Supporting Information

Asymmetric Total Syntheses of Passifetilactones A, C, E and 4-*epi*-Passifetilactone B

Sagar B. Khandekar,[≠] Naga Raju Barnala[≠] and Rodney A. Fernandes*

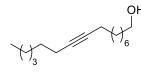
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076,

Maharashtra, India

Email: rfernand@chem.iitb.ac.in

^{*±*}These authors contributed equally

Table of Contents

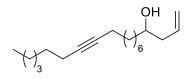

Experimental procedures and data of all compounds	S2-S26
References	S26
¹ H, ¹³ C NMR and HRMS spectral of all compounds	S27-S144

Experimental Section

General Information

Reagents and solvents were purchased (Sigma-Aldrich, TCI and BLD) and used as received without further purification. NMR spectra were recorded with a Bruker (Germany) Avance III 400 and Bruker (Germany) Avance III HD 500 instruments at room temperature. Chemical shifts (δ) are stated in parts per million (ppm) using the residual CHCl₃ δ = 7.27 ppm for ¹H and 77.00 ppm for ¹³C [CDCl₃]. Coupling constants *J* are given in Hz. Multiplicities are described as singlet (s), broad signal (br s), doublet (d), triplet (t), quartets (q) and multiplet (m). HRMS were recorded with Bruker Maxis impact mass spectrometer using ESI-TOF techniques in positive mode by dissolving the compound in either methanol or acetonitrile. IR spectra were recorded on Bruker Alpha II instrument in attenuated total reflectance (ATR) mode. Solvents were dried by using standard procedures. HMPA (99%) and DMPU (98%) were vacuum distilled over CaH₂ and stored with dry molecular sieves. Thin-layer chromatography was performed on EM 250 Kieselgel 60 F254 silica gel plates. The spots were visualized by staining with KMnO₄ or by using a UV lamp. For all reactions requiring heating, an oil bath was used.

Hexadec-9-yn-1-ol (5)

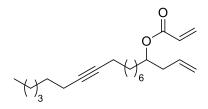


To a stirred solution of 9-decyn-1-ol **3** (1.97 g, 12.8 mmol, 2.0 equiv) in dry THF (20 mL) and HMPA (6 mL) was added dropwise *n*-BuLi (14.1 mL, 2.0 M, 28.16 mmol, 4.4 equiv) at -78 °C. The reaction mixture was then stirred for

30 min at the same temperature. To this mixture was added dropwise 1-bromohaxane (1.05 g, 6.4 mmol, 1.0 equiv) dissolved in THF (5 mL). The reaction mixture was then stirred for 12 h and then quenched with a saturated aq. solution of NH₄Cl (20 mL). The solution was extracted with Et₂O (3 × 30 mL) and the combined organic layers were washed with water and brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography with petroleum ether/EtOAc (4:1) as an eluent to give hexadec-9-yn-1-ol **5** (1.27 g, 83%) as a colorless oil. IR (CHCl₃) V_{max} = 3278, 3192, 2923, 2857, 2268, 1461, 1181, 1072, 969, 825, 693 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 3.62 (t, *J* = 6.7 Hz, 2H), 2.17–2.06 (m, 4H), 1.59–1.51 (m, 2H), 1.49–1.42 (m, 4H), 1.38–1.23 (m, 14H), 0.87 (t, *J* = 7.0 Hz, 3H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃) δ = 80.3, 80.1, 63.0, 32.7, 31.3, 29.3, 29.1, 28.7, 28.5, 25.7, 22.5, 18.7, 14.0 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₁₆H₃₁O 239.2370; found 239.2369.

Hexadec-9-yn-1-ol (5) using DMPU: To a stirred solution of 9-decayn-1-ol **3** (113 mg, 0.72 mmol, 1.2 equiv) in dry THF (6 mL) and DMPU (0.6 mL) was added dropwise *n*-BuLi (0.66 mL, 2.0 M, 1.33 mmol, 2.2 equiv) at -78 °C. The reaction mixture was then stirred for 30 min at the same temperature. To this mixture was added dropwise 1-bromohexane (100 mg, 0.60 mmol, 1.0 equiv) dissolved in THF (5 mL). The reaction mixture was then stirred for 14 h and then quenched with saturated aq. solution of NH₄Cl (20 mL). The solution was extracted with Et₂O (3 × 30 mL). The combined organic layers were washed with water and brine, dried (Na₂SO₄) and concentrated. The residue was purified by silica gel column chromatography with petroleum ether/EtOAc (4:1) as an eluent to give hexadec-9-yn-1-ol **5** (103 mg, 65%) as a colorless oil. Spectra data is same as above.

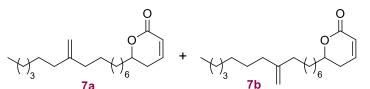
Nonadec-1-en-12-yn-4-ol ((\pm)-2a)



To a solution of hexadec-9-yn-1-ol **5** (1.0 g, 4.2 mmol, 1.0 equiv) in dry CH_2Cl_2 (55 mL) was added PCC (1.36 g, 6.3 mmol, 1.5 equiv) in portions at 0 °C, and the reaction mixture was allowed to stir for 4 h at room

temperature. It was then treated with saturated aq. solutions of $Na_2S_2O_3 \cdot 5H_2O$ (3 mL) and NaHCO₃ (3 mL) and stirred for 20 min. The solution was extracted with CH_2Cl_2 (3 × 20 mL) and the combined organic layers were washed with water and brine, dried (Na_2SO_4), and concentrated to afford the desired aldehyde (0.98 g) that was taken for the next step without further purification.

To a solution of above crude aldehyde (0.98 g) in THF (20.0 mL) at 0 °C was added allyl magnesium bromide (5.5 mL, 5.46 mmol, 1.0 M in Et₂O, 1.3 equiv) dropwise. The mixture was left to stir at this temperature before being warmed to room temperature for 1 h. The reaction mixture was quenched at 0 °C with saturated aq. solution of NH₄Cl (5 mL), poured onto saturated aq. NH₄Cl (40 mL) and extracted with Et₂O (3 × 40 mL). The combined organic layers were washed with water and brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography with petroleum ether/EtOAc (4:1) as an eluent to afford (±)-**2a** (877 mg, 75% over 2 steps) as a colorless oil. IR (CHCl₃) v_{max} = 3247, 2927, 2859, 2109, 1466, 1251, 1097, 835, 774, 648 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 5.87–5.69 (m, 1H), 5.19–5.03 (m, 2H), 3.73–3.52 (m, 1H), 2.33–2.19 (m, 1H), 2.14–2.07 (m, 5H), 1.71 (brs, 1H), 1.49–1.41 (m, 6H), 1.36–1.20 (m, 14H), 0.86 (t, *J* = 7.0 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 134.8, 117.9, 80.2, 80.1, 70.6, 41.9, 36.7, 31.3, 29.5, 29.1, 28.7, 28.5, 25.6, 22.5, 18.7, 14.0; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₁₉H₃₅O 279.2683; found 279.2688.

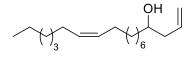

Nonadec-1-en-12-yn-4-yl acrylate (6)

To a stirred solution of acrylic acid (144 mg, 2.0 mmol, 1.2 equiv) in dry CH_2Cl_2 (20 mL) were added DCC (514 mg, 2.49 mmol, 1.5 equiv) and DMAP (81 mg, 0.664 mmol, 0.4 equiv) at 0 °C. The mixture was

stirred for 10 min and then a solution of (±)-**2a** (464 mg, 1.66 mmol, 1.0 equiv) in dry CH₂Cl₂ (1 mL) was added dropwise at 0 °C. The reaction mixture was stirred for an additional 5 h at room temperature. It was then filtered through a cotton plug, and the plug was washed with CH₂Cl₂ (5 mL). The filtrate was washed with water and brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (9:1) as an eluent to afford **6** (439 mg, 82%) as a colorless oil. IR (CHCl₃) v_{max} = 3017, 2926, 2852, 2115, 1570, 1447, 1225, 1017, 767, 628 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 6.37 (dd, *J* = 17.5, 1.3 Hz, 1H), 6.10 (dd, *J* = 18.0, 10.0 Hz, 1H), 5.83–5.68 (m, 2H), 5.11–5.02 (m, 2H), 5.00–4.94 (m, 1H), 2.37–2.28 (m, 2H), 2.12 (apparent t, *J* = 7.0 Hz, 4H), 1.61–1.51 (m, 2H), 1.50–1.43 (m, 4H), 1.35–1.23 (m, 14H), 0.88 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 165.9, 133.7, 130.3, 128.8, 117.6, 80.3, 80.1, 73.6, 38.6, 33.5, 31.4, 29.3, 29.1, 29.08, 29.0, 28.7, 28.5, 25.2, 22.6, 18.73, 18.7, 14.0 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₂₂H₃₇O₂ 333.2789; found 333.2793.

6-(9-Methylenepentadecyl)-5,6-dihydro-2*H*-pyran-2-one (7a) and 6-(8-Methylenepentadecyl)-5,6dihydro-2*H*-pyran-2-one (7b)

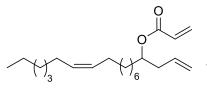
To a stirred and degassed solution of **6** (100 mg, 0.30 mmol, 1.0 equiv) in dry


CH₂Cl₂ (50 mL) was added Grubbs second–generation catalyst (25.5 mg, 0.03 mmol, 10 mol%) at room temperature and the mixture refluxed for 4 h. The mixture was cooled and filtered through a small pad of silica gel and the filtrate was concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (4:1) as eluent to give the mixture of **7a** and **7b** (77 mg, 80%) as a colorless oil. IR (CHCl₃) v_{max} = 3025, 2928, 2862, 1717, 1390, 1230, 1049, 835, 765, 692, 633 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 6.92–6.83 (m, 1H), 6.01 (d, *J* = 9.4 Hz, 1H), 5.03 (s, 1H), 4.89 (s, 1H), 4.46–4.32 (m, 1H), 2.35–2.26 (m, 2H), 2.21 (apparent t, *J* = 9.4 Hz, 4H), 1.84–1.71 (m, 1H), 1.69–1.56 (m, 3H), 1.45–1.36 (m, 4H), 1.34–1.27 (m, 14H), 0.87 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 164.7, 147.9, 145.0, 121.5, 111.34, 111.3, 78.0, 34.9, 34.3, 34.2, 31.8, 29.4, 29.3, 29.2, 28.64, 28.6, 24.8, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₂₁H₃₇O₂ 321.2789; found 321.2795. (**Z)-Hexadec-9-en-1-ol (9**)

OH

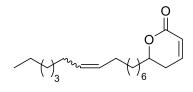
To a stirred solution of $Ni(OAc)_2.4H_2O$ (522 mg, 2.09 mmol, 1.0 equiv) in EtOH (10 mL) under H_2 atmosphere was added NaBH₄ (79 mg, 2.09 mmol,

1.0 equiv) in EtOH (10 mL) at room temperature. After stirring for 0.5 h, ethylenediamine (502.4 mg, 8.36 mmol, 4.0 equiv) and alkyne substrate **5** (500 mg, 2.09 mmol, 1.0 equiv) in EtOH (10 mL) were added sequentially. The reaction mixture was allowed to stir for 4 h. Then, EtOH was removed under reduced pressure, and the reaction mixture was diluted with EtOAc (25 mL) and filtered through a pad of Celite and the filtrate was concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (4:1) as eluent to give **9** (497.5 mg, 99%) as a colorless oil. IR (CHCl₃) v_{max} = 3382, 3018, 2929, 1527, 1220, 1155, 1048, 832, 770, 678, 630 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 5.37–5.25 (m, 2H), 3.57 (t, *J* = 7.2 Hz, 2H), 2.47 (br s, 1H), 2.04–1.90 (m, 4H), 1.59–1.45 (m, 2H), 1.34–1.22 (s, 18H), 0.86 (t, *J* = 7.5 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 129.8, 129.7, 62.7, 32.6, 31.7, 29.7, 29.65, 29.5, 29.4, 29.2, 28.9, 27.12, 27.1, 25.7, 22.6, 14.0 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₁₆H₃₃O 241.2526; found 241.2530.


(Z)-Nonadeca-1,12-dien-4-ol (10)

The titled compound was prepared from alcohol **9** (500 mg, 2.08 mmol) by a similar procedure as described for (\pm) -**2a** to give

homoallylic alcohol **10** (449.2 mg, 77% over 2 steps) as a colorless oil. IR (CHCl₃) v_{max} = 3393, 2922, 2857, 1520, 1377, 1274, 1218, 1019, 907, 829, 771, 639 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 5.87–5.75 (m, 1H), 5.37–5.27 (m, 2H), 5.14–5.04 (m, 2H), 3.62 (s, 1H), 2.31–2.21 (m, 1H), 2.17–2.07 (m, 1H), 2.03–1.95 (m, 4H), 1.77 (brs, 1H), 1.45–1.41 (m, 2H), 1.36–1.17 (s, 18H), 0.86 (t, *J* = 8.0 Hz, 3H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃) δ = 134.9, 129.9, 129.8, 117.9, 70.6, 41.9, 36.7, 31.7, 29.7, 29.6, 29.5, 29.2, 28.9, 27.2, 27.1, 25.6, 22.6, 14.0 ppm; HRMS (ESI-TOF): m/z [M + NH₄]⁺ calcd. C₁₉H₄₀ON 298.3105; found 298.3103.


(Z)-Nonadeca-1,12-dien-4-yl acrylate (11)

The titled compound was prepared from alcohol **10** (200 mg, 0.713 mmol) by a similar procedure as described for **6** to give ester **11**

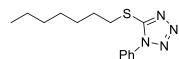
(209 mg, 84%) as a colorless oil. IR (CHCl₃) $v_{max} = 2924$, 2858, 1726, 1524, 1369, 1270, 1219, 1098, 1023, 838, 771, 700, 636 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 6.39$ (dd, J = 17.3, 1.3 Hz, 1H), 6.10 (dd, J = 17.6, 10.0 Hz, 1H), 5.84–5.69 (m, 2H), 5.41–5.31 (m, 2H), 5.12–4.95 (m, 3H), 2.41–2.27 (m, 2H), 2.06–1.95 (m, 4H), 1.64–1.51 (m, 4H), 1.32–1.24 (s, 16H), 0.88 (t, J = 7.0 Hz, 3H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃) $\delta = 165.9$, 133.7, 130.3, 129.9, 129.9, 128.6, 117.6, 73.6, 38.6, 33.5, 31.8, 29.72, 29.7, 29.4, 29.36, 29.2, 29.0, 27.2, 27.16, 25.2, 22.6, 14.1 ppm; HRMS (ESI-TOF): m/z [M + H]⁺ calcd. C₂₂H₃₉O₂ 335.2945; found 335.2950.

6-(Pentadec-8-en-1-yl)-5,6-dihydro-2H-pyran-2-one (12)

The titled compound was prepared from ester **11** (100 mg, 0.29 mmol) by a similar RCM procedure as described for **7a** and **7b** to give lactone

12 (79 mg, 85%) as a colorless oil. IR (CHCl₃) $v_{max} = 2926$, 2858, 1720, 1455, 1386, 1252, 1047, 970, 821, 771, 637 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) $\delta = 6.89-6.84$ (m, 1H), 6.00 (dt, J = 10.0, 1.4 Hz, 1H), 5.45-5.28 (m, 2H), 4.44-4.35 (m, 1H), 2.35-2.27 (m, 2H), 2.06-1.90 (m, 4H), 1.83-1.73 ((m, 1H), 1.64-1.59 (m, 1H), 1.56-1.48 (m, 1H), 1.43-1.35 (m, 1H), 1.32-1.23 (s, 16H), 0.86 (t, J = 6.9 Hz, 3H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃) $\delta = 164.6$, 145.0, 130.4, 130.2, 121.4, 78.0, 34.8, 32.6, 32.5, 31.7, 29.6, 29.55, 29.4, 29.3, 29.29, 29.0, 28.8, 24.8, 22.6, 14.1 ppm; HRMS (ESI-TOF): m/z [M + H]⁺ calcd. C₂₀H₃₅O₂ 307.2632; found 307.2634.

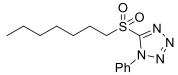
Table S1: Comparison of ¹H NMR of natural passifetilactone A isolated by Schevenels and the presentsynthetic **1a** and compound **12**


Sr. No.	Passifetilactone A isolated by Schevenels J. Nat. Prod., 2024, 87, 1652	Synthetic passifetilactone A (1a) This work	Synthetic compound 12 This work
1	6.84 (ddd, <i>J</i> = 9.5, 5.3, 3.1 Hz, 1H)	6.92–6.82 (m, 1H)	6.89–6.84 (m, 1H)
2	5.96 (brdd, <i>J</i> = 9.7, 1.0 Hz, 1H)	6.01 (d, <i>J</i> = 10.0 Hz, 1H)	6.00 (dt, <i>J</i> = 10.0, 1.4 Hz, 1H)
3	5.30 (m, 2H)	5.41–5.28 (m, 2H)	5.45–5.28 (m, 2H)
4	4.37 (m, 1H)	4.49–4.34 (m, 1H)	4.44–4.35 (m, 1H)

5	2.29 (m, 2H)	2.34–2.28 (m, 2H)	2.35–2.27 (m, 2H)
6	1.98 (brm, 4H)	2.05–1.95 (m, 4H)	2.06–1.90 (m, 4H)
7	1.74 (m, 1H)	1.83–1.74 (m, 1H)	1.83–1.73 ((m, 1H)
8	1.60 (m, 1H)	1.66–1.59 (m, 1H)	1.64–1.59 (m, 1H)
9	1.47 (m, 1H)	1.52–1.47 (m, 1H)	1.56–1.48 (m, 1H)
10	1.35 (m, 1H)	1.45–1.37 (m, 1H)	1.43–1.35 (m, 1H)
11	1.20–1.13 (brm overlap, 16H)	1.33–1.24 (m, 16H)	1.32–1.23 (m, 16H)
12	0.85 (t, <i>J</i> = 6.7 Hz, 3H)	0.87 (t, J = 6.8 Hz, 3H)	0.86 (t, <i>J</i> = 6.9 Hz, 3H)

Table S2: Comparison of ¹³C NMR of natural passifetilactone A isolated by Schevenels and the presentsynthetic **1a** and compound **12**

Sr no	Passifetilactone A isolated by Schevenels J. Nat. Prod., 2024, 87, 1652	Synthetic passifetilactone A (1a) This work	Synthetic compound 12 This work
1	164.6	164.6	164.6
2	145.2	145.0	145.0
3	129.9	130.0	130.4
4	129.9	129.8	130.2
5	121.4	121.5	121.4
6	78.0	78.0	78.0
7	34.9	34.9	34.8
8	32.0	31.8	32.6
9	29.8	29.7	32.5
10	29.7	29.6	31.7
11	29.6	29.4	29.6
12	29.5	29.3	29.55
13	29.4	29.2	29.4
14	29.3	28.8	29.3
15	27.2	27.2	29.29
16	26.9	27.16	29.0
17	24.8	24.8	28.8
18	22.3	22.6	24.8
19	14.0	14.1	22.6
20			14.1


5-(Heptylthio)-1-phenyl-1H-tetrazole (14)

To a stirred solution of 1-heptanol **13** (1.0 g, 8.60 mmol, 1.0 equiv), 1-phenyl-1*H*-tetrazole-5-thiol (1.99 g, 11.18 mmol, 1.3 equiv) and PPh₃

(2.71 g, 10.32 mmol, 1.2 equiv) in THF (40 mL) was added diisopropyl azodicarboxylate (2.20 mL, 11.18 mmol, 1.3 equiv) dropwise at 0 °C and the reaction continued for 3 h. After completely consuming the starting material as judged by TLC, a saturated aq. solution of NaHCO₃ was added, and the resulting mixture was extracted with Et₂O (2 × 50 mL). The combined organic layers were washed with water and brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography with petroleum ether/EtOAc (4:1) as an eluent to give sulfide **14** (1.90 g, 80%) as a colorless oil. IR (CHCl₃) v_{max} = 2928, 2855, 1696, 1627, 1439, 1282, 1212, 1161, 949, 917, 758, 733, 648, 566 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.63–7.48 (m, 5H), 3.38 (t, *J* = 6.8 Hz, 2H), 1.85–1.74 (m, 2H), 1.47–1.37 (m, 2H), 1.35–1.21 (m, 6H), 0.86 (t, *J* = 7.7 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 154.5, 133.7, 130.0, 129.7, 123.8, 33.3, 31.6, 29.0, 28.6, 28.5, 22.5, 14.0 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₁₄H₂₁N₄S 277.1482; found 277.1484.

5-(Heptylsulfonyl)-1-phenyl-1H-tetrazole (15)

To a solution of sulfide 14 (1.0 g, 3.62 mmol, 1.0 equiv) in EtOH (20 mL), cooled to 0 $^{\circ}$ C under argon was added a solution of (NH₄)₆Mo₇O₂₄

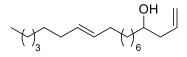
•4H₂O (447 mg, 0.36 mmol, 0.1 equiv) and H₂O₂ (3.62 mL, 30%) and then stirred at room temperature for 12 h. The reaction mixture was quenched with H₂O and extracted with CH₂Cl₂ (3 × 50 mL). The combined organic layers were washed with water and brine, dried (Na₂SO₄) and concentrated. The residue was purified by silica gel column chromatography with petroleum ether/EtOAc (4:1) as an eluent to give sulfone **15** (971.3 mg, 87%) as a colorless oil. IR (CHCl₃) v_{max} = 2930, 2854, 1504, 1343, 1219, 1151, 1022, 843, 771, 691, 633 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.71–7.64 (m, 2H), 7.63–7.54 (m, 3H), 3.71 (d, *J* = 8.6 Hz, 2H), 2.04–1.84 (m, 2H), 1.53–1.41 (m, 2H), 1.38–1.21 (m, 6H), 0.88 (t, *J* = 6.8 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 153.4, 133.0, 131.4, 129.6, 125.0, 55.9, 31.3, 28.5, 28.0, 22.4, 21.9, 13.9 ppm; HRMS (ESI-TOF): *m*/*z* [M + H]⁺ calcd. C₁₄H₂₁N₄O₂S 309.1380; found 309.1384.

9-(tert-Butyldimethylsilyloxy)nonan-1-ol (17)

^o To the suspension of NaH (60% in oil, 274 mg, 6.86 mmol, 1.1 equiv) in dry THF (50 mL) was added commercially available 1,9-nonane diol **16** (1.0 g, 6.24 mmol, 1.0 equiv) at 0 ^oC and the mixture stirred for 40 min at room temperature. Then TBSCI (940.5 mg, 6.24 mmol, 1.0 equiv) was added portion-wise at 0 ^oC and stirred for another 2 h at room temperature. The reaction was quenched with the addition of 10% aq. K₂CO₃. The solution was extracted with Et₂O (3 × 30 mL) and the combined organic layers were washed with water and brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography with petroleum ether/EtOAc (9:1) as an eluent to give **17** (1.5 g, 87%) as a colorless oil. IR (CHCl₃) v_{max} = 3400, 2926, 2858, 1517, 1461, 1219, 1060, 835, 771, 688, 642 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 3.64–3.53 (m, 4H), 1.59–1.42 (m, 4H), 1.34–1.20 (m, 10H), 0.87 (s, 9H), 0.03 (s, 6H) ppm; ¹³C{¹H} NMR (100 MHz,

CDCl₃) δ = 63.3, 62.9, 32.8, 32.7, 29.5, 29.3, 25.9, 25.73, 25.7, 18.3, -5.3 ppm; HRMS (ESI-TOF): m/z [M + H]⁺ calcd. C₁₅H₃₅O₂Si 275.2401; found 275.2408.

(E)-tert-Butyl(hexadec-9-en-1-yloxy)dimethylsilane (18)

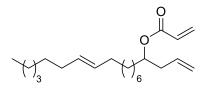

To a solution of 9-(*tert*-butyldimethylsilyloxy)nonan-1-ol **17** (1.0 g, 3.64 mmol, 1.0 equiv) in dry CH_2Cl_2 (36 mL) was added PCC (1.18 g, 5.46 mmol, 1.5 equiv) in portions at 0 °C. The reaction mixture was allowed to stir for 4 h at room temperature. It was then treated with saturated aq. solutions of $Na_2S_2O_3 \cdot 5H_2O$ (3 mL) and $NaHCO_3$ (3 mL) and stirred for 20 min. The solution was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layers were washed with water and brine, dried (Na_2SO_4), and concentrated to afford the desired aldehyde (900 mg) that was taken for the next step without further purification.

A solution of sulfone **15** (1.12 g, 3.64 mmol, 1.0 equiv) and above crude aldehyde (900 mg) in dimethoxyethane (DME) (33.0 mL) was cooled to -78 °C and KHMDS (3.6 mL, 1.0 M solution in THF, 3.64 mmol, 1.0 equiv) was added via syringe pump over 10 min. The resulting mixture was stirred at -78 °C for 2 h and then was allowed to warm to room temperature over 2 h. Then, a saturated aq. solution of NH₄Cl (1.0 mL) was added and the solution extracted with Et₂O (3 ×10 mL). The combined organic layers were washed with water and brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography with petroleum ether/EtOAc (9:1) as an eluent to give *trans*-olefin **18** (1.04 g, 81% over two steps) as a colorless oil. IR (CHCl₃) v_{max} = 2934, 2861, 1594, 1452, 1375, 1277, 1183, 1117, 963, 764, 714 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 5.41–5.34 (m, 2H), 3.59 (t, *J* = 7.0 Hz, 2H), 2.00–1.92 (m, 4H), 1.54–1.47 (m, 2H), 1.33–1.24 (s, 18H), 0.89 (s, 12H), 0.05 (s, 6H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 130.4, 130.3, 63.3, 32.9, 32.6, 31.8, 29.6, 29.5, 29.4, 29.1, 28.8, 26.0, 25.8, 22.6, 18.4, 14.1, –5.3 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₂₂H₄₇OSi 355.3391; found 355.3393.

(E)-Hexadec-9-en-1-ol (19)

To a solution of **18** (1.0 g, 2.82 mmol, 1.0 equiv) in MeOH (28 mL) was added *p*-TsOH·2H₂O (54 mg, 0.282 mmol, 10 mol%) at room temperature. The reaction mixture was stirred at room temperature for 4 h and then MeOH was evaporated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (4:1) as an eluent to give **19** (630.5 mg, 93%) as a colorless oil. IR (CHCl₃) v_{max} = 3499, 3108, 3015, 2921, 1520, 1218, 842, 700, 625 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 5.44–5.32 (m, 2H), 3.62 (t, *J* = 6.6 Hz, 2H), 2.04–1.88 (m, 4H), 1.60–1.50 (m, 2H), 1.44 (brs, 1H), 1.37–1.21 (m, 18H), 0.87 (t, *J* = 7.5 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 130.4, 130.3, 63.0, 32.8, 32.6, 32.56, 31.7, 29.6, 29.44, 29.4, 29.1, 28.8, 25.7, 22.6, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₁₆H₃₃O 241.2526; found 241.2529.

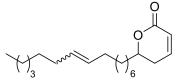
(E)-Nonadeca-1,12-dien-4-ol (20)



The titled compound was prepared from alcohol **19** (630 mg, 2.62 mmol) by a similar procedure as described for (\pm) -**2a** to give

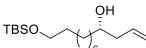
homoallylic alcohol **20** (573.2 mg, 78%) as a colorless oil. IR (CHCl₃) v_{max} = 3493, 2928, 2854, 1550, 1452, 1219, 1075, 836, 764, 679, 642 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 5.90–5.75 (m, 1H), 5.42–5.28

(m, 2H), 5.20–5.04 (m, 2H), 3.68–3.62 (m, 1H), 2.34–2.23 (m, 1H), 2.17–2.06 (m, 1H), 2.04–1.89 (m, 4H), 1.63 (br s, 1H), 1.49–1.39 (m, 3H), 1.37–1.18 (m, 17H), 0.87 (t, J = 6.5 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 134.9, 130.4, 130.3, 118.0, 70.7, 41.9, 36.8, 32.6, 32.55, 31.7, 29.6, 29.4, 29.1, 28.8, 25.6, 22.6, 14.1 ppm; HRMS (ESI-TOF): m/z [M + H]⁺ calcd. C₁₉H₃₇O 281.2839; found 281.2839.


(E)-Nonadeca-1,12-dien-4-yl acrylate (21)

The titled compound was prepared from alcohol **20** (500 mg, 1.78 mmol) by a similar procedure as described for **6** to give ester **21** (512 mg, 86%) as a colorless oil. IR (CHCl₃) v_{max} = 2928, 2854, 1740, 1550,

1452, 104, 1219, 1075, 836, 764, 679, 642 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 6.37 (dd, *J* = 17.4, 1.4 Hz, 1H), 6.09 (dd, *J* = 16.5, 10.0 Hz, 1H), 5.82–5.68 (m, 2H), 5.42–5.30 (m, 2H), 5.10–4.93 (m, 3H), 2.41–2.24 (m, 2H), 2.02–1.90 (s, 4H), 1.62–1.51 (m, 2H), 1.35–1.22 (m, 18H), 0.87 (t, *J* = 6.5 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 165.9, 133.7, 130.4, 130.3, 130.2, 128.9, 117.6, 73.6, 38.6, 33.5, 32.6, 32.5, 31.7, 29.6, 29.56, 29.4, 29.3, 29.0, 28.8, 25.2, 22.6, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + NH₄]⁺ calcd. C₂₂H₄₂O₂N 352.3210; found 352.3209.


6-(Pentadec-8-en-1-yl)-5,6-dihydro-2H-pyran-2-one (12)

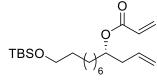
The titled compound was prepared from ester **21** (100 mg, 0.299 mmol) by a similar procedure as described for **7a** and **7b** to give lactone

12 (76.1 mg, 83%) as a colorless oil. All spectral and analytical data perfectly matched with the compound **12** obtained from ester **11**.

(S)-12-(tert-Butyldimethylsilyloxy)dodec-1-en-4-ol (22)

To a solution of 9-(*tert*-butyldimethylsilyloxy)nonan-1-ol **17** (1.0 g, 3.64 mmol, 1.0 equiv) in dry CH_2Cl_2 (36 mL) was added PCC (1.18 g, 5.46 mmol, 1.5 equiv) in portions at 0 °C. The reaction mixture was allowed to stir for 4 h at room temperature. It was then treated with saturated aq. solutions of $Na_2S_2O_3 \cdot 5H_2O$ (3 mL) and $NaHCO_3$ (3 mL) and stirred for 20 min. The solution was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layers were washed with water and brine, dried (Na_2SO_4), and concentrated to afford the desired aldehyde (900 mg) that was taken for the next step without further purification.

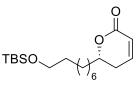
A mixture of (*R*)-BINOL (104.2 mg, 0.364 mmol, 0.1 equiv) and Ti(O[']Pr)₄ (108 µL, 0.364 mmol, 0.1 equiv) in CH₂Cl₂ (15.0 mL) in the presence of 4 Å molecular sieves (1.0 g) was stirred under reflux. After 1 h, the reaction mixture was cooled to room temperature, and the aldehyde (900 mg) as obtained above, was added in CH₂Cl₂ (4.0 mL) and further stirred for 10 min. The reaction mixture was then cooled to -78 °C and allyltributyltin (1.25 mL, 0.40 mmol, 1.1 equiv) was added to it and the stirring continued at -20 °C for 24 h. Then, saturated aq. NaHCO₃ solution (10.0 mL) was added to quench the reaction mixture, stirred for an additional 30 min and was then extracted with CH₂Cl₂ (2 × 20). The combined organic layers were washed with water and brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography with petroleum ether/EtOAc (9:1) as an eluent to give homoallylic alcohol **22** (927.5 mg, 81% over two steps) as a colorless oil. [α]_D²⁵ –2.6 (*c* 1.8, CHCl₃); IR (CHCl₃) v_{max} = 3363, 2926, 2857, 1518, 1460, 1252, 1096, 915, 836, 772, 646 cm⁻¹; ¹H NMR (400 MHz,


CDCl₃) δ = 5.89–5.74 (m, 1H), 5.17–5.08 (m, 2H), 3.67–3.61 (m, 1H), 3.59 (t, *J* = 7.8 Hz, 2H), 2.36–2.23 (m, 1H), 2.17–2.08 (m, 1H), 1.51–1.48 (m, 2H), 1.46–1.42 (m, 2H), 1.30–1.25 (m, 10H), 0.89 (s, 9H), 0.03 (s, 6H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 134.9, 118.0, 70.7, 63.3, 41.9, 36.8, 32.9, 29.6, 29.5, 29.4, 26.0, 25.8, 25.6, 18.4, –5.3 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₁₉H₃₉O₂Si 315.2715; found 315.2721.

(*S*)-12-(*tert*-Butyldimethylsilyloxy)dodec-1-en-4-yl (*R*)-3,3,3-trifluoro-2-methoxy-2-phenyl propanoate (51)

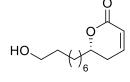
To a stirred solution of alcohol **22** (20 mg, 0.064 mmol, 1.0 equiv), DCC (20 mg, 0.095 mmol, 1.5 equiv) and DMAP (3.1 mg, 0.0256 mmol, 0.4 equiv) in CH₂Cl₂ (1.0 mL) at room temperature was added (–)-(*S*)- α -methoxy- α -(trifluoromethyl)phenylacetic acid (18.7 mg, 0.08 mmol, 1.2 equiv) in one portion. The reaction mixture was stirred for an additional 5 h at room temperature. It was then filtered through a cotton plug and the plug was washed with CH₂Cl₂ (5 mL). The filtrate was washed with water and brine, dried (Na₂SO₄) and concentrated under vacuum. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (9:1) as an eluent to afford ester **51** (27.2 mg, 80%) as a colorless oil. [α]_D²⁵ –17.4 (*c* 1.0, CHCl₃); IR (CHCl₃) ν_{max} = 2927, 2857, 1724, 1603, 1529, 1462, 1219, 1102, 925, 837, 771, 719, 603 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.61–7.51 (m, 2H), 7.40–7.32 (m, 3H), 5.82–5.70 (m, 1H), 5.21–5.03 (m, 3H), 3.63–3.58 (m, 2H), 3.57–3.55 (m, 3H), 2.41 (t, *J* = 7.0 Hz, 2H), 1.54–1.44 (m, 4H), 1.27–1.21 (m, 10H), 0.89 (s, 9H), 0.047 (s, 6H).

Following similar procedure as above the (*R*)-3,3,3-trifluoro-2-methoxy-2-phenyl ester of racemic (\pm)-**22** was also prepared and analyzed by proton NMR for two diastereomer peaks (see spectra on page S59). Analysis of the proton NMR data of ester **51** indicated a single diastereomer (>50:1 dr), which means compound **22** to be enantiomerically pure (>98% ee).


(S)-12-(tert-Butyldimethylsilyloxy)dodec-1-en-4-yl acrylate (23)

The titled compound was prepared from alcohol **22** (500 mg, 1.59 mmol) by a similar procedure as described for (\pm) -**2a** to give ester **23** (504 mg,

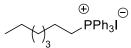
86%) as a colorless oil. $[\alpha]_D^{25}$ –11.6 (*c* 1.0, CHCl₃); IR (CHCl₃) v_{max} = 2924, 2853, 1704, 1622, 1537, 1451, 1233, 1180, 1089, 898, 836, 771, 645 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 6.37 (d, *J* = 17.0 Hz, 1H), 6.09 (dd, *J* = 17.0, 6.7 Hz, 1H), 5.84–5.67 (m, 2H), 5.13–5.88 (m, 3H), 3.58 (t, *J* = 7.0 Hz, 2H), 2.42–2.26 (m, 2H), 1.62–1.53 (m, 2H), 1.52–1.45 (m, 2H), 1.33–1.26 (m, 10H), 0.88 (s, 9H), 0.035 (s, 6H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 165.9, 133.7, 130.3, 128.9, 117.6, 73.6, 63.3, 38.6, 33.5, 32.8, 29.4, 29.36, 29.3, 26.0, 25.7, 25.2, 18.4, –5.3 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₂₁H₄₁O₃Si 369.2820; found 369.2826.


(S)-6-(8-(tert-Butyldimethylsilyloxy)octyl)-5,6-dihydro-2H-pyran-2-one (24)

The titled compound was prepared from ester **23** (100 mg, 0.27 mmol) by a similar procedure as described for **7a** and **7b** to give lactone **24** (77 mg, 83%)

as a colorless oil. $[\alpha]_D^{25}$ –15.7 (*c* 1.2, CHCl₃); IR (CHCl₃) v_{max} = 2925, 2859, 1725, 1521, 1460, 1381, 1220, 1077, 837, 771, 689, 639 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 6.89–6.84 (m, 1H), 6.01 (td, *J* = 10.0, 1.0 Hz, 1H), 4.45–4.32 (m, 1H), 3.59 (t, *J* = 8.0 Hz, 2H), 2.34–2.29 (m, 2H), 1.83–1.74 (m, 1H), 1.66–1.59 (m, 2H), 1.53–1.47 (m, 2H), 1.42–1.36 (m, 1H), 1.34–1.29 (s, 8H), 0.88 (s, 9H), 0.038 (s, 6H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃) δ = 164.6, 145.0, 121.4, 78.0, 63.3, 34.8, 32.8, 29.4, 29.37, 29.3, 26.0, 25.7, 24.8, 18.4, –5.3 ppm; HRMS (ESI-TOF): *m/z* [M + K]⁺ calcd. C₁₉H₃₆O₃Sik 379.2068; found 379.2078.

(S)-6-(8-Hydroxyoctyl)-5,6-dihydro-2H-pyran-2-one (25)

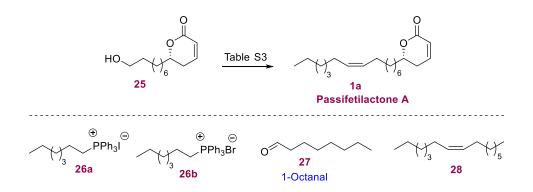

The titled compound was prepared from lactone **24** (77 mg, 0.226 mmol) by a similar procedure as described for **19** to give ester **25** (47.6 mg, 93%) as a

colorless oil. $[\alpha]_D^{25}$ +29.6 (*c* 1.7, CHCl₃); IR (CHCl₃) v_{max} = 3400, 2922, 2860, 1726, 1515, 1458, 1279, 1128, 1028, 952, 815, 771, 691, 645 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 6.91–6.82 (m, 1H), 6.01 (dt, *J* = 10.0, 2.0 Hz, 1H), 4.47–4.33 (m, 1H), 3.63 (t, *J* = 7.8 Hz, 2H), 2.35–2.27 (m, 2H), 1.86–1.72 (m, 1H), 1.68–1.61 (m, 2H), 1.57–1.52 (m, 2H), 1.36–1.31 (s, 9H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 164.6, 145.1, 121.4, 78.0. 63.0, 34.8, 32.7, 29.4, 29.35, 29.2, 29.22, 25.7, 24.7 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₁₃H₂₃O₃ 227.1642; found 227.1646.

Procedure for Wittig Salts (26)

To a solution of 1-haloheptane (2.5 mmol) in toluene (20 mL) was added Ph_3P (2.75 mmol). After refluxing for 48 h, the reaction mixture was cooled to rt, and the solvent was removed under reduced pressure. The crude product was dissolved in CH_2Cl_2 (5 mL) and then added dropwise to Et_2O (10 mL). After stirring for 1 h, the precipitate was filtered and dried under vacuum, affording the titled compound in pure form as white powder.

Heptyltriphenylphosphonium iodide (26a)

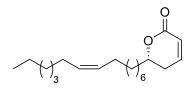


(1.1 g, 90%), white solid, M.P: 120–125 °C, IR (CHCl₃) v_{max} = 2920, 2869, 1556, 1416, 1202, 1108, 995, 748, 679 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.76–7.62 (m, 15H), 3.52 (br s, 2H), 1.58–1.55 (m, 4H), 1.20–1.12 (m, 6H), 0.74 (t, *J* = 7.0 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 135.0, 134.95, 133.4, 133.3, 130.5, 130.3, 118.2, 117.4, 31.1, 30.3, 30.1, 28.5, 23.1, 22.6, 22.34, 22.3, 22.2, 13.8 ppm.

Triphenylheptylphosphonium bromide (26b)

 $\underbrace{\underbrace{}}_{3} \bigoplus \underbrace{}_{3} \bigoplus \underbrace$

(1.06 g, 96%), white solid, M.P: 160–165 °C, IR (CHCl₃) v_{max} = 2919, 2859, 1586, 1436, 1232, 1188, 995, 738, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.80–7.63 (m, 15H), 3.64 (br s, 2H), 1.58–1.55 (m, 4H), 1.20–1.13 (m, 6H), 0.75 (t, *J* = 7.0 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 135.0, 134.9, 133.5, 133.4, 130.5, 130.3, 118.6, 117.7, 31.2, 30.3, 30.16, 28.7, 22.9, 22.44, 22.4, 22.35, 13.9 ppm.



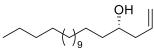
The compound **25** was subjected to IBX oxidation to give the corresponding aldehyde that was next taken for olefination with the iodo-Wittig salt **26a** by using KHMDS as base. In this reaction the starting aldehyde decomposed (Table S3, entry 1). As a model reaction, 1-octanal **27** was treated with the ylide generated from **26a** under the same reaction conditions that led to the formation of the desired *cis*-olefin **28** (entry 2). Hence, the Wittig olefination was optimized and the details are provided in the ESI. Next, we considered different oxidations like Swern oxidation, DMP, TEMPO and PCC oxidation and the aldehyde obtained was then treated with the same ylide from iodo-Wittig salt **26a**. Unfortunately, the Wittig olefination reaction failed in all cases (entries 3-6). Change in base like *n*-BuLi and *t*-BuONa (entries 7 and 8) in ylide generation also proved futile. We finally considered using the bromo-Wittig salt **26b**. Under PCC oxidation, the aldehyde from **25** was treated with the ylide obtained from **26b** using KHMDS, which successfully furnished the desired natural product passifetilactone A (**1a**) in good 80% yield (entry 9).

Table S3	Oxidation	of 25 and	Wittig	olefination.
	Onlaation		VVICUB	orennation.

entry	oxidation	Wittig	conditions	results
	of 25/ aldehyde	salt		(yield over 2 steps)
1	IBX oxidation	26a	KHMDS, –78 °C, THF, 4 h	decomposition
2	1-octanal 27	26a	KHMDS, —78 °C, THF, 4 h	<i>cis</i> -olefin 28 , 82%
3	Swern oxidation	26a	KHMDS, –78 °C, THF, 4 h	decomposition
4	DMP oxidation	26a	KHMDS, –78 °C, THF, 4 h	decomposition
5	TEMPO oxidation	26a	KHMDS, –78 °C, THF, 4 h	decomposition
6	PCC oxidation	26a	KHMDS, –78 °C, THF, 4 h	decomposition
7	PCC oxidation	26a	<i>n</i> -BuLi, −78 °C, THF, 4 h	decomposition
8	PCC oxidation	26a	<i>t-</i> BuONa, 0 °C, THF, 12 h	aldehyde recovered
9	PCC oxidation	26b	KHMDS, –78 °C, THF, 2 h	passifectilactone A (1a), 80%
aldehyde (1.0 equiv), Wittig salt (1.3 equiv), base (1.5 equiv)				

(S,Z)-6-(Pentadec-8-en-1-yl)-5,6-dihydro-2H-pyran-2-one, passifetilactone A (1a)

To a solution of **25** (40 mg, 0.176 mmol, 1.0 equiv) in dry CH_2Cl_2 (10 mL) was added PCC (57 mg, 0.265 mmol, 1.5 equiv) in portions at 0 °C.

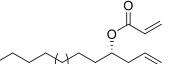

The reaction mixture was allowed to stir for 4 h at room temperature. It was then treated with saturated aq. solutions of $Na_2S_2O_3 \cdot 5H_2O$ (3 mL) and $NaHCO_3$ (3 mL) and stirred for 20 min. The solution was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layers were washed with water and brine, dried (Na_2SO_4), and concentrated to afford the desired aldehyde (36 mg) that was taken for the next step without further purification.

To a stirred slurry of Wittig salt **26b** (102 mg, 0.23 mmol, 1.3 equiv) in THF (5 mL) at -78 °C was added KHMDS (264 μ L, 1.0 M solution in THF, 0.264 mmol, 1.5 equiv) dropwise. The mixture was warmed to room temperature over 1 h before recooling to -78 °C. To this was added the above aldehyde (36 mg) in THF (3 mL) dropwise and the mixture stirred for 1 h at -78 °C and then 1 h at room temperature. Then saturated aq. NH₄Cl solution was added and the aqueous layer was separated. This was extracted with EtOAc (3 × 10 mL). The combined organic layers were dried (Na₂SO₄), and the solvent evaporated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (4:1) as eluent to give *passifetilactone* A (**1a**) (45.1 mg, 80%) as a colorless oil. [α]_D²¹ +6.3 (*c* 0.1, MeOH), lit.¹ [α]_D²¹ +6.0 (*c* 0.1, MeOH); IR (CHCl₃) V_{max} = 2923, 2855, 1725, 1456, 1385, 1302, 1247, 1142, 1040, 963, 860, 817, 770, 661 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 6.92–6.82 (m, 1H), 6.01 (d, *J* = 10.0 Hz, 1H), 5.41–5.28 (m, 2H), 4.49–4.34 (m, 1H), 2.34–2.28 (m, 2H), 2.05–1.95 (m, 4H), 1.83–1.74 (m, 1H), 1.66–1.59 (m, 2H), 1.52–1.47 (m, 1H), 1.30 (s, 16H), 0.87 (t, *J* = 6.8 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 160.6, 145.0, 130.0, 129.8, 121.5, 78.0, 34.9, 31.8, 29.7, 29.6, 29.4, 29.3, 29.2, 29.0, 28.8, 27.2, 27.16, 24.8, 22.6, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + Na]⁺ calcd. C₂₀H₃₄O₂Na 329.2451; found 329.2455.

(Z)-Pentadec-7-ene (28)

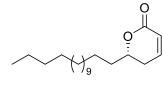
The titled compound was prepared from 1-octanal **27** (50 mg, 0.39 mmol)
by a similar procedure as described for **1a** to give *cis*-olefin **28** (67.3 mg, 82%) as a colorless oil. IR
(CHCl₃)
$$v_{max}$$
 = 2923, 2855, 1456, 1385, 1302, 1247, 1142, 1040, 963, 860, 817, 770, 661 cm⁻¹; ¹H NMR
(400 MHz, CDCl₃) δ = 5.35 (t, *J* = 4.8 Hz, 2H), 2.04–1.97 (m, 4H), 1.33–1.24 (m, 18H), 0.88 (t, *J* = 7.0 Hz,
6H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 129.9, 31.9, 31.8, 29.74, 29.7, 29.3, 29.2, 29.0, 27.2, 22.7,
14.1 ppm; HRMS (ESI-TOF): *m/z* [M + K]⁺ calcd. C₁₅H₃₀k 249.1979; found 249.1984.

(S)-Nonadec-1-en-4-ol (2b)



To a solution of 1-hexadecanol **4** (600 mg, 2.47 mmol, 1.0 equiv) in dry CH_2Cl_2 (10 mL) was added PCC (800 mg, 3.71 mmol, 1.5 equiv) in portions at 0 °C. The reaction mixture was allowed to stir for 4 h at room temperature. It was then treated with saturated aq. solutions of $Na_2S_2O_3 \cdot 5H_2O$ (3 mL) and $NaHCO_3$ (3 mL) and stirred for 20 min. The solution was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layers were washed with water and brine, dried (Na_2SO_4), and concentrated to afford the desired aldehyde **29** (580 mg) that was taken for the next step without

further purification.


To a stirred solution of TiCl₄ (27 μL, 0.247 mmol, 0.1 equiv) in CH₂Cl₂ (5 mL) under N₂ atmosphere, was added Ti(O[']Pr)₄ (220 µL, 0.741 mmol, 0.3 equiv) at 0 °C. The solution was allowed to warm to room temperature and was stirred for 1 h. Under the exclusion of direct light, Ag₂O (114.5 mg, 0.494 mmol, 0.2 equiv) was added and the stirring was continued for a further 5 h. The reaction mixture was diluted with CH₂Cl₂ (5 mL) and (*R*)–BINOL (141.4 mg, 0.494 mmol, 0.2 equiv) was added and the stirring was continued for an additional 2 h to furnish the chiral catalyst. The resulting mixture was treated with 1-hexadecanal 29 (580) and allyl(tributyl)stannane (1.0 mL, 3.21 mmol, 1.3 equiv) at -20 °C. The temperature was raised to 0 °C and stirring continued for 24 h at the same temperature. The reaction was quenched with saturated aq. NaHCO₃ solution (15 mL) and the resulting mixture was stirred for 1 h. The aqueous layer was extracted with CH_2Cl_2 (2 \times 15 mL). The combined organic layers were dried (Na_2SO_4) , and the solvent evaporated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (4:1) as eluent to give homoallyl alcohol 2b (607 mg, 87% over two steps) as a white solid. M.P: 46–48 °C, $[\alpha]_{D}^{25}$ –3.1 (*c* 2.0, CHCl₃); IR (CHCl₃) v_{max} = 3386, 3076, 2928, 2852, 1452, 1369, 1214, 1043, 997, 910, 771, 687, 636 cm⁻¹; ¹H NMR (500 MHz, $CDCl_3$) δ = 5.87–5.79 (m, 1H), 5.15–5.11 (m, 2H), 3.67–3.62 (m, 1H), 2.33–2.27 (m, 1H), 2.17–2.10 (m, 1H), 1.67 (brs, 1H), 1.50–1.41 (m, 3H), 1.36–1.21 (s, 25H), 0.88 (t, J = 7.0 Hz, 3H) ppm; ¹³C{¹H} NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta = 134.9, 118.0, 70.7, 41.9, 36.8, 31.9, 29.7, 29.64, 29.6, 29.3, 25.7, 22.7, 14.1 \text{ ppm};$ HRMS (ESI-TOF): m/z [M + H]⁺ calcd. C₁₉H₃₉O 283.2995; found 283.2989.

(S)-Nonadec-1-en-4-yl acrylate (30)

The titled compound was prepared from alcohol **2b** (200 mg, 0.71 mmol) by a similar procedure as described for **6** to give ester **30** (205.5 mg, 86%) as a colorless oil. $[\alpha]_D^{25}$ –17.0 (*c* 1.2 CHCl₃); IR (CHCl₃) V_{max} = 2921, 2850, 1691, 1526,1442, 1373, 1309, 1222, 1075, 987, 952, 898, 770, 645 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 6.38 (dd, *J* = 17.0, 1.3 Hz, 1H), 6.09 (dd, *J* = 17.7, 10.6 Hz, 1H), 5.83–5.69 (m, 2H), 5.10–4.96 (m, 3H), 2.46–2.29 (m, 2H), 1.61–1.54 (m, 2H), 1.33–1.24 (m, 26H), 0.87 (t, *J* = 6.3 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 165.9, 133.7, 130.3, 128.9, 117.6, 73.6, 38.6, 33.6, 31.9, 29.7, 29.64, 29.6, 29.54, 29.5, 29.4, 29.3, 25.2, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₂₂H₄₁O₂ 337.3102; found 337.3105.

(S)-6-Pentadecyl-5,6-dihydro-2H-pyran-2-one, passifetilactone C (1c)

The titled compound was prepared from ester **30** (50 mg, 0.15 mmol) by a similar RCM procedure as described for **7a** and **7b** to give

passifetilactone C (**1c**) (37 mg, 80%) as amorphous solid. $[\alpha]_D^{21}$ +2.4 (*c* 0.1, MeOH), lit.¹ $[\alpha]_D^{21}$ +2.0 (*c* 0.1, MeOH); IR (CHCl₃) v_{max} = 2916, 2851, 1695, 1641, 1467, 1389, 1317, 1264, 1160, 1122, 1032, 910, 863, 770, 722 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 6.91–6.82 (m, 1H), 6.00 (d, *J* = 9.8 Hz, 1H), 4.45–4.36 (m, 1H), 2.38–2.24 (m, 2H), 1.83–1.73 (m, 1H), 1.69–1.57 (m, 1H), 1.55–1.44 (m, 1H), 1.43–1.36 (m, 1H), 1.35–1.18 (m, 24H), 0.86 (t, *J* = 6.3 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 164.6, 145.0, 121.4, 78.0, 34.8, 31.9, 29.64, 29.6, 29.59, 29.5, 29.4, 29.34, 29.3, 24.8, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₂₀H₃₇O₂ 309.2789; found 309.2791.

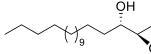
Table S4: Comparison of ¹H NMR of natural passifetilactone C isolated by Schevenels and the present synthetic **1**c

Sr. No.	Passifetilactone C isolated by Schevenels J. Nat. Prod., 2024, 87,1652–1659.	Synthetic Passifetilactone C (1c) This work
1	6.87 (m, 1H)	6.91–6.82 (m, 1H)
2	6.01 (ddd, <i>J</i> = 9.6, 2.2, 1.5 Hz, 1H)	6.00 (d, <i>J</i> = 9.8 Hz, 1H)
3	4.41 (ddt, <i>J</i> = 10.1, 7.3, 5.4 Hz, 1H)	4.45–4.36 (m, 1H)
4	2.32 (m, 2H)	2.38–2.24 (m, 2H)
5	1.79 (m, 1H)	1.83–1.73 (m, 1H)
6	1.63 (m, 1H)	1.69–1.57 (m, 1H)
7	1.50 (m, 1H)	1.55–1.44 (m, 1H)
8	1.39 (m, 1H)	1.43–1.36 (m, 1H)
9	1.32–1.25 (brm overlap, 24H)	1.35–1.18 (m, 24H)
10	0.87 (t, <i>J</i> = 6.8 Hz, 3H)	0.86 (t, <i>J</i> = 6.3 Hz, 3H)

Table S5: Comparison of $^{13}\mathrm{C}$ NMR of natural passifetilactone C isolated by Schevenels and the present synthetic 1c

Sr. No.	Passifetilactone C isolated by Schevenels	Synthetic Passifetilactone C (1c)
	J. Nat. Prod., 2024, 87 ,1652–1659.	This work
1	164.8	164.6
2	145.2	145.0
3	121.6	121.4
4	78.2	78.0
5	35.0	34.8
6	32.1	31.9
7	29.7	29.64
8	29.7	29.6
9	29.7	29.59
10	29.6	29.5
11	29.6	29.4
12	29.6	29.34, 29.3
13	24.9	24.8
14	22.8	22.7
15	14.3	14.1

Octadec-1-en-3-ol (33)

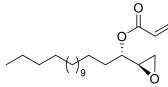

¹/₉ A solution of 1-hexadecanol **4** (1.0 g, 4.12 mmol, 1.0 equiv) in CH_2Cl_2 (25 mL) was added to a suspension of PCC (1.33 g, 6.18 mmol, 1.5 equiv) in CH_2Cl_2 (15 mL) at 0 °C. The mixture was stirred at room temperature until the completion of the reaction (TLC, 4 h) and then diluted by the addition of Et_2O (50 mL) and filtered through a small pad of silica gel (with ether rinsing). The solvent was removed under vacuum and the crude aldehyde (1.0 g) was used without further purification.

To a solution of the above aldehyde (1.0 g) in dry THF (20 mL) cooled to 0 °C was added dropwise vinyl magnesium chloride (1.6 M in THF, 3.9 mL, 6.18 mmol, 1.5 equiv). The solution was stirred for 1 h and then quenched at 0 °C by slow addition of saturated aq. solution of NH₄Cl. The organic layer was separated and the aqueous layer was extracted with EtOAc (2 × 30 mL). The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (9:1) as an eluent to afford **33** (0.984 g, 89% over two steps) as a colourless oil. IR (CHCl₃) v_{max} = 3337, 3265, 3084, 2916, 2851, 1690, 1463, 1316, 1271, 1138, 989, 920, 716, 675 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 5.90–5.81 (m, 1H), 5.20 (d, *J* = 17.2 Hz, 1H), 5.08 (d, *J* = 10.4 Hz, 1H), 4.08 (d, *J* = 5.4 Hz, 1H), 1.62 (s, 1H), 1.57–1.46 (m, 2H), 1.33–1.20 (m, 26H), 0.87 (t, *J* = 6.0 Hz, 3H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃) δ = 141.3, 114.5, 73.3, 37.0, 31.9, 29.7, 29.64, 29.6, 29.5, 29.3, 25.3, 22.7, 14.0 ppm; HRMS (ESI-TOF): *m/z* [M + Na]⁺ calcd. C₁₈H₃₆ONa 291.2660; found 291.2670.

(S)-1-[(R)-Oxiran-2-yl]hexadecan-1-ol (32) and (R)-Octadec-1-en-3-ol (32')

To a suspension of dry 4 Å MS powder (2.5 g) in dry CH_2Cl_2 (15 mL) was added $Ti(O-i-Pr)_4$ (0.11 mL, 0.372 mmol, 0.1 equiv) at -20 °C, followed by (+)-DIPT (113.4 mg, 0.484 mmol, 0.13 equiv) and the mixture was stirred for 0.5 h. To this mixture was added allyl alcohol **33** (1.0 g, 3.72 mmol, 1.0 equiv) in dry CH_2Cl_2 (10 mL) dropwise at the same temperature and stirred for 0.5 h. Then, TBHP in decane (0.285 g, 3.162 mmol, 0.85 equiv) was added dropwise and the resultant reaction mixture was stirred at -20 °C. After 18 h, saturated aq. Na_2SO_4 (3 mL) was added and the solution was allowed to warm to room temperature and stirred for 3 h. The solids formed were filtered through a pad of Celite and the filtrate was concentrated in vacuum. The crude product was purified by silica gel column chromatography using petroleum ether/EtOAc (4:1) as an eluent to afford epoxide **32** (455 mg, 43%) as a white solid. M.p. 46–48 °C. Further elution gave allyl alcohol **32'** (399.5 mg, 40%) as a light-yellow oil.

(S)-1-((R)-Oxiran-2-yl)hexadecan-1-ol (32)



 $[\alpha]_{D}^{25} + 19.6 (c 1.0, CHCl_3); IR (CHCl_3) v_{max} = 3394, 3016, 2918, 2849, 1463, 1377, 1215, 1070, 989, 959, 849, 752, 667 cm^{-1}; {}^{1}H NMR (400 MHz, CDCl_3) \delta = 3.81 (d,$ *J*= 1.8 Hz, 1H), 3.00 (d,*J*= 4.0 Hz, 1H), 2.80 (dd,*J*= 5.0, 2.8 Hz, 1H), 2.72 (t,*J*= 4.1 Hz, 1H), 1.93 (s, 1H), 1.58–1.45 (m, 3H), 1.44–1.23 (m, 25H), 0.87 (t,*J* $= 6.7 Hz, 3H) ppm; {}^{13}C{}^{1}H} NMR (100 MHz, CDCl_3) \delta = 68.4, 54.5, 43.4, 33.4, 31.9, 29.7, 29.64, 29.6, 29.56, 29.5, 29.3, 25.3, 22.7, 14.1 ppm; HRMS (ESI-TOF):$ *m/z*[M + H]⁺ calcd. C₁₈H₃₇O₂ 285.2788; found 285.2783.

(R)-Octadec-1-en-3-ol (32')

[α]_D²⁵ –8.6 (*c* 1.0, CHCl₃); IR (CHCl₃) ν _{max} = 3336, 3263, 3085, 2916, 2851, 2341, 1615, 1463, 1417, 1138, 990, 920, 716, 675 cm⁻¹; 1H NMR (400 MHz, CDCl₃) δ = 5.89–5.80 (m, 1H), 5.20 (dt, *J* = 17.1, 1.2 Hz, 1H), 5.10 (dt, *J* = 10.4, 1.2 Hz, 1H), 4.10 (q, 6.3 Hz, 1H), 1.70 (br s, 1H), 1.50–1.40 (m, 2H), 1.36–1.21 (m, 26H), 0.86 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 141.3, 114.4, 73.2, 37.0 31.9, 29.7, 29.6, 29.5, 29.3, 22.6, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + Na]⁺ calcd. C₁₈H₃₆ONa 291.2660; found 291.2670.

(S)-1-[(R)-Oxiran-2-yl]hexadecyl acrylate (35)

To a stirred solution of compound **32** (500 mg, 1.76 mmol, 1.0 equiv) in dry CH₂Cl₂ (8 mL) at 0 °C was added acrylic anhydride (443.9 mg, 3.52 mmol, 2.0 equiv), triethylamine (356.2 mg, 3.52 mmol, 2.0 equiv) and DMAP (107.5 mg, 0.88 mmol, 0.5 equiv). The resulting mixture was allowed to stir at room temperature for 4 h. After completion (TLC), the reaction was quenched with H₂O and the organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2 × 30 mL). The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (20:1) as an eluent to afford **35** (387.3 mg, 65%) as a colorless oil. $[\alpha]_D^{25}$ +3.2 (*c* 1.0, CHCl₃); IR (CHCl₃) v_{max} = 2921, 2854, 1728, 1629, 1459, 1404, 1367, 1262, 1185, 1049, 973, 894, 855, 809, 771, 723, 644 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 6.41 (d, *J* = 17.4 Hz, 1H), 6.11 (dd, *J* = 17.4, 10.5 Hz, 1H), 5.84 (d, *J* = 10.4 Hz, 1H), 4.79 (q, 6.2 Hz, 1H), 3.00–2.98 (m, 1H), 2.76–2.73 (m, 2H), 1.71 (q, *J* = 7.4 Hz, 2H), 1.36–1.24 (m, 26H), 0.87 (t, *J* = 6.6 Hz, 3H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃) δ = 165.5, 131.1, 128.3, 73.2, 52.3, 45.6, 31.9, 31.4, 29.7, 29.64, 29.6, 29.5, 29.42, 29.4, 29.3, 24.9, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + NH₄]⁺ calcd. C₂₁H₄₂O₃N 356.3160; found 356.3165.

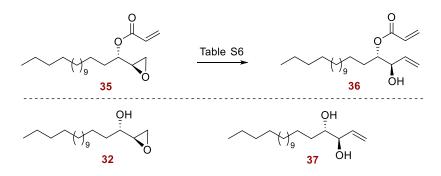
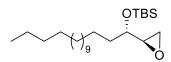


Table S6 Sulfoxonium ylide opening of epoxide 35.

entry	conditions	equivalent of base	results (yield)
1	Me₃SI <i>, n</i> -BuLi, –20 °C, THF, 2 h	2	32 (72%)
2	Me₃SI <i>, n</i> -BuLi, –50 °C, THF, 2 h	2	32 (67%)

3	Me₃SI <i>, n-</i> BuLi, −20 °C, THF, 2 h	1	32 (70%)
4	Me₃SI <i>, n</i> -BuLi, –20 °C, THF, 2 h	3 or more	37 (67%)
5	Me₃SI, KHMDS, −20 °C, THF, 2 h	1	32 (69%)
6	Me₃SI, NaH, −20 °C, THF, 2 h	1	32 (65%)
7	Me₃SI, KHMDS, −20 °C, THF, 2 h	3 or more	37 (66%)

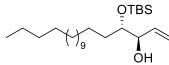
The compound **35** was taken for epoxide opening with sulfoxonium ylide (Table S4). With the use of *n*-BuLi (2.0 equiv) as base to generate the ylide and addition of epoxide, the reactions performed at -20 or -50 °C resulted in only the ester hydrolysis giving epoxy alcohol **32** (entries 1 and 2, Table S2). Change in base concentration to 1.0 equiv also gave same result (entry 3). An increase in base amount to 3.0 or more equiv furnished the epoxide opening product with the ester also being hydrolyzed giving the diol **37** (entry 4). Change in base to KHMDS or NaH (1.0 equiv in each case) also gave the ester hydrolysed product **32** (entries 5 and 6). Increase in base concentration to 3.0 or more equiv resulted in the diol **37** (entry 7). It was difficult to chemoselectively esterify one of the hydroxy groups in diol **37**.


(3R,4S)-Nonadec-1-ene-3,4-diol (37)

OH OH

To a suspension of trimethylsulfonium iodide (682.2 mg, 3.10 mmol, 3.0 equiv) in dry THF (10 mL) was added *n*-BuLi (2.5 M in hexanes, 1.25

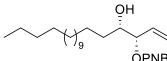
mL, 3.10 mmol, 3.0 equiv) dropwise at -20 °C and stirred for 1 h. Then a solution of epoxide **35** (350 mg, 1.034 mmol, 1.0 equiv) in dry THF (4 mL) was added dropwise and stirred for 0.5 h. The resultant cloudy suspension was allowed to slowly warm to room temperature and stirred for another 2 h. After consumption of the starting material (monitored by TLC), it was then quenched by the addition of saturated aq. Solution of NH₄Cl (5 mL). The solution was extracted with EtOAc (3 × 15 mL) and the combined organic extracts were washed with brine, dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (4:1) as an eluent to afford **37** (206.8 mg, 67%) as a colorless oil. $[\alpha]_D^{25}$ -1.8 (*c* 1.0, CHCl₃); IR (CHCl₃) V_{max} = 3290, 3207, 3037, 2914, 2849, 1466, 1298, 1079, 1035, 997, 921, 770, 711, 645 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 5.98–5.87 (m, 1H), 5.38–5.26 (m, 2H), 4.10 (q, *J* = 3.5 Hz, 1H), 3.72–3.65 (m, 1H), 1.67 (brs, 2H), 1.49–1.45 (m, 2H), 1.42–1.24 (m, 26H), 0.87 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 136.0, 117.7, 75.9, 74.1, 32.2, 31.9, 29.7, 29.6, 29.58, 29.5, 29.4, 25.8, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + Na]⁺ calcd. C₁₉H₃₈O₂Na 321.2764; found 321.2747.


tert-Butyldimethyl((S)-1-((R)-oxiran-2-yl)hexadecyloxy)silane (38)

To a solution of **32** (300 mg, 1.054 mmol, 1.0 equiv) in dry CH₂Cl₂ (10 mL) was added 2,6-lutidine (226 mg, 2.11 mmol, 2.0 equiv) at 0 °C and stirred for 15 min. To this TBSOTf (418 mg, 1.581 mmol. 1.5 equiv) was added dropwise over 10 min and stirred for 30 min. Then, ice-cooled water was added to the reaction mixture and the organic layer separated. The aqueous layer was extracted with CH₂Cl₂ (2 × 20 mL) and the combined organic layers were washed with water and brine, dried (Na₂SO₄) and concentrated. The residue was purified by silica gel column chromatography with petroleum ether/EtOAc (20:1) as an eluent to afford **38** (336 mg, 80%) as a colorless oil. $[\alpha]_D^{25}$ +3.8 (*c* 1.0, CHCl₃); IR (CHCl₃) v_{max} = 2922, 2855, 1462, 1370, 1252, 1095, 998, 926, 837, 777 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 3.57–3.53 (m, 1H), 2.86–2.84 (m, 1H), 2.68 (dd, *J* = 5.5, 3.9 Hz, 1H), 2.64 (dd, *J* = 5.4, 2.6 Hz, 1H), 1.60–1.48 (m, 2H), 1.30–1.25 (m, 26H), 0.90–0.87 (m, 12H), 0.037 (s, 6H) ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 71.3, 54.7, 44.8, 35.3, 31.9, 29.7, 29.69, 29.66, 29.6, 29.55, 29.4, 25.9, 25.8, 25.7, 24.9, 22.7, 18.2, 14.1, -4.4, -4.8 ppm; HRMS (ESI-TOF): *m/z* [M + NH₄]⁺ calcd. C₂₄H₅₄O₂SiN 416.3918; found 416.3910.

(3R,4S)-4-(tert-Butyldimethylsilyloxy)nonadec-1-en-3-ol (ent-34)


The titled compound was prepared from epoxide **38** (300 mg, 0.752 mmol) by a similar procedure as described for **37** to give *ent*-**34** (217.3 mg, 70%) as a colorless oil. $[\alpha]_D^{25}$ +1.8 (*c* 1.0 CHCl₃); IR (CHCl₃) v_{max} = 3345, 2923, 2855, 1462, 1370, 1252, 1095, 998, 926, 837, 777 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 5.88–5.79 (m, 1H), 5.27 (d, *J* = 17.3 Hz, 1H), 5.18 (d, *J* = 10.6 Hz, 1H), 4.10–4.07 (m, 1H), 3.68 (d, *J* = 3.5 Hz, 1H), 2.23 (s, 1H), 1.30–1.24 (m, 28H), 0.90–0.87 (m, 12H), 0.08 (s, 6H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 136.5, 116.4, 75.9, 75.4, 31.9, 31.6, 29.7, 29.68, 29.58, 29.5 29.4, 25.9, 25.6, 22.7, 18.1, 14.1, –4.4, –4.48 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₂₅H₅₃O₂Si 413.3810; found 413.3816.

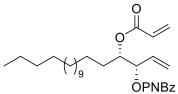
(3*S*,4*S*)-4-Hydroxynonadec-1-en-3-yl 4-nitrobenzoate (39a) and (3*R*,4*S*)-4-Hydroxynonadec-1-en-3-yl 4-nitrobenzoate (39b)

To a solution of allylic alcohol *ent*-**34** (300 mg, 0.727 mmol, 1.0 equiv) in dry THF (10 mL) were added PPh₃ (954.7 mg, 3.64 mmol, 5.0 equiv), *p*-nitrobenzoic acid (608.3 mg, 3.64 mmol, 5.0 equiv) and DIAD (736 mg, 3.64 mmol, 5.0 equiv) under a N₂ atmosphere. The resultant mixture was stirred at room temperature for 8 h. After the completion of the reaction, the reaction mixture was concentrated under reduced pressure and was used without further purification.

To a solution of above crude compound in MeOH (5 mL) was added p-TsOH·H₂O (13.9 mg, 0.073 mmol, 10 mol%) at room temperature. The reaction mixture was stirred at room temperature for 2 h and then MeOH was evaporated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (10:1) as an eluent to give **39a** (169.2 mg, 52%) as a colorless oil and further elution gave **39b** (81.4 mg, 25%) as a colorless oil.

(3S,4S)-4-Hydroxynonadec-1-en-3-yl 4-nitrobenzoate (39a)

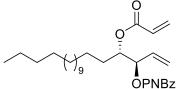
. ÔPNBz [α]_D²⁵ +5.7 (*c* 1.0 CHCl₃); IR (CHCl₃) ν_{max} = 3319, 3228, 3113, 2917, 2850, 1717, 1680, 1606, 1538, 1461, 1407, 1351, 1271, 1098, 1013,


972, 871, 840, 777, 717, 688 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 8.28 (d, *J* = 8.8 Hz, 2H), 8.21 (d, *J* = 8.9 Hz, 2H), 5.90 (d, *J* = 1.9 Hz, 2H), 4.86 (d, *J* = 3.5 Hz, 2H), 4.17 (d, *J* = 4.1 Hz, 1H), 1.56–1.52 (m, 2H), 1.34–1.22 (m, 26H), 0.87 (t, *J* = 6.4 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 164.4, 150.6, 138.5, 135.5, 130.7, 123.5, 123.47, 72.0, 65.7, 37.1, 31.9, 29.7, 29.6, 29.56, 29.5, 29.48, 29.3, 25.3, 22.7, 14.1 ppm; HRMS (ESI-TOF): m/z [M + NH₄]⁺ calcd. C₂₆H₄₅O₅N₂ 465.3323; found 465.3324.

(3R,4S)-4-Hydroxynonadec-1-en-3-yl 4-nitrobenzoate (39b)

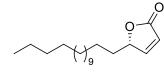
 $[\alpha]_{D}^{25} -2.4 \ (c \ 1.0 \ CHCl_3); \ IR \ (CHCl_3) \ v_{max} = 3319, \ 3222, \ 3115, \ 2917, 2850, \ 1717, \ 1679, \ 1606, \ 1539, \ 1461, \ 1401, \ 1351, \ 1271, \ 1098, \ 972, \ 937, \ 872, \ 717, \ 632 \ cm^{-1}; \ ^1H \ NMR \ (400 \ MHz, \ CDCl_3) \ \delta = 8.29 \ (d, \ J = 8.7 \ Hz, \ 2H), \ 8.22 \ (d, \ J = 8.9 \ Hz, \ 2H), \ 5.98 - 5.87 \ (m, \ 1H), \ 5.47 - 5.17 \ (m, \ 1H), \ 5.47 - 5.47 \ (m, \ 1H), \ 5.47 \ (m, \ 1H), \ 5.47 \ (m, \ 1H$

3H), 4.30 (d, *J* = 4.9 Hz, 1H), 1.79–1.74 (m, 2H), 1.53–1.46 (m, 1H), 1.30–1.23 (m, 26H), 0.87 (t, *J* = 6.9 Hz, 3H) ppm; $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) δ = 164.6, 150.6, 136.7, 135.6, 130.8, 123.6, 117.4, 77.9, 74.0, 31.9, 30.3, 29.7, 29.6, 29.57, 29.5, 29.4, 29.3, 25.4, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + NH₄]⁺ calcd. C₂₆H₄₅O₅N₂ 465.3323; found 465.3327.


(3S,4S)-4-(Acryloyloxy)nonadec-1-en-3-yl 4-nitrobenzoate (40a)

The titled compound was prepared from alcohol **39a** (200 mg, 0.447 mmol) by a similar procedure as described for **35** to give ester **40a**

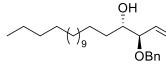
(145.8 mg, 65%) as a colorless oil. $[\alpha]_D^{25}$ +7.5 (*c* 1.0 CHCl₃); IR (CHCl₃) v_{max} = 2923, 2855, 1727, 1687, 1608, 1530, 1457, 1403, 1349, 1270, 1189, 1108, 1046, 974, 870, 813, 774, 720, 645 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 8.31 (d, *J* = 8.8 Hz, 2H), 8.24 (d, *J* = 9.0 Hz, 2H), 6.44 (dd, *J* = 17.7, 1.5 Hz, 1H), 6.15 (q, *J* = 10.6 Hz, 1H), 5.92–5.85 (m, 3H), 5.40 (br s, 1H), 4.88 (d, *J* = 5.27 Hz, 2H), 1.69–1.56 (m, 2H), 1.35–1.23 (m, 26H), 0.89 (t, *J* = 6.65 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 165.5, 164.3, 150.6, 135.4, 133.6, 130.9, 130.8, 128.6, 125.6, 123.5, 73.7, 65.4, 34.2, 31.9, 29.7, 29.6, 29.5, 29.45, 29.34, 29.3, 25.0, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + NH₄]⁺ calcd. C₂₉H₄₇O₆N₂ 519.3429; found 519.3435.


(3R,4S)-4-(Acryloyloxy)nonadec-1-en-3-yl 4-nitrobenzoate (40b)

The titled compound was prepared from alcohol **39b** (200 mg, 0.447 mmol) by a similar procedure as described for **35** to give ester **40b** (141.3 mg, 63%) as a colorless oil. $[\alpha]_D^{25}$ +3.4 (*c* 1.0 CHCl₃); IR (CHCl₃)

 v_{max} = 2923, 2855, 1727, 1687, 1608, 1530, 1496, 1457, 1403, 1349, 1270, 1189, 1108, 1046, 974, 870, 842, 774, 645 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 8.28 (d, *J* = 8.9 Hz, 2H), 8.18 (d, *J* = 9.0 Hz, 2H), 6.38 (dd, *J* = 17.3, 1.3 Hz, 1H), 6.11–6.04 (m, 1H), 5.83–5.79 (m, 2H), 5.58 (t, *J* = 6.3 Hz, 1H), 5.42–5.29 (m, 3H), 1.75–1.66 (m, 2H), 1.28–1.23 (m, 26H), 0.87 (t, *J* = 6.6 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 165.0, 164.2, 150.6, 135.4, 132.1, 131.6, 130.8, 127.9, 123.6, 119.8, 75.5, 74.8, 31.9, 30.4, 29.7, 29.6, 29.56, 29.5, 29.33, 29.3, 25.0, 24.95, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + NH₄]⁺ calcd. C₂₉H₄₇O₆N₂ 519.3429; found 519.3400.

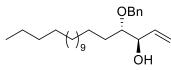
(S)-5-Pentadecylfuran-2(5H)-one (41)


The titled compound was prepared from ester 40a or 40b (100 mg, 0.199 mmol) by a similar RCM procedure as described for 7a and 7b to give

ester **41** (35.7 mg, 61%) as a white solid. M.p. 43–48 °C; $[\alpha]_D^{25}$ +29.6 (*c* 1.0 CHCl₃); IR (CHCl₃) v_{max} = 3086, 2918, 2853, 1792, 1742, 1468, 1367, 1266, 1176, 1101, 1011, 903, 822, 771, 710, 637 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 7.44 (dd, *J* = 5.7, 1.2 Hz, 1H), 6.09 (dd, *J* = 5.7, 1.9 Hz, 1H), 5.02 (q, *J* = 5.6 Hz, 1H), 1.79–1.65 (m, 2H), 1.45–1.41 (m, 2H), 1.39–1.24 (m, 24H), 0.87 (t, *J* = 6.7 Hz, 3H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃) δ = 173.2, 156.3, 121.5, 83.4, 33.2, 31.9, 29.7, 29.63, 29.62, 29.6, 29.56, 29.5, 29.34, 29.3, 24.9, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₁₉H₃₅O₂ 295.2633; found 295.2639.

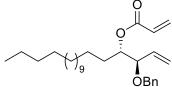
(3R,4S)-3-(Benzyloxy)nonadec-1-en-4-ol (31) and (3R,4S)-4-(Benzyloxy)nonadec-1-en-3-ol (44)

To a suspension of sodium hydride (60% in oil, 58 mg, 1.452 mmol, 1.2 equiv) in dry THF (10 mL) was added dropwise a solution of allylic alcohol *ent*-34 (500 mg, 1.21 mmol, 1.0 equiv) in THF/DMF (1:1, 40 mL) at 0 °C. Benzyl bromide (248 mg, 1.45 mmol, 1.2 equiv) was added subsequently and the mixture was stirred at 0 °C for 7 h. The reaction mixture was quenched using crushed ice flakes until a clear solution was formed. The solution was extracted with EtOAc (3×25 mL). The combined organic layers were washed with water and brine, dried (Na_2SO_4) and concentrated. The residue was used without further purification. To a solution of the above compound (500 mg, 1.21 mmol, 1.0 equiv) in MeOH (15 mL) was added *p*-TsOH·H₂O (230.2 mg, 1.21 mmol, 1.0 equiv) at room temperature. The reaction mixture was stirred at room temperature for 2 h and then MeOH was evaporated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (3:2) as an eluent to afford **31** (207 mg, 44%) as a colorless liquid. Further elution gave compound **44** (136.4 mg, 29%) as a colorless oil.


(3R,4S)-3-(Benzyloxy)nonadec-1-en-4-ol (31)

[α]_D²⁵ -37.8 (*c* 1.0 CHCl₃); IR (CHCl₃) ν_{max} = 3585, 3471, 3066, 3030, 2921, 2851, 1496, 1464, 1388, 1302, 1205, 1067, 1027, 996, 926, 732,

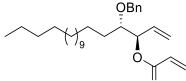
696 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 7.37–7.28 (m, 5H), 5.90–5.84 (m, 1H), 5.40 (dd, *J* = 10.5, 1.6 Hz, 1H), 5.31 (dd, *J* = 17.5, 1.5 Hz, 1H), 4.64 (d, *J* = 11.9 Hz, 1H), 4.39 (d, *J* = 11.8 Hz, 1H), 3.75–3.71 (m, 2H), 2.19 (s, 1H), 1.48–1.42 (m, 2H), 1.36–1.24 (m, 26H), 0.89 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃) δ = 138.3, 134.4, 128.3, 127.7, 127.6, 120.1, 83.6, 73.2, 70.2, 32.2, 31.9, 29.7, 29.6, 29.58, 29.56, 29.3, 25.7, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₂₆H₄₅O₂ 389.3414; found 389.3415.


(3R,4S)-4-(Benzyloxy)nonadec-1-en-3-ol (44)

 $[\alpha]_D^{25}$ –2.6 (*c* 1.0 CHCl₃); IR (CHCl₃) v_{max} = 3588, 3480, 3069, 2921, 2855, 1495, 1459, 1383, 1303, 1206, 1066, 1027, 995, 927, 733, 697 cm⁻¹; ¹H

NMR (500 MHz, CDCl₃) δ = 7.37–7.34 (m, 4H), 7.32–7.28 (m, 1H), 5.93–5.87 (m, 1H), 5.33 (d, *J* = 17.1 Hz, 1H), 5.22 (d, *J* = 10.6 Hz, 1H), 4.62 (dd, *J* = 11.6, 9.5 Hz, 2H), 4.30 (d, *J* = 2.4 Hz, 1H), 3.45 (q, 3.6 Hz, 1H), 2.26 (s, 1H), 1.64–1.56 (m, 1H), 1.48–1.44 (m, 2H), 1.35–1.24 (m, 25H), 0.89 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃) δ = 138.4, 136.7, 128.4, 127.8, 127.7, 116.4, 82.1, 73.5, 72.1, 31.9, 29.7, 29.6, 29.57, 29.5, 29.33, 29.3, 25.7, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₂₆H₄₅O₂ 389.3414; found 389.3412.

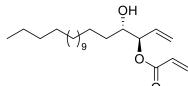
(3R,4S)-3-(Benzyloxy)nonadec-1-en-4-yl acrylate (45)



The titled compound was prepared from alcohol **31** (300 mg, 0.772 mmol) by a similar procedure as described for **35** to give ester **45** (222.1

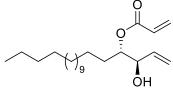
mg, 65%) as a colorless oil. $[\alpha]_D^{25}$ –42.4 (*c* 1.0 CHCl₃); IR (CHCl₃) ν_{max} = 2922, 2852, 1726, 1637, 1495, 1460, 1403, 1294, 1267, 1190, 1068, 986, 965, 929, 807, 733, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ =

7.38–7.33 (m, 4H), 7.32–7.28 (m, 1H), 6.43 (d, J = 16.2 Hz, 1H), 6.15 (dd, J = 17.4, 10.4 Hz, 1H), 5.87–5.78 (m, 2H), 5.34 (d, J = 16.4 Hz, 2H), 5.12 (q, J = 5.5 Hz, 1H), 4.66 (d, J = 12.3 Hz, 1H), 4.45 (d, J = 12.1 Hz, 1H), 3.89 (t, J = 6.6 Hz, 1H), 1.73–1.69 (m, 2H), 1.32–1.24 (m, 26H), 0.90 (t, J = 6.8 Hz, 3H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃) $\delta = 165.7$, 138.2, 134.9, 130.5, 128.7, 128.2, 127.5, 127.4, 119.5, 81.2, 75.1, 70.3, 31.9, 29.7, 29.66, 29.62, 29.6, 29.5, 29.45, 29.4, 29.3, 25.3, 22.7, 14.1 ppm; HRMS (ESI-TOF): m/z [M + Na]⁺ calcd. C₂₉H₄₆O₃Na 465.3340; found 465.3337.


(3R,4S)-4-(Benzyloxy)-5-methyloctadec-1-en-3-yl acrylate (46)

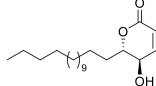
The titled compound was prepared from alcohol **44** (250 mg, 0.643 mmol) by a similar procedure as described for **35** to give ester **46**

(185.0 mg, 65%) as a colorless oil. $[\alpha]_D^{25}$ +37.0 (*c* 1.0 CHCl₃); IR (CHCl₃) v_{max} = 2922, 2852, 1726, 1620, 1495, 1459, 1403, 1294, 1267, 1190, 1068, 986, 965, 929, 807, 733, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.38–7.33 (m, 4H), 7.32–7.28 (m, 1H), 6.46 (d, *J* = 17.2 Hz, 1H), 6.19 (dd, *J* = 17.3, 10.3 Hz, 1H), 6.01–5.93 (m, 1H), 5.88 (d, *J* = 10.4 Hz, 1H), 5.54 (d, *J* = 5.1 Hz, 1H), 5.38–5.31 (m, 2H), 4.76 (d, *J* = 11.5 Hz, 1H), 4.56 (d, *J* = 11.4 Hz, 1H), 3.58 (t, *J* = 4.6 Hz, 1H), 1.64–1.44 (m, 2H), 1.34–1.28 (m, 26H), 0.91 (t, *J* = 6.8 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 165.3, 138.4, 132.7, 130.9, 128.6, 128.3, 127.9, 127.6, 118.6, 80.2, 76.3, 72.6, 31.9, 30.8, 29.7, 29.6, 29.56, 29.5, 29.3, 25.7, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + Na]⁺ calcd. C₂₉H₄₆O₃Na 465.3340; found 465.3336.


(3R,4S)-4-Hydroxynonadec-1-en-3-yl acrylate (47)

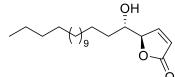
To a stirred solution of **46** (200 mg, 0.452 mmol, 1.0 equiv) in dry CH_2Cl_2 (7 mL) at 0 °C was added a solution of TiCl₄ (102.8 mg, 0.542

mmol, 1.2 equiv) in dry CH₂Cl₂ (2 mL) under N₂ and the mixture was stirred from 0 °C to room temperature for 1 h. After the completion of the reaction, the mixture was quenched with saturated aq. Solution of NaHCO₃ (10 mL) and extracted with CH₂Cl₂ (2 × 20 mL). The combined organic phases were washed with brine, dried (Na₂SO₄) and concentrated. The crude residue was purified by silica gel column chromatography using petroleum ether/ EtOAc (4:1) as eluent to give **47** (138.6 mg, 87%) as a colorless oil. [α]_D²⁵ +3.0 (*c* 1.0 CHCl₃); IR (CHCl₃) V_{max} = 3482, 2921, 2852, 1723, 1637, 1618, 1461, 1405, 1375, 1294, 1270, 1191, 1049, 967, 926, 808, 771, 722, 673 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 6.42 (d, *J* = 17.7 Hz, 1H), 6.14 (dd, *J* = 17.3, 10.4 Hz, 1H), 5.92–5.83 (m, 2H), 5.36–5.25 (m, 3H), 3.76 (t, *J* = 4.1 Hz, 1H), 2.09 (s, 1H), 1.49–1.39 (m, 2H), 1.37–1.20 (m, 26H), 0.85 (t, *J* = 6.1 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 165.3, 131.8, 131.2, 128.3, 119.6, 78.1, 72.7, 32.3, 31.9, 29.63, 29.6, 29.5, 29.48, 29.3, 25.6, 22.6, 14.1 ppm; HRMS (ESI-TOF): *m*/*z* [M + H]⁺ calcd. C₂₂H₄₁O₃ 353.3051; found 353.3052.


(3R,4S)-3-Hydroxynonadec-1-en-4-yl acrylate (36)

The titled compound was prepared from ester **45** (250 mg, 0.564 mmol) by a similar procedure as described for **47** to give ester **36** (173 mg, 87%) as a colorless oil. $[\alpha]_D^{25}$ –2.8 (*c* 1.0 CHCl₃); IR (CHCl₃) V_{max} =

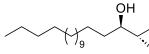
3464, 2921, 2852, 1723, 1637, 1461, 1405, 1375, 1294, 1270, 1191, 1049, 985, 926, 808, 771, 722 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 6.43 (d, *J* = 17.3 Hz, 1H), 6.14 (dd, *J* = 17.3, 10.5 Hz, 1H), 5.91–5.82 (m, 2H), 5.34 (d, *J* = 10.1 Hz, 1H), 5.24 (d, *J* = 10.5 Hz, 1H), 5.03–4.98 (m, 1H), 4.25 (s, 1H), 2.21 (br s, 1H), 1.72–1.61 (m, 2H), 1.45–1.21 (m, 26H), 0.87 (t, *J* = 6.9 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 166.4, 135.8, 131.2, 128.4, 117.4, 74.7, 31.9, 29.7, 29.64, 29.6, 29.5, 29.4, 29.38, 29.3, 25.5, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₂₂H₄₁O₃ 353.3051; found 353.3049.


(5R,6S)-5-Hydroxy-6-pentadecyl-5,6-dihydro-2H-pyran-2-one, 4-epi-passifetilactone B (48)

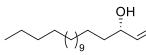
The titled compound was prepared from ester **36** (100 mg, 0.284 mmol) by a similar RCM procedure as described for **7a** and **7b** to give lactone **48**

(59.9 mg, 65%) as a white solid. M.p. 43–48 °C; $[\alpha]_D^{25}$ –4.0 (*c* 1.0 CHCl₃); IR (CHCl₃) ν_{max} = 3535, 3353, 3084, 2955, 2916, 2850, 1783, 1741, 1598, 1469, 1383, 1334, 1169, 1113, 1065, 1023, 980, 949, 893, 865, 831, 799, 772, 718 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 6.82 (dd, *J* = 9.8, 8.1 Hz, 1H), 5.98 (d, *J* = 9.8 Hz, 1H), 4.30–4.20 (m, 2H), 2.20 (br s, 1H), 1.86–1.58 (m, 4H), 1.36–1.20 (m, 24H), 0.87 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 163.1, 148.5, 120.8, 82.6, 66.1, 32.0, 31.9, 29.7, 29.6, 29.5, 29.4, 29.36, 29.3, 24.7, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₂₀H₃₇O₃ 325.2738; found 325.2735.

(R)-5-((S)-1-Hydroxyhexadecyl)furan-2(5H)-one (ent-1e)

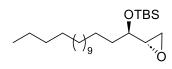

The titled compound was prepared from ester **47** (80 mg, 0.227 mmol) by a similar procedure as described for **7a** and **7b** to give lactone *ent*-

1e (50.1 mg, 68%) as a white solid. M.p. 43–48 °C; $[\alpha]_D^{25}$ +15.5 (*c* 0.1 MeOH); IR (CHCl₃) v_{max} = 3533, 3385, 3084, 2916, 2850, 1782, 1741, 1598, 1491 1383, 1334, 1169, 1113, 1065, 1023, 981, 949, 893, 865, 831, 799, 772, 718, 652 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 7.53 (dd, *J* = 5.8, 1.4 Hz, 1H), 6.19 (dd, *J* = 5.8, 1.9 Hz, 1H), 4.99–4.95 (m, 1H), 3.86 (t, *J* = 3.9 Hz, 1H), 1.61–1.51 (m, 2H), 1.39–1.22 (m, 26H), 0.87 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 173.0, 153.5, 122.8, 86.1, 71.5, 33.0, 31.9, 29.7, 29.62, 29.6, 29.5, 29.46, 29.4, 29.3, 25.5, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₂₀H₃₇O₃ 325.2738; found 325.2736.


(R)-1-((S)-Oxiran-2-yl)-hexadecan-1-ol (ent-32) and (S)-Octadec-1-en-3-ol (ent-32')

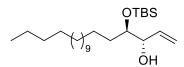
The titled compounds were prepared from **33** (1.5 g, 5.59 mmol) using (–)-DIPT and by following a similar procedure to that described for **32** and **32'** to obtain epoxide *ent*-**32** (699 mg, 44%) as a white solid and *ent*-**32'** (600 mg, 40%) as a light-yellow oil.

Data for ent-32



Data for ent-32'

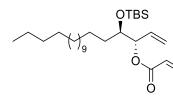
 $[\alpha]_{D}^{25} +8.3 (c \ 1.0 \ CHCl_3); \ IR \ (CHCl_3) \ v_{max} = 3336, \ 3263, \ 3085, \ 2916, \ 2851, \ 1691, \ 1615, \ 1463, \ 1417, \ 1138, \ 990, \ 920, \ 716, \ 675 \ cm^{-1}; \ ^1H \ NMR \ (400 \ MHz, \ CDCl_3) \ \delta = 5.89 - 5.80 \ (m, \ 1H), \ 5.20 \ (dd, \ J = 17.1, \ 1.6 \ Hz, \ 1H), \ 5.10 \ (t, \ J = 11.8 \ Hz, \ 1H), \ 4.10 \ (q, \ J = 6.3 \ Hz, \ 1H), \ 1.77 \ (s, \ 1H), \ 1.50 - 1.40 \ (m, \ 2H), \ 1.30 - 1.24 \ (m, \ 26H), \ 0.86 \ (t, \ J = 7.1 \ Hz, \ 3H) \ ppm; \ ^{13}C\{^1H\} \ NMR \ (100 \ MHz, \ CDCl_3) \ \delta = 141.3, \ 114.4, \ 73.2, \ 37.0, \ 31.9, \ 29.7, \ 29.64, \ 29.6, \ 29.56, \ 29.5, \ 29.3, \ 25.3, \ 22.7, \ 14.1 \ ppm; \ HRMS \ (ESI-TOF): \ m/z \ [M + Na]^+ \ calcd. \ C_{18}H_{36}ONa \ 291.2659; \ found \ 291.2670.$


tert-Butyldimethyl((*R*)-1-((*S*)-oxiran-2-ylhexadecyloxy)silane (*ent*-38)

The titled compound was prepared from epoxide *ent*-**32** (450 mg, 1.581 mmol) by a similar procedure as described for **38** to give *ent*-**38** (504.6

mg, 80%) as a colorless oil. $[\alpha]_D^{25}$ –3.7 (*c* 1.0 CHCl₃); IR (CHCl₃) v_{max} = 3323, 2917, 2851, 1464, 1254, 1071, 720 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 3.56–3.53 (m, 1H), 2.86–2.84 (m, 1H), 2.68 (dd, *J* = 5.5, 3.9 Hz, 1H), 2.64 (dd, *J* = 5.4, 2.6 Hz, 1H), 1.60–1.48 (m, 2H), 1.34–1.25 (m, 26H), 0.89–0.85 (m, 12H), 0.037 (s, 6H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃) δ = 71.3, 54.7, 44.8, 35.3, 31.9, 29.72, 29.7, 29.65, 29.6, 29.55, 29.4, 25.8, 24.9, 22.7, 18.2, 14.1, –4.4, –4.89 ppm; HRMS (ESI-TOF): *m/z* [M + NH₄]⁺ calcd. C₂₄H₅₄O₂SiN 416.3918; found 416.3910.

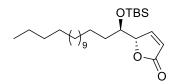
(3S,4R)-4-(tert-Butyldimethylsilyloxy)nonadec-1-en-3-ol (34)



The titled compound was prepared from epoxide *ent*-**38** (400 mg, 1.0 mmol) by a similar procedure as described for **37** to give **34** (289 mg

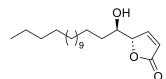
70% yield) as a colorless oil. $[\alpha]_D^{25}$ –1.9 (*c* 1.0, CHCl₃); IR (CHCl₃) v_{max} = 3350, 2922, 2855, 1462, 1370, 1252, 1095, 998, 926, 857, 776, 722, 673 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 5.88–5.79 (m, 1H), 5.27 (dt, *J* = 17.3, 1.6 Hz, 1H), 5.18 (dt, *J* = 12.1, 10.6 Hz, 1H), 4.09 (t, *J* = 1.9 Hz, 1H), 3.68 (t, *J* = 3.8 Hz, 1H),

2.23 (d, *J* = 4.2 Hz, 1H), 1.32–1.22 (m, 28H), 0.90–0.86 (m, 12H), 0.08 (s, 6H) ppm; $^{13}C{^{1}H}$ NMR (125 MHz, CDCl₃) δ = 136.5, 116.4, 75.9, 75.4, 31.9, 31.6, 29.74, 29,7, 29.65, 29.6, 29.5, 29.4, 25.9, 25.8, 25.6, 22.7, 18.1, 14.1, -4.4, -4.47 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₂₅H₅₃O₂Si 413.3810; found 413.3815.


(3S,4R)-4-(tert-Butyldimethylsilyloxy)nonadec-1-en-3-yl acrylate (49)

The titled compound was prepared from alcohol **34** (250 mg, 0.605 mmol) by a similar procedure as described for **35** to give **49** (220.3 mg, 78% yield) as a colorless oil. $[\alpha]_D^{25}$ –2.7 (*c* 1.0 CHCl₃); IR (CHCl₃) ν_{max} =

2923, 2855, 1729, 1632, 1462, 1403, 1369, 1257, 1187, 1104, 1045, 976, 030, 886, 775, 671 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 6.42 (dd, *J* = 17.3, 1.3 Hz, 1H), 6.17–6.07 (m, 1H), 5.97–5.86 (m, 1H), 5.82 (dd, *J* = 10.3, 1.3 Hz, 1H), 5.31–5.23 (m, 3H), 3.81 (q, *J* = 2.7 Hz, 1H), 1.42–1.33 (m, 2H), 1.31–1.20 (m, 26H), 0.90–0.86 (m, 12H), 0.06 (s, 6H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 165.4, 132.5, 130.8, 128.7, 119.2, 78.2, 73.6, 33.7, 31.9, 29.7, 29.6, 29.5, 29.4, 25.9, 25.8, 25.76, 25.4, 22.7, 18.2, 14.1, –4.4, –4.5 ppm; HRMS (ESI-TOF): *m/z* [M + Na]⁺ calcd. C₂₈H₅₄O₃SiNa 489.3735; found 489.3732.


(S)-5-((R)-1-(tert-Butyldimethylsilyloxy)hexadecyl)furan-2(5H)-one (50)

The titled compound was prepared from ester **49** (150 mg, 0.321 mmol) by a similar RCM procedure as described for **7a** and **7b** to give lactone **50**

(101.4 mg, 72%) as a colorless oil. $[\alpha]_D^{25}$ –58.8 (*c* 1.0, CHCl₃); IR (CHCl₃) V_{max} = 2922, 2855, 1760, 1606, 1462, 1371, 1254, 1154, 1115, 1082, 902, 833, 783, 715 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 7.49 (dd, *J* = 5.8, 1.4 Hz, 1H), 6.13 (dd, *J* = 5.8, 1.9 Hz, 1H), 4.96–4.92 (m, 1H), 3.88 (q, *J* = 5.5 Hz, 1H), 1.45–1.41 (m, 2H), 1.35–1.23 (m, 26H), 0.87 (t, *J* = 7.1 Hz, 3H), 0.84 (s, 9H), 0.04 (s, 6H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃) δ = 173.0, 154.0, 122.5, 85.5, 72.2, 34.6, 31.9, 29.7, 29.63, 29.6, 29.5, 29.46, 29.3, 25.7, 24.9, 22.7, 18.0, 14.1, –4.6, –4.77 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₂₆H₅₁O₃Si 439.3602; found 439.3606.

(S)-5-((R)-1-Hydroxyhexadecyl)furan-2(5H)-one, passifetilactone E (1e)

The titled compound was prepared from ester **50** (50 mg, 0.14 mmol) by a similar procedure as described for **25** to give *passifetilactone E* (**1e**)

(37.7 mg, 83%) as a white solid. M.p. 66–67 °C; $[\alpha]_D^{25}$ –16.0 (*c* 0.1, MeOH); lit.¹ $[\alpha]_D^{25}$ –15.0 (*c* 0.1, MeOH); IR (CHCl₃) v_{max} = 3408, 3106, 2918, 2852 2816, 1747, 1600, 1463, 1326, 1171, 1096, 1035, 826, 719 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 7.53 (dd, *J* = 5.8, 1.4 Hz, 1H), 6.19 (dd, *J* = 5.8, 1.9 Hz, 1H), 4.96–4.91 (m, 1H), 3.86 (t, *J* = 3.9 Hz, 1H), 2.05 (br s, 1H), 1.61–1.51 (m, 2H), 1.39–1.22 (m, 26H), 0.87 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 172.9, 153.4, 122.9, 86.0, 71.6, 33.0, 31.9, 29.7, 29.63, 29.6, 29.5, 29.46, 29.4, 29.3, 25.5, 22.7, 14.1 ppm; HRMS (ESI-TOF): *m/z* [M + H]⁺ calcd. C₂₀H₃₇O₃ 325.2737; found 325.2739.

Table S7: Comparison of ¹H NMR of natural passifetilactone E isolated by Schevenels and the present synthetic **1e**

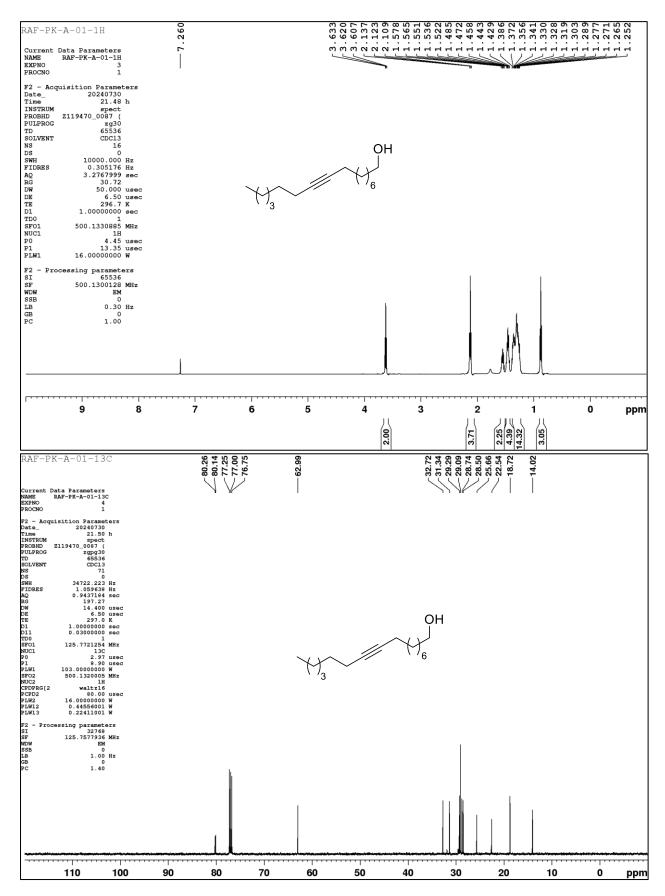
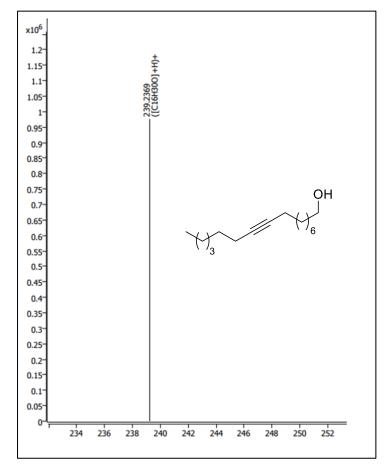
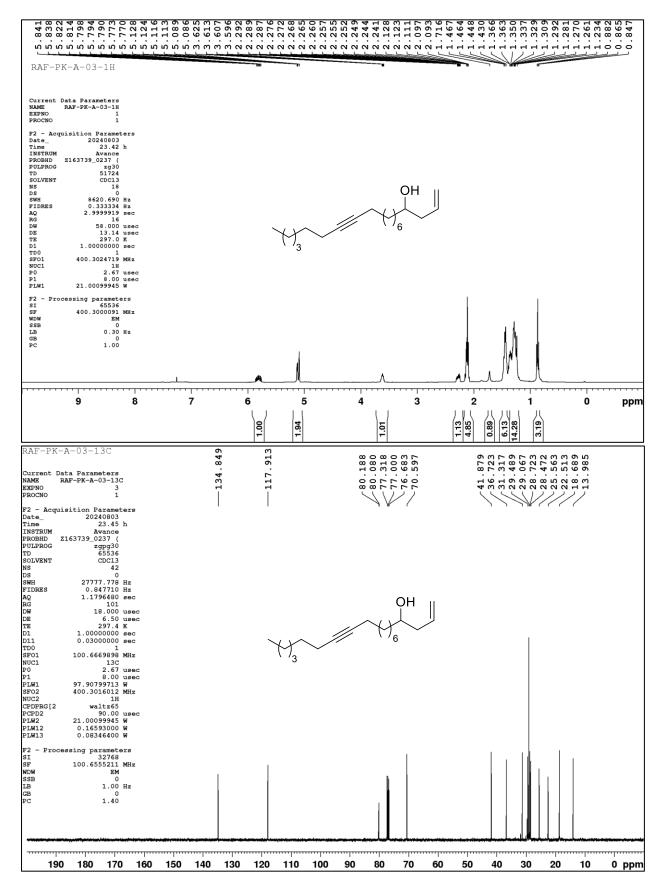
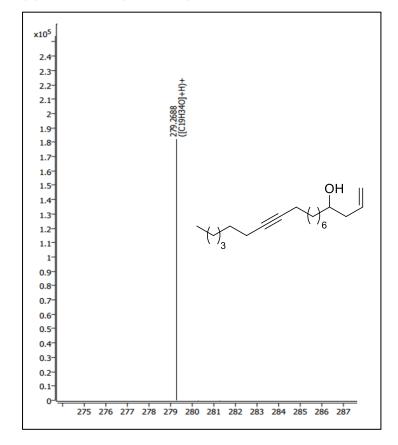

Sr. No.	Passifetilactone E isolated by Schevenels J. Nat. Prod., 2024, 87,1652–1659	Synthetic Passifetilactone E This work
1	7.45 (dd, <i>J</i> = 5.8, 1.5 Hz, 1H)	7.53 (dd, <i>J</i> = 5.8, 1.4 Hz, 1H)
2	6.16 (dd, <i>J</i> = 5.8, 1.9 Hz, 1H)	6.19 (dd, <i>J</i> = 5.8, 1.9 Hz, 1H)
3	4.97 (ddd, <i>J</i> = 4.8, 2.0, 1.6 Hz, 1H)	4.96–4.91 (m, 1H)
4	3.78 (dt, J = 6.3, 4.8 Hz, 3H)	3.86 (t, <i>J</i> = 3.9 Hz, 1H)
5	1.57 (m, 1H), 1.50 (m, 1H)	1.61–1.51 (m, 2H)
6	1.42–1.21 (brm overlap, 26H)	1.39–1.22 (m, 26H)
7	0.86 (t, J = 6.8 Hz, 3H)	0.87 (t, J = 7.1 Hz, 3H)

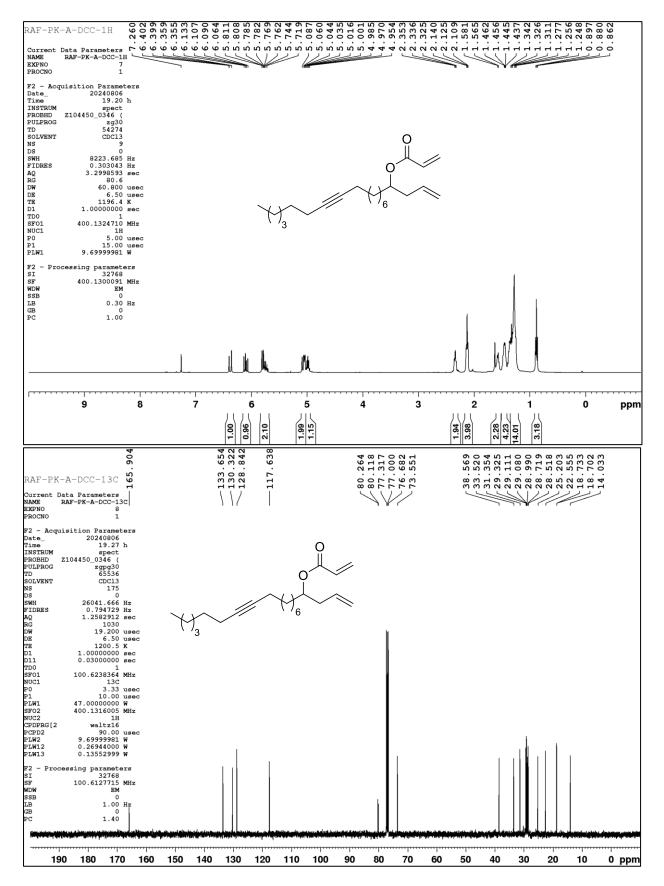
Table S8: Comparison of ¹³C NMR of natural passifetilactone E isolated by Schevenels and the present synthetic **1e**


Sr. No.	Passifetilactone E isolated by Schevenels J. Nat. Prod., 2024, 87 ,1652–1659	Synthetic Passifetilactone E (1e) This work
1	173.0	172.9
2	153.8	153.4
3	122.9	122.9
4	86.2	86.0
5	72.1	71.6
6	33.4	33.0
7	32.1	31.9
8	29.8	29.7
9	29.7	29.63
10	29.7	29.6
11	29.7	29.5
12	29.6	29.46
13	29.5	29.4
14	29.4	29.3
15	25.6	25.5
16	22.8	22.7
17	14.3	14.1

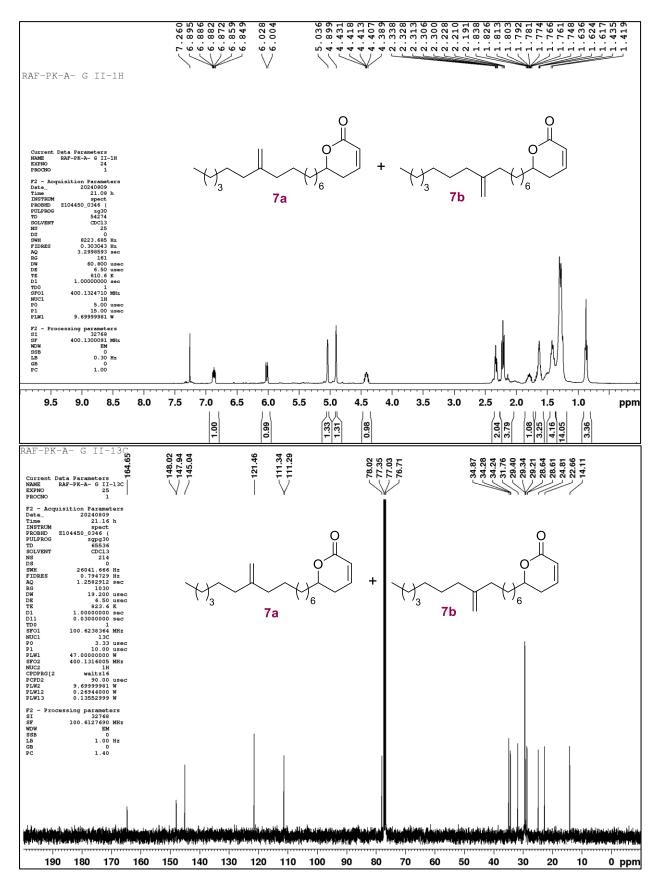
References

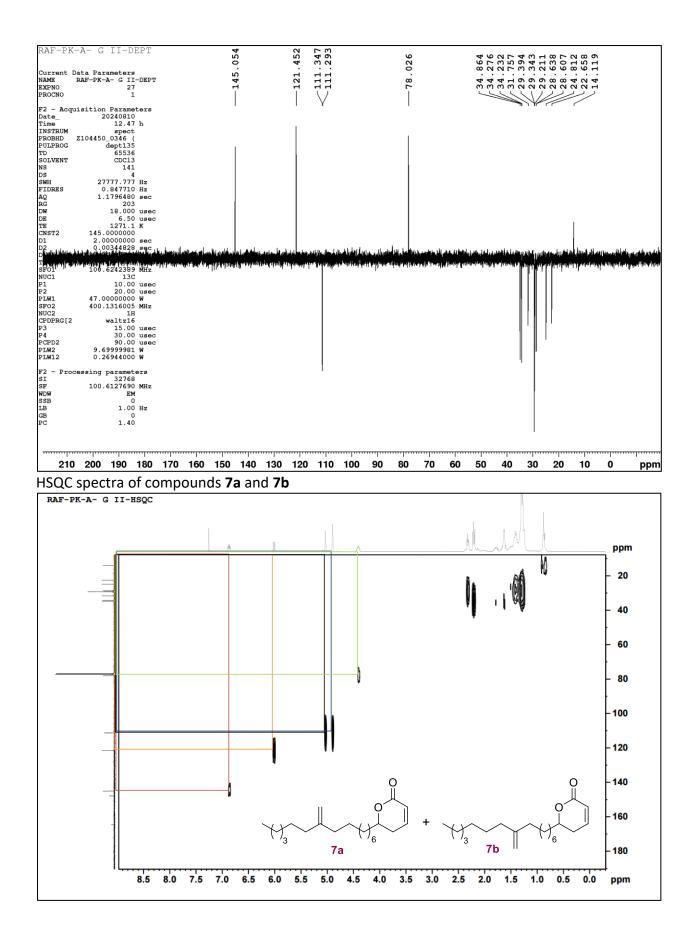

1. K. Ponsuwan, S. Nathabumroong, Lekphrom, R. Lekphrom, S. Sorin, C. Saengboonmee, T. Senawong, S. Tontapha, and F. T. Schevenels, *J. Nat. Prod.*, 2024, **87**, 1652.

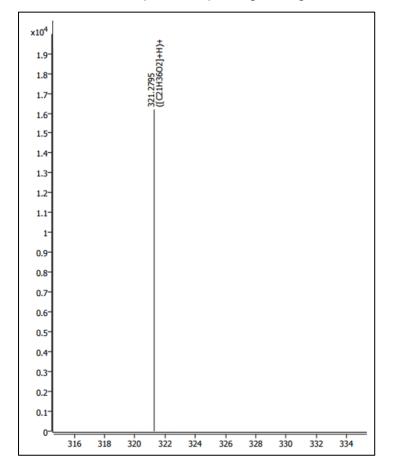

^{1}H NMR (500 MHz, CDCl_3) and $^{13}\text{C}\{^{1}\text{H}\}$ NMR (125 MHz, CDCl_3) of compound 5


5: HRMS (ESI–TOF) *m/z*: [M + H] ⁺ Calcd for C₁₆H₃₁O 239.2370; Found 239.2369

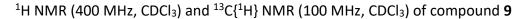
^{1}H NMR (400 MHz, CDCl_3) and $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl_3) of compound (±)-2a

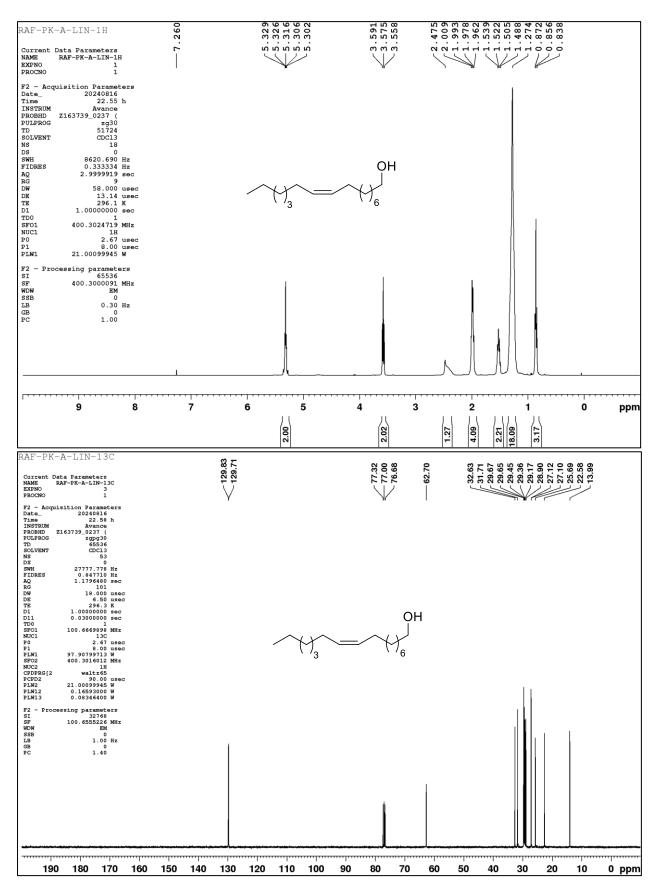

(±)-2a: HRMS (ESI–TOF) m/z: [M + H]⁺ Calcd for C₁₉H₃₅O 279.2683; Found 279.2688

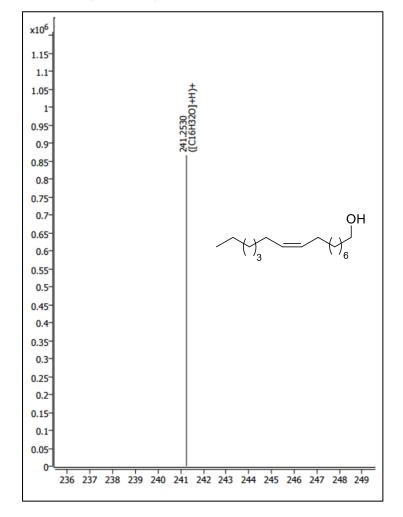

^1H NMR (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl_3) of compound ${\bf 6}$

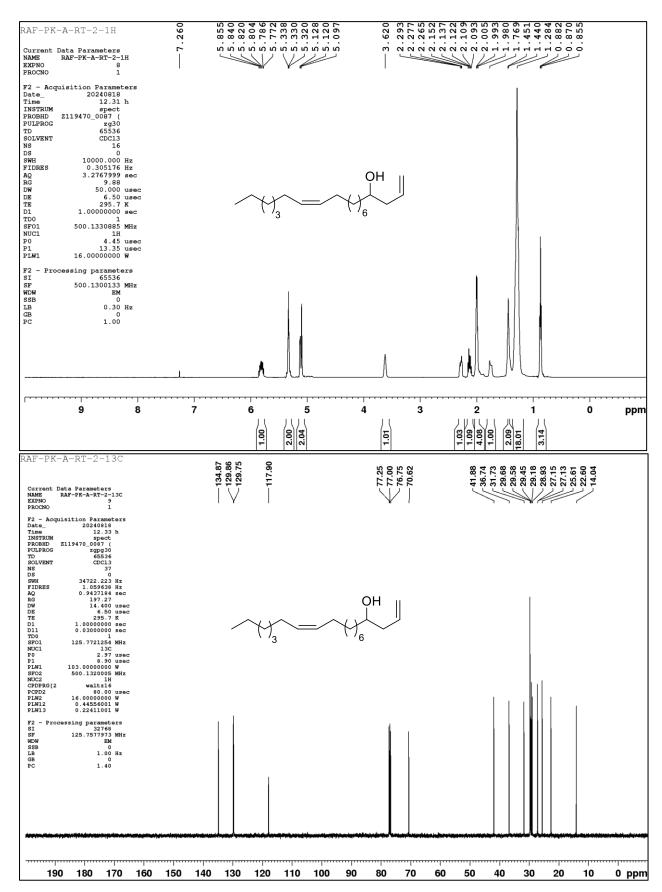


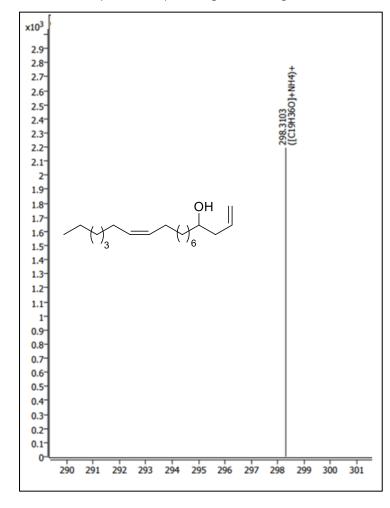
6: HRMS (ESI–TOF) *m/z*: [M + H]⁺ Calcd for C₂₂H₃₇O₂ 333.2789; Found 333.2793

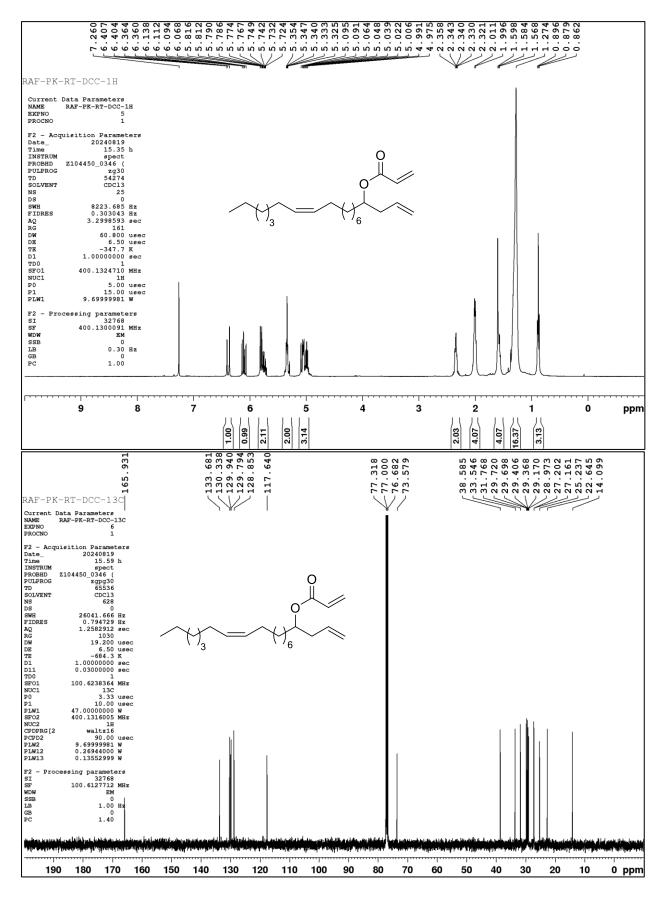


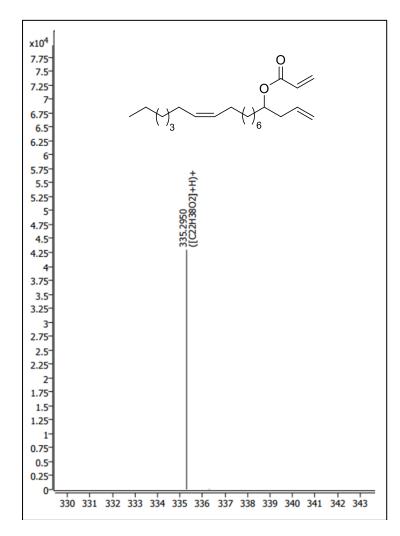

¹H NMR (400 MHz, CDCl₃) and ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) of compounds **7a** and **7b**

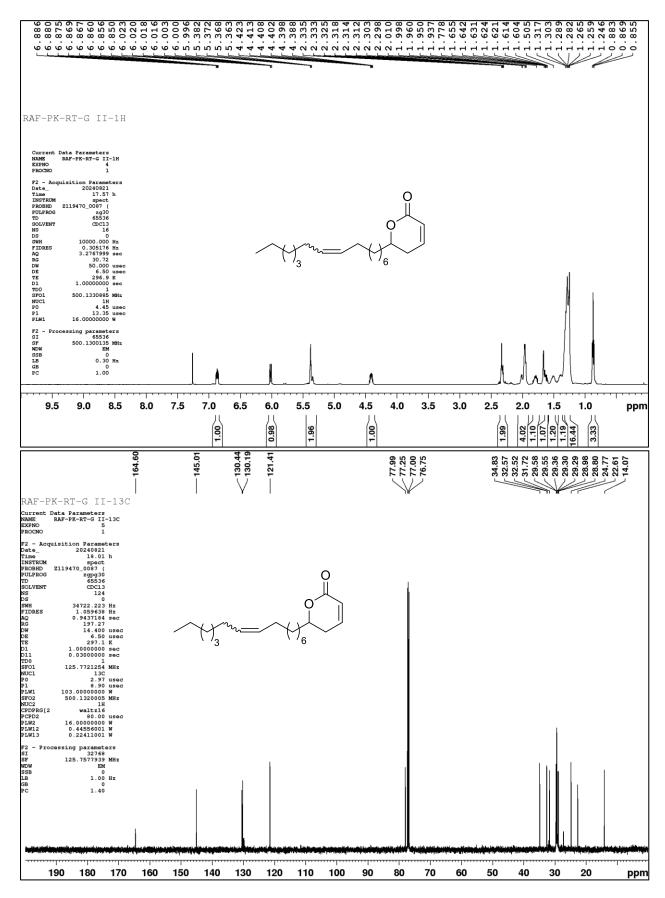



7a and 7b: HRMS (ESI–TOF) *m/z*: [M + H]⁺ Calcd for C₂₁H₃₇O₂ 321.2789; Found 321.2795



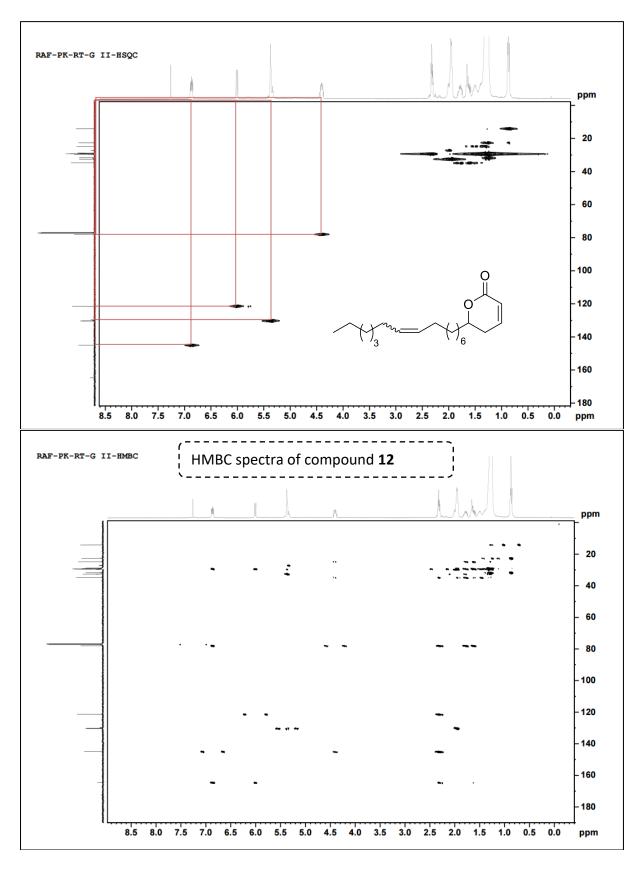

9: HRMS (ESI–TOF) m/z: $[M + H]^+$ Calcd for C₁₆H₃₃O 241.2526; Found 241.2530

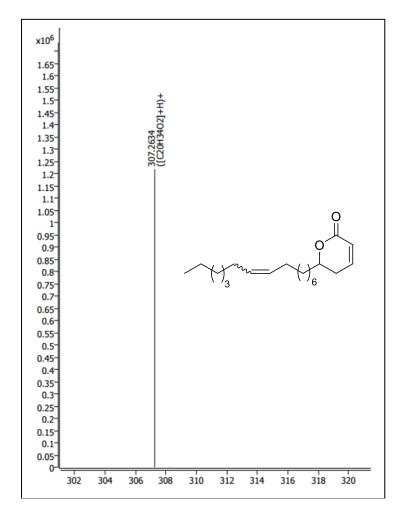

^{1}H NMR (500 MHz, CDCl₃) and $^{13}\text{C}\{^{1}\text{H}\}$ NMR (125 MHz, CDCl₃) of compound **10**


10: HRMS (ESI-TOF) m/z: [M + NH4]⁺ Calcd for C19H40ON 298.3105; Found 298.3103

^1H NMR (400 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl₃) of compound **11**

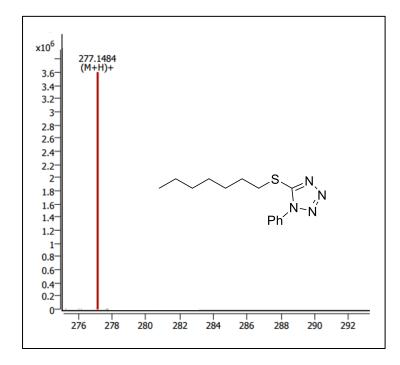
11: HRMS (ESI–TOF) m/z: $[M + H]^+$ Calcd for C₂₂H₃₉O₂ 335.2945; Found 335.2950

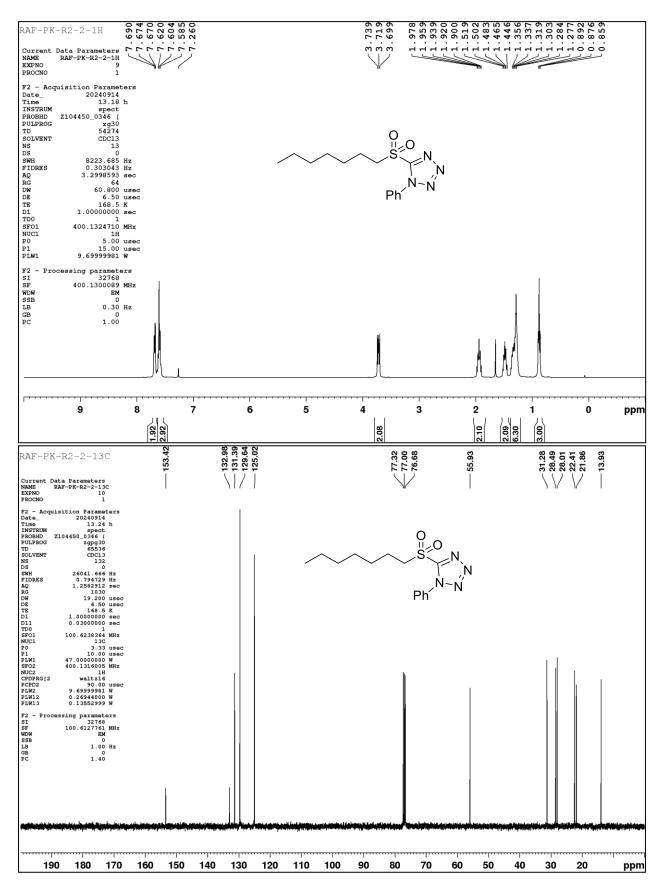


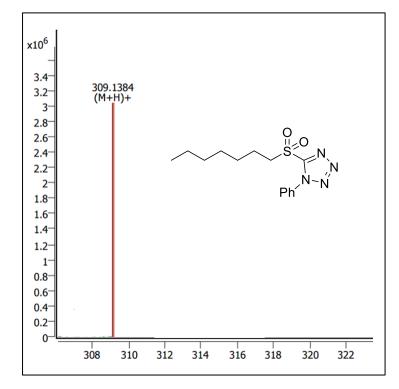

^{1}H NMR (500 MHz, CDCl3) and $^{13}\text{C}\{^{1}\text{H}\}$ NMR (125 MHz, CDCl3) of compound 12

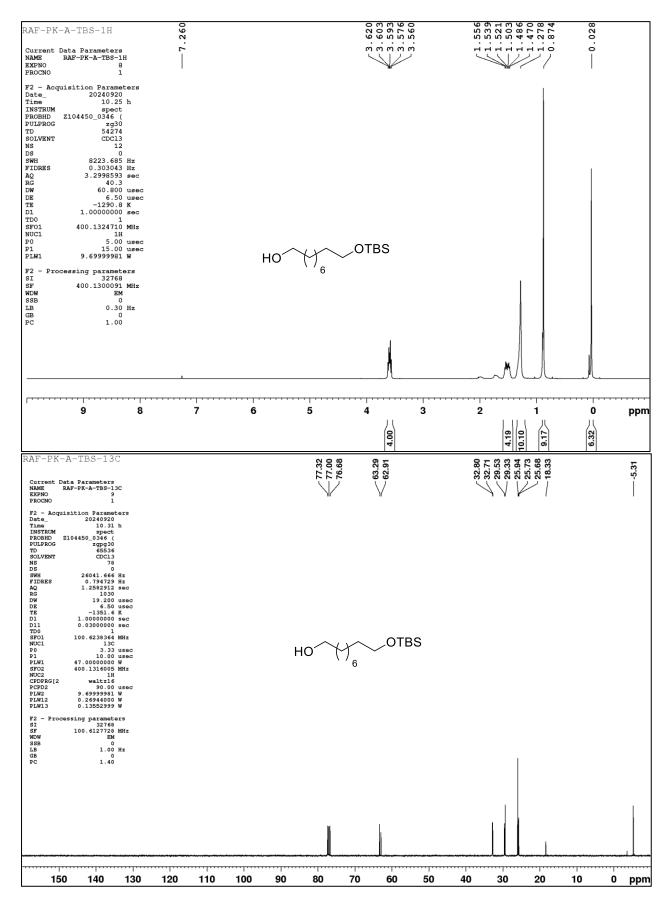
H-H COSY spectra of compound 12

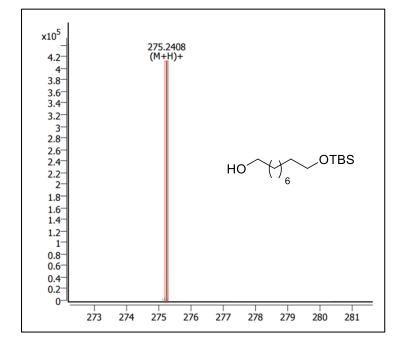
HSQC spectra of compound **12**

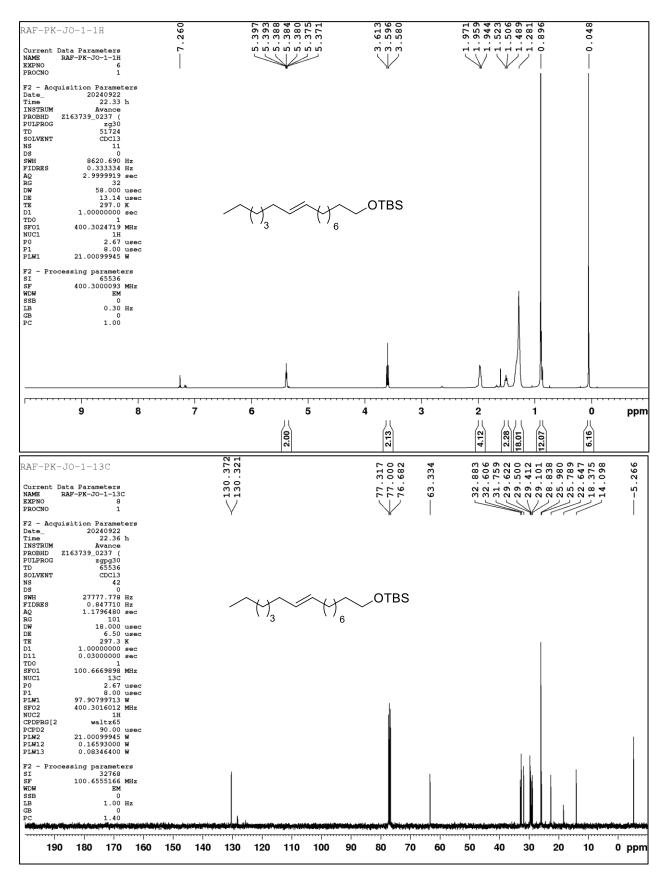


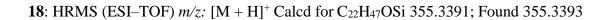

12: HRMS (ESI–TOF) m/z: $[M + H]^+$ Calcd for C₂₀H₃₅O₂ 307.2632; Found 307.2634

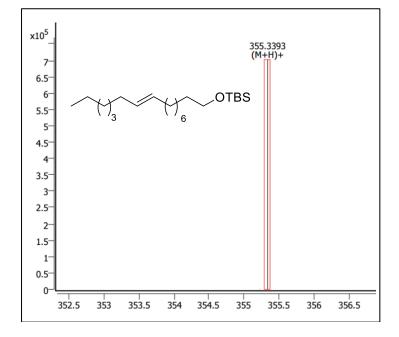

1 H NMR (400 MHz, CDCl₃) and 13 C{ 1 H} NMR (100 MHz, CDCl₃) of compound **14**

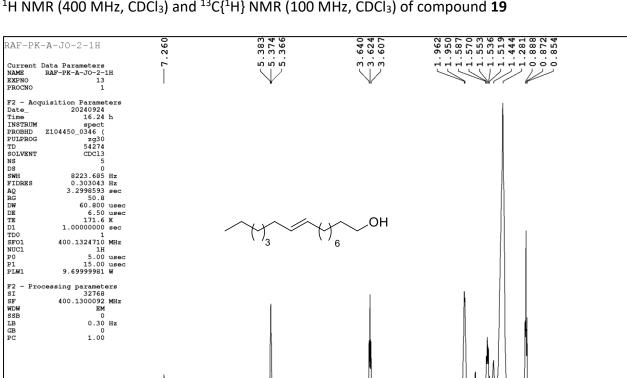

14: HRMS (ESI–TOF) m/z: $[M + H]^+$ Calcd for C₁₄H₂₁N₄S 277.1482; Found 277.1484

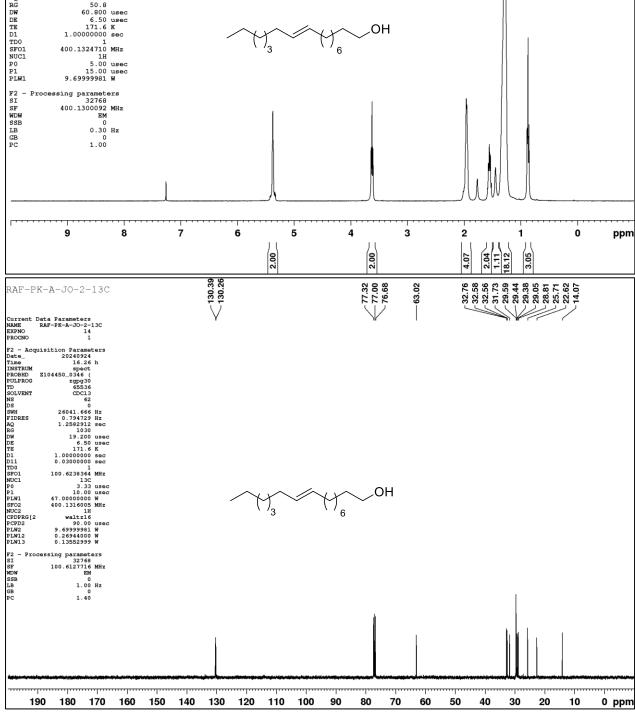

^{1}H NMR (400 MHz, CDCl₃) and $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl₃) of compound **15**

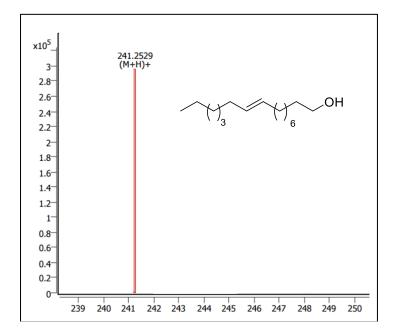

15: HRMS (ESI–TOF) *m/z*: [M + H]⁺ Calcd for C₁₄H₂₁N₄O₂S 309.1380; Found 309.1384

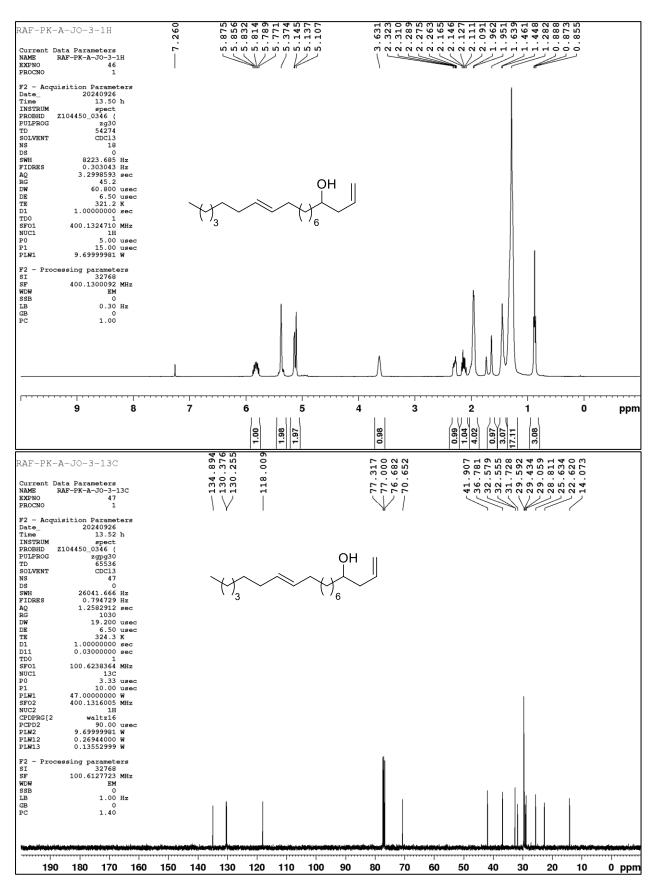

1 H NMR (400 MHz, CDCl₃) and $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) of compound **17**



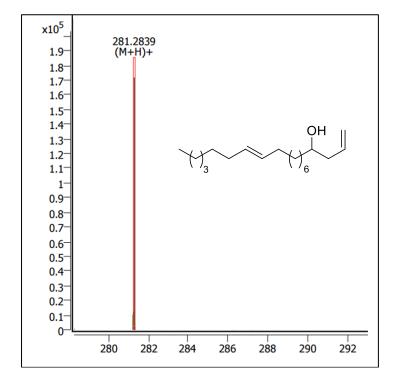

17: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₅H₃₅O₂Si 275.2401; Found 275.2408

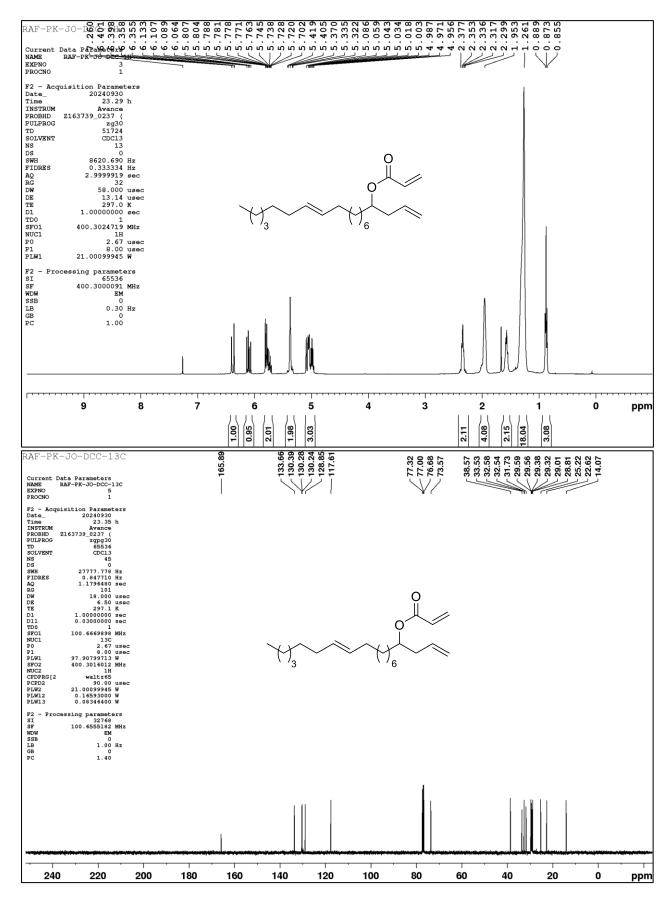

^{1}H NMR (400 MHz, CDCl₃) and $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl₃) of compound 18



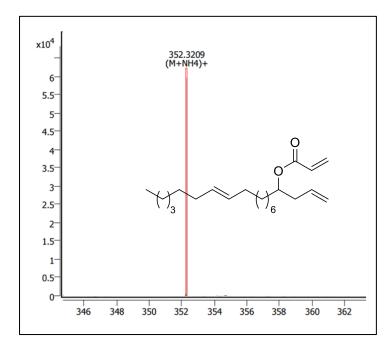


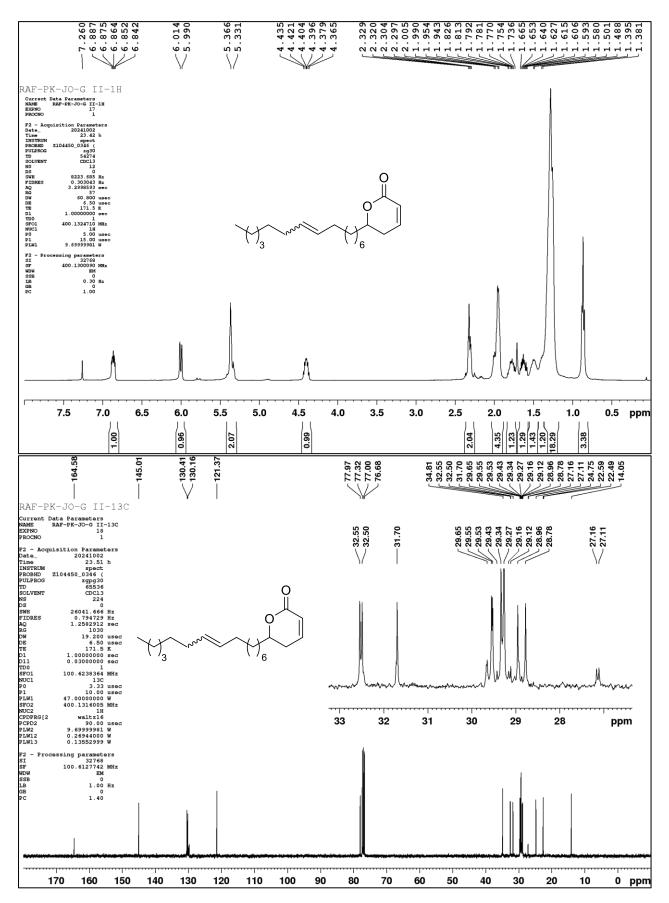
¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **19**

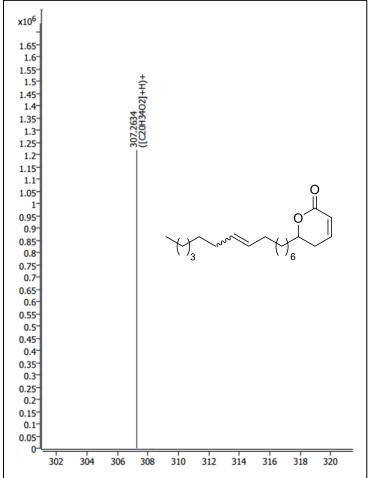


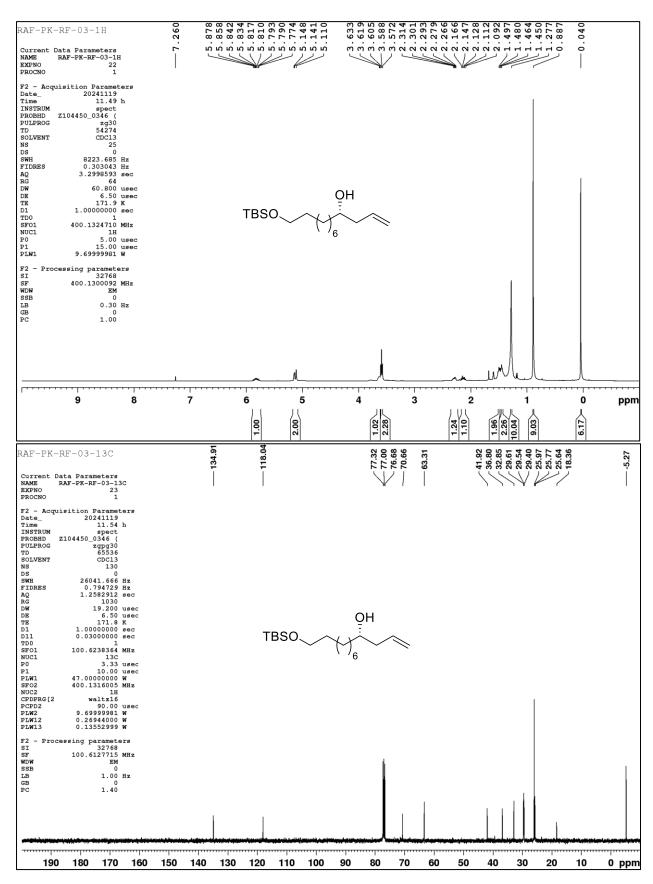

19: HRMS (ESI–TOF) *m/z*: [M + H]⁺ Calcd for C₁₆H₃₃O 241.2526; Found 241.2529

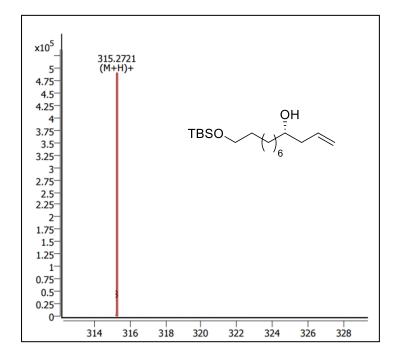
^{1}H NMR (400 MHz, CDCl₃) and $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl₃) of compound **20**



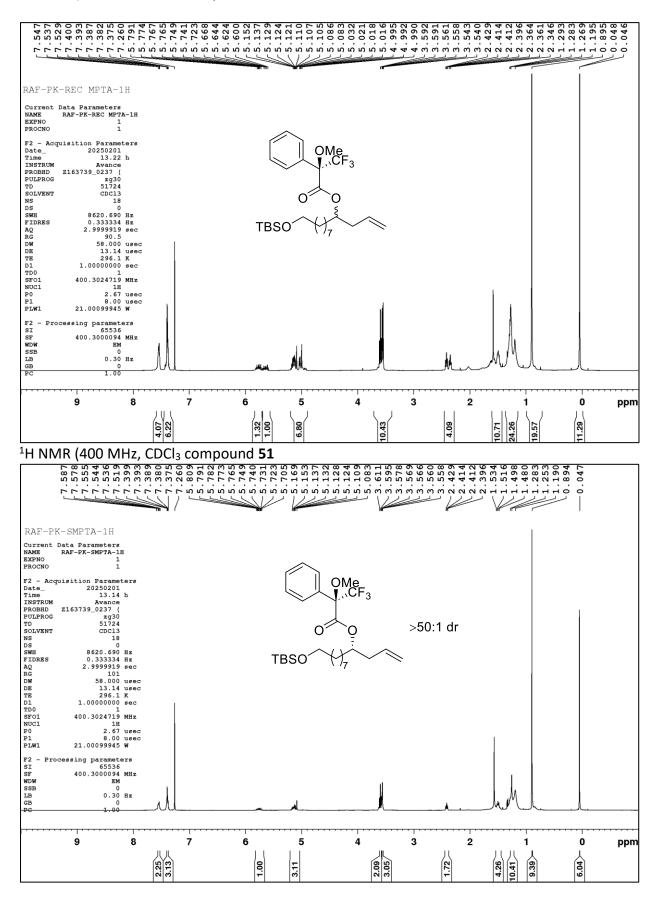

20: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₃₇O 281.2839; Found 281.2839

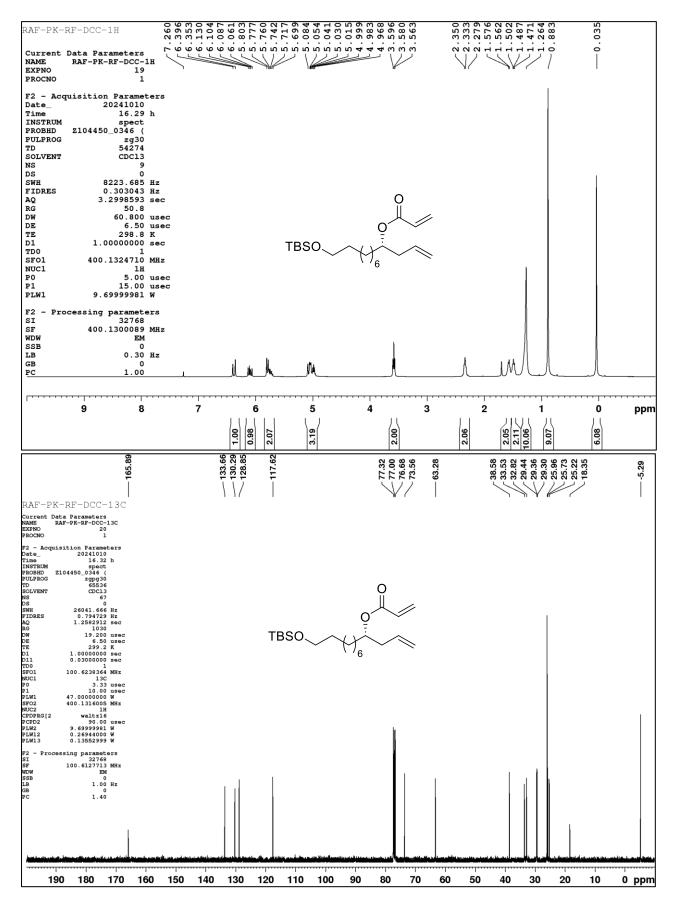

^1H NMR (400 MHz, CDCl3) and $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl3) of compound 21



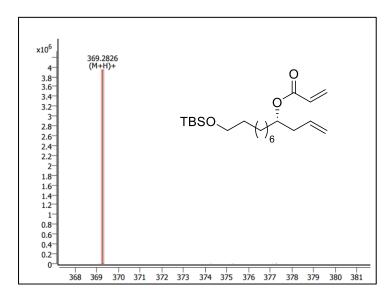

 ^{1}H NMR (400 MHz, CDCl₃) and $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl₃) of compound **12** from **21**

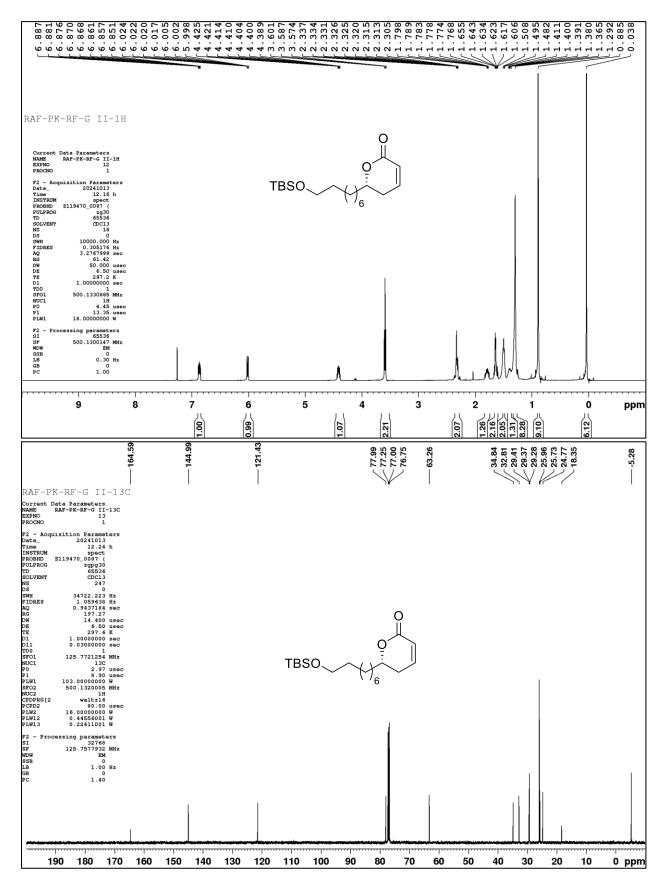
12 (obtained from **21**): HRMS (Q–TOF) m/z: $[M + H]^+$ Calcd for C₂₀H₃₅O₂ 307.2632; Found 307.2634

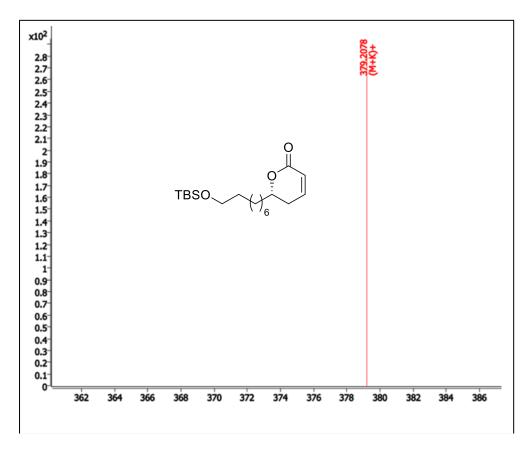



1 H NMR (400 MHz, CDCl₃) and 13 C{ 1 H} NMR (100 MHz, CDCl₃) of compound 22

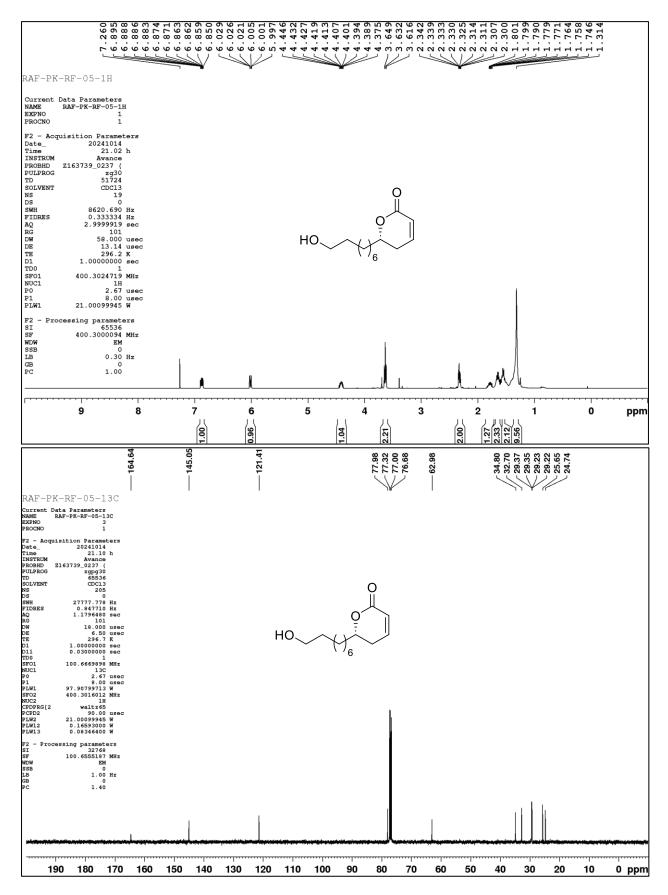
22: HRMS (ESI–TOF) m/z: $[M + H]^+$ Calcd for C₁₉H₃₉O₂Si 315.2715; Found 315.2721

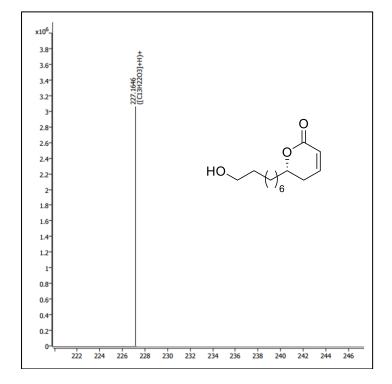

¹H NMR (400 MHz, CDCl₃ compound diastereomeric **51**

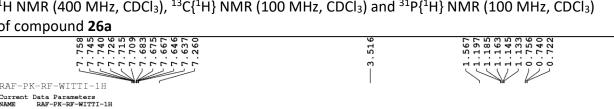


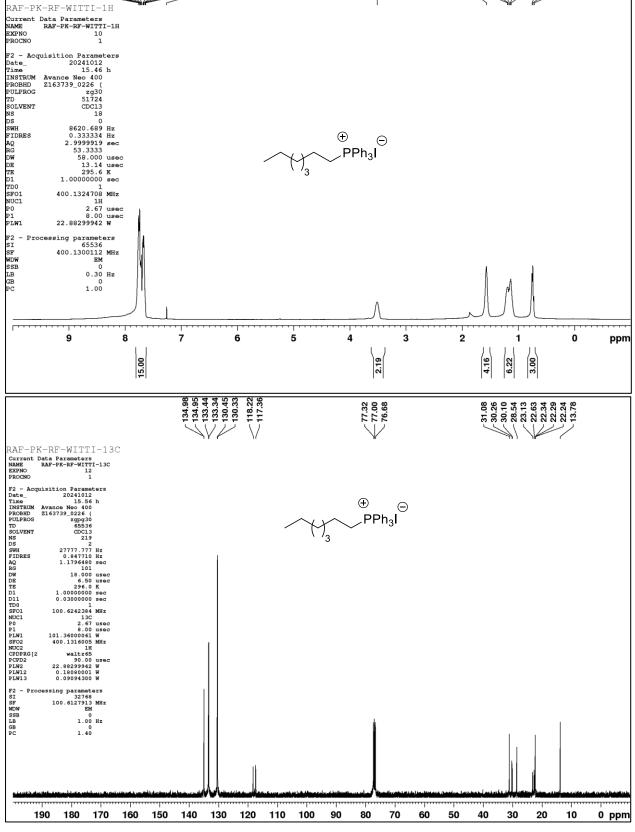

^{1}H NMR (400 MHz, CDCl₃) and $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl₃) of compound **23**

23: HRMS (ESI–TOF) *m/z*: [M + H]⁺ Calcd for C₂₁H₄₁O₃Si 369.2820; Found 369.2826

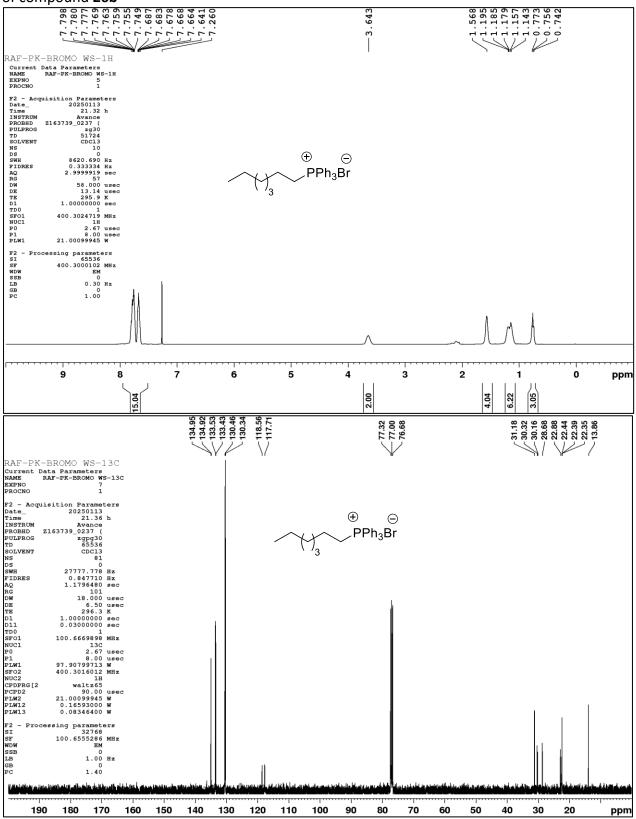


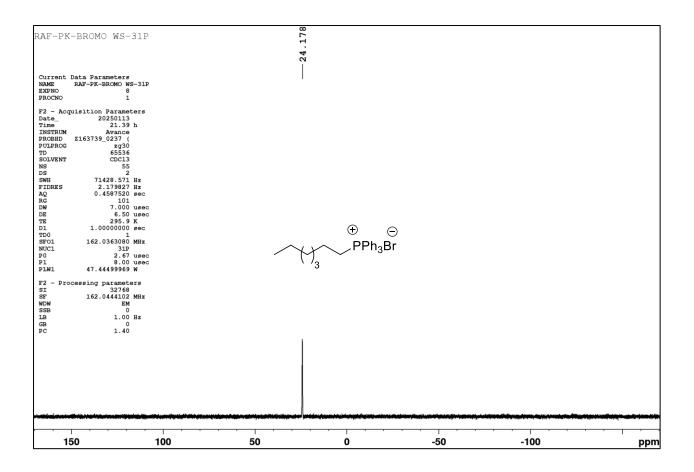

^1H NMR (500 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ NMR (125 MHz, CDCl₃) of compound **24**

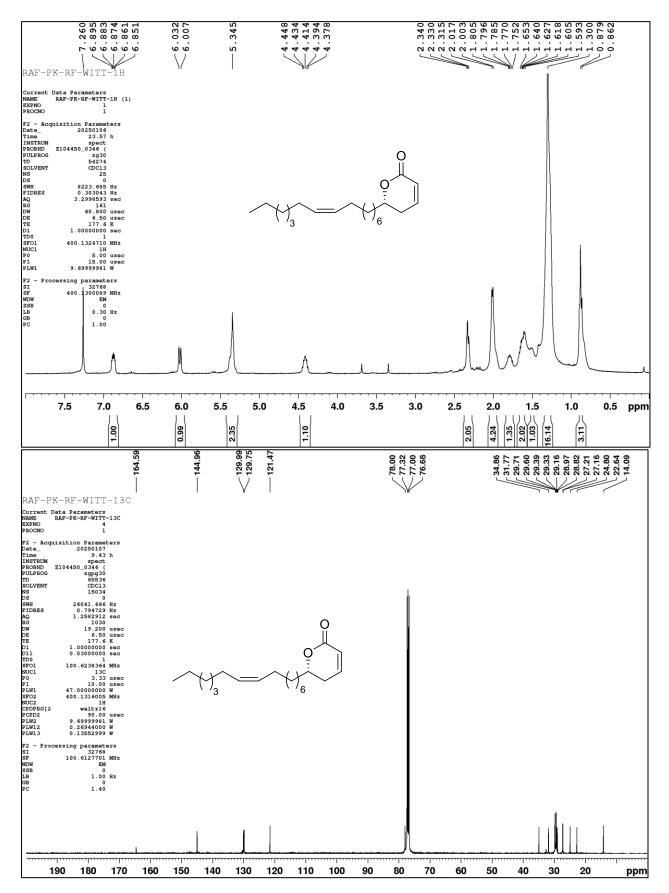

24: HRMS (ESI–TOF) *m/z*: [M + K]⁺ Calcd for C₁₉H₃₆O₃SiK 379.2068; Found 379.2078


^1H NMR (400 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl₃) of compound **25**

25: HRMS (ESI–TOF) m/z: $[M + H]^+$ Calcd for $C_{13}H_{23}O_3$ 227.1642 Found 227.1646

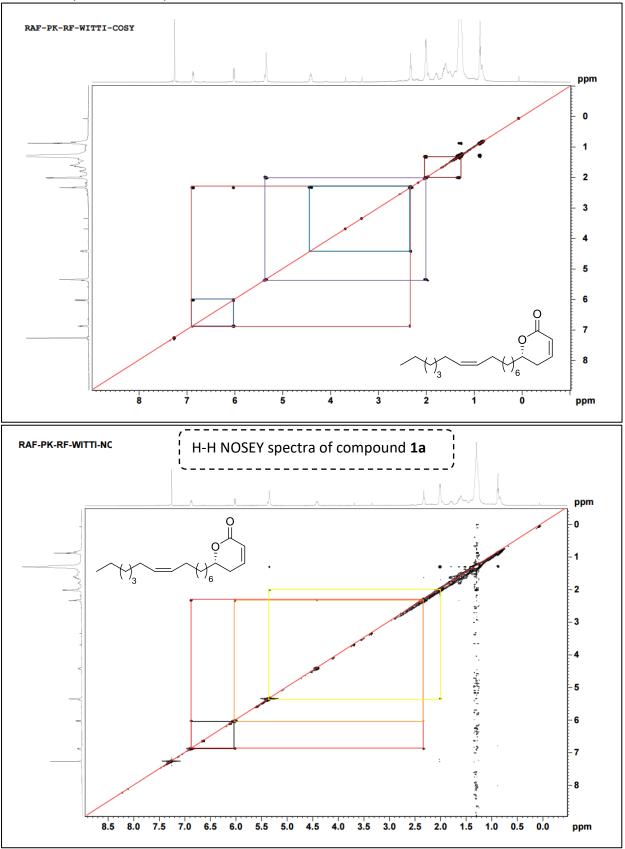


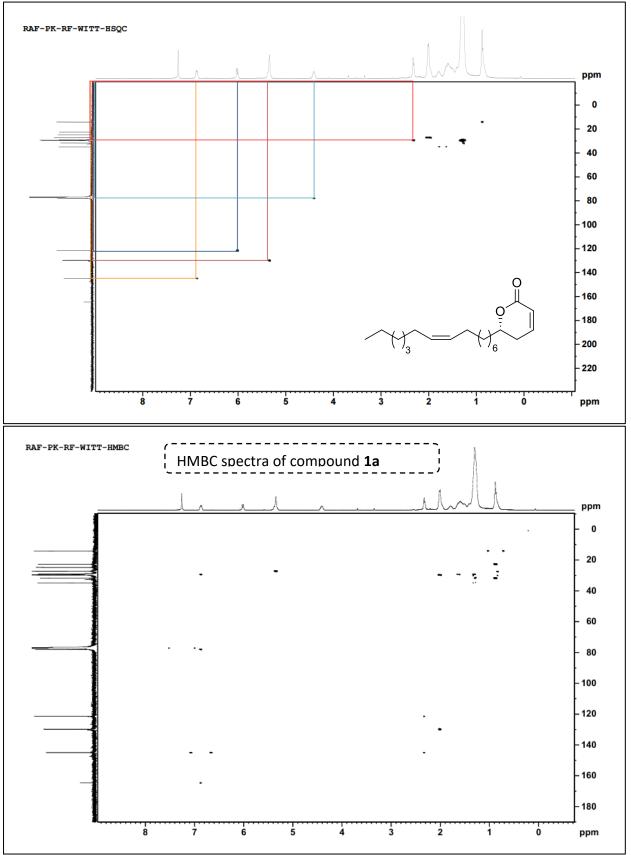

¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (100 MHz, CDCl₃) and ³¹P{¹H} NMR (100 MHz, CDCl₃) of compound 26a

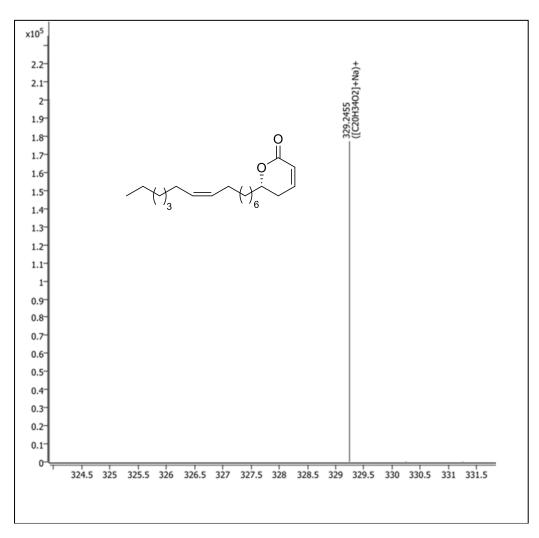


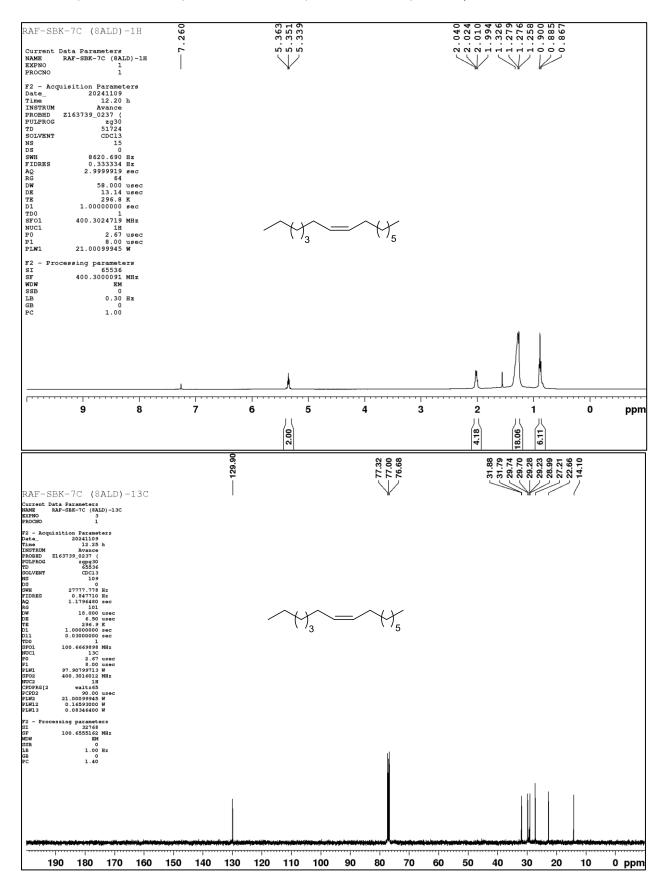
Date 20241012 Time 16.01 h INSTRUM Avance Neo 400 PROBHD 2163739_0226 (PULPROG 2g30 TD 65536 SOLVENT CDC13 NS 59 DS 4 SWH 71428.570 Hz AQ 0.4587520 sec RG 101 DW 7.000 usec DE 6.50 usec TE 295.9 K D1 1.00000000 sec TSC01 161.9674942 MHz NUC1 31P P0 2.67 usec	I Avance Neo 400 2163739_0226 (2g30 65536 CDC13 59 4 71428.570 Hz 2.179827 Hz 0.4587520 sec 101 7.000 usec 6.50 usec 295.9 K 1.00000000 sec 1 161.9674942 MHz 3IP	21		usec							
Time 16,01 h INSTRUM Avance Neo 400 PROBHD Z163739_0226 (PULPROG zg30 TD 65536 SOLVENT CDC13 NS 59 DS 4 SWH 71428.570 Hz AQ 0.4587520 sec RG 101 DW 7.000 usec DE 6.50 usec TE 295.9 K D1 1.0000000 sec	quisition Parameters 20241012 16.01 h 1 Avance Neo 400 2163739_0226 (2 zg30 65536 CDC13 59 4 71428.570 Hz 2.179827 Hz 0.4587520 sec 101 7.000 usec 6.50 usec 255.9 K 1.00000000 sec		161.9674942	MHz							
Time 16.01 h INSTRUM Avance Neo 400 PROBHD 2163739_0226 (PULPROG 2g30 TD 65536 SOLVENT CDC13 NS 59 DS 4 SWH 71428.570 Hz FIDRES 2.179827 Hz AQ 0.4587520 sec RG 101 DW 7.000 usec	quisition Parameters 20241012 16.01 h 1 Avance Nea 400 2163739_0226 (5 zg30 65536 CDC13 59 4 71428.570 Hz 2.179827 Hz 0.4587520 sec 101 7.000 usec		295.9 1.00000000	K							
ime 16.01 h NSTRUM Avance Neo 400 ROBHD 2163739_0226 (ULPROG 2330 D 65536 OLVENT CDC13 S 59 S 4 WH 71428.570 Hz IDRES 2.179827 Hz Q 0.4587520 sec	Quisition Parameters 20241012 16.01 h 1 Avance Neo 400 Z163739_0226 (5 2300 CDC13 59 4 71428.570 Hz 2.179827 Hz 0.4587520 sec		7.000								
Time 16.01 h NSTRUM Avance Neo 400 ROBHD 2163739_0226 (UULPROG zg30 D 65536 OLVENT CDC13 IS 59 IS 4 WH 71428.570 Hz	quisition Parameters 20241012 16.01 h 1 Avance Neo 400 2163739_0226 (2163739_0226 (53 4 71428.570 Hz CDC13 59 4 71428.570 Hz CDC13 59 4 71428.570 Hz		0.4587520		0						
ime 16.01 h NSTRUM Avance Neo 400 ROBHD 2163739_0226 (ULPROG 2q30 D 65536 OLVENT CDC13 D D 4	quisition Parameters 20241012 16.01 h 1 Avance Nee 400 2163739_0226 (zg30 65536 CDC13	ł	4 71428.570		- M3	\sim					
ime 16.01 h NSTRUM Avance Neo 400 ROBHD Z163739_0226 (ULPROG zq30	quisition Parameters 20241012 16.01 h Avance Neo 400 2163739_0226 (2 g30	LVENT	CDC13		~		Ph _a l				
ime 16.01 h	quisition Parameters 20241012 16.01 h	DBHD LPROG	Z163739_0226 (zg30			Ф	-				
2 - Acquisition Parameters	-	te	20241012 16.01								

¹H NMR (400 MHz, CDCl₃), ¹³C{¹H} NMR (100 MHz, CDCl₃) and ³¹P{¹H} NMR (100 MHz, CDCl₃) of compound **26b**

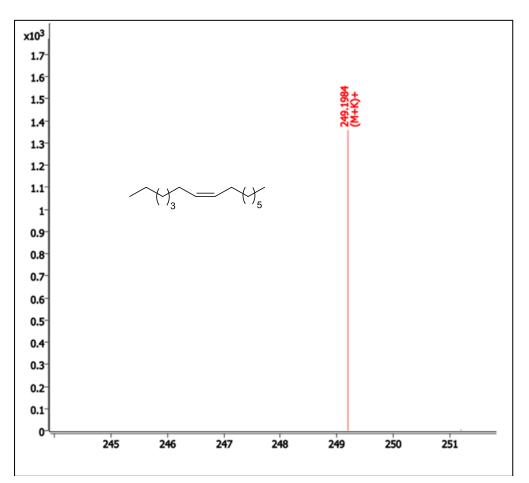


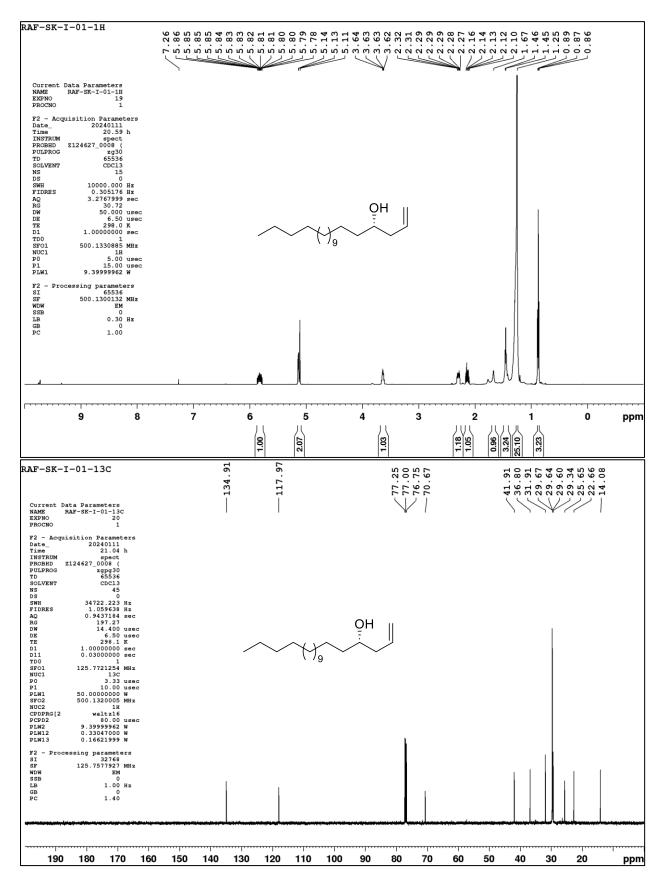

1 H NMR (400 MHz, CDCl₃) and $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) of compound **1a**

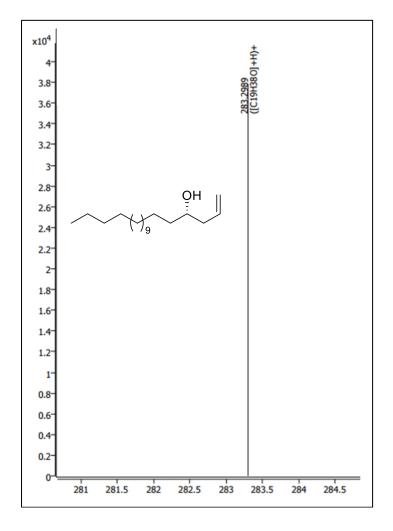

H-H COSY spectra of compound 1a

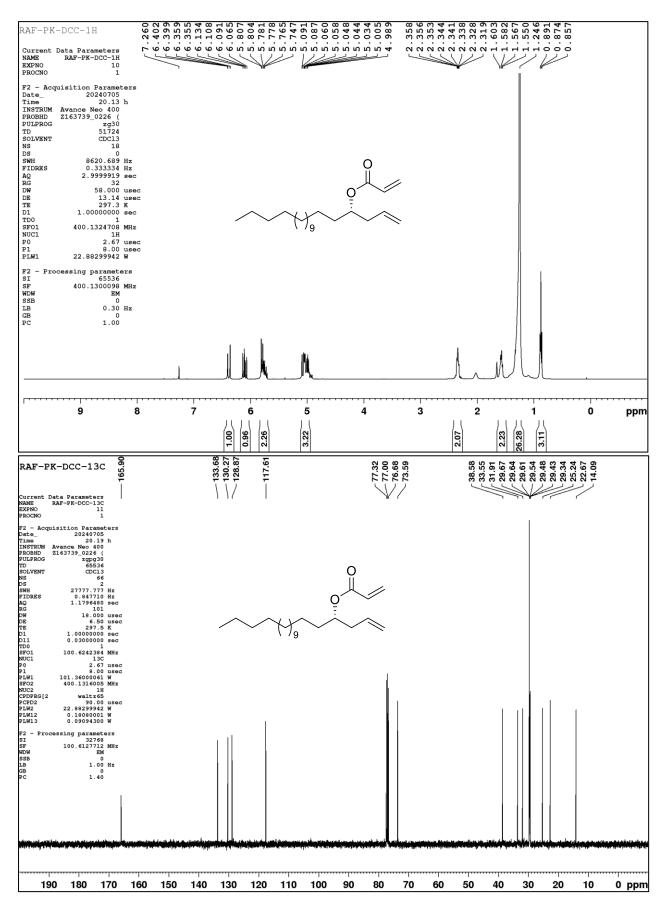

S76

HSQC spectra of compound 1a

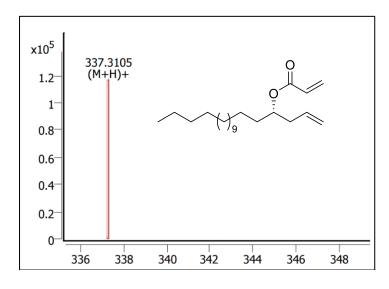


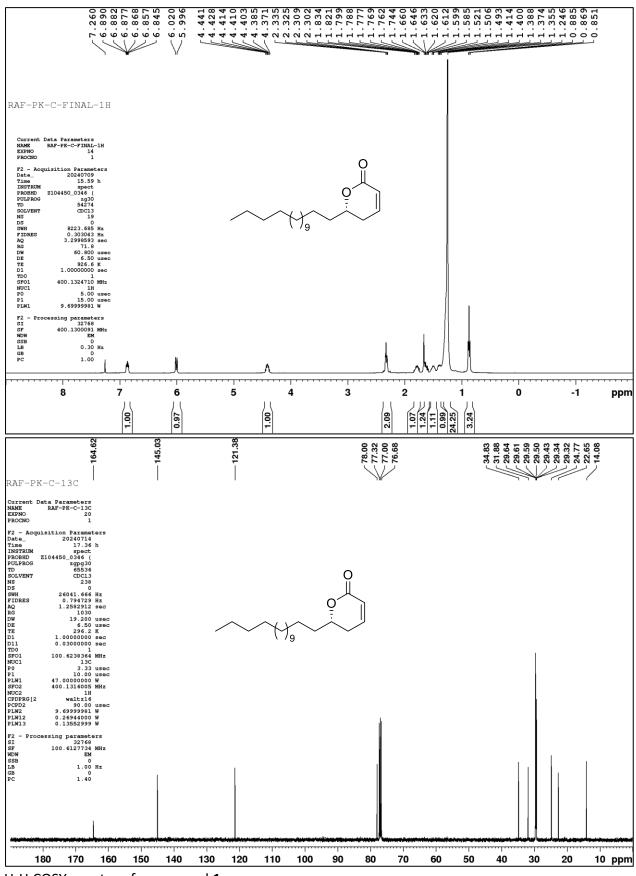

1a: HRMS (ESI–TOF) *m/z*: [M + Na]⁺ Calcd for C₂₀H₃₄O₂Na 329.2451; Found 329.2455


¹H NMR (400 MHz, CDCl₃) and $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) of compound **28**

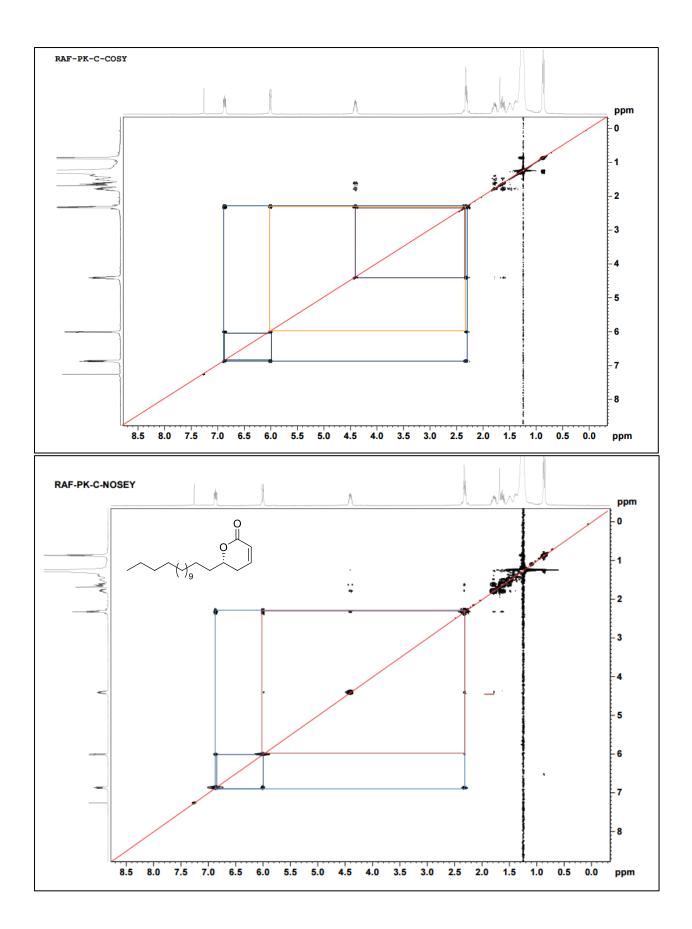

28: HRMS (ESI–TOF) *m/z*: [M + K]⁺ Calcd for C₁₅H₃₀K 249.1979; Found 249.1984

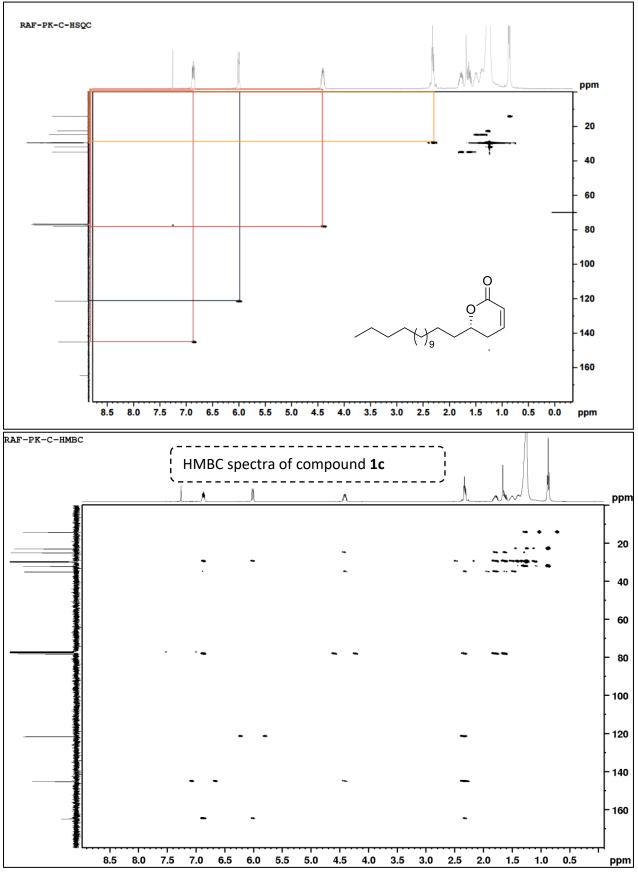
1 H NMR (500 MHz, CDCl₃) and 13 C{ 1 H} NMR (125 MHz, CDCl₃) of compound **2b**

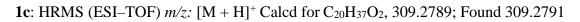


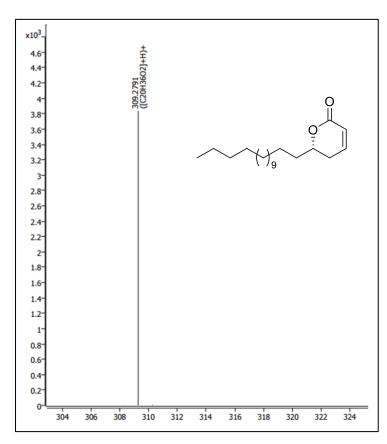

2b: HRMS (ESI–TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₃₉O, 283.2995; Found 283.2989

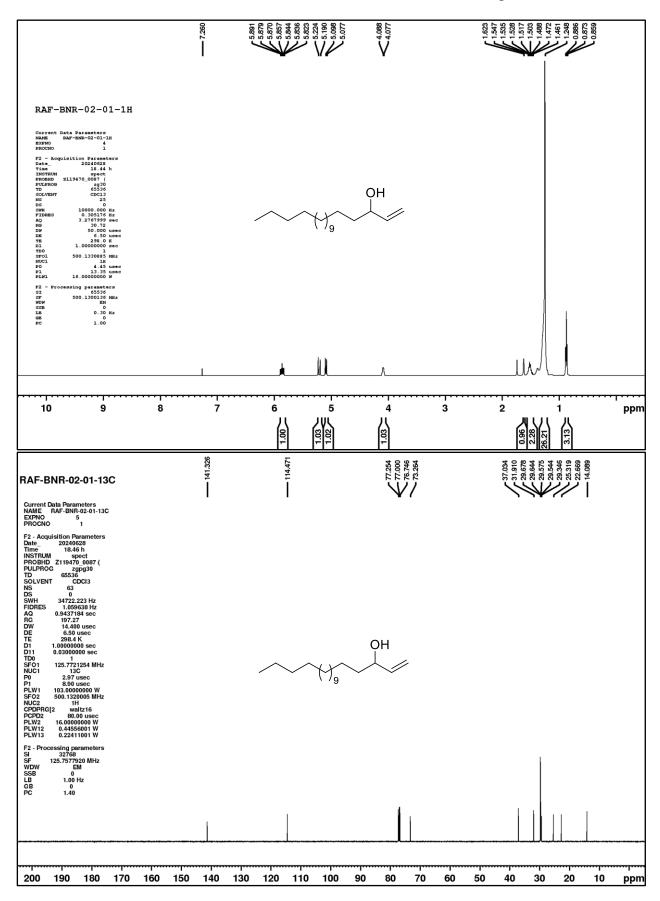
^{1}H NMR (400 MHz, CDCl₃) and $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl₃) of compound **30**


30: HRMS (ESI–TOF) *m/z*: [M + H]⁺ Calcd for C₂₂H₄₁O₂, 337.3102; Found 337.3105

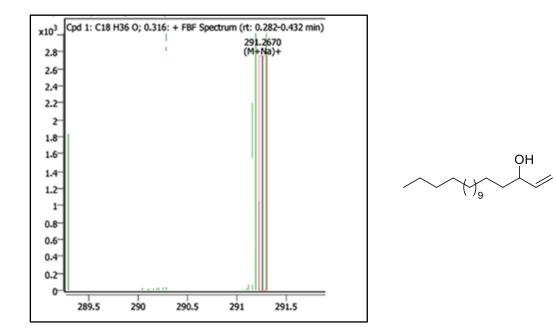


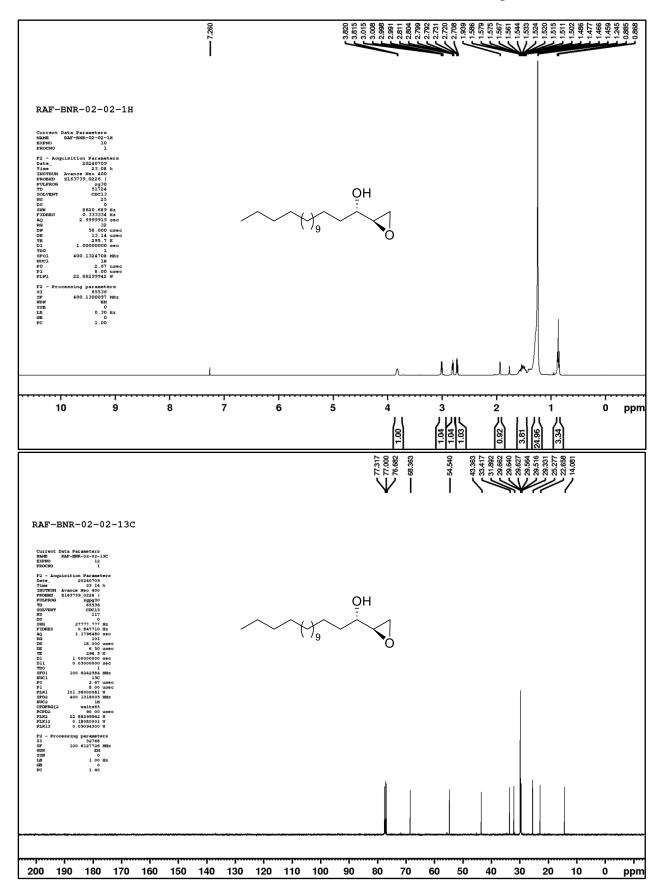

^1H NMR (400 MHz, CDCl3) and $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl3) of compound 1c

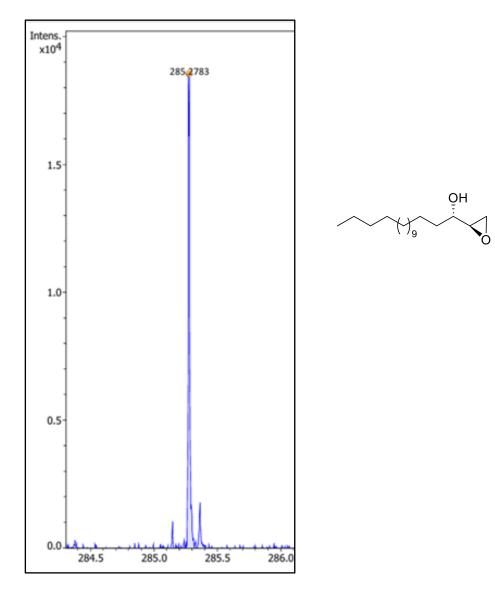

H-H COSY spectra of compound 1c

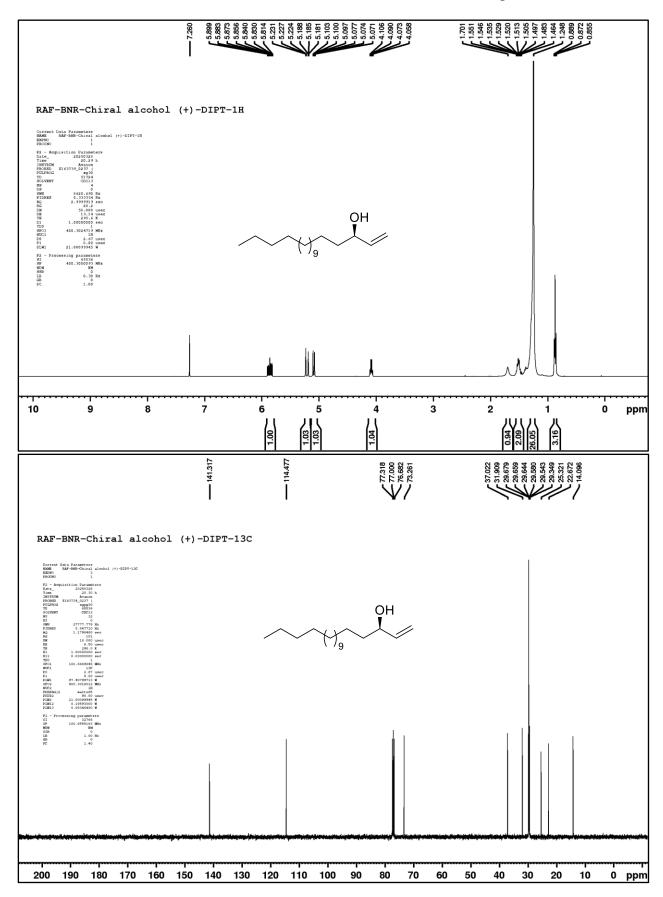


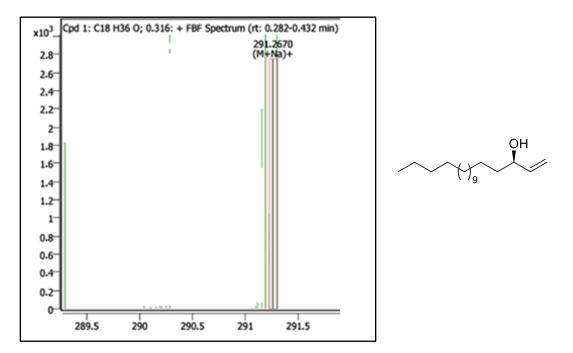
HSQC spectra of compound 1c

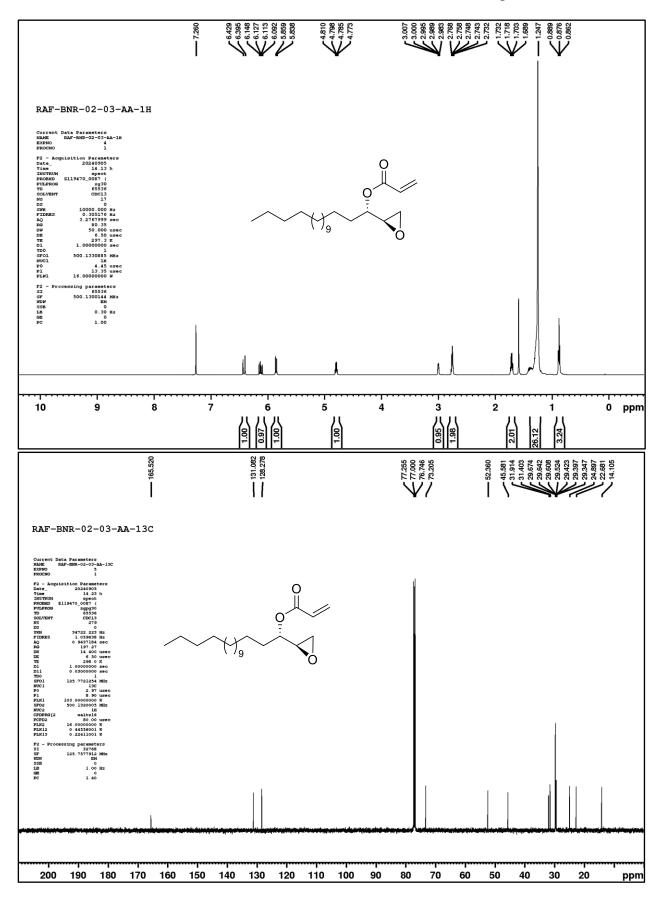


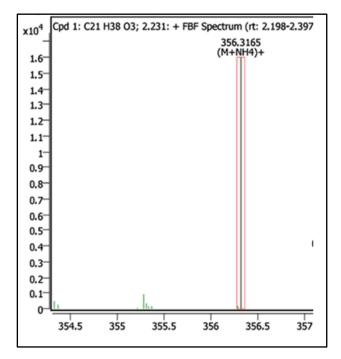


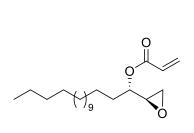

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound **33**

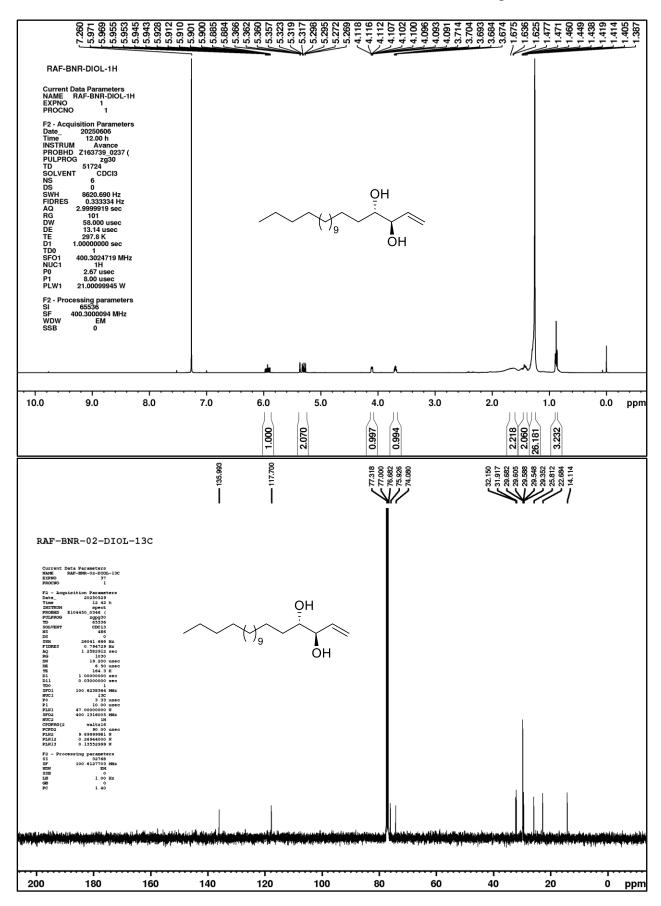

33: HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₈H₃₆ONa 291.2660; Found: 291.2670

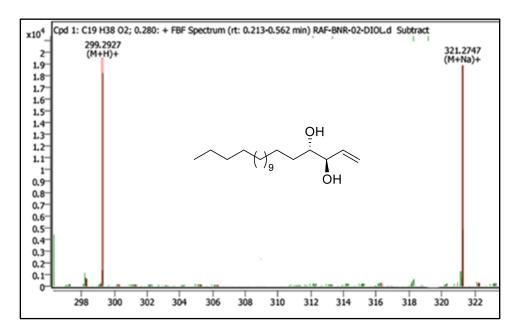

 1H NMR (400 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) of compound 32


32: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₃₇O₂ 285.2788; Found: 285.2783

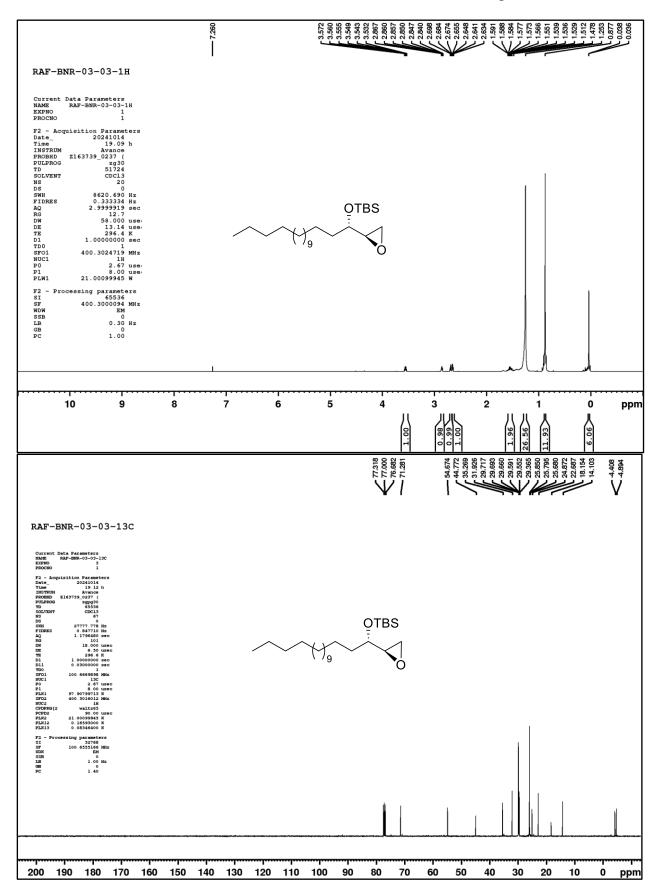

 ^1H NMR (400 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl₃) of compound **32'**


32': HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₈H₃₆ONa 291.2660; Found: 291.2670

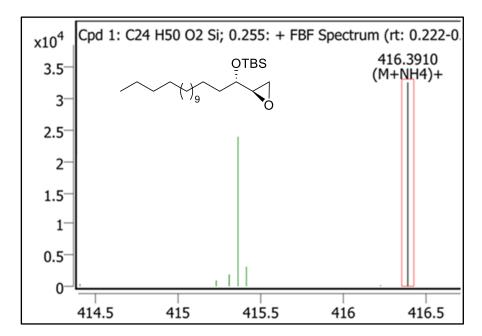

 1H NMR (500 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (125 MHz, CDCl₃) of compound **35**



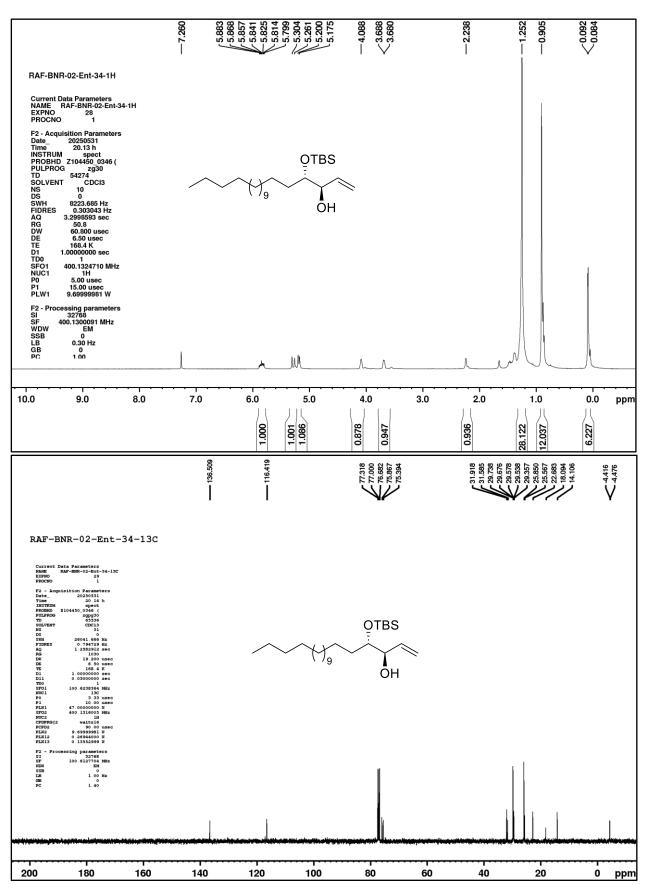
35: HRMS (Q-TOF) m/z: $[M + NH_4]^+$ Calcd for C₂₁H₄₂O₃N 356.3160; Found: 356.3165



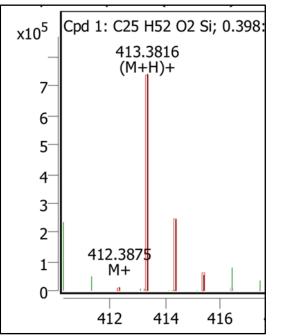
¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **37**

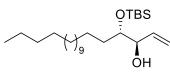


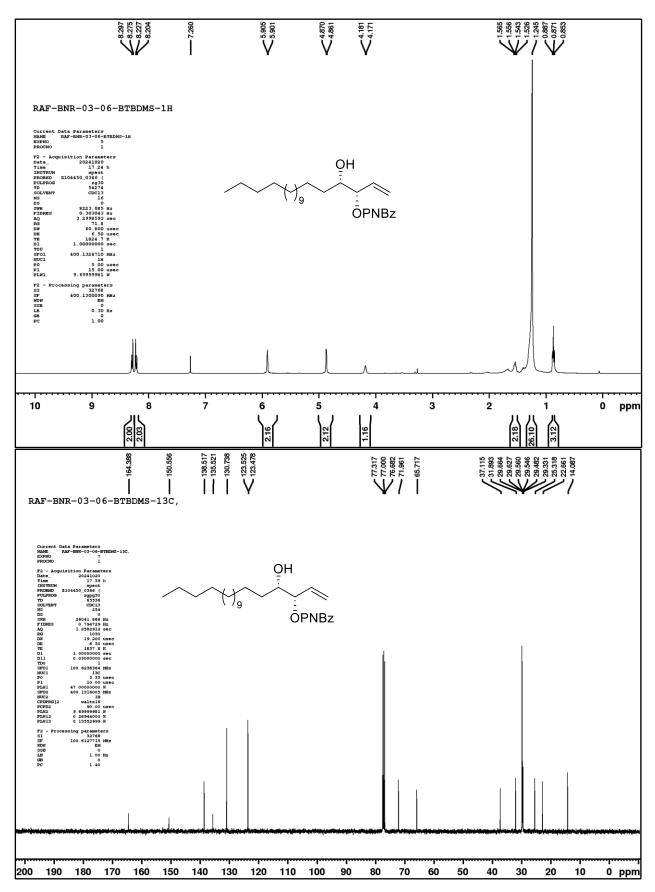
37: HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₉H₃₈O₂Na 321.2764; Found: 321.2747

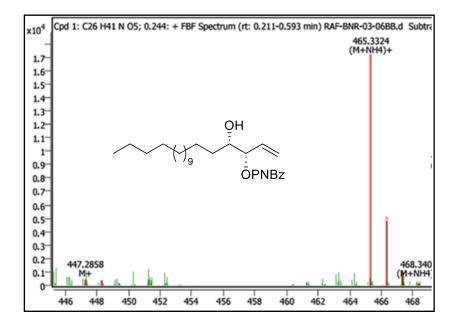


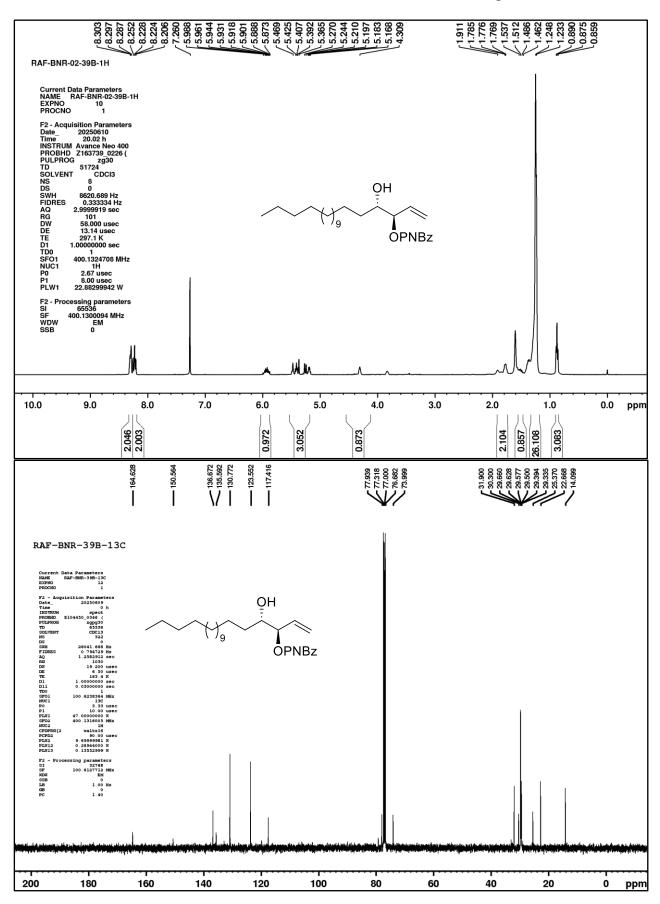
¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **38**

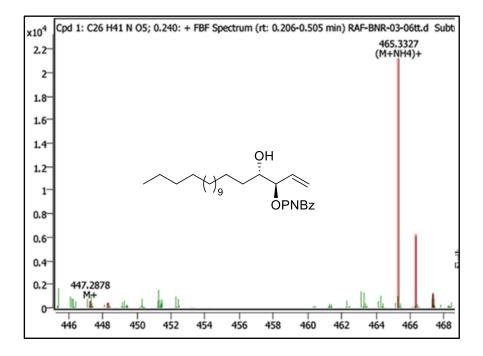



38: HRMS (ESI-TOF) *m*/*z*: [M + NH₄]⁺ Calcd for C₂₄H₅₄O₂SiN 416.3918; Found: 416.3910.



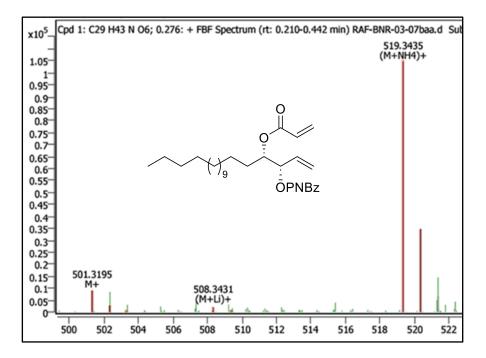

*ent-***34**: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₅H₅₃O₂Si 413.3810; Found: 413.3816

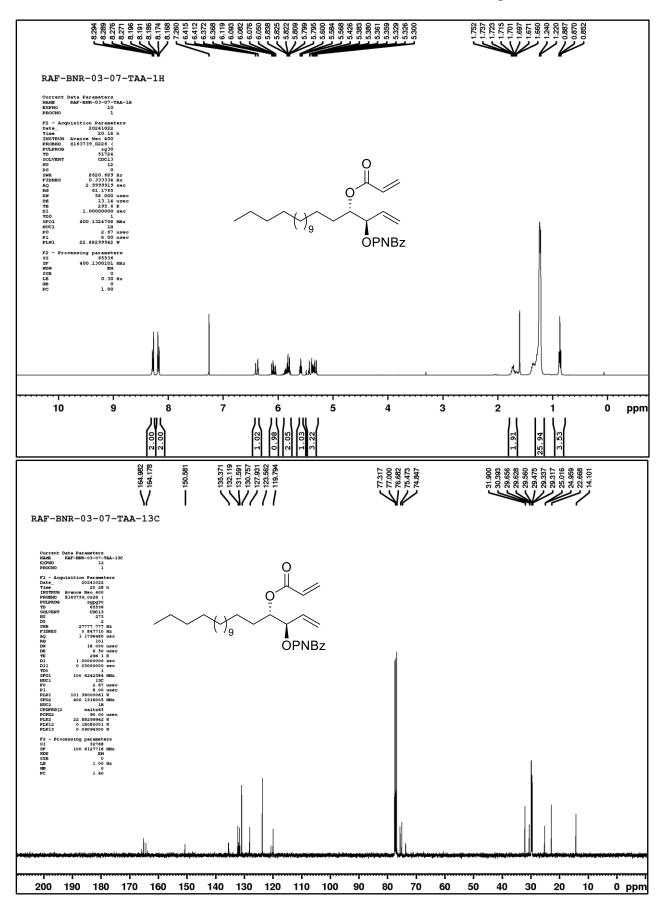


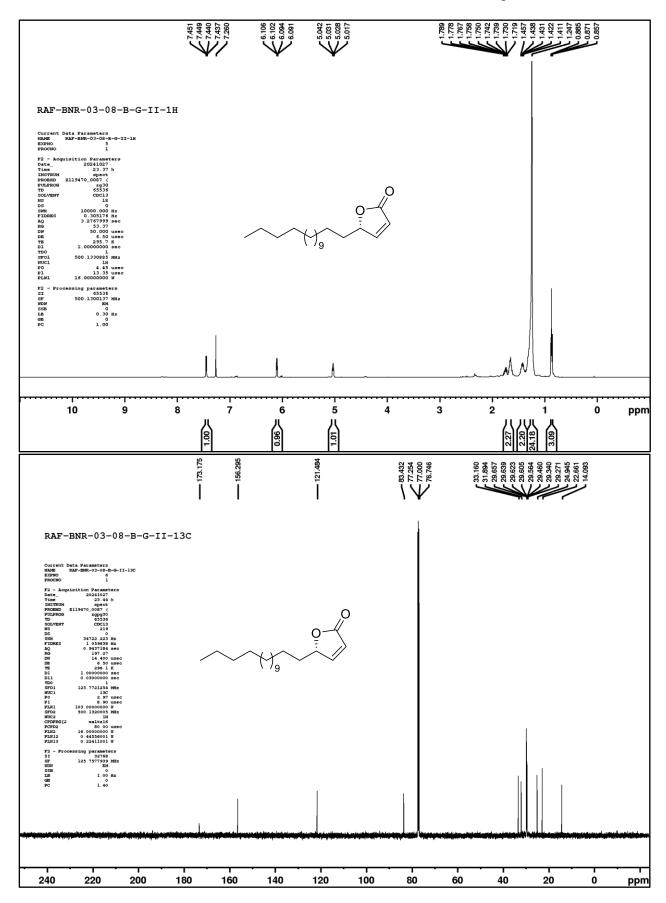

 ^1H NMR (400 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl₃) of compound **39a**

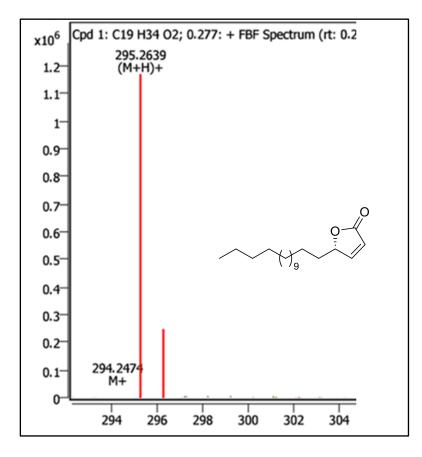
39a: HRMS (ESI-TOF) *m/z*: [M + NH₄]⁺ Calcd for C₂₆H₄₅O₅N₂ 465.3323; Found: 465.3324

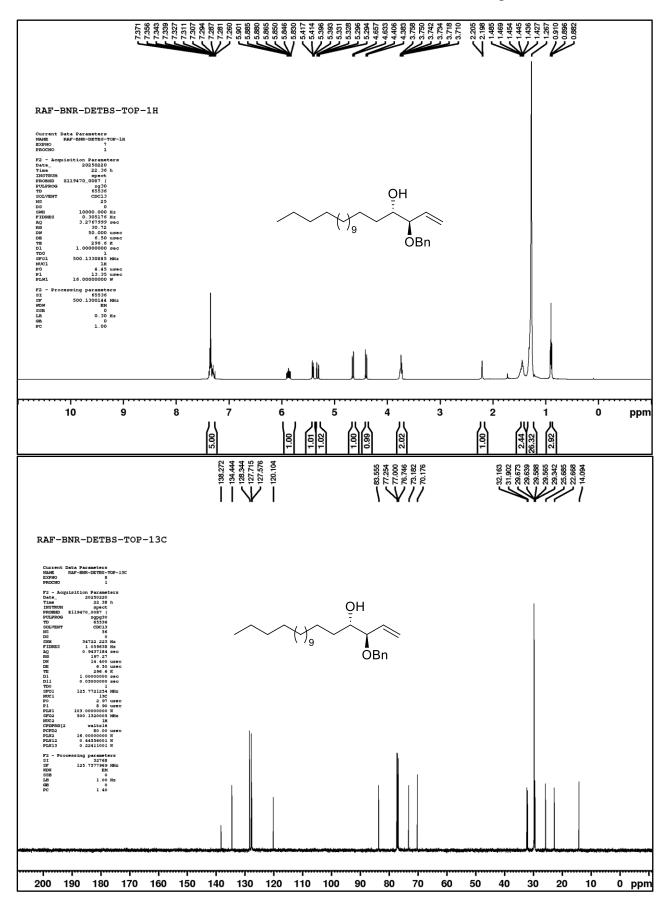

¹H NMR (400 MHz, CDCl₃) and ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) of compound **39b**

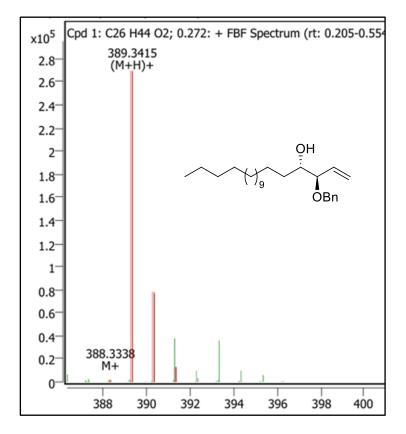


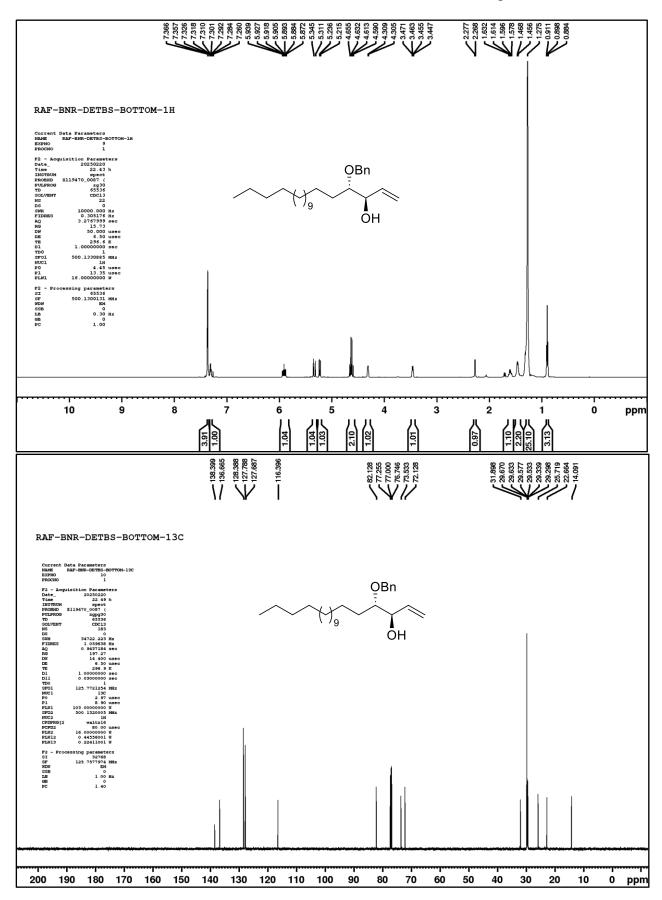

39b: HRMS (ESI-TOF) *m/z*: [M + NH₄]⁺ Calcd for C₂₆H₄₅O₅N₂ 465.3323; Found: 465.3327

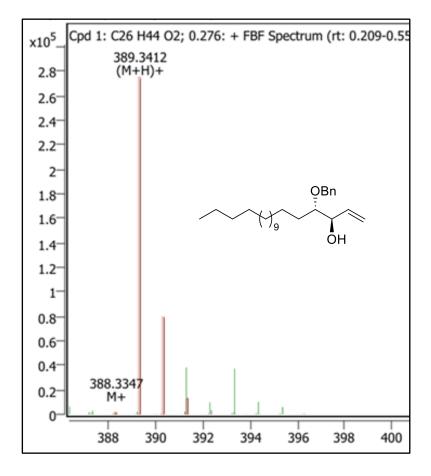

40a: HRMS (ESI-TOF) *m/z*: [M + NH₄]⁺ Calcd for C₂₉H₄₇O₆N₂ 519.3429; Found: 519.3435

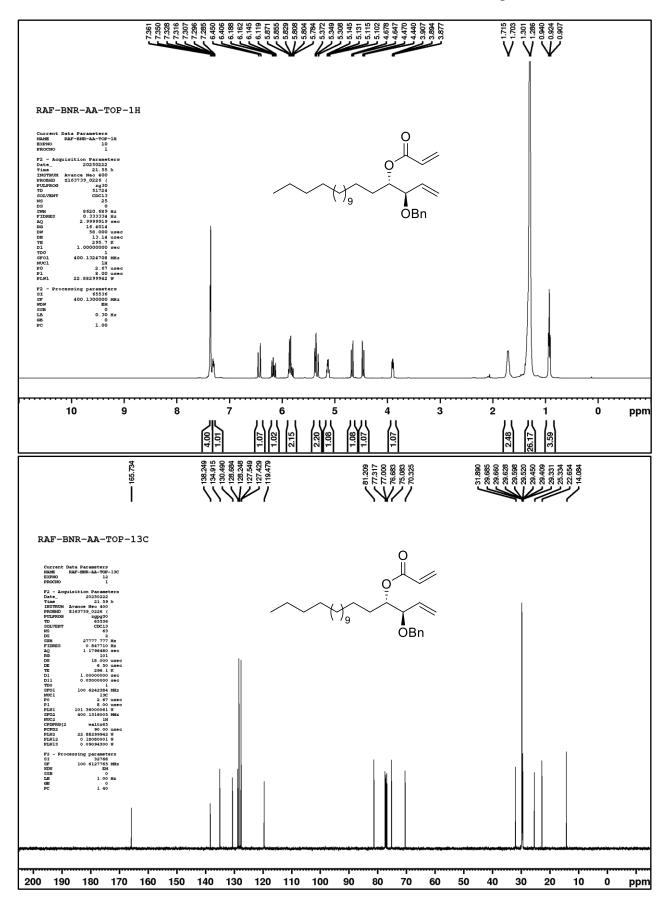

 ^1H NMR (400 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl₃) of compound **40b**

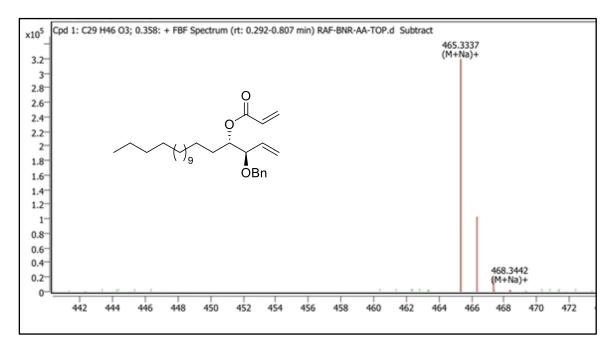

40b: HRMS (ESI-TOF) *m/z*: [M + NH₄]⁺ Calcd for C₂₉H₄₇O₆N₂ 519.3429; Found: 519.3400

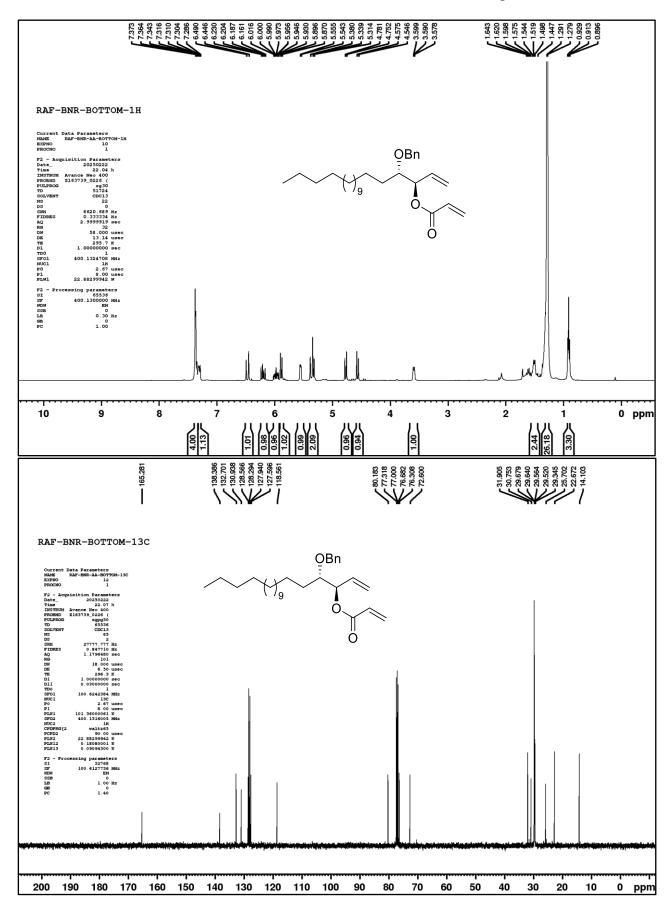

 1H NMR (500 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (125 MHz, CDCl₃) of compound **41**

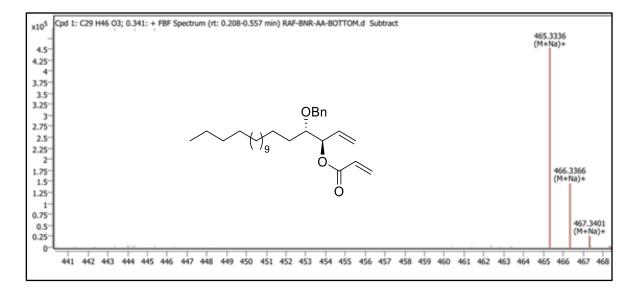

41: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₃₅O₂ 295.2633; Found: 295.2639

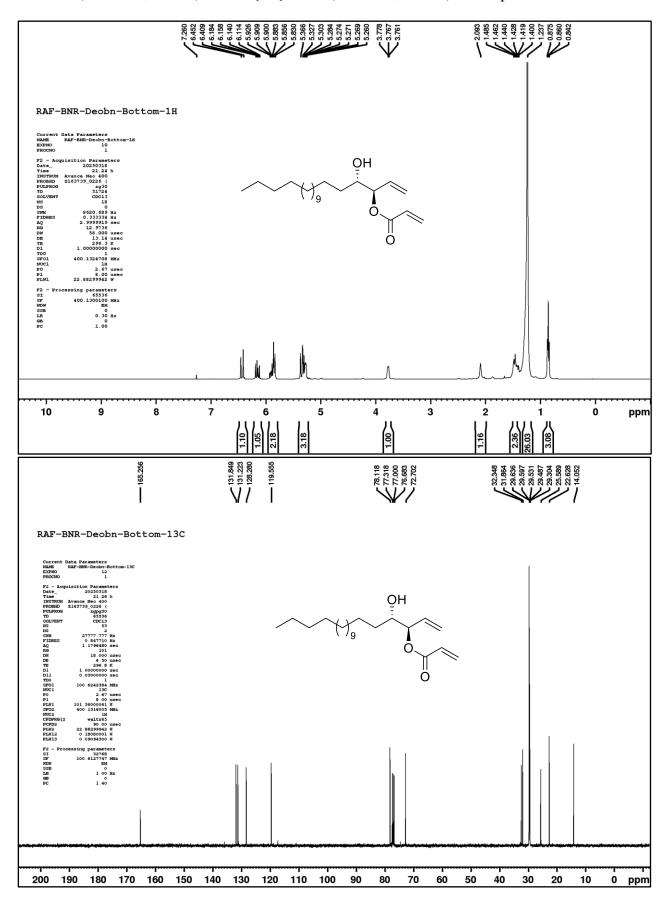

 1H NMR (500 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (125 MHz, CDCl₃) of compound **31**

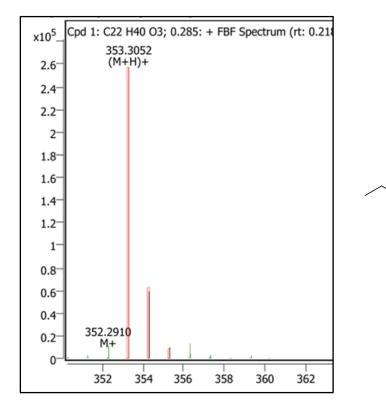

31: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₆H₄₅O₂ 389.3414; Found: 389.3415


 1H NMR (500 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (125 MHz, CDCl₃) of compound 44


44: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₆H₄₅O₂ 389.3414; Found: 389.3412

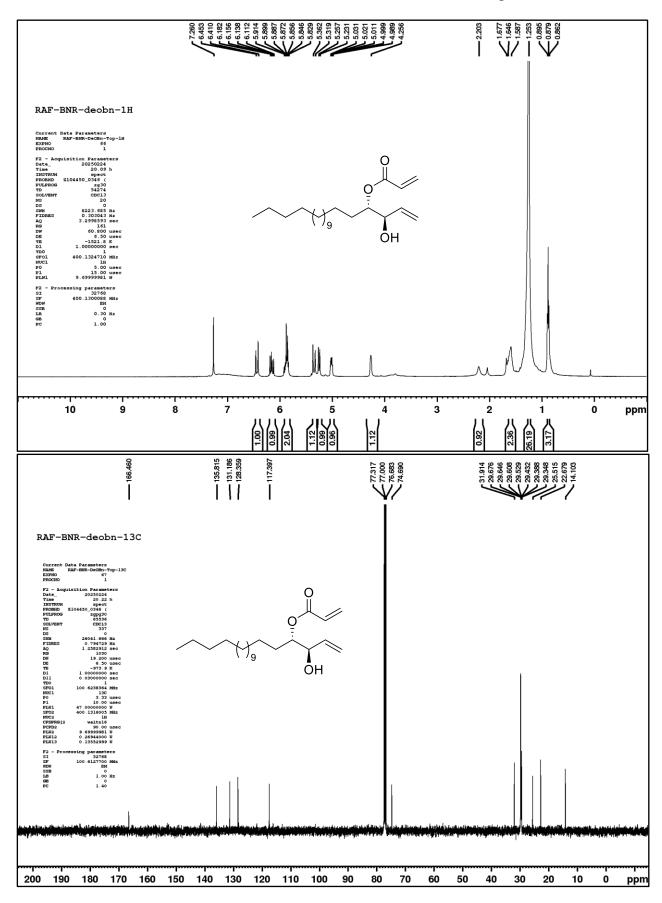

 1H NMR (400 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) of compound **45**


45: HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₉H₄₆O₃Na 465.3340; Found: 465.3337

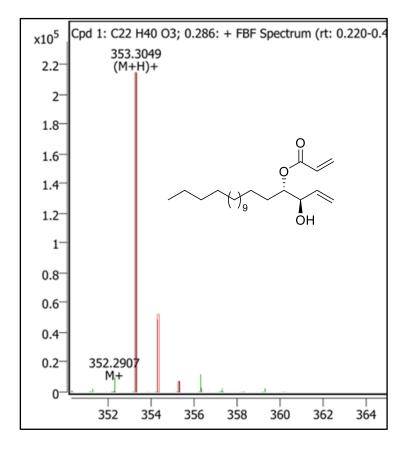

 1H NMR (400 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) of compound 46

46: HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₉H₄₆O₃Na 465.3340; Found: 465.3336

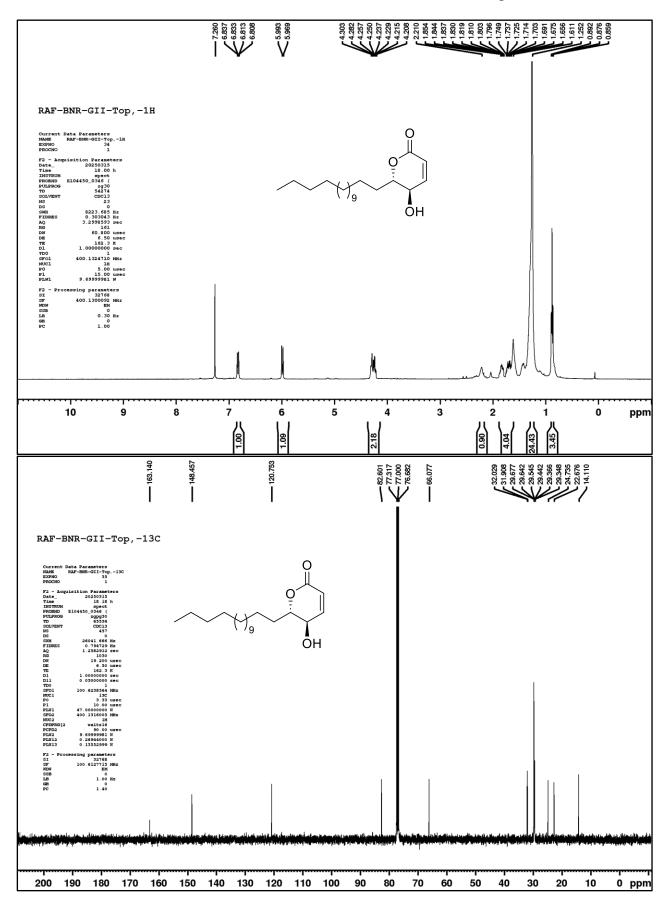
 1H NMR (400 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) of compound **47**

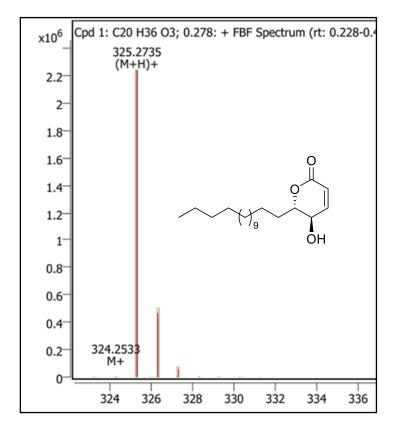


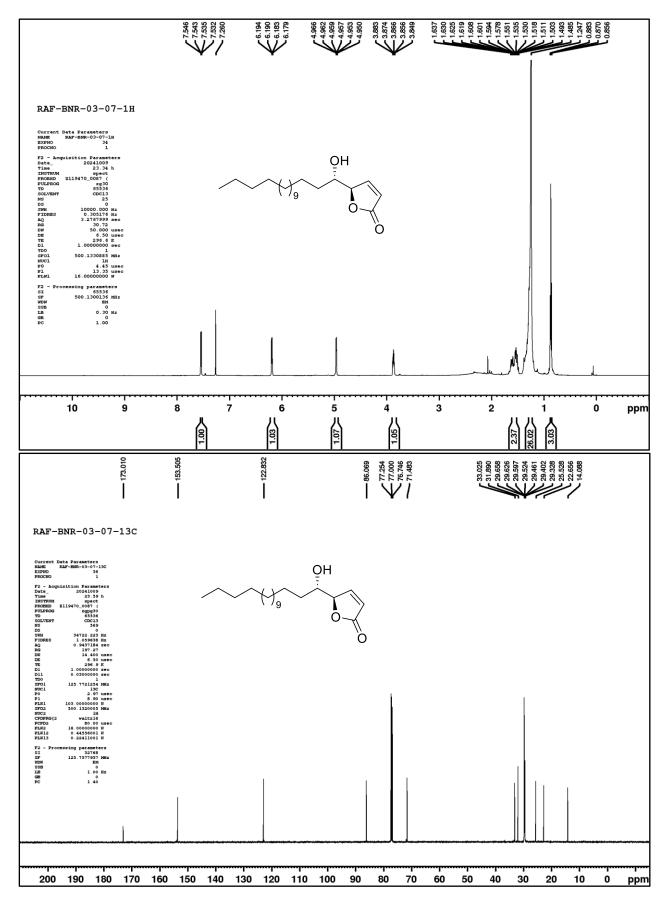
47: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₂H₄₁O₃ 353.3051; Found: 353.3052

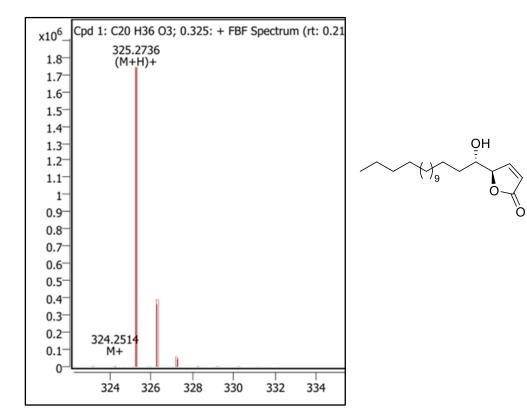

ŌН

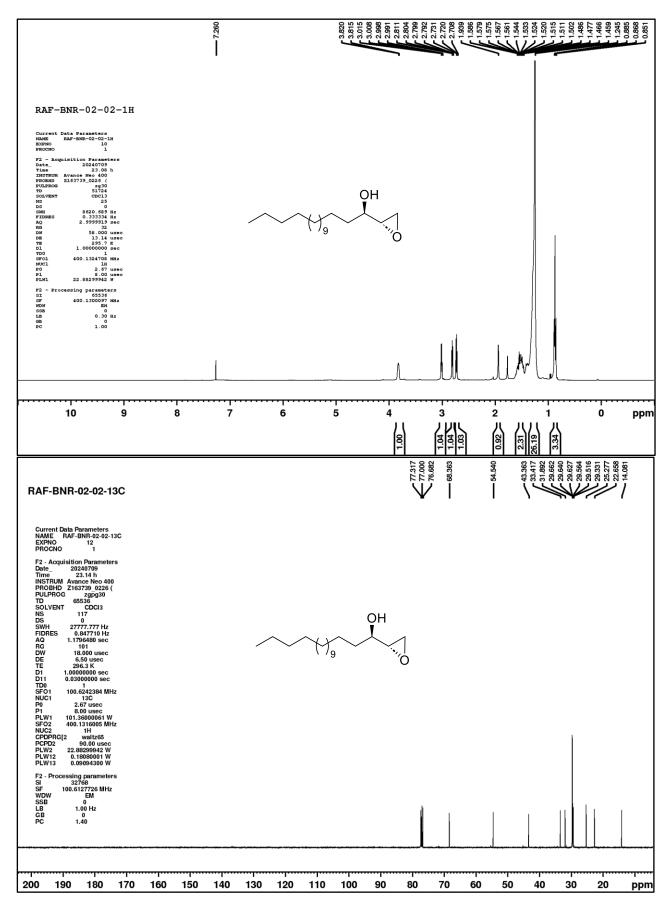
С

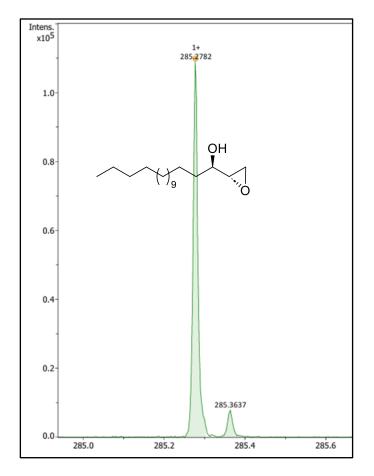

 M_9

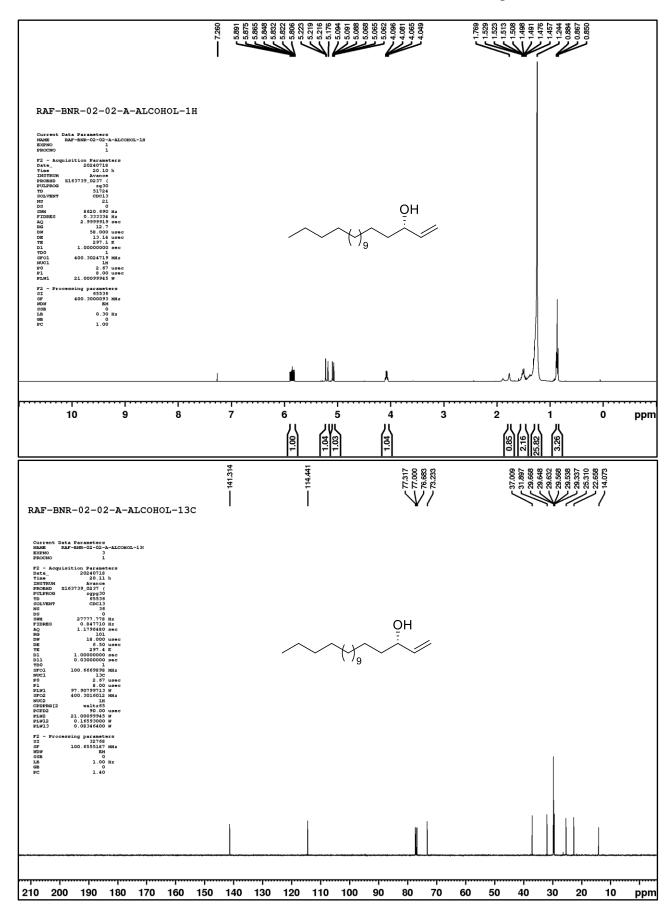

 1H NMR (400 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) of compound **36**

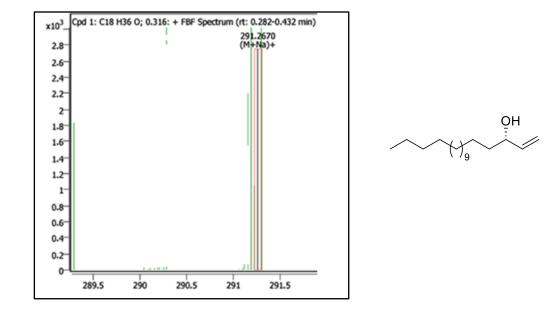

36: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₂H₄₁O₃ 353.3051; Found: 353.3049

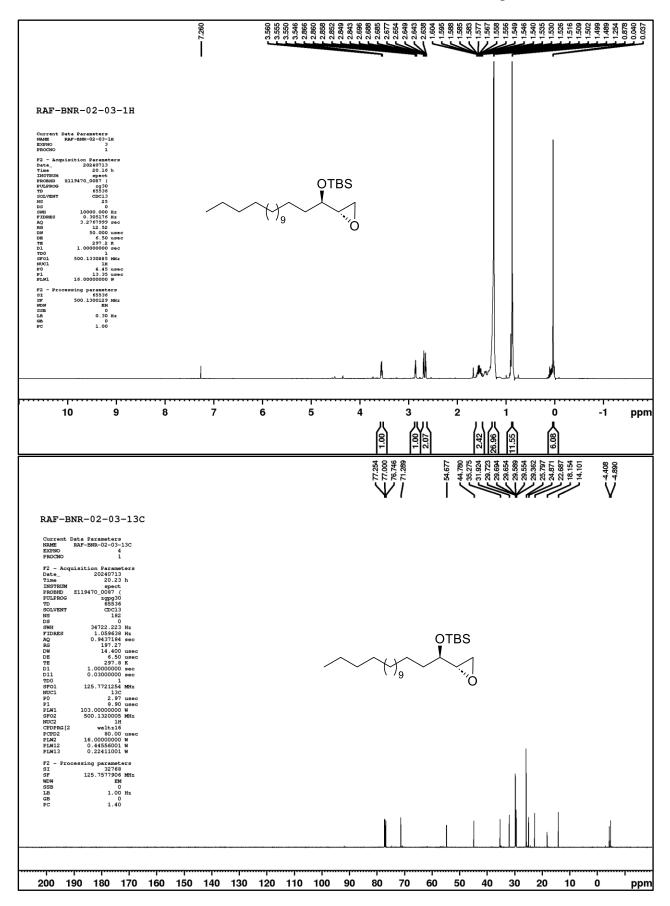

 1H NMR (400 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) of compound ${\bf 48}$


48: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₀H₃₇O₃ 325.2738; Found: 325.2735

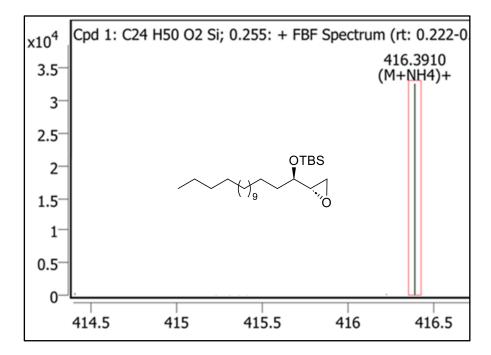

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound *ent-*1e


ent-1e: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₀H₃₇O₃ 325.2738; Found: 325.2736

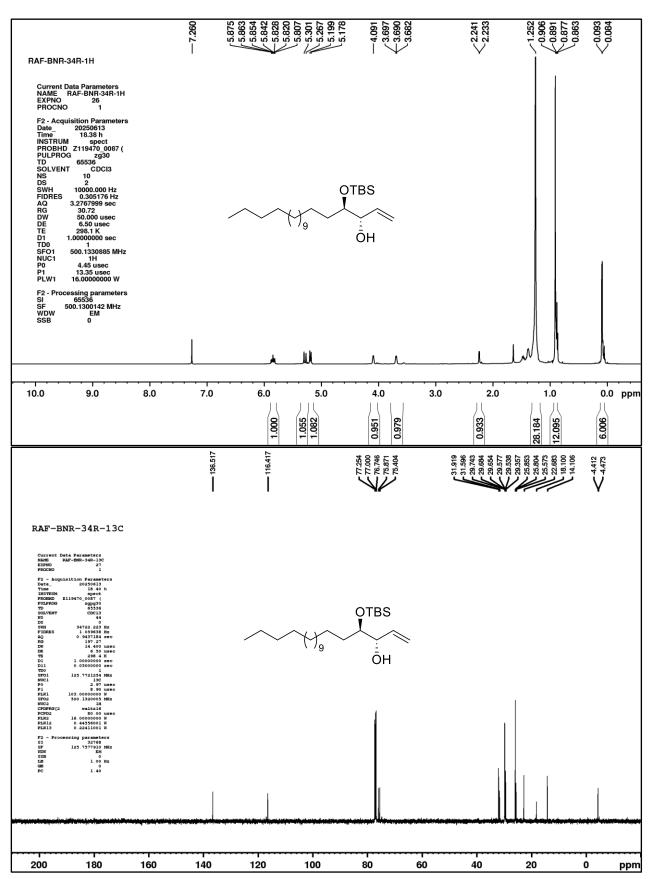

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound *ent-32*


ent-32: HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₈H₃₇O₂ 285.2788; Found: 285.2782

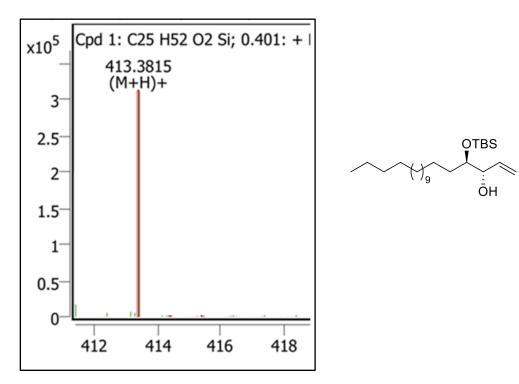
¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound *ent-32*'

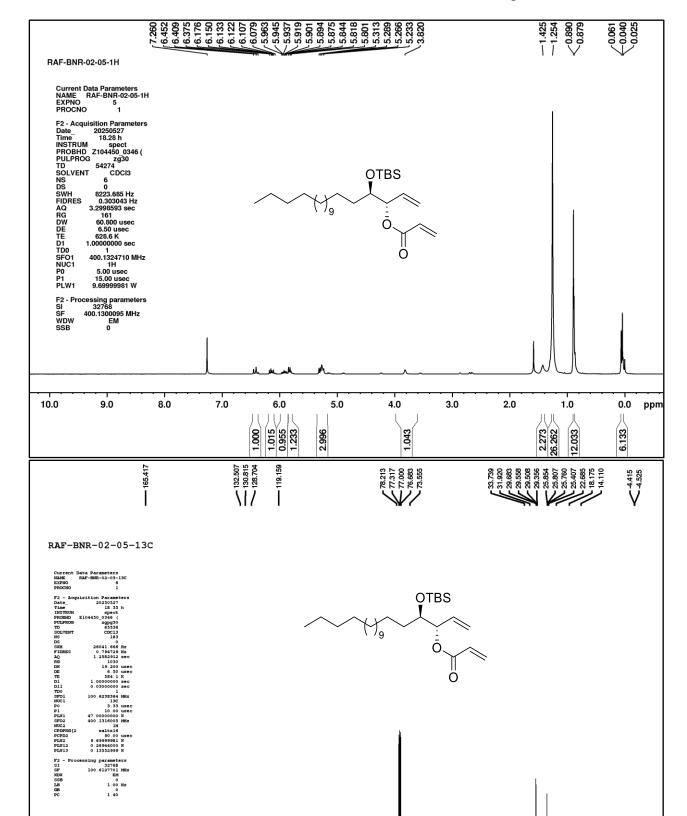


*ent-***32'**: HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ Calcd for C₁₈H₃₆ONa 291.2659; Found: 291.2670

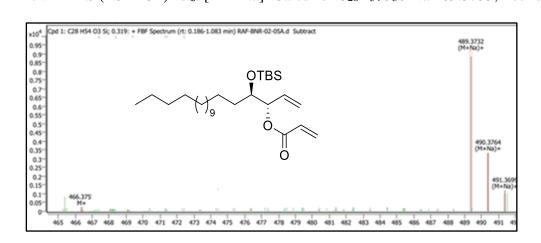


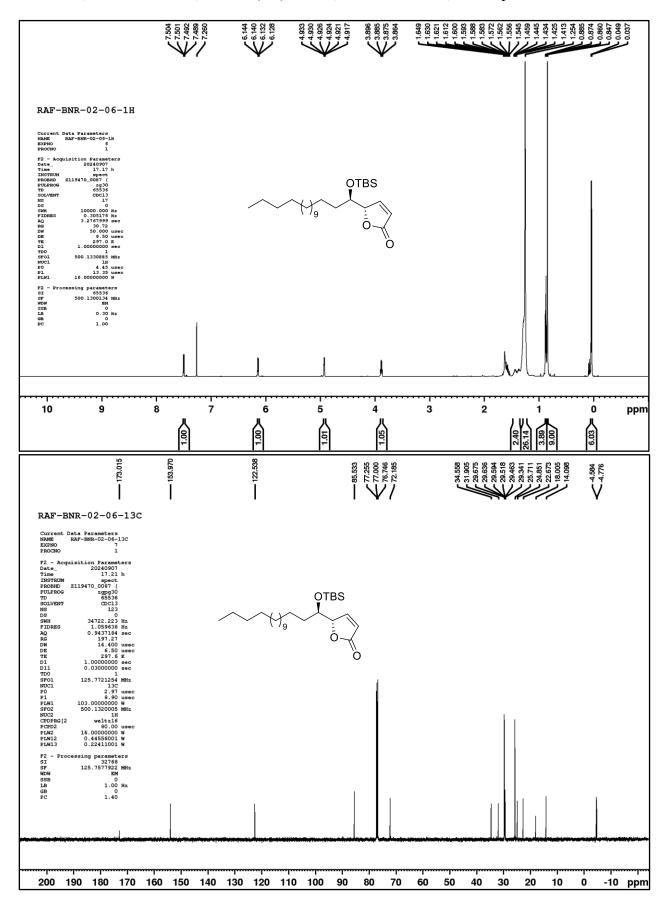
¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound *ent-38*


ent-38: HRMS (ESI-TOF) m/z: $[M + NH_4]^+$ Calcd for C₂₄H₅₄O₂SiN 416.3918; Found: 416.3910

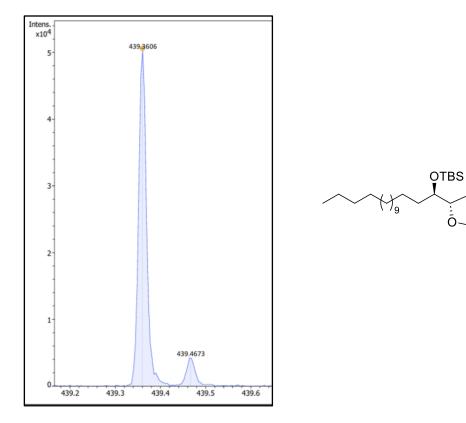


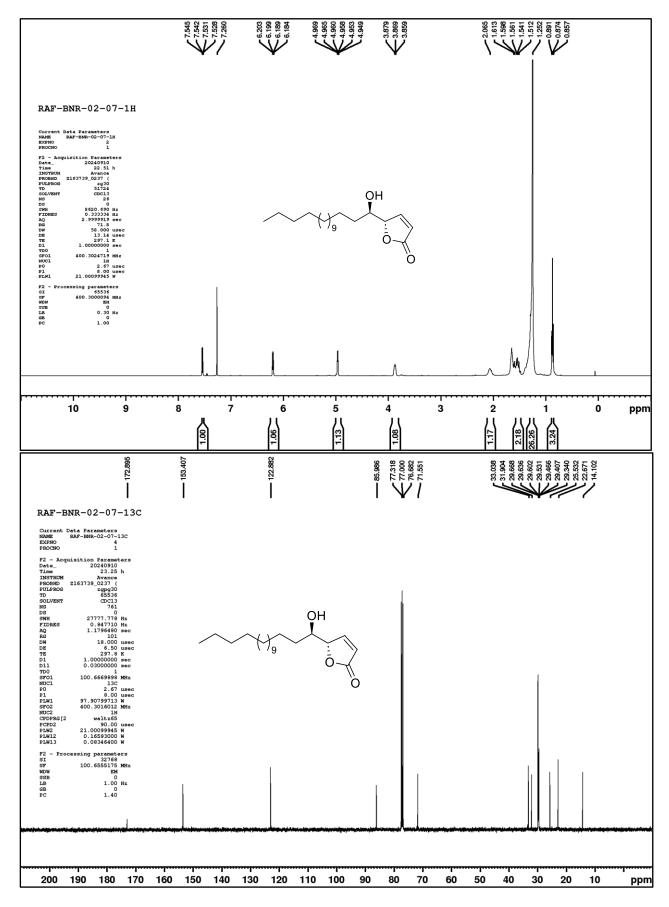
34: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₅H₅₃O₂Si 413.3810; Found: 413.3815

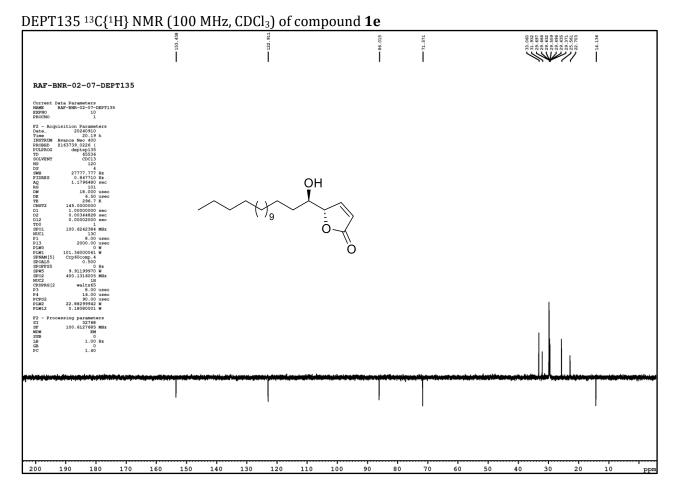



||

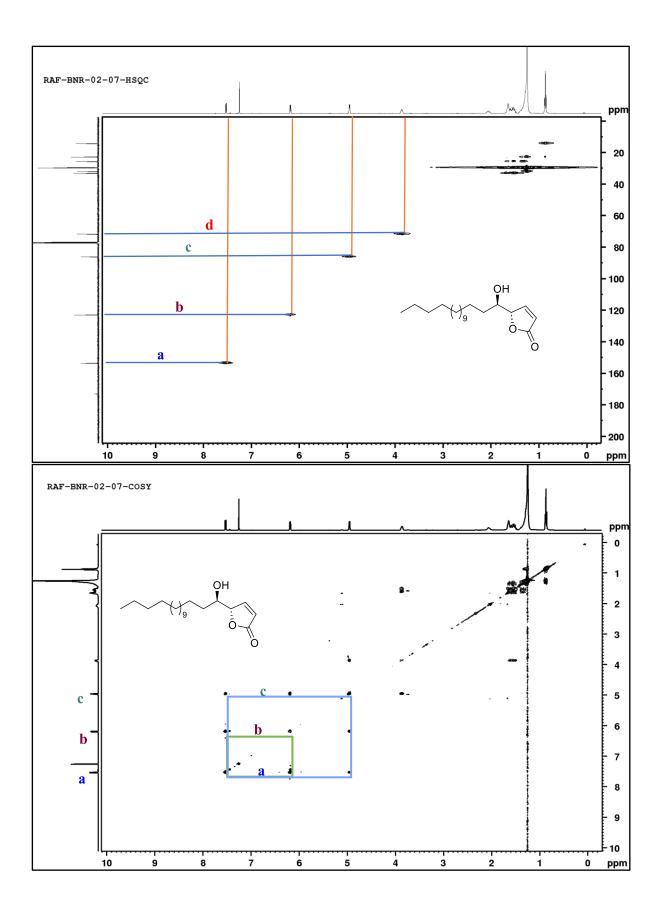
¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **49**


ppm

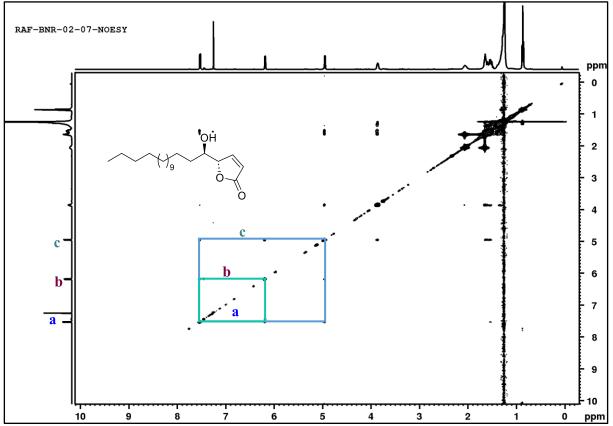

49: HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₈H₅₄O₃SiNa 489.3735; Found: 489.3732


¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (125 MHz, CDCl₃) of compound **50**

50: HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₆H₅₁O₃Si 439.3602; Found: 439.3606



¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **1e**



1e: HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₀H₃₇O₃ 325.2737; Found: 325.2739

H-H NOESY spectra of compound 1e

