Supporting Information belonging to the manuscript:

Combining Synthetic Biology with Synthetic Electrochemistry to Expand The Chemical Space of Indolocarbazoles Family

Le-Le Zhu^{1,a}, De-Gao Wang^{1,a}, Luo Niu^a, Yue-Zhong Li^a, Hai-yan Sui^{*a} and Changsheng Wu^{*a,b}

¹ Co-author

* Corresponding author

^a State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China

^b Shenzhen Research Institute of Shandong University, 518057 Shenzhen, P.R. China

* Corresponding author's email: wuchangsheng@sdu.edu.cn; suihaiyan@sdu.edu.cn

Figure S1. The indolocarbazoles (ICZs) family. The indolo[2,3-*a*]pyrrolo[3,4-*c*]carbazole backbone, are an important class of N-containing heterocycles that have attracted a plethora of attention owing to extraordinary therapeutic potential. The prominent family members are rebeccamycin, staurosporine, AT2433, and k252a, among others.

Figure S2. The shunt pathway of k252c. Precursor feeding did not increase K252c production but resulted in dose-dependent accumulation of indole-3-carboxylaldehyde (ICA), which had previously been shown to result from chemical degradation of Im-IPA.

Figure S3. HPLC-DAD profiling of enzymatic glycosylation of k252c and k252d. Both substrates were transformed into complex mixtures by BsGT1. The glycoside products were judged by the characteristic UV spectra of substrates. The peaks labelled with number in the chromatogram were identified glycoside products as presented in Figure 3, whereas those labelled with question marks remained unidentified.

Figure S4. HPLC-DAD profiling of electroorganic reactions.

Figure S5. N–N dimer is prone to undergo homolytic cleavage. Compound 10 was dissolved in MeOH at concentration of 0.1 mg/mL, and decomposed in a time-dependent manner.

Organisms/Strains	Description	Source/references
Escherichia coli DH5α	F φ80lacZ ΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17(rk mk ⁺ phoA ΔsupE44 thi-1 gyrA96 relA1 λ-	Life Technologies
Escherichia coli BAP1	BL21(DE3) <i>AprpRBCD::PT7-sfp-PT7-prpE</i>	(Pfeifer and Admiraal 2001)
Escherichia coli BL21(DE3)	E. coli B F ⁻ ompT hsdS _B (r_B - m_B -) gal dcm (DE3)	This study
Escherichia coli str. K-12 substr. W3110	F-λ-rph-1 INV(rrnD,rrnE)(DE3)(CamR)	(Gu et al, 2012)
Escherichia coli W3110-60	W3110 <i>∆trpR::FRT</i>	(Gu et al, 2012)
Escherichia coli W3110-62	W3110 ∆trpR::FRT∆tnaA::FRT∆pstG::FRT	(Gu et al, 2012)
Escherichia coli W3110-63	W3110 ∆trpR::FRT∆tnaA::FRT∆pstG::FRT ∆trpL::FRT	(Gu et al, 2012)
Escherichia coli W3110-Wu	The T7 RNA polymerase system was inserted into the genome of <i>Escherichia coli</i> W3110-63	This study
Escherichia coli W3110-K252	Heterologous expression of pET28a-K252c in <i>Escherichia coli</i> W3110-Wu	This study
Escherichia coli W3110-Rha	Heterologous expression of pET28a-Rha in <i>Escherichia coli</i> W3110-Wu	This study
Escherichia coli W3110-KR	Heterologous expression of pET28a-K252c and pET28a-Rha in <i>Escherichia coli</i> W3110-Wu	This study
pET28a	E. coli expression vector, ColEl ori, Km ^r	Novagen
pET28a-K252	pET28a derivative containing genes <i>staODPC</i> , obtained by commercial DNA synthesis, Km ^r	This study
pET28a-Rha	pET28a derivative containing genes <i>rfbABCD</i> from <i>E. coli</i> K-12, Km ^r	This study
p15A-origin	E. coli expressionvector, Cm	Addgene
p15A-T7 RNAp	Ligation of the T7pol-lacI-lys from BL21(DE3) \ W3110-up-HA(1000bp) and W3110-down-HA(1000bp) to p15A-Kan, Kmr	This study

Table S1. Strains and plasmids used in this study.

Primer	Sequence $(5' \rightarrow 3')$	Function
T7 RNAp-F T7 RNAp-R	CCTTAAACGCCTGGTTGCTACGGCCATGGTGTCCGACTTATG TAAAAAAACAGGGAGGCTATTAGGAACTGGCTGTTGTTACCG	cloning T7pol-lacI-lys from BL21(DE3)
Cm-F Cm-R	GATAACAATCATTCCCGAAG TTGATCGGCACGTAAGAGGTTC CATAAGTCGGACACCATGGC CGTAGCAACCAGGCGTTTAAGG	cloning <i>Cm</i> from p15A-origin
W3110-UP-F W3110-UP-R	GAAGACGAGGTAATGTGAGG CTTCGGGAATGATTGTTATC	cloning upstream homologous arm from W3110(DE3) for recombination
W3110-DOWN-F W3110-DOWN-R	TAATAGCCTCCCTGTTTTTTAG GAAAAACTGGACGCTGAAGG	cloning downstream homologous arm from W3110(DE3) for recombination
p15A-F p15A-R	CCTTCAGCGTCCAGTTTTTCCGAGCTCGCTTGGACTCCTG CCTCACATTACCTCGTCTTCCGTCTCATTTTCGCCAGATATC	PCR linearize the plasmid p15A
Rfb-F Rfb-R	GTGCCGCGCGGCAGC <u>CATATG</u> AAAATACTTGTTACTGGTG TGTCGACGGAGCTC <u>GAATTC</u> TCATGCAATTAATTTTAATCT	cloning <i>Rfb</i> from MG1655 for synthetic rhamnose
StaG-T7-F StaG-T7-R	GGGTCTTGAGGGGTTTTTTTG CAATTGCGTCCGGCGTAGAGGAT CG GAAGCTTCTCGAGGAATTCC AAAAAACCCCCTCAAGACCCG	cloning <i>staG</i> into plasmid pET28a-staG for gene recombination
pET28a-F pET28a-R	GAATTCGAGCTCCGTCGACAAG ATGGCTGCCGCGCGGCACC	PCR linearize the plasmid pSET28a

Table S2. Primers used in this study. (Normal: homologous arms; Bold: core primers;Underlined: Restriction site.)

Table S3. Antiproliferative assays of ICZs. All the 17 ICZs derivatives in this study were tested inhibition against 20 human cell lines, whereby each compound was applied at 20 μ M. The presented inhibitory rates are mean value of three independent experiments. Doxorubicin hydrochloride (Dox) at 10 μ M was used as a positive control.

	Cell inhibition±SD (%)					
Compound	A549	MKN-45	HCT 116	HeLa	K-562	
1	81.38±0.86%	86.39±0.86%	63.24±3.01%	56.73±3.57%	47.41±2.89%	
2	87.36±0.53%	87.69±1.24%	73.10±0.54%	99.18±0.36%	43.87±0.57%	
3	1.43±2.14%	15.29±3.04%	3.24±1.01%	27.53±0.81%	9.08±2.99%	
4	1.95±2.27%	11.46±2.66%	1.92±3.32%	7.76±2.47%	3.45±5.82%	
5	-0.76±2.92%	6.67±2.24%	0.34±3.01%	9.05±2.50%	11.72±1.81%	
6	10.01±2.74%	22.81±0.70%	12.52±1.72%	16.41±2.75%	15.80±2.78%	
7	1.98±3.24%	6.39±2.47%	0.28±3.18%	$9.96{\pm}0.86\%$	$-1.00\pm5.74\%$	
8	9.47±1.32%	14.21±1.20%	10.74±0.76%	10.56±1.71%	11.90±1.96%	
9	16.25±2.86%	29.40±1.05%	$1.84{\pm}1.96\%$	15.98±2.21%	13.39±2.95%	
10	$1.67 \pm 0.70\%$	16.16±0.73%	0.83±2.49%	8.52±1.66%	13.63±1.40%	
11	89.36±2.69%	93.58±0.35%	93.17±1.06%	99.22±0.43%	86.68±0.37%	
12	12.56±2.27%	25.50±3.09%	2.83±1.23%	11.95±2.29%	14.22±1.58%	
13	-1.10±4.45%	20.21±3.85%	3.71±3.16%	7.51±2.17%	22.09±5.52%	
14	3.73±2.89%	14.49±3.82%	1.57±2.37%	-0.28±3.85%	9.42±1.61%	
15	6.21±3.05%	4.21±5.36%	1.13±2.55%	3.91±1.55%	18.05±2.34%	
16	2.12±1.28%	14.46±0.92%	-0.47±1.68%	2.25±3.49%	21.46±1.32%	
17	33.10±1.84%	67.01±2.34%	35.52±1.08%	42.11±0.95%	42.36±3.01%	
Dox	89.02±0.27%	81.59±1.45%	75.19±1.78%	98.91±0.42%	63.85±1.20%	
	Cell inhibition±SD (%)					
Compound	786-O	TE-1	5637	GBC-SD	L-02	
1	99.13±0.12%	82.90±0.99%	96.47±0.77%	62.92±1.21%	82.76±2.20%	
2	96.65±0.28%	92.30±1.33%	98.34±0.38%	67.82±2.84%	88.41±2.17%	
3	11.42±1.32%	23.24±0.33%	33.72±2.77%	16.23±2.16%	1.42±2.28%	
4	1.20±3.71%	6.07±3.46%	3.39±2.71%	10.74±3.45%	1.39±2.68%	
5	$1.81\pm0.90\%$	-2.14±2.38%	12.34±2.30%	4.16±0.54%	-0.75±1.84%	
6	1.25±1.19%	$1.05\pm2.12\%$	29.80±2.29%	2.35±1.67%	4.01±1.84%	
7	3.19±2.24%	-0.58±1.53%	6.93±0.80%	-1.76±4.34%	1.17±3.18%	
8	3.60±2.76%	-1.97±2.41%	27.32±0.69%	2.27±2.43%	0.88±3.56%	
9	31.70±6.00%	$3.78\pm2.78\%$	36.61±1.37%	32.84±3.39%	8.61±3.90%	
10	4.25±1.39%	0.29±3.47%	1.18±6.29%	8.29±3.54%	$2.00\pm3.20\%$	
11	99.49±0.86%	96.33±0.93%	98.67±0.26%	91.64±0.84%	96.98±0.66%	
12	14.28±2.76%	-0.17±4.55%	23.24±2.44%	1.07±6.94%	$13.92 \pm 1.41\%$	
13	6 86+1 62%	2 34+3 98%	1 45+3 83%	12 44+1 27%	4 21+1 72%	
14	3 93+2 11%	4 61+2 68%	1 50+3 64%	1 55+0 68%	12 74+2 55%	
15	16 20+3 09%	16 31+2 38%	31 82+1 07%	17 33+2 52%	26 38+0 85%	
16	2 72+0 71%	1 32+2 02%	8 72+1 24%	9 78+0 98%	21.07+0.49%	
17	70 41+4 79%	15 03+2 27%	74 25+1 51%	69.06+1.90%	33 49+0 89%	
Dox	95 82+0 52%	79 10+0 94%	97 59+0 20%	81 45+1 86%	98 78+0 14%	
DUX	///////////////////////////////////////	Cel	l inhibition+SD (9	<u>()</u>	20170-011770	
Compound	MCF7	HenG2	SF126	DU145	CAL-62	
1	12 16+1 21%	90 72+0 72%	74 43+1 71%	75 55+1 27%	78 58+1 81%	
2	44 49+1 42%	86 22+2 74%	81 36+3 92%	88 19+1 57%	85 91+0 54%	
3	9.46±3.12%	$4.51\pm2.65\%$	$31.98 \pm 1.46\%$	$17.99 \pm 1.35\%$	$7.09 \pm 2.82\%$	
4	6 23+4 22%	-1 34+5 35%	21 08+1 84%	11 96+2 48%	5 56+1 71%	
5	0.23 ± 7.2270 0.74+2.71%	-0 43+0 52%	3 32+1 83%	7 65+0 82%	3 77+2 18%	
6	2 07+2 86%	1 45+4 46%	$13.02 \pm 1.05\%$	15 91+3 29%	18 58+3 86%	
7	1 33+1 69%	1 69+4 01%	2 44+2 85%	6 50+3 22%	3 32+2 66%	
, 8	1 93+0 55%	-1 56+7 /1%	11 49+3 07%	7 36+0 81%	15 17+0 82%	
9	-3 99+3 34%	36 70+2 42%	25 22+1 33%	19 83+0 56%	530+201%	
,	-2.2.2.37.07/0	JU./U+4.74/0	LJ.LL-1.JJ/0	17.05-0.00/0	J.JU-4.01/0	

	Cell					
Compound	MCF7	HepG2	SF126	DU145	CAL-62	
10	9.98±3.14%	7.69±1.37%	8.16±1.31%	9.52±3.09%	7.09±2.37%	
11	88.75±2.14%	98.30±0.77%	98.58±0.50%	93.28±0.47%	95.41±1.33%	
12	$3.38 \pm 4.96\%$	26.57±3.31%	14.56±3.39%	5.44±3.00%	$0.42 \pm 2.24\%$	
13	12.79±1.38%	27.21±0.33%	12.14±0.12%	5.56±1.51%	13.52±2.42%	
14	35.72±0.66%	79.27±1.11%	60.57±2.61%	43.05±0.58%	$18.08 \pm 2.63\%$	
15	16.72±2.98%	34.76±3.06%	13.49±2.12%	28.02±4.74%	25.18±0.74%	
16	9.91±3.54%	5.53±0.15%	10.75±2.06%	19.08±2.59%	12.96±3.06%	
17	9.06±0.32%	45.36±4.79%	41.26±1.85%	58.33±1.23%	52.03±3.22%	
Dox	63.82±0.32%	91.62±0.37%	95.64±0.67%	$68.65 \pm 0.34\%$	94.70±0.47%	
	Cell inhibition±SD (%)					
Compound	PATU8988T	HOS	A-375	A-673	293T	
1	50.27±2.71%	75.02±1.26%	47.83±1.66%	87.73±1.96%	68.60±1.64%	
2	86.17±0.56%	77.24±3.01%	85.27±4.49%	84.57±1.19%	85.59±0.88%	
3	33.16±2.56%	13.33±1.13%	21.48±1.98%	$0.00{\pm}2.29\%$	21.45±3.49%	
4	10.29±5.43%	10.80±2.13%	12.78±5.17%	11.46±6.72%	$14.28 \pm 2.01\%$	
5	12.69±4.52%	7.28±1.20%	9.76±2.23%	3.62±3.31%	15.45±1.67%	
6	11.39±5.01%	25.02±4.12%	31.25±1.49%	14.02±8.10%	19.17±1.50%	
7	8.73±1.77%	10.42±4.13%	12.52±2.26%	$-17.02 \pm 5.05\%$	24.68±7.40%	
8	16.46±3.72%	18.66±4.43%	34.91±2.91%	-5.51±7.48%	26.80±2.84%	
9	$1.03 \pm 2.27\%$	14.78±3.33%	26.45±0.73%	31.76±3.84%	43.56±3.35%	
10	$11.02 \pm 1.05\%$	5.41±1.61%	13.56±1.91%	16.08±2.37%	$10.00 \pm 2.74\%$	
11	95.94±1.19%	98.77±0.37%	$98.02 \pm 0.82\%$	97.68±0.41%	$98.78 {\pm} 0.77\%$	
12	1.06±4.23%	10.84±3.91%	-0.64±4.20%	13.22±1.66%	39.60±3.62%	
13	16.39±1.46%	13.88±2.49%	19.38±0.58%	18.09±4.16%	34.56±2.95%	
14	1.06±1.15%	8.44±2.22%	9.37±0.89%	4.09±1.48%	25.31±3.96%	
15	16.89±1.93%	21.27±1.58%	31.35±0.76%	0.95±1.85%	38.60±1.71%	
16	-0.53±1.78%	9.77±2.98%	11.98±2.97%	$0.05 \pm 2.09\%$	32.69±0.97%	
17	17.71±1.55%	72.62±5.86%	93.32±0.36%	93.35±1.11%	83.24±5.75%	
Dox	95.72±0.61%	94.56±0.29%	93.36±0.08%	91.95±0.68%	93.30±0.56%	

All spectra employed in structure elucidation.

S1. ¹H NMR spectrum of k252c (1)

S2. ¹H NMR spectrum of indole-3-carbaldehyde.

S3. ¹H NMR spectrum of k252d (2).

S4. ¹H NMR spectrum of (3).

S7. HMBC spectrum of (3).

S8. ¹H spectrum of (4).

S9. ¹H NMR spectrum of (5).

S10. ¹³C NMR spectrum of (5).

S12. ¹H spectrum of (6).

S13. HMBC spectrum of (6).

S14. ¹H spectrum of (7).

S15. HMBC spectrum of (7).

S16. ¹H spectrum of (8).

S18. ¹H spectrum of (9).

S19. ¹³C spectrum of (9).

S22. ¹H spectrum of (10).

S23. ¹³C spectrum of (10).

S25. HMBC spectrum of (10).

S26. ¹H spectrum of (11).

S27. ¹³C spectrum of (11).

S28. ¹H spectrum of (12).

S30. ¹H spectrum of (13).

S31. ¹³C spectrum of (13).

S32. ¹H spectrum of (14).

S33. ¹³C spectrum of (14).

S34. ¹H spectrum of (15).

S35. ¹³C spectrum of (15).

S37. HMBC spectrum of (14).

S38. ¹H spectrum of (16).

S39. ¹³C spectrum of (16).

S42. ¹H spectrum of (17).

S43. ¹³C spectrum of (17).

S45. HRESIMS spectrum of compounds.

