Selective Recognition and Sensing of Biologically Important Phosphates Using Triptycene-Based Anion Receptors

Ahmad F. Kassir, Daniel Lupp, Jakub Grabowski, Jarosław M. Granda*, and Janusz Jurczak*

* Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. jaroslaw.granda@icho.edu.pl; janusz.jurczak@icho.edu.pl

Contents:

1. General information	3
2. Synthesis of compounds	4
2.1. Synthesis of compound 4	4
2-Hydroxyantraquinone (17)	4
2-Methoxyanhtraquinone (18)	5
2-Methoxyanthracene (19)	5
2-Methoxytriptycene (4)	6
2.2. Synthesis of compound 5	7
Anthrone (21)	7
2,7-Dinitroanthraquinone (22)	
2,7-Dimethoxyanthraquinone (23)	
2,7-Dimethoxyanthracene (24)	
2,7-Dimethoxytriptycene (25)	9
2,7-Dibutoxytriptycene (5)	9
2.3. Synthesis of compound 1 under flow conditions	
1.3.1. Description of the Flow setup	
1.3.2. Experimental results of the Flow setup	11
1.3.3. Procedure of synthesis of compound 1 (entry 3)	11
2.4. Synthesis of tetrabutyl ammonium salts	12
TBA ⁺ AMP ⁻ (26)	
TBA ⁺ CMP ⁻ (27)	
$TBA^+ deoxyAMP^- (28)$	13
$TBA^{+}ADP^{-}$ (29)	

TBA ⁺ cAMP ⁻ (30)	.14
TBA ⁺ UMP ⁻ (31)	.14
3. ¹ H, ¹³ C and ³¹ P NMR Spectra	15
4. X-ray single-crystal data for compounds 1 and 3	47
4.1. Experimental of compound 3	47
4.2. Experimental of compound 1	48
5. Binding studies of ligands 3, 2 and 1	50
5.1. Binding studies of ligand 3	50
5.1.1. General remarks	50
5.1.2. ¹ H NMR titration experiments	50
5.2. Binding studies of ligand 2	61
5.2.1. General remarks	61
5.2.2. ¹ H NMR titration experiments (DMSO-d ₆ +5% H ₂ O)	61
5.2.3. ¹ H NMR titration experiments (DMSO-d ₆ +0.5% H ₂ O)	64
5.3. Binding studies of ligand 1	72
5.3.1. General remarks	72
5.3.2. ¹ H NMR titration experiments (DMSO-d ₆ +5% H ₂ O)	.72
5.3.3. Fluorescence titration experiments of ligand 1	.74
6. Fluorescence spectra of tetrabutyl ammonium salts	83
General remarks	83
7. UV-VIS spectra of tetrabutyl ammonium salts and receptor 1	86
General remarks	86
8. References	90

1. General information

All reagents were purchased from Sigma-Aldrich, Ambeed and Fluorochem, and used without further purification. The ¹H, ¹³C and ³¹P NMR spectra were recorded on Varian Gemini 200, Bruker Avance III HD 400, and Varian-Agilent 600. Chemical shifts are reported in ppm. The splitting pattern of multiplets is described by abbreviations (s - singlet, bs - broad singlet, d - doublet, t - triplet, q quartet, dd – doublet of doublets, m – complex multiplicity). Coupling constants values (J) are reported in Hz. Column chromatography was performed with Merck Kieselgel 60 (230-400 mesh). TLC was carried out on Merck Kieselgel F254 plates. Melting points were determined using a Boëtius M HMK hot-stage apparatus and were uncorrected. High resolution Mass spectrometry analysis was performed using Synapt G2-S mass spectrometer (Waters) equipped with the electrospray (ESI) ion source and quadrupole-Time-of-flight (qTOF) mass analyzer. Acetonitrile (Honeywell, LC-MS Chromasolv[™], purity \ge 99.9%) was used as a solvent and mobile phase with the flow rate 100 µl/min. Sample was dissolved and injected directly into the ESI source. Injection volume was 1 µl depending on concentration. The measurement was performed in the positive ion mode with the resolving power of TOF analyzer 30000 FWHM. The lock-spray spectrum of Leucine-enkephalin was generated by the lock-spray source and the correction was performed for the recorded spectrum. The exact mass measurement was performed within 3 mDa mass error. Nitrogen was used as desolvation and cone gas, and their flow values were set to 600 L/h and 100 L/h respectively. Desolvation gas temperature was set to 350°C. Nebulizer gas pressure was set to 5.0 bar. Capillary voltage was set to 3.0 kV, and sampling cone voltage and source offset were set to 30-50 V. The instrument was controlled and data were processed using the MassLynx V4.1 software package (Waters).

2. Synthesis of compounds

2.1. Synthesis of compound 4

2-Hydroxyantraquinone (17)

2-Aminoanthraquinone **16** (10.00 g, 45 mmol) was dissolved in 98% H₂SO₄ (130 mL). To the stirred solution, NaNO₂ (3.8 g, 55 mmol) was added in small portions, while keeping the temperature below 5 °C. After completion of addition, the reaction mixture was stirred additionally for 3.5 h and then it was poured into ice-cold water (500 mL) and the solution was refluxed for 30 min. The yellow–brown precipitate was filtered off and dissolved in aqueous NaOH solution (1 M, 90 mL) and was filtered and subsequently acidified with 6 M HCl_(aq) until the disappearance of red color. This suspension was refluxed for 10 min and the solid was collected by filtration, to give 2-hydroxyanthraquinone **17** (8.6 g, 85%) in form of yellow solid, mp 304-305 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.03 (s, 1H), 8.18 – 8.12 (m, 2H), 8.08 (d, *J* = 8.5 Hz, 1H), 7.92 – 7.84 (m, 2H), 7.50 (d, *J* = 2.6 Hz, 1H), 7.24 (dd, *J* = 8.5, 2.6 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 182.6, 181.1, 163.1, 135.2, 134.5, 133.9, 133.1, 133.0, 129.8, 126.6, 126.5, 125.1, 121.5, 112.2. HRMS (ESI) m/z: [M-H]⁻ calcd for C₁₄H₇O₃, 223.0395; found, 223.0401.

2-Methoxyanhtraquinone (18)

2-Hydroxyanthraquinone **17** (17.90 g, 80 mmol) and K₂CO₃ (33.20 g, 240 mmol) were placed in a twonecked flask, suspended in 400 mL of acetone and brought to a reflux under argon atmosphere and to this reaction mixture, MeI (15 mL, 33.90 g, 240 mmol) was added in three 5 mL portions at 1 h intervals, following the reaction progress by TLC (dichloromethane). After the complete conversion of the substrate, the post-reaction mixture was concentrated under reduced pressure, and water (150 mL) was added. The resulting solution was extracted with dichloromethane (3x100 mL), and combined organic phases were washed with 10% aqueous NaOH solution, 10% H₂SO₄, brine, dried over Na₂SO₄ and evaporated to afford 2-methoxyanthraquinone **18** (16.00 g, 84%) yellow crystals, mp 192-193 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 – 8.27 (m, 2H), 8.26 (d, *J* = 8.7 Hz, 1H), 7.80 – 7.75 (m, 2H), 7.73 (d, *J* = 2.7 Hz, 1H), 7.27 (dd, *J* = 8.7, 2.7 Hz, 1H), 3.99 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.4, 182.3, 164.5, 135.8, 134.3, 133.8, 133.8, 133.8, 129.9, 127.3, 127.3, 127.3, 121.3, 110.1, 56.1. HRMS (ESI) m/z: [M]⁺ calcd for C₁₅H₁₀O₃, 238.0630; found, 238.0630.

2-Methoxyanthracene (19)

2-Methoxyanthraquinone **18** (16.00 g, 67.2 mmol), Zn powder (23 g, 350,0 mmol) and aqueous solution of NaOH (10%, 320 mL) were heated at 100-110 °C for 48 h under argon atmosphere.¹ After the complete conversion of the substrate, distilled water (320 mL) was added, and the resulting mixture was extracted with dichloromethane (3 x 300 mL). Combined organic phases were dried over Na₂SO₄ and evaporated. The resulting solid was recrystallized from dichloromethane to afford 2-methoxyanthracene **19** (11.70 g, 84%) as colorless plates. mp 174-175 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 (s, 1H), 8.28 (s, 1H), 8.00 – 7.92 (m, 2H), 7.90 (d, *J* = 9.1 Hz, 1H), 7.50 – 7.37 (m, 2H), 7.21 (d, *J* = 2.5 Hz, 1H), 7.17 (dd, *J* = 9.1, 2.5 Hz, 1H), 3.97 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.3, 132.9, 132.4, 130.5, 130.0, 128.5, 128.4, 127.7, 126.4, 125.7, 124.6, 124.3, 120.7, 103.7, 55.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₃O, 209.0966; found, 209.0973.

2-Methoxytriptycene (4)

2-Methoxyanthracene **19** (4.16 g, 20 mmol) and anhydrous 1,2-dichloroethane (50 mL) were placed in a three–necked flask and brought to reflux under argon atmosphere. Solution of anthranilic acid (5.52 g, 40 mmol) in anhydrous 1,2-dimethoxyethane (22 mL) was added dropwise over 1 h. Concurrently, isopentyl nitrite (6.85 mL, 53 mmol) was added in 5 equal portions, ensuring that there was always an excess of the nitrite was present in the reaction mixture (adding the first portion before starting the addition of anthranilic acid solution). The reaction mixture was refluxed further for 30 min, and the resulting solution was evaporated under reduced pressure. The dark-brown oil obtained was diluted with dichloromethane and filtered through a short pad of silica gel and the filtrate was evaporated under reduced pressure. The colorless crystals obtained were collected by filtration, washed with hot ethanol, and dried to obtain 2-methoxytriptycene **4** (9.20 g, 75 %) colorless crystals, mp 161-162 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.39 (m, 4H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.06 (d, *J* = 2.5 Hz, 1H), 7.05 – 7.00 (m, 4H), 6.54 (dd, *J* = 8.1, 2.5 Hz, 1H), 5.418 (s, 1H), 5.417 (s, 1H), 3.77 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 157.4, 146.9, 145.8, 145.2, 137.8, 125.3, 125.2, 124.2, 123.7, 123.5, 111.0, 109.3, 55.5, 54.4, 53.3. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₁H₁₆ONa, 307.1093; found, 307.1093.

2.2. Synthesis of compound 5

Anthrone (21)

Anthraquinone **20** (41.64 g, 200 mmol) and granulated tin (40.00 g, 336 mmol) were taken up in acetic acid (300 mL) and brought to reflux. Over 2 h concentrated hydrochloric acid (100 mL) was added to the refluxing solution in 5 mL portions. After the complete addition of the hydrochloric acid, the reaction mixture was further refluxed for 2 h, then, cooled to RT and subsequently water (100 mL) was added. The precipitated light yellow solid was filtered on a Schott funnel and dissolved in dichloromethane (300 mL). This solution was washed with water (2x100 mL) and saturated NaHCO₃ solution (100 mL). The organic phase was dried over Na₂SO₄ and evaporated, yielding anthrone **21** (38.34 g, 198 mmol, 99%) as yellow needles, mp 149-150 °C, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.40 – 8.34 (m, 2H), 7.63 – 7.56 (m, 2H), 7.50 – 7.43 (m, 4H), 4.36 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 184.4, 140.6, 132.9, 132.2, 128.6, 127.8, 127.2, 32.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₁O, 195.0810; found, 195.0812.

2,7-Dinitroanthraquinone (22)

Fuming nitric acid (75 mL) was cooled down to 0 °C and anthrone **21** (20.00 g, 103 mmol) was added in small portions so that the temperature of the acid does not exceed 5 °C. After the complete addition of the anthrone **21**, the reaction mixture was stirred for 30 min at RT and was poured into glacial acetic acid (400 mL), which was brought to reflux. The acetic acid mixture was refluxed until nitrogen dioxide stopped evolving. The mixture was stirred overnight at RT and the light yellow precipitate was filtered, washed with methanol and dried, yielding crude 2,7-dinitroanthraquinone (24.6 g) contaminated with the 2,6- isomer. The crude product was recrystallized from DMSO, filtered, washed with methanol and dried, yielding pure 2,7-dinitroanthraquinone **22** (14.20 g, 46%) in form of fine light yellow needles, ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.84 (d, *J* = 2.2 Hz, 2H), 8.71 (d, *J* = 8.5 Hz, 2H), 8.48 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 180.3, 179.8, 150.8, 136.9, 134.3, 129.1, 128.6, 121.4. HRMS (ESI) m/z: [M]⁺ calcd for C₁₄H₆N₂O₆, 298.0226; found, 298.0224.

2,7-Dimethoxyanthraquinone (23)

2,7-dinitroanthraquinone **22** (14.00 g, 47 mmol) was taken up in a solution of KOH (14.0 g, 250 mmol) in MeOH (450 mL) and refluxed overnight. The reaction mixture was cooled down to RT and filtered. The solid was washed copiously with MeOH and hexane, and air-dried, yielding 2,7-dimethoxyanthraquinone as a light yellow solid. The crude product was purified by recrystallization from acetic acid, yielding 2,7-dimethoxyanthraqunone **23** (11.60 g, 92%) in form of fine orange-yellow needles. mp 208-209 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.13 (dd, *J* = 8.7, 1.8 Hz, 2H), 7.60 – 7.55 (m, 2H), 7.46 – 7.39 (m, 2H), 3.96 (s, 6H), ¹³C NMR (101 MHz, DMSO-*d*₆) δ 180.3, 180.3, 163.6, 135.0, 129.3, 126.4, 120.7, 110.2, 56.0. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₂O₄Na, 291.0633; found, 291.0632.

2,7-Dimethoxyanthracene (24)

2,7-Dimethoxyanthraquinone **23** (3.00 g, 10.0 mmol) was suspended in aqueous ammonia (100 mL, 12.5%). The mixture was heated to 80°C and zinc (25.00 g, 382.3 mmol) was added in portions over the

course of 1 h. The color of the mixture changes to cherry-red. The mixture was heated to 90 °C and stirred at this temperature overnight under argon. The mixture was cooled to RT and filtered, and the residue was washed copiously with water and dichloromethane. The organic phase was dried over Na₂SO₄ and evaporated. The crude product was purified using column chromatography (hexane/dichloromethane, 2:1), yielding 2,7-dimethoxyanthracene **24** (1.40 g, 59%) in form of colorless crystals. mp 208-211 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.39 (s, 1H), 8.23 (s, 1H), 7.94 (d, *J* = 9.2 Hz, 2H), 7.30 (d, *J* = 2.5 Hz, 2H), 7.11 (dd, *J* = 9.2, 2.5 Hz, 2H), 3.91 (s, 6H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 157.0, 132.9, 129.8, 126.3, 126.1, 122.1, 119.2, 103.4, 55.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₅O₂, 239.1072; found, 239.1078.

2,7-Dimethoxytriptycene (25)

2,7-Dimethoxyanthracene **24** (1.82 g, 7.6 mmol) was dissolved in anhydrous DCE (30 mL) and heated to reflux under argon. A solution of anthranilic acid (3.14 g, 22.9 mmol) in anhydrous DME was added dropwise over the course of 3.5 h. Isopentyl nitrite (3.58 g, 30.6 mmol, 4.1 mL) was added in 4 portions in 1 h intervals, with the first portion being added concurrently with the start of the addition of the anthranilic acid solution. After the addition of the anthranilic acid solution was finished, the reaction mixture was refluxed for additional 20 min, and was then evaporated. The product was purified using column chromatography (hexane/dichloromethane, 2:1), yielding 2,7-dimethoxytriptycene **25** (1.92 g, 6.1 mmol, 80%) as a yellow solid. mp 141-142 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.32 (m, 2H), 7.26 (d, *J* = 8.1 Hz, 2H), 7.03 – 6.96 (m, 4H), 6.50 (dd, *J* = 8.1, 2.5 Hz, 2H), 5.32 (s, 1H), 5.31 (s, 1H), 3.74 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.3, 146.8, 146.3, 145.1, 138.3, 125.4, 125.1, 123.9, 123.7, 123.3, 111.0, 109.4, 55.6, 54.7, 52.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₁₉O₂, 315.1385; found, 315.1393.

2,7-Dibutoxytriptycene (5)

2,7-Dimethoxytriptycene **25** (1.92 g, 6.1 mmol) was dissolved in anhydrous dichloromethane (20 mL) and cooled down to 0 °C. A 1M solution of BBr₃ (12.1 mL, 12.1 mmol) was added dropwise to the mixture, which was then allowed to warm up to RT and was stirred overnight. The reaction mixture was poured to ice water (100 mL) and extracted with ethyl acetate (2 x 50 mL) the combined organic phases

were washed with water (3 x 50 mL) and brine (50 mL). The organic phase was dried over Na₂SO₄ and evaporated, yielding a brown solid (1.90 g) which was used in the next step without further purification. It was dissolved in acetonitrile (50 mL) and *n*-butyl bromide (3.33 g, 2.62 mL, 24.3 mmol) along with K₂CO₃ (3.36 g, 24.3 mmol) was added, and the mixture was brought to reflux under argon atmosphere for 18 h. The mixture was evaporated and dichloromethane (100 mL) was added. The dichloromethane solution was washed with water (50 mL), saturated NaHCO₃ solution (50 mL) and brine (50 mL), and was dried over Na₂SO₄. Evaporation of the solution yielded a dark brown oil, which was purified using column chromatography (hexanes/dichloromethane, 2:1), yielding 2,7-dibutoxytriptycene **5** (1.55 g, 64%) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.30 (m, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 7.01 – 6.93 (m, 4H), 6.47 (dd, *J* = 8.1, 2.5 Hz, 2H), 5.28 (s, 1H), 5.25 (s, 1H), 3.88 (t, *J* = 6.5 Hz, 4H), 1.75 – 1.65 (m, 4H), 1.50 – 1.38 (m, 4H), 0.94 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.9, 146.7, 146.4, 145.2, 138.1, 125.4, 125.0, 123.9, 123.7, 123.2, 111.6, 110.0, 68.0, 54.7, 52.6, 31.5, 19.4, 13.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₃₁O₂, 399.2324; found, 399.2327.

2.3. Synthesis of compound 1 under flow conditions

1.3.1. Description of the Flow setup

Compound **15** and rhodium(II) perfluorobutyrate were dissolved in anhydrous toluene in separate flasks under argon atmosphere. The two solutions were transferred to separate syringes. As shown in the figure below, one syringe contains the yellow solution of compound **15**, and the other contains the green solution of the rhodium(II) perfluorobutyrate catalyst. The two solutions are added a by a syringe pump with a proper flow rate through a mixer to polyetheretherketone (PEEK) or stainless steel reactor being heated in an oil bath. The crude of the reaction mixture is collected in a separate flask as shown below in the **Photo S1**. The volumes of the iron and PEEK reactors were 0.1 mL and 0.35 mL respectively.

Photo S1. Photo of the assembled flow setup.

1.3.2. Experimental results of the Flow setup

Entry	Tube	Temperature	Concentration	Flow	Residence	Yield
		(° C)	(mM)	(µL/h)	Time (h)	(%)
1	Iron	60	25	100.0	1.0	0
2	Iron	80	76	28.8	3.5	14
3	PEEK	80	32	87.5	4.0	33

1.3.3. Procedure of synthesis of compound 1 (entry 3)

Compound **15** (110.0 mg, 0.130 mmol) was dissolved in 2.0 mL anhydrous toluene and Rhodium(II) perfluorobutyrate (27.5 mg, 0.026 mmol) was dissolved in 2 mL anhydrous toluene. Both solutions were transferred into two separate syringes. The reaction is performed using setup described above. The flow rate was 87.5 μ L/h, and the total flow time was 45.7 h. (Note: additional 4 h flow time was applied to compensate the dead volume of the reactor which is 0.35 mL). The reaction mixture was evaporated and purified using column chromatography (hexanes/ethyl acetate, 9:1 to hexanes/ethyl acetate, 8:2), yielding compound **1** (32.3 mg, 33%). The spectra were identical to those described previously.²

2.4. Synthesis of tetrabutyl ammonium salts

TBA+ AMP- (26)

AMP (200 mg, 0.570 mmol) was dissolved in MeOH (5.0 mL). Then, a solution of tetrabutyl ammonium hydroxide in MeOH/toluene (1:1) (0.11 M, 5.00 mL, 0.550 mmol) was added and the reaction mixture was stirred for 0.5 h. The reaction mixture turned from white turbid to colorless solution after few min. The reaction mixture was then filtrated on cotton to remove the slightly excess of undissolved AMP. Then, the product was co-evaporated under reduced pressure with dichloromethane to remove toluene and to obtain the salt **26** (0.32 g, quant.) as white powder. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.48 (s, 1H), 8.13 (s, 1H), 7.20 (s, 2H), 5.90 (d, *J* = 6.6 Hz, 1H), 4.73 (dd, *J* = 6.6, 4.8 Hz, 1H), 4.26 (dd, *J* = 4.8, 2.4 Hz, 1H), 4.05 – 3.97 (m, 1H), 3.85 – 3.69 (m, 2H), 3.24 – 3.07 (m, 8H), 1.65 – 1.45 (m, 8H), 1.38 – 1.21 (m, 8H), 0.93 (t, *J* = 7.3 Hz, 12H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 156.1, 153.0, 150.1, 139.9, 118.8, 86.8, 84.9, 74.6, 71.4, 64.3, 57.9, 23.4, 19.4, 13.7. ³¹P NMR (162 MHz, DMSO-*d*₆) δ 0.72. HRMS (ESI) m/z: [AMP]⁻ calcd for C₁₀H₁₃N₅O₇P, 346.0553; found, 346.0551.

TBA+ CMP- (27)

CMP (250 mg, 0.770 mmol) was dissolved in MeOH (6.5 mL). Then, a solution of tetrabutyl ammonium hydroxide in MeOH/toluene (1:1) (0.11 M, 6.63 mL, 0.730 mmol) was added and the reaction was stirred for 1 h. The reaction mixture turned from white turbid to colorless solution after few min. The reaction mixture was then filtrated on cotton to remove the slightly excess of undissolved phosphate. Then, the product was co-evaporated under reduced pressure with dichloromethane to remove toluene and to obtain the salt **27** (0.40 g, 98%) as white powder. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.92 (d, *J* = 7.4 Hz, 1H), 7.24 (s, 1H), 6.96 (s, 1H), 5.85-5.80 (m, 1H), 5.73 (d, *J* = 7.4 Hz, 1H), 4.06 – 4.01 (m, 2H), 3.89 – 3.85 (m, 1H), 3.83 – 3.73 (m, 2H), 3.22 – 3.09 (m, 8H), 1.63 – 1.49 (m, 8H), 1.36 – 1.24 (m, 8H), 0.93 (t, *J* = 7.3 Hz, 12H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.6, 155.7, 141.6, 94.4, 88.1, 83.3, 74.2, 70.3, 63.4, 57.6, 23.1, 19.2, 13.5. ³¹P NMR (162 MHz, DMSO) δ 0.47. HRMS (ESI) m/z: [CMP]⁻ calcd for C₉H₁₃N₃O₈P, 322.0440; found, 322.0439.

TBA⁺ deoxyAMP⁻ (28)

DeoxyAMP (45 mg, 0.136 mmol) was dissolved in MeOH (2 mL). Then, a solution of tetrabutyl ammonium hydroxide in MeOH/toluene (1:1) (0.11 M, 1.16 mL, 0.128 mmol) was added and the reaction was stirred for 1 h. The reaction mixture turned from white turbid to colorless solution after few min. The reaction mixture was then filtrated on cotton to remove the slightly excess of undissolved phosphate. Then, the product was co-evaporated under reduced pressure with dichloromethane to remove toluene and to obtain the salt **28** (65 mg, 89%) as white powder. ¹H NMR (400 MHz, DMSO- d_6) δ 8.42 (s, 1H), 8.13 (s, 1H), 7.19 (s, 2H), 6.36 – 6.29 (m, 1H), 4.53 – 4.46 (m, 1H), 3.93 – 3.87 (m, 1H), 3.78 – 3.70 (m, 2H), 3.21 – 3.10 (m, 8H), 2.72 – 2.63 (m, 1H), 2.29 – 2.21 (m, 1H), 1.62 – 1.50 (m, 8H), 1.37 – 1.25 (m, 8H), 0.93 (t, *J* = 7.3 Hz, 12H).¹³C NMR (101 MHz, DMSO- d_6) δ 156.1, 152.9, 149.4, 139.7, 118.9, 86.8, 83.2, 71.5, 64.3, 57.9, 57.8, 23.3, 19.4, 13.7. ³¹P NMR (162 MHz, DMSO) δ 0.15. HRMS (ESI) m/z: [deoxyAMP]⁻ calcd for C₁₀H₁₃N₅O₆P, 330.0603; found, 330.0602.

 $TBA^+ ADP^- (29)$

ADP (50 mg, 0.117 mmol) was dissolved in MeOH (1 mL), then a solution of tetrabutyl ammonium hydroxide in MeOH/toluene (1:1) (0.11 M, 1.02 mL, 0.112 mmol) was added and the reaction mixture was stirred for 1 h. The reaction mixture stayed turbid. Then, distilled water (2 mL) was added to homogenize the reaction mixture, which was left for stirring for additional 2 h at RT. The reaction mixture was then filtrated on cotton. Then, the product was co-evaporated under reduced pressure with dichloromethane to remove toluene and water and to obtain the salt **29** (65 mg, 87%) as white powder. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.41 (d, *J* = 7.0 Hz, 1H), 8.14 (s, 1H), 7.23 (s, 2H), 5.91 (d, *J* = 5.5 Hz, 1H), 4.61 – 4.47 (m, 1H), 4.30 – 4.22 (m, 1H), 4.07 – 4.01 (m, 1H), 4.00 – 3.92 (m, 2H), 3.20 – 3.07 (m, 8H), 1.65 – 1.48 (m, 8H), 1.38 – 1.25 (m, 8H), 0.93 (t, *J* = 7.3 Hz, 12H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.9, 152.5, 149.7, 139.3, 118.6, 86.6, 83.8, 73.8, 70.5, 64.9, 57.5, 23.0, 19.2, 13.4. ³¹P

NMR (162 MHz, DMSO) δ -9.66, -11.00. HRMS (ESI) m/z: [ADP]⁻ calcd for C₁₀H₁₄N₅O₁₀P₂, 426.0216; found, 426.0211.

TBA⁺ cAMP⁻ (30)

cAMP (100 mg, 0.304 mmol) was dissolved in MeOH (8 mL), then a solution of tetrabutyl ammonium hydroxide in MeOH/toluene (1:1) (0.16 M, 1.87 mL, 0.299 mmol) was added and the reaction mixture was stirred for 1 h. The reaction mixture stayed turbid. Then, distilled water (1 mL) was added to homogenize the reaction mixture, which was left for stirring for additional 2 h at RT. Then, the product was co-evaporated under reduced pressure with dichloromethane to remove toluene and water and to obtain the salt **30** (0.16 g, 95%) as white powder. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.24 (s, 1H), 8.17 (s, 1H), 7.29 (s, 2H), 5.88 (s, 1H), 5.77 (d, *J* = 4.4 Hz, 1H), 4.63 – 4.56 (m, 1H), 4.55 – 4.49 (m, 1H), 4.09 – 3.87 (m, 3H), 3.21 – 3.10 (m, 8H), 1.64 – 1.48 (m, 8H), 1.37 – 1.20 (m, 8H), 0.93 (t, *J* = 7.3 Hz, 12H). ¹³C NMR (101 MHz, DMSO) δ 155.9, 152.7, 148.9, 139.7, 118.9, 91.6, 77.1, 72.1, 72.0, 65.8, 57.5, 23.1, 19.2, 13.4. ³¹P NMR (162 MHz, DMSO) δ -3.94. HRMS (ESI) m/z: [cAMP]⁻ calcd for C₁₀H₁₁N₅O₆P, 328.0447; found, 328.0450.

 $TBA^+ UMP^- (31)$

UMP (80 mg, 0.247 mmol) was dissolved in MeOH (4 mL), then a solution of tetrabutyl ammonium hydroxide in MeOH/toluene (1:1) (0.15 M, 1.60 mL, 0.240 mmol) was added and the reaction mixture was stirred for 1 h. Then, the product was co-evaporated under reduced pressure with dichloromethane to obtain the salt **31** (0.13 g, 96%) as white powder.¹H NMR (400 MHz, DMSO-*d*₆) δ 11.20 (s, 1H), 7.99 (d, *J* = 8.1 Hz, 1H), 5.80 (d, *J* = 6.4 Hz, 1H), 5.60 (d, *J* = 8.1 Hz, 1H), 4.26 – 4.15 (m, 1H), 4.14 – 4.04 (m, 1H), 3.97 – 3.87 (m, 1H), 3.84 – 3.67 (m, 2H), 3.25 – 3.07 (m, 8H), 1.66 – 1.46 (m, 8H), 1.40 – 1.19 (m, 8H), 0.93 (t, *J* = 7.3 Hz, 12H). ¹³C NMR (101 MHz, DMSO) δ 163.5, 151.1, 141.4, 102.1, 87.3, 84.2, 73.5, 70.8, 63.8, 57.7, 23.2, 19.3, 13.5. ³¹P NMR (162 MHz, DMSO) δ 0.75. HRMS (ESI) m/z: [UMP]⁻ calcd for C₉H₁₂N₂O₉P, 323.0280; found, 323.0278.

3. ¹H, ¹³C and ³¹P NMR Spectra

Fig. S2. ¹³C NMR spectrum of 17 in DMSO- d_6

Fig. S3. ¹H NMR spectrum of 18 in Chloroform-d

Fig. S4. ¹³C NMR spectrum of 18 in Chloroform-d

Fig. S5. ¹H NMR spectrum of 19 in Chloroform-d

Fig. S6. ¹³C NMR spectrum of 19 in Chloroform-d

Fig. S8. ¹³C NMR spectrum of 4 in Chloroform-d

Fig. S10. ¹³C NMR spectrum of 7 in DMSO-*d*₆

Fig. S11. ¹H NMR spectrum of 10 in Chloroform-d

Fig. S12. ¹³C NMR spectrum of 10 in Chloroform-d

Fig. S13. ¹H NMR spectrum of 13 in Chloroform-d

Fig. S14. ¹³C NMR spectrum of 13 in Chloroform-d

Fig. S15. ¹H NMR spectrum of 3 in Chloroform-d

Fig. S16. ¹³C NMR spectrum of 3 in Chloroform-d

Fig. S18. ¹³C NMR spectrum of 21 in Chloroform-*d*

Fig. S20. ¹³C NMR spectrum of 22 in DMSO- d_6

Fig. S22. ¹³C NMR spectrum of 23 in DMSO- d_6

Fig. S24. ¹³C NMR spectrum of **24** in DMSO- d_6

Fig. S26. 13 C NMR spectrum of 25 in Chloroform-d

Fig. S28. ¹³C NMR spectrum of 5 in Chloroform-d

Fig. S29. ¹H NMR spectrum of **8** in Chloroform-*d*

Fig. S30. ¹³C NMR spectrum of 8 in Chloroform-d

Fig. S31. ¹H NMR spectrum of 11 in Chloroform-d

Fig. S32. ¹³C NMR spectrum of 11 in Chloroform-d

Fig. S34. ¹³C NMR spectrum of 14 in Chloroform-d

Fig. S36. ¹³C NMR spectrum of **2** in DMSO- d_6

Fig. S38. HMBC NMR spectrum of 2 in DMSO-*d*₆

Fig. S40. NOESY NMR spectrum of 2 in DMSO-d₆

Fig. S42. ¹³C NMR spectrum of 26 in DMSO-*d*₆

Fig. S43. ³¹P NMR spectrum of **26** in DMSO- d_6

Fig. S45. ¹³C NMR spectrum of 27 in DMSO- d_6

Fig. S46. ³¹P NMR spectrum of **27** in DMSO- d_6

Fig. S47. ¹H NMR spectrum of 28 in DMSO-*d*₆

Fig. S48. ¹³C NMR spectrum of 28 in DMSO- d_6

Fig. S49. ³¹P NMR spectrum of **28** in DMSO- d_6

Fig. S51. ¹³C NMR spectrum of **29** in DMSO- d_6

Fig. S52. ³¹P NMR spectrum of **29** in DMSO- d_6

Fig. S54. ¹³C NMR spectrum of **30** in DMSO- d_6

Fig. S55. ³¹P NMR spectrum of 30 in DMSO- d_6

Fig. S56. ¹H NMR spectrum of 31 in DMSO- d_6

Fig. S57. ¹³C NMR spectrum of 31 in DMSO- d_6

Fig. S58. ³¹P NMR spectrum of **31** in DMSO- d_6

4. X-ray single-crystal data for compounds 1 and 3

4.1. Experimental of compound 3 (CCDC 1405451)

The X-ray measurement of **3** was performed at 100(2) K on a Bruker D8 Venture Photon100 diffractometer equipped with a TRIUMPH monochromator and a MoK α fine focus sealed tube ($\lambda = 0.71073$ Å). A total of 2898 frames were collected with Bruker APEX2 program.³ The frames were integrated with the Bruker SAINT software package⁴ using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 72833 reflections to a maximum θ angle of 25.25° (0.83 Å resolution), of which 18001 were independent (average redundancy 4.046, completeness = 99.7%, R_{int} = 3.65%, R_{sig} = 3.66%) and 13563 (75.35%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 15.7796(14) Å, <u>b</u> = 16.5721(15) Å, <u>c</u> = 20.6662(18) Å, $\alpha = 80.044(2)^\circ$, $\beta = 79.078(2)^\circ$, $\gamma = 71.2037(19)^\circ$, volume = 4986.9(8) Å³, are based upon the refinement of the XYZ-centroids of 9334 reflections above 20 $\sigma(I)$ with 4.555° < 2 θ < 51.68°. Data were corrected for absorption effects using the multi-scan method (SADABS).⁵ The ratio of minimum to maximum apparent transmission was 0.890. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9640 and 0.9770.

The structure was solved and refined using SHELXTL Software Package⁶⁻⁷ using the space group P -1, with Z = 2 for the formula unit, $C_{116}H_{116}N_8O_{11.20}S_2$. The final anisotropic full-matrix least-squares refinement on F² with 1392 variables converged at R1 = 4.66%, for the observed data and wR2 = 12.32% for all data. The goodness-of-fit was 1.021. The largest peak in the final difference electron density synthesis was 0.451 e⁻/Å³ and the largest hole was -0.355 e⁻/Å³ with an RMS deviation of 0.048 e⁻/Å³. On the basis of the final model, the calculated density was 1.242 g/cm³ and F(000), 1979 e⁻.

The independent part of the unit cell contains: four ligand molecules, two of them with disordered over three positions aliphatic chain; two disordered DMSO molecules and partially occupied two water molecules (occupancy sum equal to 1.2). The disorder of the molecules was modeled with series of geometric restrains for distances angles and thermal atomic parameters. In the structure water and DMSO molecules share common space but the sum occupancy of these species never exceeds 1.

The non-hydrogen atoms were refined anisotropically except atoms with occupancy equal or less than 0.2. All hydrogen atoms were placed in calculated positions and refined within the riding model. The hydrogen atoms of partial occupancy water molecules were n it assigned. The temperature factors of these hydrogen atoms were not refined and were set to be equal to either 1.2 or 1.5 times larger than U_{eq} of the corresponding heavy atom. The atomic scattering factors were taken from the International Tables.⁸ Molecular graphics was prepared using program Diamond 3.2.⁹ Thermal ellipsoids parameters are presented at 50% probability level.

Acknowledgements

The X-ray structure was determined in the Advanced Crystal Engineering Laboratory (aceLAB) at the Chemistry Department of the University of Warsaw by dr Łukasz Dobrzycki.

4.2. Experimental of compound 1 (CCDC 2152150)

The X-ray measurement of **1** was performed at 103(2) K on a Bruker D8 Venture Photon II diffractometer equipped with a TRIUMPH monochromator and a MoK α fine focus sealed tube ($\lambda = 0.71073$ Å). A total of 1432 frames were collected with Bruker APEX2 program.¹⁰ The frames were integrated with the Bruker SAINT software package¹¹ using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 108454 reflections to a maximum θ angle of 25.05° (0.84 Å resolution), of which 12270 were independent (average redundancy 8.839, completeness = 99.9%, $R_{int} = 8.79\%$, $R_{sig} = 4.94\%$) and 7378 (60.13%) were greater than $2\sigma(F^2)$. The final cell constants of a = 17.0525(8) Å, b = 19.6640(9) Å, c = 22.1200(11) Å, $\beta = 110.6794(15)^\circ$, V = 6939.4(6) Å³, are based upon the refinement of the XYZ-centroids of 9899 reflections above 20 $\sigma(I)$ with 4.586° < 2θ < 48.84°. Data were corrected for absorption effects using the Multi-Scan method (SADABS).¹² The ratio of minimum to maximum apparent transmission was 0.945. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.978 and 0.995.

The structure was solved and refined using SHELXTL Software Package^{13,14} using the space group $P2_1/n$, with Z = 2 for the formula unit, $C_{142}H_{214}F_6N_{16}O_{12}Si$. The final anisotropic full-matrix least-squares refinement on F^2 with 944 variables converged at R1 = 7.70%, for the observed data and wR2 = 23.61% for all data. The goodness-of-fit was 1.035. The largest peak in the final difference electron density synthesis was 0.457 e⁻/Å³ and the largest hole was -0.362 e⁻/Å³ with an RMS deviation of 0.054 e⁻/Å3. On the basis of the final model, the calculated density was 1.187 g/cm3 and F(000), 2684 e⁻.

The structure in the asymmetric part contains SiF_6^{2-} ion located on the center of symmetry, one tetrabutylammonium cation, ligand and acetonitrile solvent molecule. In the structure most of the molecules, except the solvent, are disordered over up to four alternative sites. The occupancy ratios of disordered fragments were refined. Because the refined occupancy was rounded in the cif file up to three decimal places there is some discrepancy between the atom count resulting in three Alerts level G in checkcif report. To preserve reasonable geometry of the molecules a number of restraints was used during the refinement process.

All non-hydrogen atoms with occupancy higher than 0.5 were refined anisotropically. All hydrogen atoms were placed in calculated positions and refined within the riding model. The temperature factors of hydrogen atoms were not refined and were set to be equal to either 1.2 or 1.5 times larger than U_{eq} of the corresponding heavy atom. The atomic scattering factors were taken from the International Tables.⁸

Molecular graphics was prepared using program Mercury 3.9.¹⁵ Thermal ellipsoids parameters are presented at 50% probability level.

5. Binding studies of ligands 3, 2 and 1

5.1. Binding studies of ligand 3

5.1.1. General remarks

Tetrabutylammonium salts were used as a source of anions. Tetrabutylammonium acetate, Tetrabutylammonium benzoate, Tetrabutylammonium chloride, Tetrabutylammonium phosphate and are commercially available from Sigma-Aldrich. Distilled water was added to the commercially available DMSO- d_6 of 99.8% isotopic purity (purchased Eurisotope) to obtain the appropriate water concentration.

5.1.2. ¹H NMR titration experiments

The ca. 1×10^{-2} M DMSO solution of a receptor **3** was titrated in an NMR tube with the 0.1-0.2 M solution of a respective tetrabutylammonium salt. The solution of the salt contained a certain amount of the receptor in order to keep its concentration constant during the titration. 19 data points were recorded. It was important to choose such concentration of the salt so that most of the data points could occur in close proximity of the inflection point of the respective titration curve. Such a procedure allows for more precise calculation of the binding constants, which were calculated by taking into account changes in the chemical shifts of ligand NH protons. A nonlinear curve fitting for 1:1 binding model was carried out with the HypNMR program.¹⁶⁻¹⁷

TBA⁺ AcO⁻

Table	S1. The details	s of ¹ H NMR ti lata fitting for 1	tration ex eceptor 3	speriment: constructions with TBA ⁺ A	ncentrations AcO ⁻ in DMS	used, titration SO- d_6 +0.5% H	curves and the re $[_2O.^a]$	esults of
Ligand			2	H BuH		Me		
Solvent				DMSO- d_6	+ 0.5% H ₂ O			
	Cligand	Canion	К			$\Delta\delta_{max}$ [ppm]		
Anion	[mol·dm ⁻³]	[mol·dm ⁻³]	[M ⁻¹]	NH pyrrole	NH amide	CH pyrrole	CH benzene	CH bridge

TBA⁺ BzO⁻

$TBA^+H_2PO_4^-$

Table Sdata fit	S3. The details ting for recepto	of ¹ H NMR tith or 3 with TBA ⁺	ration exp $H_2PO_4^-$ in	periment: con n DMSO- <i>d</i> ₆ +	centrations u 0.5% H ₂ O. ^a	ised, titration c	urves and the res	sults of
Ligand			2	BuH		Me		
Solvent				DMSO-d ₆	+ 0.5% H ₂ O			
	Clines	Curius	к			$\Delta\delta_{max}$ [ppm]		
Anion	[mol·dm ⁻³]	[mol·dm ⁻³]	[M ⁻¹]	NH pyrrole	NH amide	CH pyrrole	CH benzene	CH bridge

TBA⁺ Cl⁻

5.2. Binding studies of ligand 2

5.2.1. General remarks

As the source of anions commercially available *n*-tetrabutylammonium (TBA) salts were used. The aqueous DMSO- d_6 mixtures were obtained by adding an appropriate amount of distilled water to a septum-sealed vial of DMSO- d_6 purchased from Eurisotop. The ca. $2 \cdot 10^{-3}$ M solution of receptor was titrated in a NMR septum-sealed tube with a ca. $5 \cdot 10^{-2}$ M solution of the appropriate TBA salts.

5.2.2. ¹H NMR titration experiments (DMSO-d₆+5% H₂O)

Table S6.	¹ H NMR cha	anges during titration of receptor 2 with TBA ⁺ H ₂ PO ₄ ⁻ in DMSO- d_6 +5% H ₂ O. ^a
Spectrum number	Number of anion equivalents	
1	0.00	
2	0.12	
3	0.24	

TBA⁺ BzO⁻

Table S8	• ¹ H NMR ch	anges	s durin	g titratio	on of rec	ceptor 2	with TI	BA ⁺ Bz	O ⁻ in DI	MSO-de	5+5% H ₂	O. ^a
Spectru m number	Number of anion equivalent s										 	
1	0.00											-21
2	0.10											
3	0.21											-16
4	0.31				^							
5	0.41					\ \						-11
6	0.52					л л					,	
7	0.62											-6
8	0.72	*****										
9	0.82										^	-1
10	0.91		1				· · · · ·				······································	
11	1.01	.0	12.5	12.0	11.5	11.0	10.5 ppm	10.0	9.5	9.0	8.5	8.0
12	1.20											

13	1.39		
14	1.58		_
15	1.76		21
16	1.94		
17	2.30		-16
18	2.64		_
19	3.46		-11
20	4.36		_
21	5.06		
22	5.71		_
23	6.89		-1
24	7.94	0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 ppm	5.0
25	8.88		

TBA⁺ H₂PO₄⁻

Table S9. The details of ¹ H NMR titration experiment: concentration	ons used, titration	curves and the
results of data fitting for receptor 2 with TBA ⁺ $H_2PO_4^-$ in	DMSO- <i>d</i> ₆ +5% I	$H_2O.^a$
	ⁿ BuO NH• ⁿ Bu ⁻ NH•	
	Concentratio	on [mol∙dm⁻³]
	Ligand	Anion
	0.00257	0.06643
	Binding	g model
	(recepto	or:anion)

Table S10. ¹H NMR changes during titration of receptor **2** with TBA⁺ H₂PO₄⁻ in DMSO- d_6 +5% H₂O.^a

Spectru m number	Number of anion equivalent s
1	0.00
2	0.11
3	0.22
4	0.33
5	0.44
6	0.55
7	0.66
8	0.77
9	0.87

10	0.98	2	23 22
11	1.08		22
12	1.29		19
13	1.69		17
14	1 89		15
15	2.09		14
15	2.06	-1	12 11
16	2.46		10 9
17	2.83		8 7
18	3.87	-6	6 5
19	4.67	4	4 3
20	6.11		2 1
21	7.38		
22	8.51	5.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0	
23	9.51	B.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 66 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 ppm	222 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 -3 -2

5.2.3. ¹H NMR titration experiments (DMSO-d₆+0.5% H₂O)

TBA⁺ AcO⁻

Table S12. ¹ H NMR changes during titration of receptor 2 with TBA ⁺ AcO ⁻ in DMSO- d_6 +	0.5%
H ₂ O. ^a	

number alloh equivalents	Spectrum	Number of												-23
1 0.00 2 0.17 3 0.34 4 0.50 5 0.67 6 0.83 7 0.99 8 1.15 9 1.31 10 1.47 11 1.63 12 1.94 13 2.24 14 2.54 15 2.84 16 3.13 17 4.52 18 5.81 19 7.01 20 8.13 21 10.16 22 11.95 23 14.97	number	amon	Mantut appendix and all and an and a second s		dways Witness Subjects		a dan da yang da manja pagan dari	integration (notice) and a subscription of the	nan generalisette teksen på "en anlete				******	-22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		equivalents	1000-000-000-000-000-000-000-000-000-00		Azərbiylərə işələ də yişarə də h	angulfationningfationning	Desprederymy-bargen		an a		annya dina kana ana		nalldag Land-son and an arrival	-21
2 0.17 3 0.34 4 0.50 5 0.67 6 0.83 7 0.99 8 1.15 9 1.31 10 1.47 11 1.63 12 1.94 13 2.24 14 2.54 16 3.13 17 4.52 18 5.81 19 7.01 20 8.13 21 10.16 22 11.95 23 14.97	1	0.00			*****			يىلىمىللىدى باستىدىن دەكتۇرىزلىرىنى بالىر		*****	,	and a second and a s		-19
2 0.17 3 0.34 4 0.50 5 0.67 6 0.83 7 0.99 8 1.15 9 1.31 10 1.47 11 1.63 12 1.94 13 2.24 14 2.54 15 2.84 16 3.13 17 4.52 18 5.81 19 7.01 20 8.13 21 10.16 22 11.95 23 14.97 0 7.7 7.7 7.7 7.8 75 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 5.5 4.6 1.60 5.9 5.8 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5		0.47	-		en fantjegel ander stel juger in ster	Watershilling	under ethiologicalise in		an stady groups and a finite or a	antanga kepadaka saturna dal	4/2 ⁻¹			-18
3 0.34 4 0.50 5 0.67 6 0.83 7 0.99 8 1.15 9 1.31 10 1.47 11 1.63 12 1.94 13 2.24 14 2.54 15 2.84 16 3.13 17 4.52 18 5.81 19 7.01 20 8.13 21 10.16 22 11.95 23 14.97 0 79 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2	2	0.17	energia anticipatione anticipation anticipat	~		******			*****	ويواد الأسرابي مالي مردور المراد ويراد	golaan garaa ayaa dab	^	10% 09/1-171 1-1/1/0-91-0/1/181	-16
4 0.50 5 0.67 6 0.83 7 0.99 8 1.15 9 1.31 10 1.47 11 1.63 12 1.94 13 2.24 14 2.54 15 2.84 16 3.13 17 4.52 18 5.81 19 7.01 20 8.13 21 10.16 22 11.95 23 14.97 0 7.9 7.8 7.7 7.0 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 5.5 4.4 5.0 2.6 1.60 5.9 5.8 5.7 5.6 5.5 5.4 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	3	0.34						***		1749 year ola 2000 year ola a da	*****			-15
4 0.50 5 0.67 6 0.83 7 0.99 8 1.15 9 1.31 10 1.47 11 1.63 12 1.94 13 2.24 14 2.54 15 2.84 16 3.13 17 4.52 18 5.81 19 7.01 20 8.13 21 10.16 22 11.95 23 14.97 0 7.97.7.6.75.7.4.73.7.2.71.70.69.68.67.66.63.62.61.60.59.58.57.53.53.53.53.53.52.51.51			utering the standard and a standard of the standard of t	an an data in the second second second	a, fjórski ^{spelik} lensky slavata	nan kanalanga sa	a de maria desta de maio de la desta d	ĨŢŦŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢ	ingerälgede sigelichter geschreid	entalimpine (men registry and does	alan an a		Kananggi papangalagan	-14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	0.50	24225479934537954537957975775775775775775775775775775775775				*****			1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			//////////////////////////////////////	-12
6 0.83 7 0.99 8 1.15 9 1.31 10 1.47 11 1.63 12 1.94 13 2.24 14 2.54 15 2.84 16 3.13 17 4.52 18 5.81 19 7.01 20 8.13 21 10.16 22 11.95 23 14.97 0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1	5	0.67	ppsectory/anti-territory-anti-glamo-phy-dy-table	ale year of the state of the st	ann galanta da anna i san galanta di mila	Side and an open particular	mp/wall/sabing/typesy	ad a mana attrict produce and the size		an parta fan an a		~	Amptonetransministration	-11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-7,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,	الأملية اليمر مليا عنه ومعيان معيا المحافظة المحافظة الم		ung binan proposition theority paylo			Contractive Contract Contract of Plane Styles	i i ye Sile Digaseri ti gejet sir b			-9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	0.83	a da muniting stafficing i substitier med ingeneration		gentline (personaline over Schlagban	alan jara Matana ang ana ang	adectivits/pathstytes(terlyt		7140/9499311046-1)412-1446				^	-8
8 1.15 9 1.31 10 1.47 11 1.63 12 1.94 13 2.24 14 2.54 16 3.13 17 4.52 18 5.81 19 7.01 20 8.13 21 10.16 22 11.95 11.95 7.97.76 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 66.65 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1	7	0.99			*****		****			1990) (1997) (1997) (1997) (1997) 1997) (1997) (1997) (1997) (1997)	******		∧	-6
8 1.15 9 1.31 10 1.47 11 1.63 12 1.94 13 2.24 14 2.54 16 3.13 17 4.52 18 5.81 19 7.01 20 8.13 21 10.16 22 11.95 23 14.97 0 79.78 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 5.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1	0	4.45	-	free Marine Constant of Con		The Constant of		and dates and the second of the second s	alıştı şerçenile aslan ora	taragan kanalarika di di kangan		nay fairmat an Ingelated	<u> </u>	-5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	1.15	nd galer at a mini y at a mini part of a mini part of the second s			edőéntelni festaszternet P			WE cherry großinnen zaman	****	foreitide yn Pangeladae itwe gwlada fa	a na an	~~~~	-3
10 1.47 11 1.63 12 1.94 13 2.24 14 2.54 15 2.84 16 3.13 17 4.52 18 5.81 19 7.01 20 8.13 21 10.16 22 11.95 23 14.97 0 79 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.4 5.3 5.2 5.1	9	1.31				and replace have been a second								-2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	4 47	işehiliyerişteliherinen şirişterine						an a	tan yaku da panga dan kutan kutan kutan ju	an fan se an tea an	ula watan watan an		
11 1.63 12 1.94 13 2.24 14 2.54 15 2.84 16 3.13 17 4.52 18 5.81 19 7.01 20 8.13 21 10.16 22 11.95 23 14.97	10	1.47		12.0	10.5	12.0			10.5		0.5			
12 1.94 13 2.24 14 2.54 15 2.84 16 3.13 17 4.52 18 5.81 19 7.01 20 8.13 21 10.16 22 11.95 23 14.97	11	1.63	- 13.5	13.0	12.5	12.0	11.5	ppm	10.5	10.0	9.5	9.0	8.5	8.0
12 1.94 22 13 2.24 21 14 2.54 30 15 2.84 44 16 3.13 44 17 4.52 44 18 5.81 44 19 7.01 45 20 8.13 44 21 10.16 44 22 11.95 23 14.97 0.79.7.8.7.7.76.7.5.7.4.7.3.7.2.7.1.7.0.6.9.6.8.67.66.6.5.64.6.3.6.2.6.1.60.5.9.5.8.5.7.56.5.5.5.4.5.3.5.2.5.1	10	4.04	-			M								-23
13 2.24 31 14 2.54 30 15 2.84 31 16 3.13 31 17 4.52 44 18 5.81 44 19 7.01 7 20 8.13 7 21 10.16 7 22 11.95 7 23 14.97 9.79.78.77.76.75.74.73.72.71.70.69.68.67.66.65.64.63.62.61.60.59.58.57.56.55.54.53.52.51	12	1.94	non-selection of the selection of the se	M										-22
14 2.54 19 15 2.84 16 16 3.13 14 17 4.52 12 18 5.81 10 19 7.01 8 20 8.13 7 21 10.16 7 22 11.95 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1	13	2.24						un and a state of the state of					*****	-21
14 2.54 18 15 2.84 16 16 3.13 14 17 4.52 11 18 5.81 10 19 7.01 8 20 8.13 10 21 10.16 11.95 23 14.97 0.79.7.8.7.7.7.6.7.5.7.4.7.3.7.2.7.1.7.0.6.9.6.8.6.7.66.6.5.6.4.6.3.6.2.6.1.6.0.5.9.5.8.5.7.5.6.5.5.5.4.5.3.5.2.5.1	1.4			M_	M	W				*****				-19
15 2.84 16 3.13 16 3.13 17 4.52 18 5.81 10 19 7.01 8 20 8.13 6 21 10.16 3 22 11.95 0 79 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1	14	2.54			M									-18
16 3.13 15 17 4.52 12 18 5.81 9 19 7.01 6 20 8.13 6 21 10.16 3.12 22 11.95 7 23 14.97 0.7.9.7.8.7.7.76.7.5.7.4.7.3.7.2.7.1.7.0.6.9.6.8.6.7.66.6.5.6.4.6.3.6.2.6.1.6.0.5.9.5.8.5.7.5.6.5.5.5.4.5.3.5.2.5.1	15	2.84	-		M M	line						*****	******	-16
16 3.13 14 17 4.52 12 18 5.81 10 19 7.01 6 20 8.13 6 21 10.16 22 23 14.97 0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 66 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1		_		M	N	lm_								-15
17 4.52 18 5.81 19 7.01 20 8.13 21 10.16 22 11.95 23 14.97 0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1	16	3.13	Landon Baya Baya Sana yang sakatan di sakatan sakatan sakatan sakatan sakatan sakatan sakatan sakatan sakatan s	^{مر}	4							*****	1-6	-14
11 110 111 18 5.81 10 19 7.01 8 20 8.13 6 21 10.16 7 22 11.95 0 73 14.97 0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1	17	4.52	-		·	Juil								-12
18 5.81 19 7.01 20 8.13 21 10.16 22 11.95 23 14.97 0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1	1,				*******	-l_ml								
19 7.01 20 8.13 21 10.16 22 11.95 23 14.97 0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1	18	5.81			****							*****		-9
10 101 20 8.13 21 10.16 22 11.95 23 14.97 0 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.1 7.0 6.9 6.8 6.9 6.9 8 6.9 9 7.9 7.6 7.5 7.6 7.5 7.7 7.6 </td <td>19</td> <td>7 01</td> <td>-</td> <td></td> <td></td> <td>-l-M</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>مىرىنى ئەر رۇمىيە بولىرى مەكى مەك</td> <td></td>	19	7 01	-			-l-M							مىرىنى ئەر رۇمىيە بولىرى مەكى مەك	
20 8.13 21 10.16 22 11.95 23 14.97 0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 11.95	17	1.01				1 ml								-6
21 10.16 22 11.95 23 14.97 0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1	20	8.13				$\int \dots \bigwedge $								
21 10.10 22 22 11.95	21	10.16		v^										
22 11.95 23 14.97 0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1	21	10.10		M	h	m						****		-2
23 14.97 0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1	22	11.95					-/							¹
2.5 [14.37] [9.1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	22	14.07	0 70 70 77 7	6 75 74	73737	1 70 60	68 67 4	56 65 64	63 63 6	1 60 50 5	8 5 7 5 4	5554	53 53 54	-
	23	14.97				0.9	5.0 0.7 (ppm	0.0 0.2 0.	. 0.0 3.7 .		,		

TBA⁺ BzO⁻

Table S14. ¹H NMR changes during titration of receptor **2** with TBA⁺ BzO⁻ in DMSO- d_6 +0.5% H₂O.^a

Spectrum number	Number of anion equivalents		-11-2											-23 -22
1	0.00	fatter en general factor				ala son da a la calendaria da calendaria da calendaria da calendaria da calendaria da calendaria da calendaria								-21 -20
2	0.17	n ging an indiana gang dinana	999-022 (n (n y 99) (n n y 10) 999 - 022 (n (n y 99) (n n y 10)			****		******		George Andersteinen von der	99999000000000000000000000000000000000			-19 -18
3	0.34	and an and a second sec		ار می بیان میکوند. مربقه ایکوند (معاون میکوند میسون	<u></u>				,	###***################################			1	-17
4	0.50	Barana Araba ya ku	*****	****		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	4768799-0-2005-0-04079-0-05079-0-05079-0-05079-0-05079-0-05079-0-05079-0-05079-0-05079-0-05079-0-05079-0-05070	**************************************	****	904	****		10-11-12-12-12-12-12-12-12-12-12-12-12-12-	-14 -13
5	0.67						,			1-10-5-10-10-10-10-10-10-10-10-10-10-10-10-10-	12/4/00		**************************************	-12 -11
6	0.83	-					هند زمن الله الله الله الله الله الله الله الل			n an				-10 -9
7	0.99	ala-nundhaadad	8,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	974-16149-1746 (1879) 9794 974-174	ىلەر بەر مەر مەر مەر مەر مەر مەر مەر مەر مەر م		*****	na Alada II a sigʻiliyo oʻ positonin ana filing ni ang kata ay na siya	ng kan ti yi yipi ki digilin) di si kan sand Kan pertang kan sa katar ta pertang	14 - 1999 - 18 - 18 - 18 - 18 - 18 - 18 -		*****	^	-7
8	1.15	adarang kanalaran a		ار بار بین میکند. میران میکند از این م			*****	ىرەتىرىمەتىر كەترىكە بەرمۇسىلەر ئۆتلىرىكە بەرمەتىر كەترىكە بىرىكە بەرمۇسىلەر ئۆتلىرىكە بىرىكە بىرىكە بىرىكە بىرىكە بىرىكە بىرىكە	199 - Angel Hander, and State a			un dinta han tar iya iya di saya in suna nun yi dani manaka di minaga ayo	\sum_{i}	-5
9	1.31	nissiyanakan daha	\$2,0000003,000039344,0000000 940,0747974499444,00000000	2010-000 000 000 000 000 000 000 000		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, yn anne y felydd a allan yn er an argene. Yn angele an ferfyn yn er ar fernen o fernen a	antin, an o Lanzi gali na an antinan Manife (na ing Kymedynag gandar Manife (ned aler egyelen en den er	nging a farfann na farfag din a ri ngr far Ngwagarikalaan a farfar an galar an galar	radovstati ya kunganda kunga sakija Manana wa gojeni nyanganganga	*****		-3 -2
10	1.47	194576494413746					nan an					*****		-1
11	1.63		13.5	13.0	12.5	12.0	11.5	11.0 ppm	10.5	10.0	9.5	9.0	8.5	8.0
12	1.94													

13	2.24		-23
14	2.54		-22 -21
15	2.84		20 19
16	3.13		-18 -17
17	4.52		-15
18	5.81		-13 -12
19	7.01		-11 -10
20	8.13		
21	10.16		
22	11.95		-4 -3
23	14.97	8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 ppm	

TBA+ Cl-

Table S16. ¹ H NMR changes during titration of receptor 2 with TBA ⁺ Cl ⁻ in DMSO- d_6 +0.5% H ₂ O. ^a						
Spectrum number	Number of anion equivalents					
1	0.00					
2	0.18	^				-21
3	0.35	·····				
4	0.53	^				-16
5	0.70					
6	0.87	^			^ 	-11
7	1.04				Â	
8	1.21				^	-6
9	1.38	^				
10	1.54	^				-1
11	1.71	2.0 11.8 11.6 11.4 11.2 11.0	10.8 10.6 10.4	10.2 10.0 9.8 9.6 9.4	9.2 9.0 8.8 8.6 8.4 8.	.2 8.0
12	2.03			ppm		
13	2.36		1 mil		l	
14	2.67				l	
15	2.98				l	
16	3.29				t	
17	3.88				l	
18	4.46				l	-11
19	5.84	^		***		
20	7.37				l	
21	8.55		1 mil		l	
22	9.65				l	-1
23	11.65	70 78 77 76 75 74 73 71	71 70 69 68 6	7 66 65 64 63 62 61 60	50 58 57 56 55 54 53 52 5	
24	13.43			ppm	2.2 Die	
25	15.01					

5.3. Binding studies of ligand 1

5.3.1. General remarks

As the source of anions commercially available *n*-tetrabutylammonium (TBA) salts were used. The aqueous DMSO- d_6 mixtures were obtained by adding an appropriate amount of distilled water to a septum-sealed vial of DMSO- d_6 purchased from Eurisotop. The ca. $2 \cdot 10^{-3}$ M solution of receptor was titrated in a NMR septum-sealed tube with a ca. $5 \cdot 10^{-2}$ M solution of the appropriate TBA salts.

5.3.2. ¹H NMR titration experiments (DMSO-d₆+5% H₂O)

TBA⁺ UMP⁻

Table S14. ¹H NMR changes during titration of receptor **1** with TBA⁺ UMP⁻ in DMSO- d_6 +0.5% H₂O.^a

Spectrum number	Number of anion equivalents				/,		
1	0.00	******	******				
2	0.20	≈,	*****				
3	0.38	*****				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
4	0.56	, a faith a second an	*****				
5	0.74		**************************************				
6	0.91		*******				
7	1.07	مىر مام مى بىر بىرى بىرى بىرى بىرى بىرى بىرى ب	*****			*****	
8	1.22	مىلەرىمەت مەرىپىيە تەرىپىدەت بىرىكەت بى مەرىپەر مەرىپەر بىرىكەت بىرىكەت مەرىپەر بىرىكەت	Manana Maka ana dala ana ang ang ang ang ang ang ang ang an			****	
9	1.37						
10	1.52				/		
11	1.66	12.5	12.0	11.5 11.0	10.5	10.0	9.5 9.0
12	1.80						
13	1.93		M			r	M
14	2.06		^		\uparrow	r	~ ^
15	2.18						~
16	2.30				\bigwedge		<u></u>
17	2.42				1		
18	2.64				\bigwedge		<u>^</u>
19	2.85						~
20	3.32						~
21	3.74				\bigwedge		~
22	4.10				1		L
22							
22	4.43		۸				

5.3.3. Fluorescence titration experiments of ligand 1

Fluorescence titration experiments were performed in 1 cm cell. To 3 mL solution of ligand (C = $\sim 10^{-5}$ M) in 99.5% DMSO+0.5% H₂O (V/V), 0.5 to 1 mL of the solution of the respective Anions was added in 10-50 portions. After addition of each anion portion the fluorescence spectrum was recorded in range from 350 to 600 nm, using excitation of 310 nm on Varian Eclipse Fluorescence Spectrophotometer. The association constants were calculated from the changes in fluorescence. Non-linear cure fitting for 1:1 binding model was performed using the *HypNMR2008* program.

TBA⁺ AMP⁻

TBA⁺ CMP⁻

TBA⁺ deoxyAMP⁻

TBA⁺ ADP⁻

TBA⁺ UMP⁻

TBA⁺ cyclicAMP⁻

TBA⁺ cAMP⁻ and TBA⁺ UMP⁻

$TBA^{\scriptscriptstyle +} ADP^{\scriptscriptstyle -}$ and $TBA^{\scriptscriptstyle +} AMP^{\scriptscriptstyle -}$

6. Fluorescence spectra of tetrabutyl ammonium salts

General remarks

Fluorescence emission spectra were measured in 1.0 cm cell. Solutions of tetrabutyl ammonium salts in 99.5% DMSO+0.5% H₂O (V/V) were prepared (C = 5×10^{-5} M). The emission spectra were recorded in range from 350 to 600 nm, using excitation of 310 nm on Varian Eclipse Fluorescence Spectrophotometer.

TBA+ AMP- (26)

50

0

350

400

450

Wavelength [nm]

500

550

600

Wavelength [nm]

TBA⁺ UMP⁻ (31)

7. UV-VIS spectra of tetrabutyl ammonium salts and receptor 1

General remarks

UV-VIS spectra were measured in 1.0 cm cell. Solutions of tetrabutyl ammonium salts and receptor 1 were prepared in 99.5% DMSO+0.5% H₂O (V/V). The concentration of salts were prepared $C = 5 \times 10^{-5}$ M. The concentration of receptor 1 was $C = 2 \times 10^{-5}$ M. The UV-VIS spectra were recorded on Agilent Cary 60 UV-VIS Spectrophotometer.

Receptor (1)

8. References

1. Li, Y.; Cao, R.; Lippard, S. J., Design and Synthesis of a Novel Triptycene-Based Ligand for Modeling Carboxylate-Bridged Diiron Enzyme Active Sites. *Org. Lett.* **2011**, *13*, 5052-5055.

2. Granda, J. M.; Grabowski, J.; Jurczak, J., Synthesis, Structure, and Complexation Properties of a C-3-Symmetrical Triptycene-Based Anion Receptor: Selectivity for Dihydrogen Phosphate. *Org. Lett.* **2015**, *17* (23), 5882-5885.

3. APEX2,. Bruker AXS Inc., Madison, Wisconsin, USA, **2013**.

4. SAINT,. Bruker AXS Inc., Madison, Wisconsin, USA, **2013**.

5. SADABS,. Bruker AXS Inc., Madison, Wisconsin, USA, **2012**.

6. Sheldrick, G. M., PHASE ANNEALING IN SHELX-90 - DIRECT METHODS FOR LARGER STRUCTURES. *Acta Crystallogr. A* **1990**, *46*, 467-473.

7. Sheldrick, G. M., A short history of SHELX. *Acta Crystallogr. A*, **2008**, *64*, 112-122.

8. International Tables for Crystallography, E. A. J. C. W., Kluwer: Dordrecht, 1992, Vol.C.

9. Diamond – Crystal and Molecular Structure Visualization Crystal Impact – K. Brandenburg & H.

Putz GbR, Rathausgasse 30, D-53111 Bonn, 2012.

10. APEX3, Bruker AXS Inc., **2017**.

11. SAINT,. Bruker AXS Inc, **2017**.

12. SADABS,. Bruker AXS Inc., **2016**.

13. G. M. Sheldrick, Acta Cryst., **2015**, A71, 3-8.

14. G. M. Sheldrick, Acta Cryst., **2015**, C71, 3–8.

15. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A., Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. *J. Appl. Cryst.* **2008**, *41*, 466-470.

16. Frassineti, C.; Ghelli, S.; Gans, P.; Sabatini, A.; Moruzzi, M. S.; Vacca, A., Nuclear-magneticresonance as a tool for determining protonation constants of natural polyprotic bases in solution. *Anal.Biochem.* **1995**, *231*, 374-382.

17. Frassineti, C.; Alderighi, L.; Gans, P.; Sabatini, A.; Vacca, A.; Ghelli, S., Determination of protonation constants of some fluorinated polyamines by means of C-13 NMR data processed by the new computer program HypNMR2000. Protonation sequence in polyamines. *Anal. Bioanal. Chem.* **2003**, *376*, 1041-1052.