 1H), 7.27 – 7.24 (m, 1H), 7.23 (s, 1H), 7.14 (dd, J = 7.9, 1.5 Hz, 1H). ¹³C{¹H} **NMR** (100 MHz, CDCl₃) $\delta = 190.1$, 160.1, 155.1, 138.6, 135.3, 134.6, 132.8, 132.6, 132.37, 131.2, 130.9, 130.1, 129.9, 129.7, 129.6, 129.3, 128.7, 128.46, 128.3, 128.0, 127.9, 126.9, 126.0, 125.7, 121.9 ppm. **HRMS** (ESI) m/z: [(M+(-H₂O)]⁺ Calcd for C₂₅H₁₄O⁺ 330.1044; Found: 330.1049.

[1,1'-Biphenyl]-4-yl(dibenzo[*b,d***]oxepin-6-yl)methanone (5ea): GP-2** was carried out with **3e** (73 mg, 0.2 mmol), **4a** (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl 100/00 to 95/05) furnished the product **5ea** (63 mg, 86%) as a light orange-coloured oil. TLC (petroleum ether/ethyl acetate 98:2, R_f (**3e**) = 0.40, R_f (**5ea**) = 0.50, UV detection. **IR** (MIR-ATR, 4000-600 cm⁻¹) ν_{max} = 3808, 3737, 3599, 3052, 2925, 2356, 1658, 1605, 1487, 1273, 1198, 968, 755 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) *δ* = 8.01 (d, *J* = 8.5 Hz, 2H), 7.71 – 7.64 (m, 3H), 7.54 – 7.46 (m, 4H), 7.45 – 7.39 (m, 2H), 7.38 – 7.32 (m, 2H), 7.27 (td, *J* = 7.5, 1.4 Hz, 1H), 7.21 (s, 1H), 7.20 (dd, *J* = 8.0, 1.3 Hz, 1H). ¹³C {¹H} **NMR** (100 MHz, CDCl₃) *δ* = 189.8, 160.1, 154.9, 145.3, 140.0, 138.6, 136.0, 132.8, 132.6, 130.9, 130.4 (2 C), 130.1, 129.9, 129.6, 129.2, 129.1 (2 C), 128.5, 128.3, 127.9, 127.4 (2 C), 127.0 (2 C), 125.9, 121.9 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₂₇H₁₉O₂⁺ 375.1380; Found: 375.1367.

Dibenzo[*b,d*]**oxepin-6-yl(4-fluorophenyl)methanone (5fa): GP-2** was carried out with **3f** (61 mg, 0.2 mmol), **4a** (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min.

Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5fa** (49 mg, 79%) as a yellow oil. TLC (petroleum ether/ethyl acetate 98:2, Rf (**3f**) = 0.40, R_f(**5fa**) = 0.50, UV detection. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3737, 3547, 3041, 2348, 2139, 2095, 1662, 1602, 1498, 1274, 1219, 968, 765 cm⁻¹. ¹**H** NMR (400 MHz, CDCl₃) δ = 7.99 (dd, J = 8.9, 5.4 Hz, 2H), 7.68 (dd, J = 7.8, 1.0 Hz, 1H), 7.51 (dd, J = 7.6, 1.8 Hz, 1H), 7.48 (dd, J = 7.7, 1.5 Hz, 1H), 7.41 (td, J = 7.5, 1.3 Hz, 1H), 2.36 – 7.30 (m, 2H), 7.26 (dd, 7.5, 1.5 Hz, 1H), 7.22 – 7.14 (m, 3H), 7.09 (dd, J = 7.9, 1.4 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ = 188.6, 165.5 (d, J = 254.1 Hz), 160.0, 154.8, 138.6, 133.4 (d, J = 3.1 Hz), 132.7, 132.6, 132.4 (d, J = 9.1 Hz) (2C), 130.9, 130.2, 129.9, 129.7, 129.3, 128.3, 128.0, 126.1, 121.8, 115.6 (d, J = 21.8 Hz) (2C) ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₂₁H₁₄FO₂⁺ 317.0972; Found 317.0972.

(4-Chlorophenyl)(dibenzo[*b,d*]oxepin-6-yl)methanone (5ga): GP-2 was carried out with 3g (65 mg, 0.2 mmol), 4a (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5ga** (51 mg, 78%) as a light greenish oil. TLC (petroleum ether/ethyl acetate 98:2, $R_f(3g) = 0.40$, $R_f(5ga) = 0.50$, UV detection. IR (MIR-ATR, 4000-600 cm⁻¹) ν_{max} =3741, 2351, 2081, 1660, 1594, 1486, 1434, 1272, 1999, 1094, 967, 760 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.89 (d, *J* = 8.7 Hz, 2H), 7.68 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.53 – 7.49 (m, 1H), 7.48 (d, *J* = 8.6 Hz, 2H), 7.44 – 7.38 (m, 1H), 7.34 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.30 (dd, *J* = 11.5, 1.7 Hz, 1H), 7.27 – 7.23 (m, 1H), 7.17 (s, 1H), 7.09 (dd, *J* = 7.9, 1.4 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ = 188.8, 159.9, 154.6, 138.9, 138.6, 135.5, 132.6, 132.5, 131.2 (2C), 130.9, 130.1, 129.9, 129.8, 129.2, 128.7 (2C), 128.5 128.0, 126.0, 121.7 ppm. HRMS (ESI) m/z: [(M+H)]⁺ Calcd for C₂₁H₁₄ClO₂⁺ 333.0677; Found 333.0675.

4'-(Dibenzo[*b,d***]oxepine-6-carbonyl)-[1,1'-biphenyl]-2-carbaldehyde (5ha): GP-2** was carried out with **3h** (74 mg, 0.2 mmol), **4a** (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 90/10) furnished the product **5ha** (37 mg, 50%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (**5h**) = 0.50, R_f (**5ha**) = 0.50, UV detection. Melting point: 162-164 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3868, 3458, 3068, 2354, 2161, 2039, 1696, 1599, 1267, 764 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) δ = 10.05 (s, 1H), 7.92 (dd, *J* = 8.4, 1.4 Hz, 1H), 7.70 – 7.57 (m, 3H), 7.56 – 7.44 (m, 6H), 7.42 (td, *J* = 7.4, 1.5 Hz, 1H), 7.4 – 732 (m, 2H), 7.30 (d, *J* = 8.2 Hz, 1H), 7.19 (s, 1H). ¹³C {¹H} **NMR** (100 MHz, CDCl₃) δ = 192.3, 190.3, 160.0, 154.7, 144.9, 137.8, 137.3, 135.6, 133.9, 133.8, 132.8, 132.7 (2C), 131.7, 131.3, 131.0, 130.9, 129.8, 129.7 (2C), 129.3, 128.9, 128.5 (2C), 128.4, 128.2, 127.9, 122.1 ppm. **HRMS** (ESI) m/z: [(M+K)]⁺ Calcd for C₂₈H₁₈KO₃⁺ 441.0888; Found: 441.0869.

(4-Bromophenyl)(dibenzo[*b,d*]oxepin-6-yl)methanone (5ia): GP-2 was carried out with 3i (83 mg, 0.2 mmol), 4a (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5ia** (51 mg, 68%) as a yellow oil. TLC (petroleum ether/ethyl acetate 98:2, R_f (**3i**) = 0.40, R_f (**5ia**) = 0.50, UV detection. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3062, 2926, 1659, 1585, 1480, 1435, 1273, 1200, 967, 757 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.74 - 7.71 (m, 2H), 7.60 (d, *J* = 7.64 Hz, 1H), 7.58 - 7.54 (m, 2H), 7.46 - 7.38 (m, 2H), 7.31 (d, *J* = 7.6, 7.4, 1.2 Hz, 1H), 7.28 - 7.23 (m, 2H), 7.20 (d, *J* = 1.4, 7.6, 7.4 Hz, 1H), 7.09 (s, 1H), 7.01 (dd, *J* = 8.0, 1.2 Hz, 1H). ¹³C {¹H} NMR (151 MHz, CDCl₃) δ = 189.0, 159.9, 154.6, 138.6, 136.0, 132.6, 132.5, 131.7 (2C), 131.3 (2C), 130.9, 130.2, 129.9, 129.8, 129.3, 128.6, 128.0, 127.6, 126.1, 121.8 ppm. HRMS (ESI) m/z: [(M+H)]⁺ Calcd for C₂₁H₁₄⁷⁹BrO₂⁺ 377.0172; Found: 377.0182; Calcd for C₂₁H₁₄⁸¹BrO₂⁺ 379.0151; Found: 379.0156.

(2-Methyldibenzo[*b,d*]oxepin-6-yl)(phenyl)methanone (5ja): GP-2 was carried out with 3j (60 mg, 0.2 mmol), 4a (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (4:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product 5ja (56 mg, 91%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, $R_f(3j) = 0.50$, $R_f(5ja) = 0.50$, UV detection. Melting point: 110-112 °C. IR (MIR-ATR, 4000-600 cm⁻¹) $v_{max} = 3057$, 1658, 1491, 1441, 1273, 1197, 966, 760, 715 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.89$ (dd, J = 8.4, 1.4 Hz, 2H), 7.68 (dd, J = 7.8, 0.9 Hz, 1H), 7.62 – 7.56 (m, 1H), 7.54 – 7.43 (m, 3H), 7.38 (td, J = 7.5, 1.3 Hz, 1H), 7.31 (dd, J = 7.7, 1.5 Hz, 2H), 7.16 – 7.12 (m, 2H), 7.06 (d, J = 8.2 Hz, 1H), 2.38 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) $\delta = 190.4$, 158.0, 154.9, 138.7, 137.5, 135.4, 132.8, 132.4, 132.1, 130.8, 130.5, 130.4, 129.6 (2C), 129.6, 129.1, 128.8, 128.4 (2C), 127.8, 121.6, 21.0 ppm. HRMS (ESI) m/z: [(M+H)]⁺ Calcd for C₂₂H₁₇O₂⁺ 313.1223; Found: 313.1224.

(2-(Tert-butyl)dibenzo[*b,d*]oxepin-6-yl)(phenyl)methanone (5ka): GP-2 was carried out with 3k (63 mg, 0.2 mmol), 4a (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product 5ka (59 mg, 92%) as a white solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (3k) = 0.40, R_f (5ka) = 0.50, UV detection. Melting point: 104-106 °C. IR (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3058, 2927, 1658, 11491, 1444, 1405, 1272, 1197, 966, 712 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.90 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.70 (dd, *J* = 7.8, 0.8 Hz, 1H), 7.63 – 7.56 (m, 1H), 7.54 – 7.44 (m, 3H), 7.39 (td, *J* = 7.5, 0.8 Hz, 1H), 7.63 – 7.56 (m, 1H), 7.54 – 7.44 (m, 3H), 7.39 (td, *J* = 7.5, 0.8 Hz, 1H), 7.63 – 7.56 (m, 1H), 7.54 – 7.44 (m, 3H), 7.39 (td, *J* = 7.5).

1.3 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.17 (dd, J = 8.2, 2.2 Hz, 1H), 7.14 (s, 1H), 7.10 (d, J = 8.2 Hz, 1H), 2.68 (q, J = 7.6 Hz, 2H), 1.26 (t, J = 7.6 Hz, 3H). ¹³C {¹H} **NMR** (100 MHz, CDCl₃) $\delta = 190.4, 158.1, 154.9, 141.8, 138.8, 137.5, 132.8, 132.4, 132.2, 130.8, 129.6 (2C), 129.6, 129.3, 129.3, 129.2, 128.8, 128.4 (2C), 127.8, 121.6, 28.5, 15.8 ppm.$ **HRMS** $(ESI) m/z: <math>[(M+H)]^+$ Calcd for C₂₃H₁₉O₂⁺ 327.1380; Found: 327.1377.

(2-(Tert-butyl)dibenzo[*b,d*]oxepin-6-yl)(phenyl)methanone (5la): GP-2 was carried out with **3l** (69 mg, 0.2 mmol), **4a** (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5la** (63 mg, 90%) as a yellow oil. TLC (petroleum ether/ethyl acetate 98:2, R_f (**3l**) = 0.40, R_f (**5la**) = 0.50, UV detection. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3059, 2959, 1660, 1492, 1273, 1207, 967, 834, 760 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.89 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.70 (dd, *J* = 7.7, 0.7 Hz, 1H), 7.63 – 7.55 (m, 1H), 7.53 – 7.45 (m, 4H), 7.39 (td, *J* = 7.6, 1.3 Hz, 1H), 7.35 (dd, *J* = 8.5, 2.4 Hz, 1H), 7.32 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.13 (s, 1H), 7.09 (d, *J* = 8.5 Hz, 1H), 1.35 (s, 9H). ¹³C {¹H} **NMR** (100 MHz, CDCl₃) δ = 190.4, 157.9, 154.9, 148.7, 139.1, 137.5, 132.9, 132.4, 131.7, 130.8, 129.7 (2C), 129.6, 129.2, 128.80, 128.4 (2C), 127.8, 127.0, 126.9, 121.2, 34.7, 31.6 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₂₅H₂₃O₂⁺ 355.1693; Found: 355.1680.

(2-Methoxydibenzo[*b,d*]oxepin-6-yl)(phenyl)methanone (5ma): GP-2 was carried out with 3m (59.66 mg, 0.2 mmol), 4a (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product 5ma (55 mg, 84%) as a yellow crystalline solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (3m) = 0.40, R_f (5ma) = 0.50, UV detection.

Melting point: 116-118 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹⁾ $v_{max} = 3652$, 3075, 2353, 1738, 1657, 1611, 1485, 1441, 1282, 1156, 981, 762 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.86$ (dd, J = 8.5, 1.4 Hz, 2H), 7.67 – 7.54 (m, 2H), 7.52 – 7.47 (m, 2H), 7.47 – 7.42 (m, 1H), 7.41 (d, J = 8.7 Hz, 1H), 7.34 (td, J = 7.4, 1.3 Hz, 1H), 7.29 (dd, J = 7.7, 1.5 Hz, 1H), 7.12 (s, 1H), 6.84 (dd, J = 8.7, 2.7 Hz, 1H), 6.75 (d, J = 2.6 Hz, 1H), 3.80 (s, 3H). ¹³C {¹H} **NMR** (100 MHz, CDCl₃) $\delta = 190.5$, 161.4, 160.8, 154.2, 138.5, 137.6, 132.4, 132.2, 130.9, 130.4, 129.7, 129.6 (3C), 128.8, 128.4 (2C), 127.3, 124.9, 112.7, 106.9, 55.7 ppm. **HRMS** (ESI) m/z: [(M+Na)]⁺ Calcd for C₂₂H₁₆NaO₃⁺ 351.0992; Found: 351.0978.

Benzo[*d*]**naphtho**[**1**,2-*b*]**oxepin-2-yl(phenyl)methanone (5na): GP-2** was carried out with **3n** (68 mg, 0.2 mmol), **4a** (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5na** (48 mg, 70%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (**3n**) = 0.40, R_f (**5na**) = 0.50, UV detection. Melting point: 114-116 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3061, 2351, 1658, 1281, 1206, 977, 752 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) δ = 8.07 – 8.00 (m, 1H), 7.92 – 7.84 (m, 3H), 7.81 (d, *J* = 8.8 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.54 – 7.43 (m, 7H), 7.36 (d, *J* = 8.9 Hz, 1H), 7.25 (s, 1H). ¹³C{¹H} **NMR** (100 MHz, CDCl₃) δ = 190.0, 160.1, 156.6, 137.3, 136.4, 134.4, 132.7, 132.5, 132.5, 132.3, 130.2, 130.2, 129.6 (2C), 129.5, 128.5, 128.4 (2C), 128.05, 127.6, 126.8 (2C), 125.8, 125.3, 121.3 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₂₅H₁₇O₂⁺ 349.1223; Found: 349.1222.

(2-Fluorodibenzo[*b,d*]oxepin-6-yl)(phenyl)methanone (50a): GP-2 was carried out with 30 (61 mg, 0.2 mmol), 4a (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs_2CO_3 (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min.

Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **50a** (51 mg, 82%) as a white viscous oil. TLC (petroleum ether/ethyl acetate 98:2, $R_f(30) = 0.40$, $R_f(50a) = 0.50$, UV detection. **IR** (MIR-ATR, 4000-600 cm⁻¹) $v_{max} = 3936$, 3874, 3604, 2449, 2358, 2235, 2162, 1952, 1516, 1094, 1027, 778 cm⁻¹. ¹H **NMR** (400 MHz, CDCl₃) $\delta = 7.80$ (dd, J = 8.3, 1.3 Hz, 2H), 7.57 (dd, J = 7.8, 1.1 Hz, 1H), 7.56 – 7.49 (m, 1H), 7.45 – 7.39 (m, 4H), 7.35 (td, J = 7.5, 1.4 Hz, 1H), 7.26 (dd, J = 7.6, 1.4 Hz, 1H), 7.22 (dd, J = 8.6, 2.5 Hz, 1H), 7.13 (d, J = 8.6 Hz, 1H), 7.13 (s, 1H). ¹³C {¹H} **NMR** (100 MHz, CDCl₃) $\delta = 190.2$, 158.5, 154.7, 137.2, 134.1, 132.7, 132.7, 131.2, 130.9, 129.9, 129.7, 129.6, 129.6 (2C), 129.2, 128.8, 128.6, 128.5 (2C), 127.9, 123.3, 77.2, 1.2 ppm. **HRMS** (ESI) m/z: [(M]⁺ Calcd for C₂₁H₁₃FO₂⁺ 316.0894; Found: 316.0892.

Phenyl(2-(trifluoromethyl)dibenzo[*b,d*]**oxepin-6-yl)methanone (5pa): GP-2** was carried out with **3p** (71 mg, 0.2 mmol), **4a** (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5pa** (56 mg, 78%) as a light-yellow oil. TLC (petroleum ether/ethyl acetate 98:2, R_f(**3p**) = 0.40, R_f(**5pa**) = 0.50, UV detection. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3059, 2959, 1660, 1491, 1272, 1207, 967, 759, 711 cm⁻¹. **¹H NMR** (400 MHz, CDCl₃) δ = 7.88 (d, *J* = 8.4 Hz, 2H), 7.68 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.66 – 7.58 (m, 2H), 7.55 – 7.42 (m, 5H), 7.36 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.14 (s, 1H). ¹³C {¹H} **NMR** (100 MHz, CDCl₃) δ = 190.0, 159.8, 154.6, 137.1, 137.1, 136.1, 132.8, 132.7, 131.9 (q, *J*_{C-F} = 33.2 Hz), 131.0, 130.5, 129.9, 129.6 (2C), 129.5, 128.9, 128.7, 128.5 (2C), 123.7 (q, *J*_{C-F} = 272.3 Hz), 122.7 (q, *J*_{C-F} = 3.8 Hz), 119.4 (q, *J*_{C-F} = 3.7 Hz) ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₂₂H₁₄F₃O₂⁺ 367.0940; Found: 403. 367.0912.

2-(6-Benzoyldibenzo[*b,d*]**oxepin-2-yl)benzaldehyde (5qa): GP-2** was carried out with **3q** (74 mg, 0.2 mmol), **4a** (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5qa** (66 mg, 83%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (**3q**) = 0.40, R_f (**5qa**) = 0.50, UV detection. Melting point: 126-128 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3060, 2926, 1686, 1602, 1270, 1201, 1131, 966, 833, 760 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) δ = 10.05 (d, *J* = 0.7 Hz, 1H), 8.03 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.92 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.71 – 7.57 (m, 3H), 7.55 – 7.49 (m, 4H), 7.48 – 7.44 (m, 2H), 7.42 (td, *J* = 7.4, 1.4 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.30 (d, *J* = 8.2 Hz, 1H), 7.19 (s, 1H). ¹³C {¹H} **NMR** (100 MHz, CDCl₃) δ = 192.2, 190.2, 160.0, 154.6, 144.1, 137.8, 137.2, 135.5, 133.8 (2C), 132.8, 132.6 (2C), 131.7, 131.3, 130.9, 130.9, 129.8, 129.6 (2C), 129.3, 128.9, 128.4 (2C), 128.3, 128.1, 127.9, 122.1 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₂₈H₁₉O₃⁺ 403.1329; Found: 403.1310.

Benzo[4,5]oxepino[3,2-*b*]pyridin-6-yl(phenyl)methanone (5ra): GP-2 was carried out with 3r (67 mg, 0.2 mmol), 4a (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product 5ra (47 mg, 80%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (3r) = 0.40, R_f (5ra) = 0.50, UV detection. Melting point: 88-90 °C. IR (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3466, 3059, 2353, 1656, 1439, 1269, 1190, 966, 801 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 8.54 (dd, J = 4.6, 1.5 Hz, 1H), 8.21 (dd, J = 7.9, 1.3 Hz, 1H), 7.87 (dd, J = 8.3, 1.3 Hz, 2H), 7.64 – 7.58 (m, 1H), 7.57 – 7.42 (m, 5H), 7.35 – 7.28 (m, 2H), 7.11 (s, 1H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 190.2, 155.7, 153.8, 149.9, 146.8, 137.8, 137.2, 132.7, 132.2, 130.7, 130.2, 129.9, 129.7, 129.5 (2C), 129.54, 129.1,

128.5 (2C), 124.5 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₂₀H₁₄NO₂⁺ 300.1019; Found: 300.1007.

[1,1'-Biphenyl]-4-yl(2-chlorodibenzo[*b,d*]**oxepin-6-yl)methanone (5sa):** GP-2 was carried out with **3s** (80 mg, 0.2 mmol), **4a** (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5sa** (59 mg, 73%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (**3s**) = 0.40, R_f (**5sa**) = 0.50, UV detection. Melting point: 136-138 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) $ν_{max}$ = 3060, 1656, 1605, 1480, 1268, 1196, 964, 846, 745 cm⁻¹. ¹**H** NMR (400 MHz, CDCl₃) δ = 7.99 (dd, *J* = 8.5, 1.9 Hz, 2H), 7.73 (dd, *J* = 8.5, 1.9 Hz, 2H), 7.70 – 7.61 (m, 3H), 7.54 – 7.46 (m, 4H), 7.46 – 7.39 (m, 2H), 7.36 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.30 (dd, *J* = 8.6, 2.6 Hz, 1H), 7.19 (s, 1H), 7.15 (d, *J* = 8.6 Hz, 1H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 189.5, 158.5, 154.8, 145.5, 139.9, 137.2, 135.8, 134.1, 132.8, 131.2, 130.9, 130.3 (2C), 129.8, 129.7, 129.6, 129.2, 129.2 (2C), 128.6, 128.4, 127.4 (2C), 127.1 (2C), 123.2 ppm.

(2-(tert-butyl)dibenzo[*b,d*]oxepin-6-yl)(4-fluorophenyl)methanone (5ta): GP-2 was carried out with 3s (73 mg, 0.2 mmol), 4a (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product 5ta (56 mg, 76%) as a light-yellow oil. TLC (petroleum ether/ethyl acetate 98:2, $R_f(3t) = 0.40$, $R_f(5ta) = 0.50$, UV detection. IR (MIR-ATR, 4000-600 cm⁻¹) $v_{max} = 2924$, 1659, 1599, 1497, 1270, 1227, 1204, 967, 838, 757 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.01 - 7.93$ (m, 2H), 7.69 (d, J = 7.5 Hz, 1H), 7.52 - 7.45 (m, 2H), 7.40 (ddd, J = 7.6, 7.5, 1.2 Hz, 1H), 7.36 - 7.30 (m, 2H), 7.21 - 7.11

(m, 2H), 7.01 (d, J = 8.5 Hz, 1H), 1.34 (s, 9H). ¹³C {¹H} **NMR** (101 MHz, CDCl₃) $\delta = 188.7$, 157.9, 155.0, 148.9, 140.7, 140.2, 139.2, 133.53 (d, $J_{C-F} = 3.3$ Hz), 132.8, 132.4 (d, $J_{C-F} = 9.0$ Hz), 131.7, 130.8, 129.6, 129.1, 128.2, 127.9, 127.0, 126.9, 121.0, 115.4 (d, $J_{C-F} = 21.9$ Hz), 34.7, 31.6 ppm. **HRMS** (ESI) m/z: [(M+K)]⁺ Calcd for C₂₅H₂₁FKO₂⁺ 411.1157; Found: 411.1150.

(4-Fluorophenyl)(2-methyldibenzo[*b*,*d*]oxepin-6-yl)methanone (5ua): GP-2 was carried out with 3u (64 mg, 0.2 mmol), 4a (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5ua** (54 mg, 82%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (**3u**) = 0.40, R_f (**5ua**) = 0.50, UV detection. Melting point: 102-104 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3059, 2923, 1657, 1598, 1494, 1270, 1229, 1198, 975, 839, 754 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) δ = 8.02 – 7.90 (m, 2H), 8.02 – 7.90 (m, 1H), 7.47 (ddd, *J* = 7.8, 7.6, 1.4 Hz, 1H), 7.39 (ddd, *J* = 7.8, 7.6, 1.4 Hz, 1H), 7.35 – 7.28 (m, 2H), 7.21 – 7.14 (m, 3H), 7.12 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.97 (d, *J* = 8.2 Hz, 1H), 2.37 (s, 3H). ¹³C {¹H} **NMR** (101 MHz, CDCl₃) δ = 188.6, 165.45 (d, *J*_{C-F} = 254.0 Hz), 157.9, 154.9, 138.7, 135.6, 133.48 (d, *J*_{C-F} = 3.2 Hz), 132.7, 132.41 (d, *J*_{C-F} = 9.1 Hz) (2C), 132.1, 130.8, 130.6, 130.4, 129.6, 129.2, 128.2, 127.9, 121.4, 115.56 (d, *J*_{C-F} = 21.8 Hz) (2C), 21.0 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₂₂H₁₆FO₂⁺ 331.1129; Found: 331.1133.

(2-Chlorodibenzo[b,d]oxepin-6-yl)(p-tolyl)methanone (5va): GP-2 was carried out with 3v (67 mg, 0.2 mmol), 4a (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5va** (53 mg, 77%) as a yellow solid. TLC

(petroleum ether/ethyl acetate 98:2, $R_f(3v) = 0.40$, $R_f(5va) = 0.50$, UV detection. Melting point: 105-107 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) $v_{max} = 3059$, 1656, 1610, 1480, 1271, 1195, 964, 754 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.81$ (dd, J = 8.2, 1.7 Hz, 2H), 7.64 (dd, J =7.8, 1.1 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.42 (ddd, J = 7.6, 7.5, 1.4 Hz, 1H), 7.33 (dd, J = 7.6, 1.4 Hz, 1H), 7.31 – 7.27 (m, 3H), 7.13 (d, J = 8.7 Hz, 1H), 7.11 (s, 1H), 2.45 (s, 3H). ¹³C {¹H} **NMR** (101 MHz, CDCl₃) $\delta = 189.6$, 158.5, 154.9, 143.5, 137.1, 134.4, 134.1, 132.8, 131.0, 130.8, 129.8 (2C), 129.7, 129.6, 129.5, 129.1 (2C), 128.5, 128.1, 123.2, 21.8 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₂₂H₁₆ClO₂⁺ 347.0833; Found: 347.0841.

(10-Fluorodibenzo[*b,d*]oxepin-6-yl)(phenyl)methanone (5ab): GP-2 was carried out with 3a (67 mg, 0.2 mmol), 4b (50 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product 5ab (52 mg, 83%) as a white solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (3a) = 0.40, R_f (5ab) = 0.50, UV detection. Melting point: 82-84 °C. IR (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3842, 3638, 3526, 2345, 2240, 2127, 2034, 1942, 1661, 1448, 1263, 967, 753 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.88 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.63 - 7.57 (m, 1H), 7.53 - 7.45 (m, 3H), 7.41 - 7.34 (m, 21), 7.11 (s, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ = 190.2, 163.1 (d, *J*_{C-F} = 250.5 Hz), 159.7, 154.3, 141.0 (d, *J*_{C-F} = 8.4 Hz), 137.3, 132.9 (d, *J*_{C-F} = 8.8 Hz), 132.5, 131.6, 130.6, 129.9, 129.6 (2C), 128.9 (d, *J*_{C-F} = 3.1 Hz), 128.4 (2C), 128.0, 126.1, 122.1, 115.9 (d, *J*_{C-F} = 22.9 Hz), 115.2 (d, *J*_{C-F} = 21.9 Hz) ppm. HRMS (ESI) m/z: [(M+H)]⁺ Calcd C₂₁H₁₄FO₂⁺ 317.0972; Found: 317.0992.

(8-Fluorodibenzo[*b,d*]oxepin-6-yl)(phenyl)methanone (5ac): GP-2 was carried out with 3a (67 mg, 0.2 mmol), 4c (50 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs_2CO_3 (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min.

Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5ac** (49 mg, 79%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (**3a**) = 0.50, R_f (**5ac**) = 0.50, UV detection. Melting point: 78-80 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3735, 3636, 3530, 3407, 2345, 2245, 2185, 2131, 2041, 1949, 1715, 1607, 1450, 1200, 967, 750 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.90 (dd, J = 8.4, 1.3 Hz, 2H), 7.63 – 7.56 (m, 1H), 7.55 – 7.41 (m, 5H), 7.40 – 7.35 (m, 1H), 7.32 (d, J = 2.0 Hz, 1H), 7.29 – 7.23 (m, 2H), 7.14 – 7.08 (m, 1H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 190.1, 160.2 (d, J_{C-F} = 250.7 Hz), 160.0, 155.1, 140.2, 137.1, 132.7, 131.68 (d, J_{C-F} = 2.4 Hz), 130.78 (d, J_{C-F} = 9.4 Hz), 130.5, 130.0, 129.7 (2C), 128.4 (2C), 126.0, 124.73 (d, J_{C-F} = 3.2 Hz), 121.4 (d, J_{C-F} = 7.1 Hz), 121.12 (d, J_{C-F} = 14.2 Hz), 114.2 (d, J_{C-F} = 21.9 Hz) ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd C₂₁H₄FO₂⁺ 317.0972; Found: 317.0949.

(9-Chlorodibenzo[*b*,*d*]oxepin-6-yl)(4-methoxyphenyl)methanone (5cd): GP-2 was carried out with 3c (64 mg, 0.2 mmol), 4d (55 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product 5cd (50 mg, 70%) as a yellow oil. TLC (petroleum ether/ethyl acetate 98:2, R_f (3c) = 0.40, R_f (5cd) = 0.50, UV detection. IR (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3605, 2936, 1653, 1599, 1472, 1260, 1177, 970, 835, 764 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.97 (d, *J* = 8.9 Hz, 2H), 7.58 (d, *J* = 8.5 Hz, 1H), 7.45 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.40 (dd, *J* = 8.5, 2.3 Hz, 1H), 3.36 – 7.28 (m, 2H), 7.27 – 7.21 (m, 1H), 7.13 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.02 (s, 1H), 6.97 (d, *J* = 8.9 Hz, 2H), 3.89 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ = 188.3, 163.5, 159.9, 156.0, 136.8, 134.5, 133.8, 132.3 (2C), 131.7, 130.5, 130.1 (2C), 129.8, 129.4, 129.3, 126.1, 125.7, 121.9, 113.7 (2C), 55.6 ppm. HRMS (ESI) m/z: [(M+H)]⁺ Calcd for C₂₂H₁₆ClO₃⁺ 363.0782; Found: 363.0784.

(2-(Tert-butyl)-9-chlorodibenzo[*b,d*]oxepin-6-yl)(phenyl)methanone (5ld): GP-2 was carried out with **31** (69 mg, 0.2 mmol), **4d** (55 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5ld** (68 mg, 90%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (**3l**) = 0.40, R_f (**5ld**) = 0.50, UV detection. Melting point: 108-110 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 2958, 1734, 1661, 1486, 1270, 1206, 972, 711 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.88 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.66 – 7.54 (m, 2H), 7.53 – 7.46 (m, 2H), 7.46 – 7.41 (m, 2H), 7.37 (dd, *J* = 8.5, 2.4 Hz, 1H), 7.31 (d, *J* = 2.2 Hz, 1H), 7.09 (d, *J* = 8.5 Hz, 1H), 7.03 (s, 1H), 1.34 (s, 9H). ¹³C {¹H} **NMR** (151 MHz, CDCl₃) δ = 190.2, 157.7, 155.6, 148.9, 137.5, 137.1, 134.4, 133.6, 132.66, 130.7, 130.5, 130.2, 129.6 (2C), 129.5, 128.4 (2C), 127.3, 127.1, 126.7, 121.4, 34.7, 31.6 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₂₅H₂₂O₂⁺ 389.1303; Found: 389.1302.

(2-(Tert-butyl)-9-methoxydibenzo[*b,d*]oxepin-6-yl)(phenyl)methanone (5le): GP-2 was carried out with **3l** (69 mg, 0.2 mmol), **4e** (54 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5le** (53 mg, 70%) as a yellow solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (**3l**) = 0.40, R_f (**5le**) = 0.50, UV detection. Melting point: 132-134 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 2958, 1728, 1659, 1606, 1492, 1251, 1043,976, 833, 709 cm⁻¹. ¹H **NMR** (400 MHz, CDCl₃) δ = 7.94 – 7.86 (m, 2H), 7.62 (d, *J* = 8.6 Hz, 1H), 7.58 (dt, *J* = 2.7, 1.7 Hz, 1H), 7.52 – 7.46 (m, 2H), 7.44 (d, *J* = 2.4 Hz, 1H), 7.31 (dd, *J* = 8.5, 2.4 Hz, 1H), 7.09 (s, 1H), 7.06 (d, *J* = 8.5 Hz, 1H), 7.05 (dd, *J* = 8.7, 2.8 Hz, 1H), 6.83 (d, *J* = 2.7 Hz, 1H), 3.86 (s, 3H), 1.34 (s, 9H). ¹³C{¹H} **NMR** (151

MHz, CDCl₃) δ = 190.5, 159.1, 157.4, 154.8, 148.7, 137.5, 134.0, 132.5, 131.8, 131.46, 130.5, 129.7 (2C), 128.5, 128.4 (2C), 126.5, 126.3, 126.3, 121.1, 116.1, 114.9, 55.6, 34.7, 31.6 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₂₆H₂₅O₃⁺ 385.1798; Found: 385.1805.

Ethyl dibenzo[*b,d*]**oxepine-6-carboxylate (5wa): GP-2** was carried out with **3w** (51 mg, 0.2 mmol), **4a** (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (13 0mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5wa** (45 mg, 86%) as a yellow oil. TLC (petroleum ether/ethyl acetate 98:2, $R_f(3w) = 0.50$, $R_f(5wa) = 0.50$, UV detection. **IR** (MIR-ATR, 4000-600 cm⁻¹) $v_{max} = 3739$, 3637, 3520, 2343, 2243, 2177, 2132, 1721, 1536, 1271, 757 cm⁻¹. ¹H **NMR** (400 MHz, CDCl₃) *δ* = 7.66 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.51 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.42 – 7.31 (m, 4H), 7.34 (s, 1H), 7.30 – 7.25 (m, 1H), 4.35 (q, *J* = 7.1 Hz, 2H), 1.40 (t, *J* = 7.1 Hz, 3H). ¹³C {¹H} **NMR** (151 MHz, CDCl₃) *δ* = 162.8, 160.2, 147.5, 138.5, 132.7, 132.5, 130.4, 130.1, 129.8, 129.3, 129.2, 127.9, 125.9, 125.9, 121.7, 61.7, 14.5 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₁₇H₁₅O₃⁺ 267.1016; Found: 267.1003.

Dibenzo[*b,d*]**oxepine-6-carbonitrile (5xa): GP-2** was carried out with **3x** (42 mg, 0.2 mmol), **4a** (45 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5xa** (29 mg, 68%) as a yellow gel. TLC (petroleum ether/ethyl acetate 98:2, R_f (**3x**) = 0.40, R_f (**5xa**) = 0.50, UV detection. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3059, 2921, 2856, 2219, 1480, 1436, 1193, 1126, 1089, 759 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.65 (dd, J = 7.9, 0.8 Hz, 1H), 7.51 (dd, J = 7.8, 1.6 Hz, 1H), 7.48 (dd, J = 7.7, 1.4 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.33 (ddd, J = 7.6, 7.6 1.3 Hz, 1H), 7.29 – 7.26 (m, 1H), 7.24 (dd, J = 8.0, 1.2 Hz, 1H), 6.87 (s, 1H). ¹³C {¹H} NMR (151 MHz, CDCl₃) δ = 159.6, 138.4, 131.6, 131.2, 130.9, 130.4, 130.4, 130.1 (2C), 129.9, 129.5, 128.1, 126.7, 121.3, 114.9 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd C₁₅H₁₀NO⁺ 220.0757; Found: 220.0754.

2-((2'-Formyl-[1,1'-biphenyl]-2-yl)oxy)acetonitrile (6xa): Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product **5xa** (12 mg, 20%) as a pink coloured solid. TLC (petroleum ether/ethyl acetate 98:2, $R_f(3x) = 0.40$, $R_f(5xa) = 0.50$, UV detection. Melting point: 62-64 °C. **IR** (MIR-ATR, 4000-600 cm⁻¹) $v_{max} = 3630$, 3467, 2344, 2182, 1696, 756 cm⁻¹. ¹H **NMR** (400 MHz, CDCl₃) $\delta = 9.81$ (d, J = 0.7 Hz, 1H), 8.01 (dd, J = 7.8, 1.3 Hz, 1H), 7.67 (td, J = 7.5, 1.5 Hz, 1H), 7.56 – 7.44 (m, 2H), 7.39 – 7.31 (m, 2H), 7.28 – 7.20 (m, 1H), 7.11 (dd, J = 8.3, 0.8 Hz, 1H), 4.65 (d, J = 5.1 Hz, 2H). ¹³C {¹H} **NMR** (101 MHz, CDCl₃) $\delta = 192.1$, 153.5, 140.6, 134.0, 133.9, 132.3, 131.4, 130.3, 128.4, 128.3, 127.5, 123.7, 114.8, 112.8, 53.9 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₁₅H₁₂NO₂⁺ 238.0863; Found: 238.0850.

(9-(Benzyloxy)dibenzo[*b,d*]oxepin-6-yl)(4-methoxyphenyl)methanone (7ca): GP-2 was carried out with 3c (64 mg, 0.2 mmol), 6a (122 mg, 0.3 mmol), Pd(PPh₃)₄ (11 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 15 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product 5ma (43 mg, 50%) as a yellow gel. TLC (petroleum ether/ethyl acetate 98:2, R_f (3m) = 0.40, R_f (5ma) = 0.50, UV detection. IR (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 2925, 1597, 1494, 1251, 1171, 1029, 696 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.99 (dd, J = 9.0, 2.1 Hz, 2H), 7.60 (d, J = 8.7 Hz, 1H), 7.49 – 7.39 (m, 5H), 7.38 – 7.35 (m, 1H), 7.30 – 7.25 (m, 1H), 7.25 – 7.20 (m, 1H), 7.12 – 7.07 (m, 3H), 6.98 (dd, J = 8.9, 2.1 Hz, 2H), 6.93 (d, J = 2.7 Hz, 1H), 5.13 (s, 2H), 3.90 (s, 3H). ¹³C {¹H} (101 MHz, CDCl₃) δ = 188.6, 163.4, 159.4, 158.4, 155.2, 136.7, 134.2, 132.5,

132.4 (2C), 131.4, 130.5, 129.7, 129.6, 129.2, 128.8 (2C), 128.3, 127.6 (2C), 127.1, 125.9, 121.8, 116.6, 116.0, 113.7 (2C), 70.3, 55.6 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd C₂₉H₂₃O₄⁺ 435.1591; Found: 435.1592.

Ethyl (E)-3-(4-(dibenzo[*b,d***]oxepine-6-carbonyl)phenyl)acrylate (8ia): GP-4** was carried out with **Sia** (75 mg, 0.2 mmol), **7a** (30 mg, 0.3 mmol), Pd(OAc)₂ (11 mg, 5 mol%), PPh₃ 10 (mol%) K₂CO₃ (130 mg, 0.8 mmol), and DMF (3 mL). Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 90/10) furnished the product **8aa** (46 mg, 60%) as a yellow gel. TLC (petroleum ether/ethyl acetate 98:2, R_f(**5ia**) = 0.40, R_f(**8aa**) = 0.50, UV detection. **IR** (MIR-ATR, 4000-600 cm⁻¹) v_{max} = 3060, 2980, 2929, 1710, 1646, 1268, 1173, 967, 761 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.86 (dd, *J* = 8.3, 1.7 Hz, 2H), 7.66 (d, *J* = 16.0 Hz, 1H), 7.61 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.57 (d, *J* = 8.3 Hz, 1H), 7.46 – 7.38 (m, 2H), 7.35 (ddd, *J* = 7.6, 7.6, 1.3 Hz, 1H), 7.26 (ddd, *J* = 7.6, 7.3, 1.4 Hz, 1H), 4.36 – 4.18 (m, 1H). ¹³C {¹H} **NMR** (101 MHz, CDCl₃) δ = 190.9, 189.4, 166.7, 160.0, 154.7, 143.3, 138.7, 138.5, 138. 3, 132.7, 130.9, 130.3, 130.1 (2C), 129.9, 129.8, 129.3, 128.8, 128.0, 127.9, 127.1 (2C), 126.0, 121.8, 120.8, 60.9, 14.4 ppm. **HRMS** (ESI) m/z: [(M+Na)]⁺ Calcd C₂₆ H₂₀NaO₄⁺ 419.1254; Found: 419.1251.

(S)-6-Benzyl-6,7-dihydrodibenzo[*b*,*d*]oxepine (9aa): Reaction was carried out with 5aa (60 mg, 0.2 mmol), Pd/C (10 mg, 5 mol%), H₂ gas balloon, and MeOH (2 mL) at room temperature for 24 h. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 98/02) furnished the product 9aa (30 mg, 55%) as a colourless oil. TLC (petroleum ether/ethyl acetate 98:2, $R_f(5aa) = 0.40$, $R_f(9aa) = 0.80$, UV detection. IR (MIR-ATR, 4000-600 cm⁻¹) $v_{max} = 3320$, 2934, 1718, 1639, 1499, 1449, 1226, 755 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.49$ (d, J = 7.6 Hz, 1H), 7.46 (dd, J = 7.5, 1.1 Hz, 1H), 7.41

(t, J = 7.5 Hz, 1H), 7.39 – 7.31 (m, 6H), 7.30 – 7.23 (m, 3H), 7.15 (d, J = 7.9 Hz, 1H), 4.97 – 4.81 (m, 1H), 3.23 (dd, J = 13.7, 6.2 Hz, 1H), 2.89 (dd, J = 13.7, 7.9 Hz, 1H), 2.77 (dd, J = 14.2, 5.2 Hz, 1H), 2.62 (dd, J = 14.2, 6.9 Hz, 1H). ¹³C {¹H} **NMR** (101 MHz, CDCl₃) $\delta = 153.5$, 138.9, 138.36, 136.3, 135.4, 129.5 (2C), 129.3, 129.0, 128.9, 128.7 (2C), 128.1, 127.6, 127.5, 126.6, 124.7, 123.4, 89.7, 40.9, 36.9 ppm. **HRMS** (ESI) m/z: [(M+H)]⁺ Calcd for C₂₁H₁₉O⁺ 287.1430; Found: 287.1450.

Gram scale reaction - Dibenzo[*b,d*]oxepin-6-yl(phenyl)methanone (5aa): GP-2 was carried out with 3a (1000 mg, 2.9 mmol), 4a (666 mg, 4.4 mmol), Pd(PPh₃)₄ (66 mg, 2 mol%), Cs₂CO₃ (1924 mg, 5.9 mmol), and DMF-EtOH (3:1, 2 mL) under microwave irradiation at 120 °C for 30 min. Purification of the crude material by silica gel column chromatography (petroleum ether/ethyl acetate 100/00 to 95/05) furnished the product 5aa (600 mg, 70%) as a white crystalline solid. TLC (petroleum ether/ethyl acetate 98:2, R_f (3a) = 0.40, R_f (5aa) = 0.50, UV detection.

7.291 7.292 7.292 7.202 7.

 $^{13}C\{1H\}$ NMR (100 MHz) spectrum of **3k** in CDCl₃

S32

$^{13}C{1H}$ NMR (100 MHz) spectrum of **3p** in CDCl₃

¹H NMR (400 MHz) spectrum of 3s in CDCl₃

¹H NMR (400 MHz) spectrum of **3v** in CDCl₃

S37

¹H NMR (400 MHz) spectrum of **5aa** in CDCl₃

¹H NMR (400 MHz) spectrum of **5ca** in CDCl₃

1H} NMR (100 MHz) spectrum of 5da in CDCl₃

H} NMR (100 MHz) spectrum of 5ea in CDCl₃

³C{1H} NMR (100 MHz) spectrum of **5fa** in CDCl₃

³C{1H} NMR (100 MHz) spectrum of **5ga** in CDCl₃

 $^{13}C{1H}$ NMR (100 MHz) spectrum of **5ha** in CDCl₃

S45

 $^{13}\mathrm{C}\{1\mathrm{H}\}$ NMR (100 MHz) spectrum of 5ka in CDCl₃

 $^{13}C\{1H\}$ NMR (100 MHz) spectrum of **51a** in CDCl₃

 $^{13}C\{1H\}$ NMR (100 MHz) spectrum of **5ma** in CDCl₃

H} NMR (100 MHz) spectrum of **5na** in CDCl₃

H NMR (400 MHz) spectrum of 50a in CDCl₃

¹³C NMR (100 MHz) spectrum of **50a** in CDCl₃

¹H NMR (400 MHz) spectrum of **5pa** in CDCl₃

¹H NMR (400 MHz) spectrum of **5qa** in CDCl₃

¹H NMR (400 MHz) spectrum of **5ra** in CDCl₃

¹H NMR (400 MHz) spectrum of **5ua** in CDCl₃

¹H NMR (400 MHz) spectrum of 5va in CDCl₃

¹H NMR (400 MHz) spectrum of **5sa** in CDCl₃

¹H NMR (400 MHz) spectrum of **5ac** in CDCl₃

 $^{13}C\{1H\}$ NMR (100 MHz) spectrum of **5ac** in CDCl₃

 $^{3}C\{1H\}$ NMR (100 MHz) spectrum of **5cd** in CDCl_{3}

 $^{3}C\{1H\}$ NMR (100 MHz) spectrum of **5ld** in CDCl_{3}

 $^{13}C\{1H\}$ NMR (100 MHz) spectrum of **5le** in CDCl₃

 $^{13}C\{1H\}$ NMR (100 MHz) spectrum of 5xa in CDCl₃

 $^{13}C\{1H\}$ NMR (100 MHz) spectrum of **6aa** in CDCl₃

 $^{13}\mathrm{C}\{1\mathrm{H}\}$ NMR (100 MHz) spectrum of **5ya** in CDCl₃

¹³C{1H} NMR (100 MHz) spectrum of 7ca in CDCl₃

 $^{3}\mathrm{C}\{1\mathrm{H}\}$ NMR (100 MHz) spectrum of **8iaa** in CDCl_{3}

 $^{13}C\{1H\}$ NMR (100 MHz) spectrum of **9aa** in CDCl₃

X-ray Diffraction Analysis of Compound:

Crystal of compound **5aa** was obtained by dissolving the product in a mixture of CH₂Cl₂ and hexane in a 3:1 ratio, allowing the solvent to evaporate slowly at room temperature. The crystal structure information for this compound has been deposited at the Cambridge Crystallographic Data Centre. CCDC No. 2350807 contains the crystal structure information of this compound and can be obtained free of charge via <u>http://www.ccdc.cam.ac.uk</u>

Figure S1. X-ray structure of the product **5aa** with the ellipsoids drawn at the 50% probability level

$mo_GS_PS_A_O_284_0m$

Table 1	l Cr	vstal	data	and	structur	e refine	ement for	r mo	GS	PS	Α	0	284	0m.
I HOIC		y sear	unu	unu	Sti uttui	e i cime	ment ioi	mo	U D	10	1	\mathbf{U}		01110

Identification code	mo_GS_PS_A_O_284_0m						
Empirical formula	$C_{21}H_{14}O_2$						
Formula weight	298.32						
Temperature/K	273.15						
Crystal system	orthorhombic						
Space group	Pbca						
a/Å	11.0954(7)						
b/Å	15.8197(9)						
c/Å	17.3494(12)						
$\alpha/^{\circ}$	90						
β/°	90						
$\gamma/^{\circ}$	90						
Volume/Å ³	3045.3(3)						
Ζ	8						
---	--						
$\rho_{calc}g/cm^3$	1.301						
µ/mm ⁻¹	0.083						
F(000)	1248.0						
Crystal size/mm ³	$0.27 \times 0.21 \times 0.17$						
Radiation	MoKa ($\lambda = 0.71073$)						
2Θ range for data collection/°	5.062 to 54.276						
Index ranges	$-14 \le h \le 12, -19 \le k \le 20, -22 \le l \le 16$						
Reflections collected	27887						
Independent reflections	3365 [$R_{int} = 0.0682, R_{sigma} = 0.0422$]						
Data/restraints/parameters	3365/0/208						
Goodness-of-fit on F ²	1.037						
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0425, wR_2 = 0.0933$						
Final R indexes [all data]	$R_1 = 0.0898, wR_2 = 0.1111$						
Largest diff. peak/hole / e Å ⁻³	0.12/-0.15						

