Ni-Catalyzed Intramolecular Cyclization of B-H Adducts of 2-Cyanoaniline towards 2,3-Dihydroquinolin-4(1H)-ones

Contents

1. General Information	2
2. Preparation of Benzyl-protected aminobenzonitrile	3
3. Preparation of 2-substituted ethyl acrylate compounds	3
4. Preparation of alkenyl-nitrile compounds	4
5.Optimization to Reaction Conditions	14
6. General Procedure for Synthesis of 2,3-dihydro-4(1 <i>H</i>)-quinolinones	20
7. References	31
8. NMR Spectral Data	32
9. HPLC Spectral Data of 3a	73

1. General Information

All commercial reagents were purchased from TCI, Leyan, Energy Chemical and used as received. Solvents used in catalytic reactions were dried and distilled in appropriate method. Solvent employed for column chromatography were purchased in technical grade quality without distillation before use.

All reactions were generally performed in dried glassware filled with dry argon. TLC plates were stained using potassium permanganate. Chromatographic purification of products (column chromatography) was performed on the glass column filled in (300-400 Mesh) silica gel. Concentration of reaction product solutions and chromatography fractions under reduced pressure was performed by rotary evaporation at 30-40 °C at the appropriate pressure and then at rt, ca. 0.1 mmHg (vacuum pump) unless otherwise indicated. For reactions that require heating, oil bath is used as the heat source. NMR spectra were obtained on a Bruker 600 spectrometer, operating at 600 MHz or 400MHZ for ¹H NMR, 151 MHz or 101MHz for ¹³C NMR, 565 MHz for ¹⁹F NMR. ¹H and ¹³C positive chemical shifts (δ) are downfield from tetramethylsilane and are given in parts per million (ppm). Chemical shifts were reported in ppm relative to the central line of CHCl₃ (δ 7.26) for ¹H NMR, for ¹³C NMR, the residual CDCl₃ (δ 77.16) were used as the internal standards. Coupling constants (J) are given in Hertz (Hz). The following abbreviations are used for spin multiplicity: s = singlet, d = doublet, dd = doublet of doublet, dt = doublet of triplet, ddd = doublet of doublet of doublet, t = triplet, m = multiplet and brs = broad singlet. Electrospray ionization high-resolution mass spectra (ESI-HRMS) and atmospheric pressure chemical ionization high-resolution mass spectra (APCI-HRMS) were recorded on a Bruke P-SIMS-Gly FT-ICR mass spectrometer. Enantiomeric excess was determined by HPLC analysis on Chiralpak column (Daicel Chemical Industries, LTD).

2. Preparation of Benzyl-protected aminobenzonitrile

Benzyl-protected aminobenzonitrile was prepared according to related literatures.^[1] Anthranilonitrile (1.0 equiv.) was dissolved in AcOH. Benzaldehyde (1.28 equiv.) was added and the reaction stirred at rt for 30 min. The reaction flask was immersed in ice and NaBH₄ (1.04 equiv.) was added in portions. A vigorous exothermic reaction followed on each addition. On cooling a thick precipitate formed. After addition of water, the product was filtered off and dried to white powder.

3. Preparation of 2-substituted ethyl acrylate compounds

2-substituted ethyl acrylate compounds were prepared according to related literatures.^{[2][3]} At room temperature, paraformaldehyde (3.0 equiv.), ethyl acrylate (1.0 equiv.), and DABCO (1.0 equiv.) were dissolved in 1,4-dioxane/water (V:V=1:1) and stirred for 4 h. Then 1,4-dioxane was evaporated under pressure reduction, and each of ether and water were added. The aqueous layer was extracted with ether for 3 times, and the organic layer was washed with saturated sodium chloride. Anhydrous magnesium sulfate dry, filtration, pressurized evaporation, silica gel column chromatography purification (petroleum ether/ethyl acetate = 1:1) to obtain colorless oily liquid, which was used in the next reaction step.

The above product (1.0 equiv) and Boc₂O (1.1 equiv) were dissolved in DCM. The solution was cooled to 0 °C. 4-dimethylaminopyridine (0.1 equiv) was slowly added to the reaction solution at 0 °C. The mixture was allowed to stir for 12 hours at room

temperature. At the end of the reaction, the reaction solution was diluted with dichloromethane, and the organic layer was washed sequentially with 4 mol/L HCl solution, saturated NaHCO₃ and brine. The organic layers were combined, dried with anhydrous Na₂SO₄, filtered through diatomaceous earth and concentrated under vacuum. The mixture was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 5:1) to give a light-yellow liquid.

4. Preparation of alkenyl-nitrile compounds

Alkenyl-nitrile compounds were prepared according to related literatures.^[4] Benzyl protected aminobenzonitrile (1.0 equiv), 2-substituted ethyl acrylate compounds (3.0 equiv), palladium chloride (0.045 equiv), tetrabutylammonium bromide (1 equiv), and cesium carbonate (1.1 equiv) were heated and reacted in toluene at 85 °C for 10 h. At the end of the reaction, the reaction mixture was dissolved with methyl tertiary butyl ether, and the extracts were washed with water and saturated saline to wash the extract three times, dried with anhydrous Na₂SO₄, filtered through diatomaceous earth and finally concentrated under vacuum. The extract was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 5:1) to give a pale-yellow viscous liquid **1a** (90% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.52 (m, 1H), 7.39 – 7.33 (m, 1H), 7.32 – 7.27 (m, 3H), 7.26 – 7.24 (m, 2H), 6.97 – 6.86 (m, 2H), 6.31 (s, 1H), 5.76 (s, 1H), 4.54 (s, 2H), 4.21 (s, 2H), 4.14 (q, *J* = 7.2 Hz, 2H), 1.23 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-((benzyl(2-cyano-4-methoxyphenyl)amino)methyl)acrylate (1b)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1b** (57% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.28 (m, 3H), 7.27 – 7.24 (m, 2H), 7.06 – 7.04 (m, 1H), 6.97 – 6.93 (m, 2H), 6.27 (s, 1H), 5.82 (s, 1H), 4.34 (s, 2H), 4.14 (q, *J* = 7.2 Hz, 2H), 4.02 (s, 2H), 3.76 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-((benzyl(2-cyano-4-methylphenyl)amino)methyl)acrylate (1c)

The synthetic method is according to the literature report. ^[4] Pale yellow oil 1c (69% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.33 (m, 1H), 7.30 – 7.24 (m, 5H), 7.29 – 7.24 (m, 1H), 6.85 (d, *J* = 8.4 Hz, 1H), 6.29 (s, 1H), 5.78 (s, 1H), 4.46 (s, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 4.12 (s, 2H), 2.26 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-((benzyl(2-cyano-4-fluorophenyl)amino)methyl)acrylate (1d)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1d** (95% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). 1 **H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.28 (m, 6H), 7.25 – 7.08 (m, 1H), 6.96 – 6.90 (m, 1H), 6.31 (s, 1H), 5.79 (s, 1H), 4.42 (s, 2H), 4.14 (q, *J* = 7.2 Hz, 2H), 4.10 (s, 2H), 1.24 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-((benzyl(4-chloro-2-cyanophenyl)amino)methyl)acrylate (1e)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1e** (75% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H **NMR** (400 MHz, CDCl₃) δ 7.53 – 7.46 (m, 1H), 7.35 – 7.27 (m, 3H), 7.26 – 7.22 (m, 3H), 6.87 – 6.81 (m, 1H), 6.32 (s, 1H), 5.74 (s, 1H), 4.52 (s, 2H), 4.20 (s, 2H), 4.15 (q, J = 7.2 Hz 2H), 1.24 (t, J = 7.6 Hz, 3H).

Ethyl 2-((benzyl(4-bromo-2-cyanophenyl)amino)methyl)acrylate (1f)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1f** (80% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (d, J = 2.4 Hz, 1H), 7.45 – 7.40 (m, 1H), 7.35 – 7.29 (m, 2H), 7.27 – 7.22 (m, 3H), 6.78 (d, J = 9.0 Hz, 1H), 6.32 (s, 1H), 5.73 (s, 1H), 4.54 (s, 2H), 4.22 (s, 2H), 4.16 (q, J = 7.2 Hz, 2H), 1.24 (t, J = 7.2 Hz, 3H).

Ethyl 2-((benzyl(2-cyano-4-(trifluoromethyl)phenyl)amino)methyl)acrylate (1g)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1g** (86% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (m, 1H), 7.56 – 7.50 (m, 1H), 7.43 – 7.28 (m, 3H), 7.27 – 7.20 (m, 2H), 6.89 (d, *J* = 9.0 Hz, 1H), 6.38 (s, 1H), 5.69 (s, 1H), 4.71 (s, 2H), 4.41 (s, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 1.25 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-((benzyl(2-cyano-5-methoxyphenyl)amino)methyl)acrylate (1h)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1h** (73% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (d, J = 8.6 Hz, 1H), 7.35 – 7.26 (m, 5H), 6.49 – 6.44 (m, 1H), 6.38 (d, J = 2.4 Hz, 1H), 6.31 (s, 1H), 5.77 (s, 1H), 4.54 (s, 2H), 4.20 (s, 2H), 4.16 (q, J = 7.2 Hz, 2H), 3.74 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H).

Ethyl 2-((benzyl(2-cyano-5-methylphenyl)amino)methyl)acrylate (1i)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1i** (73% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H **NMR** (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.6 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.30 – 7.28 (m, 5H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.25 (s, 1H), 5.67 (s, 1H), 4.34 (s, 2H), 4.13 (q, *J* = 7.2 Hz, 2H), 4.01 (s, 2H), 2.17 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-((benzyl(2-cyano-5-fluorophenyl)amino)methyl)acrylate (1j)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1j** (86% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H **NMR** (400 MHz, CDCl₃) δ 7.56 – 7.48 (m, 1H), 7.36 – 7.30 (m, 2H), 7.29 – 7.22 (m, 3H), 6.64 – 6.52 (m, 2H), 6.35 (s, 1H), 5.72 (s, 1H), 4.60 (s, 2H), 4.27 (s, 2H), 4.17 (q, J = 7.2 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H).

Ethyl 2-((benzyl(5-chloro-2-cyanophenyl)amino)methyl)acrylate (1k)

The synthetic method is according to the literature report. ^[4] Pale yellow solid **1k** (80% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H **NMR** (400 MHz, CDCl₃) δ 7.45 (d, J = 8.4 Hz, 1H), 7.37 – 7.30 (m, 2H), 7.29 – 7.25 (m, 4H), 6.89 – 6.87 (m, 1H), 6.33 (s, 1H), 5.71 (s, 1H), 4.58 (s, 2H), 4.24 (s, 2H), 4.17 (q, J = 7.2 Hz, 2H), 1.24 (t, J = 7.2 Hz, 3H).

Ethyl 2-((benzyl(5-bromo-2-cyanophenyl)amino)methyl)acrylate (11)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **11** (92% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H **NMR** (400 MHz, CDCl₃) δ 7.40 – 7.36 (m, 1H), 7.36 – 7.30 (m, 2H), 7.30 – 7.24 (m, 3H), 7.06 – 7.01 (m, 2H), 6.34 (s, 1H), 5.71 (s, 1H), 4.57 (s, 2H), 4.23 (s, 2H), 4.16 (q, J = 7.2 Hz, 2H), 1.24 (t, J = 7.2 Hz, 3H).

Ethyl 2-((benzyl(2-cyano-5-(trifluoromethyl)phenyl)amino)methyl)acrylate (1m) $EtOOC \longrightarrow F_{3C}$ F_{3C}

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1m** (92% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, J = 8.4 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.28 – 7.24 (m, 3H), 7.26 – 7.08 (m, 2H), 6.34 (s, 1H), 5.71 (s, 1H), 4.61 (s, 2H), 4.30 (s, 2H), 4.15 (q, J = 7.2 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H).

Ethyl 2-((benzyl(2-cyano-3-fluorophenyl)amino)methyl)acrylate (1n)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1n** (76% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H **NMR** (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 2H), 7.31 – 7.20 (m, 4H), 6.68 – 6.59 (m, 2H), 6.35 (s, 1H), 5.73 (s, 1H), 4.61 (s, 2H), 4.29 (s, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 1.24 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-((benzyl(2-cyano-3-methoxyphenyl)amino)methyl)acrylate (1na)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1na** (75% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 3H), 7.27 – 7.24 (m, 3H), 6.53 – 6.44 (m, 2H), 6.30 (s, 1H), 5.77 (s, 1H), 4.53 (s, 2H), 4.17 (s, 2H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.90 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-((benzyl(2-cyano-3-methylphenyl)amino)methyl)acrylate (1nb)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1nb** (67% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 4H), 7.25 – 7.21 (m, 2H), 6.85 (d, *J* = 7.4 Hz, 1H), 6.79 (d, *J* = 8.4 Hz, 1H), 6.29 (s, 1H), 5.79 (s, 1H), 4.46 (s, 2H), 4.16 – 4.10 (m, 4H), 2.51 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-((benzyl(3-chloro-2-cyanophenyl)amino)methyl)acrylate (1nc)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1nc** (75% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H **NMR** (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 2H), 7.28 – 7.24 (m, 4H), 7.01 (d, *J* = 8.0 Hz, 1H), 6.83 (d, *J* = 8.6 Hz, 1H), 6.32 (s, 1H), 5.76 (s, 1H), 4.53 (s, 2H), 4.20 (s, 2H), 4.14 (q, *J* = 7.2 Hz, 2H), 1.23 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-((benzyl(3-bromo-2-cyanophenyl)amino)methyl)acrylate (1nd)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1nd** (75% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.36 (m, 1H), 7.36 – 7.30 (m, 2H), 7.30 – 7.24 (m, 3H), 7.06 – 7.01 (m, 2H), 6.34 (s, 1H), 5.71 (s, 1H), 4.57 (s, 2H), 4.23 (s, 2H), 4.16 (q, J = 7.2 Hz, 2H), 1.24 (t, J = 7.2 Hz, 3H).

Ethyl 2-((benzyl(2-cyano-6-methylphenyl)amino)methyl)acrylate (10)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **10** (60% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H **NMR** (400 MHz, cdcl₃) δ 7.41 (d, *J* = 7.8 Hz, 1H), 7.36 – 7.31 (m, 1H), 7.31 – 7.22 (m, 5H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.25 (s, 1H), 5.67 (s, 1H), 4.34 (s, 2H), 4.13 (q, *J* = 7.2 Hz, 2H), 4.02 (s, 2H), 2.17 (s, 3H), 1.18 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-((benzyl(2-cyano-6-fluorophenyl)amino)methyl)acrylate (1p)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1p** (71% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.28 (m, 5H), 7.29 – 7.24 (m, 1H), 7.23 – 7.27 (m, 1H), 7.21 – 7.04 (m, 1H), 6.26 (s, 1H), 5.68 (s, 1H), 4.40 (s, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 4.07 (s, 2H), 1.20 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-((benzyl(2-chloro-6-cyanophenyl)amino)methyl)acrylate (1q)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1q** (60% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹**H NMR** (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.37 – 7.33 (m, 2H), 7.33 – 7.21 (m, 3H), 7.08 (t, *J* = 7.8 Hz, 1H), 6.27 (s, 1H), 5.63 (s, 1H), 4.44 (s, 2H), 4.14 (q, *J* = 7.2 Hz, 2H), 4.09 (s, 2H), 1.16 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-((benzyl(4-bromo-2-cyano-3-fluorophenyl)amino)methyl)acrylate (1r)

The synthetic method is according to the literature report. ^[4] Pale yellow oil 1r (52% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.41 (m, 1H), 7.37 – 7.27 (m, 3H), 7.25 – 7.28 (m, 2H), 6.55 (d, *J* = 9.2 Hz, 1H), 6.36 (s, 1H), 5.71 (s, 1H), 4.61 (s, 2H), 4.30 (s, 2H), 4.17 (q, *J* = 7.2 Hz, 2H), 1.26 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-((benzyl(2-cyano-4,5-dimethoxyphenyl)amino)methyl)acrylate (1s)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1s** (83% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.29 (m, 3H), 7.27 – 7.21 (m, 2H), 6.95 (s, 1H), 6.47 (s, 1H), 6.29 (s, 1H), 5.86 (s, 1H), 4.40 (s, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 4.07 (s, 2H), 3.83 (s, 3H), 3.77 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-(((2-cyanophenyl)(methyl)amino)methyl)acrylate (1t)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1t** (75% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹**H NMR** (400 MHz, CDCl₃) δ 7.51 (d, J = 7.8 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 6.92 – 6.81 (m, 2H), 6.37 (s, 1H), 5.76 (s, 1H), 4.24 (s, 2H), 4.20 (q, J = 7.2 Hz, 2H), 3.05 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H).

Ethyl 2-(((2-cyanophenyl)(cyclopropylmethyl)amino)methyl)acrylate (1u)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1u** (81% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H **NMR** (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 8.8 Hz, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 6.89 (t, *J* = 7.6 Hz, 1H), 6.29 (s, 1H), 5.76 (s, 1H), 4.30 (s, 2H), 4.20

(q, J = 7.2 Hz, 2H), 3.26 (d, J = 6.6 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H), 1.10 – 0.97 (m, 1H), 0.55 – 0.45 (m, 2H), 0.15 – 0.07 (m, 2H).

Ethyl 2-(((2-cyanophenyl)(2-methylallyl)amino)methyl)acrylate (1v)

The synthetic method is according to the literature report. ^[4] Pale yellow oil 1v (79% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.51 – 7.49 (m, 1H), 7.38 – 7.34 (m, 1H), 6.86 – 6.83 (m, 2H), 6.32 (s, 2H), 5.90 (t, *J* = 4.9 Hz, 1H), 5.70 (s, 1H), 4.19 (q, *J* = 7.1 Hz, 4H), 1.75 (s, 3H), 1.27 (t, *J* = 7.1 Hz, 3H).

2-(benzyl(2-cyanoallyl)amino)benzonitrile (1w)

The synthetic method is according to the literature report. ^[4] White solid **1w** (51% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹**H NMR** (400 MHz, CDCl₃) δ 7.61 (d, J = 7.6 Hz, 1H), 7.46 (t, J = 7.2 Hz, 1H), 7.37 – 7.25 (m, 5H), 7.20 – 7.02 (m, 2H), 6.02 (s, 1H), 5.92 (s, 1H), 4.53 (s, 2H), 4.09 (s, 2H).

2-(benzyl(2-methylallyl)amino)benzonitrile (1x)

The synthetic method is according to the literature report. ^[4] Pale yellow oil **1x** (70% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹**H NMR** (400 MHz, CDCl₃) δ 7.57 – 7.51 (m, 1H), 7.39 – 7.29 (m, 2H), 7.29 – 7.24 (m, 3H), 6.93 – 6.85 (m, 2H), 4.93 (s, 1H), 4.89 (s, 1H), 4.54 (s, 2H), 3.86 (s, 2H), 1.74 (s, 3H).

5.Optimization to Reaction Conditions

Table S1. Effect of Ni catalyst ^a

	.Bn CN ⁺	HSi(OEt) ₃ $\xrightarrow{\text{Ni catalyst (10 r})}$ THF, 60 °C, 2	4 h
1a		2	3a
-	Entry	Solvent	yield of 3a (%) ^b
-	1	Ni(COD) ₂	37
	2	Ni(PPH ₃) ₄	32
	3	C ₁₀ H ₁₂ O ₂ NiC ₈ H ₁₂ -1,5-cyclo	38
	4	(DME)NiBr ₂	22
	5	$Ni(acac)_2$	19
	6	NiCl ₂	9
	7	NiBr ₂	13
	8	Ni(OTf) ₂	10
	9	(DME)NiCl ₂	11
	10	Ni(BF ₄) ₂ · 6H ₂ O	19
	11	NiCl ₂ . 6H ₂ O	9
	12	NiNO ₂ · 6H ₂ O	20

^{*a*} Reactions performed with 0.2 mmol of **1a**, 0.4 mmol of **2** (2.0 eq.), Ni catalyst (10 mol%), THF (0.2 M, 1 mL). ^{*b*} Yield was determined by ¹H NMR with nitromethane as internal standard.

∧o ^M _N ^{-Bn}	HSi(O	(DME)Nil L (1	3r ₂ (10 mol%) 0 mol%)	
"	CN TISI(O	THF,	60 ℃, 24 h	⊨∕_N Bn
1a	2			3a
	Entry	L	yield of 3a (%) ^b	
	1	L1	31	
	2	L2	10	
	3	L3	8	
	4	L4	11	
	5	L5	12	
	6	L6	14	

Table S2. Effects of bipyridine ligands ^a

^{*a*} Reactions performed with 0.2 mmol of **1a**, 0.4 mmol of **2** (2.0 eq.), (DME)NiBr₂ (10 mol%), L (10 mol%), THF (0.2 M, 1 mL). ^{*b*} Yield was determined by ¹H NMR with nitromethane as internal standard.

N ^{Bn} +	HSi(OEt) ₃	(DME)NiBr ₂ (10 mol%) L (10 mol%) THF, 60 ℃, 24 h	+	O N ^{-Bn} CN
1a	2		3 a	3a'
	Entry	L	yield of 3a (%) ^b	-
	1	L7	31	-
	2	L8	15	
	3	L9	trace	
	4	L10	17	
	5	L11	trace	
	6	L12	trace	
	7	L13	31	
	8	L14	trace	
	9	L15	9	
	10	L16	trace	
	11	L17	trace	
	12	L18	trace	
				-

Table S3. Effects of ferrocene-based ligands ^a

^{*a*} Reactions performed with 0.2 mmol of **1a**, 0.4 mmol of **2** (2.0 eq.), (DME)NiBr₂ (10 mol%), L (10 mol%), THF (0.2 M, 1 mL). ^{*b*} Yield was determined by ¹H NMR with nitromethane as internal standard.

L7^a 31% yield

L13^a 31% yield

L16^a trace

L8a 15% yield

L11^a trace

L17^a trace

L9a trace

L12^a trace

L15ª 9% yield

L18^a trace

^{*a*} Reactions performed with 0.2 mmol of **1a**, 0.4 mmol of **2** (2.0 eq.), (DME)NiBr₂ (10 mol%), L (10 mol%), THF (0.2 M, 1 mL). ^{*b*} Yield was determined by ¹H NMR with nitromethane as internal standard.

Table S5. Effect of solvents ^{*a*}

	CN +	(DME)Nil L1 (1 HSi(OEt) ₃ Solvent,	$\frac{\operatorname{Br}_2(10 \operatorname{mol}\%)}{60 \operatorname{°C}, 24 \operatorname{h}} \xrightarrow{O}_{Bn} COO$	Et
14		2		
	Entry	Solvent	yield of $3a(\%)^b$	
	1	toluene	N.R.	
	2	DMA	36	
	3	DMF	12	
	4	MTBE	N.R.	
	5	CF ₃ CH ₂ OH	N.D.	
	6	DMI	N.R.	
	7	NMP	N.R.	
	8	DMPU	N.R.	
	9	1,4-dioxine	N.R.	
	10	DME	N.R.	
	11	THF	31	

^{*a*} Reactions performed with 0.2 mmol of **1a**, 0.4 mmol of **2** (2.0 eq.), (DME)NiBr₂ (10 mol%), **L1** (10 mol%), solvent (0.2 M, 1 mL). ^{*b*} Yield was determined by ¹H NMR with nitromethane as internal standard.

Table S6. Effect of temperature^{*a*}

\sim	`Ņ´ ^{Bn}		(DME)NiBr ₂ L1 (10	2 (10 mol%) mol%)	
" [CN	+ $HSI(OEI)_3$	DMA,	24 h	N Bn
1a		2			3a
-	Entry	Temp	(°C)	yield of 3	3a (%) ^b
-	1	6	0	31	
	2	7	0	33	
	3	8	0	32	
	4	9	0	32	
	5	10	00	40	
	6	11	0	44	
	7	12	20	43	

^{*a*} Reactions performed with 0.2 mmol of **1a**, 0.4 mmol of **2** (2.0 eq.), (DME)NiBr₂ (10 mol%), **L1** (10 mol%), DMAc (0.2 M, 1 mL). ^{*b*} Yield was determined by ¹H NMR with nitromethane as internal standard.

Table S7. Effect of H-Si equivalent^a

	N ^{Bn} CN ⁺	(DM HSi(OEt) ₃ DM	E)NiBr ₂ (10 mol%) L1 (10 mol%) (Ac, 110 °C 24 h	O COOEt N Bn
1a	-	2		3a
	Entry	2 (equiv)	yield of $3a(\%)^b$	_
	1	2.0	46	_
	2	3.0	70	
	3	4.0	78	
	4	5.0	68	

^{*a*} Reactions performed with 0.2 mmol of **1a**, **2** (x eq.), (DME)NiBr₂ (10 mol%), **L1** (10 mol%), DMAc (0.2 M, 1 mL). ^{*b*} Yield was determined by ¹H NMR with nitromethane as internal standard.

Table S8. Effects of source H^a

∧o ^M _N'	.Bn	(DME)NiBr ₂ L1 (10 1	(10 mol%) nol%)	
" 🕻	CN + H Sou	DMAc, 110	0 °C 24 h	N Bn
1a 	2		3 a	_
	Entry	H Source	yield of $3a (\%)^b$	
	1	HSi(OEt) ₃	78	
	2	HSiCH ₃ (OEt) ₂	90	
	3	HSi(OMe) ₃	95	
	4	HSi(CH ₃) ₂ Cl	N.R.	
	5	ZrH(Cp) ₂	N.R.	
	6	BH	N.R.	
	7	О-вн3	N.R.	
	8	+0, βH γο'	N.R.	
	9	 siн_siн / 0/	N.R.	

^a Reactions performed with 0.2 mmol of 1a, 0.8 mmol of 2 (4.0 eq.), (DME)NiBr₂ (10 mol%), L1

(10 mol%), DMAc (0.2 M, 1 mL). b Yield was determined by ¹H NMR with nitromethane as internal standard.

Table S8. Effects of other conditions^a

, ~	D N ^{Bn}	HSi(OMe)	(DME)NiBr ₂ (10 mol%) L1 (10 mol%)	
		1 1151(01010)3	DMAc, 60 °C, 24 h	Bn
	1a	2		3 a
_	Entry	Temp (°C)	2 (equiv)	yield of 3a (%) ^b
-	1	110	4.0	95
	2	110	3.0	95
	3	110	2.0	68
	4	100	3.0	95
	5	90	3.0	95
	6	80	3.0	95
	7	70	3.0	95
	8	60	2.0	59
	9	60	3.0	95
	10	60	4.0	56
	11	50	3.0	63

^{*a*} Reactions performed with 0.2 mmol of **1a**, of **2** (x eq.), (DME)NiBr₂ (10 mol%), **L1** (10 mol%), DMAc (0.2 M, 1 mL). ^{*b*} Yield was determined by ¹H NMR with nitromethane as internal standard.

6. General Procedure for Synthesis of 2,3-dihydro-4(1H)-quinolinones

In the glove box, to a flame-dried tube was added (DME)NiBr₂ (6.17 mg, 10 mol%), L1 (5.37 mg, 10 mol%) and DMAc (1 mL). After stirred for 15 min, to the solution was added alkenyl-nitrile 1 (64.08 mg, 0.2 mmol) and HSi(OMe)₃ 2 (80.55 mg, 0.6 mmol). The tube was removed from the glove box and heated to 60 °C in an oil bath for 12 hours. The reaction was monitored by TLC. After the reaction is completed, add 10 mL of water and extract with ethyl acetate. Combine the organic phase, dry with anhydrous Na₂SO₄, filter with 100-200 mesh silica gel, and finally concentrate under vacuum. Purify the mixture (petroleum ether: ethyl acetate = 5:1) using silica gel column chromatography to obtain the target product **3**.

Ethyl 1-benzyl-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (3a)

A yellowish green liquid **3a** (54.3 mg, 85% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.99 – 7.95 (m, 1H), 7.36 – 7.27 (m, 4H), 7.25 (d, J = 7.4 Hz, 2H), 6.76 (t, J = 7.6 Hz, 1H), 6.69 (d, J = 8.4 Hz, 1H), 4.63 (d, J = 16.6 Hz, 1H), 4.55 (d, J = 16.6 Hz, 1H), 4.19 – 4.08 (m, 2H), 3.93 (d, J = 12.6 Hz, 1H), 3.46 (d, J = 12.6 Hz, 1H), 1.43 (s, 3H), 1.14 (t, J = 7.2 Hz,3H). ¹³C NMR (151 MHz, CDCl3) δ 191.73, 171.97, 150.83, 137.09, 135.43, 128.97, 128.82, 127.47, 126.80, 118.70, 117.48, 113.38, 61.59, 58.52, 55.42, 53.23, 17.61, 13.96. HRMS (ESI) m/z: Calcd for C₂₀H₂₁NaNO₃⁺ [M + Na]⁺: 364.1414; found: 364.1415.

Ethyl 1-benzyl-6-methoxy-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carbox ylate (3b)

A yellowish green liquid **3b** (55.8 mg, 79% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.46 (d, J = 3.2 Hz, 1H), 7.33 (t, J = 7.6 Hz, 2H), 7.28 – 7.23 (m, 3H), 7.00 – 6.95 (m, 1H), 6.65 (d, J = 9.2 Hz, 1H), 4.57 (d, J = 16.6 Hz, 1H), 4.51 (d, J = 16.6 Hz, 1H), 4.21 – 4.10 (m, 2H), 3.88 (d, J = 12.6 Hz, 1H), 3.79 (s, 3H), 3.41 (d, J = 12.6 Hz, 1H), 1.44 (s, 3H), 1.15 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 191.71, 172.12, 151.72, 146.28, 137.38, 128.79, 127.42, 126.82, 125.13, 118.73, 115.17, 109.46, 61.57, 59.08, 55.71, 53.53, 17.62, 14.00. HRMS (ESI) m/z: Calcd for C₂₁H₂₃NaNO4⁺ [M + Na]⁺: 376.1519; found: 376.1529.

Ethyl

1-benzyl-6-fluoro-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (3c)

A yellowish green liquid **3c** (40.5 mg, 60% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, J = 1.2 Hz, 1H), 7.33 (t, J = 7.4 Hz, 2H), 7.29 – 7.23 (m, 3H), 7.24 (dd, J = 8.6, 2.0 Hz, 1H), 6.61 (d, J = 8.6 Hz, 1H), 4.60 (d, J = 16.6 Hz, 1H), 4.52 (d, J = 16.6 Hz, 1H), 4.20 – 4.09 (m, 2H), 3.89 (d, J = 12.6 Hz, 1H), 3.42 (d, J = 12.6 Hz, 1H), 2.24 (s, 3H), 1.43 (s, 3H), 1.15 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 191.91, 172.10, 149.04, 137.32, 136.64, 128.77, 128.54, 127.39, 126.77, 118.52, 113.48, 61.55, 58.71, 55.45, 53.40, 20.12, 17.64, 13.99. HRMS (ESI) m/z: Calcd for C₂₁H₂₃NaNO₃⁺ [M + Na]⁺: 360.1570; found: 360.1562.

Ethyl

1-benzyl-6-fluoro-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (3d)

A yellowish green liquid **3d** (44.4 mg, 65% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.67 – 7.62 (m, 1H), 7.34 (t, J = 7.6 Hz, 2H), 7.29 (t, J = 7.2 Hz, 1H), 7.23 (d, J = 7.6 Hz, 2H), 7.08 – 7.03 (m, 1H), 6.65 – 6.61 (m, 1H), 4.59 (d, J = 16.6 Hz, 1H), 4.52 (d, J = 16.6 Hz, 1H), 4.20 – 4.09 (m, 2H), 3.90 (d, J = 12.6 Hz, 1H), 3.46 (d, J = 12.6 Hz, 1H), 1.43 (s, 3H), 1.14 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 191.08, 171.81, 156.21, 147.65, 136.90, 128.88, 127.56, 126.71, 123.19, 123.03, 114.97, 113.79, 113.64, 61.70, 58.99, 55.83, 53.40, 17.45, 13.95. ¹⁹F NMR (565 MHz, CDCl₃) δ -127.24. HRMS (ESI) m/z: Calcd for C₂₀H₂₁FNO₃⁺ [M + H]⁺: 342.1500; found: 342.1495.

ethyl 1-benzyl-6-chloro-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (3e)

A yellowish green liquid **3e** (48.2 mg, 71%) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, J = 2.4 Hz, 1H), 7.26 (t, J = 7.5 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H), 7.18 – 7.12 (m, 3H), 6.56 (d, J

= 9.0 Hz, 1H), 4.54 (d, J = 16.6 Hz, 1H), 4.46 (d, J = 16.6 Hz, 1H), 4.12 – 4.01 (m, 2H), 3.83 (d, J = 12.8 Hz, 1H), 3.39 (d, J = 12.8 Hz, 1H), 1.35 (s, 3H), 1.07 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 190.63, 171.66, 149.25, 136.57, 135.18, 128.92, 128.07, 127.64, 126.70, 123.00, 119.49, 115.06, 61.76, 58.56, 55.55, 53.16, 17.49, 13.96. HRMS (ESI) m/z: Calcd for C20H20ClNaNO3 [M + H]⁺: 358.1204; found: 358.1210.

Ethyl

1-benzyl-6-bromo-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (3f)

A yellowish green liquid **3f** (51.5 mg, 64% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl3) δ 8.05 (d, J = 2.5 Hz, 1H), 7.37 – 7.31 (m, 3H), 7.28 (t, J = 7.2 Hz, 1H), 7.21 (d, J = 7.2 Hz, 2H), 6.58 (d, J = 9.0 Hz, 1H), 4.62 (d, J = 16.6 Hz, 1H), 4.53 (d, J = 16.6 Hz, 1H), 4.19 – 4.09 (m, 2H), 3.91 (d, J = 12.8 Hz, 1H), 3.46 (d, J = 12.8 Hz, 1H), 1.42 (s, 3H), 1.14 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl3) δ 190.48, 171.63, 149.58, 137.86, 136.49, 131.14, 128.92, 127.65, 126.69, 119.97, 115.40, 109.98, 61.77, 58.49, 55.50, 53.09, 17.50, 13.97. HRMS (ESI) m/z: Calcd for C₂₀H₂₀BrNaNO₃⁺ [M + Na]⁺: 424.0519; found: 424.0522.

Ethyl 1-benzyl-3-methyl-4-oxo-6-(trifluoromethyl)-1,2,3,4-tetrahydroquinoline-3 -carboxylate (3g)

A yellowish green liquid **3g** (18.8 mg, 24% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 8.23 (s, 1H), 7.50 (d, J = 7.4 Hz, 1H), 7.35 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H), 7.22 (d, J = 7.6 Hz, 2H), 6.77 (d, J = 8.8 Hz, 1H), 4.71 (d, J = 16.6 Hz, 1H), 4.60 (d, J = 16.6 Hz, 1H), 4.18 – 4.10 (m, 2H), 3.97 (d, J = 13.0 Hz, 1H), 3.53 (d, J = 13.0 Hz, 1H), 1.44 (s, 3H), 1.14 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 190.58, 171.42, 152.29, 136.04, 131.60, 129.02, 127.81, 126.66, 117.82, 113.67, 61.87, 58.18,

55.47, 52.92, 17.48, 13.93. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.81 . HRMS (ESI) m/z: Calcd for C₂₁H₂₀F₃NaNO₃⁺ [M + Na]⁺: 414.1287; found: 414.1279.

Ethyl 1-benzyl-7-methoxy-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carbox ylate (3h)

A yellowish green liquid **3h** (36.8 mg, 52% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, J = 8.8 Hz, 1H), 7.34 (t, J = 7.4 Hz, 2H), 7.30 – 7.24 (m, 3H), 6.37 – 6.33 (m, 1H), 6.10 (d, J = 2.2 Hz, 1H), 4.61 (d, J = 16.6 Hz, 1H), 4.52 (d, J = 16.6 Hz, 1H), 4.19 – 4.09 (m, 2H), 3.93 (d, J = 12.6 Hz, 1H), 3.70 (s, 3H), 3.45 (d, J = 12.6 Hz, 1H), 1.42 (s, 3H), 1.16 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 190.27, 172.11, 15.58, 152.64, 137.08, 131.26, 128.84, 127.49, 126.86, 113.12, 105.27, 97.24, 61.53, 58.76, 55.64, 55.25, 53.07, 17.76, 14.01. HRMS (ESI) m/z: Calcd for C₂₁H₂₃NaNO4⁺ [M + Na]⁺: 367.2519; found: 367.2529.

Ethyl 1-benzyl-3,7-dimethyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (3i)

A yellowish green liquid **3i** (49.3 mg, 73% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, J = 8.2 Hz, 1H), 7.34 (t, J = 7.6 Hz, 2H), 7.28 (t, J = 7.2 Hz, 1H), 7.25 (d, J = 7.8 Hz, 2H), 6.59 (d, J = 8.2 Hz, 1H), 6.51 (s, 1H), 4.63 (d, J = 16.6 Hz, 1H), 4.54 (d, J = 16.6 Hz, 1H), 4.18 – 4.08 (m, 2H), 3.89 (d, J = 12.6 Hz, 1H), 3.41 (d, J = 12.6 Hz, 1H), 2.25 (s, 3H), 1.41 (s, 3H), 1.14 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 191.31, 172.05, 150.97, 146.55, 137.28, 129.04, 128.80, 127.43, 126.88, 119.09, 116.58, 113.31, 61.53, 58.32, 55.19, 53.14, 22.40, 17.67, 13.99. HRMS (ESI) m/z: Calcd for C₂₁H₂₄NO₃⁺ [M + H]⁺: 338.1751; found: 338.1731.

Ethyl

1-benzyl-7-fluoro-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (3j)

A yellowish green liquid **3j** (36.9 mg, 54% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.98 (t, J = 7.8 Hz, 1H), 7.35 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H), 7.23 (d, J = 7.6 Hz, 2H), 6.46 (t, J = 8.4 Hz, 1H), 6.35 (d, J = 11.8 Hz, 1H), 4.59 (d, J = 16.6 Hz, 1H), 4.51 (d, J = 16.6 Hz, 1H), 4.20 – 4.08 (m, 2H), 3.93 (d, J = 12.8 Hz, 1H), 3.48 (d, J = 12.8 Hz, 1H), 1.42 (s, 3H), 1.14 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 190.32, 171.74, 168.65, 166.97, 152.71, 136.30, 131.91, 128.33, 127.70, 126.79, 115.55, 105.69, 99.73, 61.70, 58.44, 55.56, 52.99, 17.57, 13.96. ¹⁹F NMR (565 MHz, CDCl₃) δ -101.58 . HRMS (ESI) m/z: Calcd for C₂₀H₂₁FNO₃⁺ [M + H]⁺: 342.1500; found: 342.1495.

Ethyl 1-benzyl-7-chloro-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (3k)

A yellowish green liquid **3k** (46.5 mg, 65% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 1H), 7.35 (t, J = 7.4 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 7.23 (d, J = 7.6 Hz, 2H), 6.72 (d, J = 8.8 Hz, 2H), 4.61 (d, J = 16.6 Hz, 1H), 4.52 (d, J = 16.6 Hz, 1H), 4.18 – 4.07 (m, 2H), 3.90 (d, J = 12.8 Hz, 1H), 3.45 (d, J = 12.8 Hz, 1H), 1.41 (s, 3H), 1.14 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 190.71, 171.64, 151.33, 141.90, 136.27, 130.45, 128.96, 127.73, 126.84, 118.08, 117.20, 112.98, 61.74, 58.18, 55.32, 53.00, 17.52, 13.96. HRMS (ESI) m/z: Calcd for C₂₀H₂₀ClNaNO₃⁺ [M + Na]⁺: 380.1024; found: 380.1027.

Ethyl

1-benzyl-7-bromo-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (31)

A yellowish green liquid **31** (34.6 mg, 43% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, J = 8.4 Hz, 1H), 7.36 (t, J = 7.4 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 7.23 (d, J = 7.2 Hz, 2H), 6.91 – 6.87 (m, 2H), 4.61 (d, J = 16.6 Hz, 1H), 4.52 (d, J = 16.6 Hz, 1H), 4.18 – 4.09 (m, 2H), 3.89 (d, J = 12.8 Hz, 1H), 3.44 (d, J = 12.8 Hz, 1H), 1.41 (s, 3H), 1.14 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 190.90, 171.61, 151.30, 136.22, 130.87, 130.42, 128.97, 127.75, 126.86, 120.93, 117.51, 115.99, 61.76, 58.08, 55.26, 52.99, 17.51, 13.96. HRMS (ESI) m/z: Calcd for C₂₀H₂₀BrNaNO₃⁺ [M + Na]⁺: 424.0519; found: 424.0522.

Ethyl 1-benzyl-3-methyl-4-oxo-7-(trifluoromethyl)-1,2,3,4-tetrahydroquinoline-3 -carboxylate (3m)

A yellowish green liquid **3m** (41.5 mg, 53% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹**H NMR** (600 MHz, CDCl₃) δ 7.98 (d, J = 8.0 Hz, 1H), 7.28 (t, J = 7.4 Hz, 2H), 7.23 (t, J = 7.4 Hz, 1H), 7.26 (d, J = 7.6 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 4.59 (d, J = 16.4 Hz, 1H), 4.50 (d, J = 16.4 Hz, 1H), 4.11 – 4.00 (m, 2H), 3.86 (d, J = 12.8 Hz, 1H), 3.40 (d, J = 12.8 Hz, 1H), 1.35 (s, 3H), 1.05 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 189.95, 170.42, 149.41, 135.45, 135.24, 135.06, 128.81, 127.95, 126.81, 125.89, 123.45, 121.63, 119.58, 112.55, 109.24, 60.78, 57.06, 54.32, 52.01, 16.34, 12.86. ¹⁹**F NMR** (565 MHz, CDCl₃) δ -63.79. **HRMS** (ESI) m/z: Calcd for C₂₁H₂₀F₃NaNO₃⁺ [M + Na]⁺: 414.1287; found: 414.1279.

Ethyl 1-benzyl-5-fluoro-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (3n)

A yellowish green liquid **3n** (34.1 mg, 51% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ

7.34 (t, J = 7.6 Hz, 2H), 7.28 (t, J = 7.2 Hz, 1H), 7.24 – 7.28 (m, 3H), 6.44 (d, J = 8.8 Hz, 1H), 6.42 – 6.38 (m, 1H), 4.66 (d, J = 16.8 Hz, 1H), 4.55 (d, J = 16.8 Hz, 1H), 4.22 – 4.07 (m, 2H), 3.93 (d, J = 12.6 Hz, 1H), 3.50 (d, J = 12.6 Hz, 1H), 1.41 (s, 3H), 1.13 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 189.24, 171.74, 164.35, 162.61, 151.86, 136.62, 135.62, 128.89, 127.57, 126.61, 108.85, 108.26, 104.69, 61.66, 58.10, 56.07, 53.43, 17.39, 13.94. ¹⁹F NMR (565 MHz, CDCl₃) δ -111.14 . HRMS (ESI) m/z: Calcd for C₂₀H₂₁FNO₃⁺ [M + H]⁺: 342.1500; found: 342.1495.

Ethyl 1-benzyl-3,8-dimethyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (30)

A yellowish green liquid **30** (45.2 mg, 67% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.6 Hz, 1H), 7.47 – 7.37 (m, 4H), 7.35 – 7.25 (m, 2H), 6.90 (t, J = 7.6 Hz, 1H), 4.54 (s, 2H), 4.23 – 4.10 (m, 2H), 3.83 (d, J = 14.2 Hz, 1H), 3.34 (d, J = 14.2 Hz, 1H), 2.27 (s, 3H), 1.41 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.45, 172.88, 152.07, 138.26, 128.76, 128.44, 127.32, 126.79, 126.62, 123.43, 120.52, 61.64, 57.23, 55.95, 51.82, 19.98, 18.88, 13.97. HRMS (ESI) m/z: Calcd for C₂₁H₂₄NO₃⁺ [M + H]⁺: 338.1751; found: 338.1769.

Ethyl

1-benzyl-8-fluoro-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (3p)

A yellowish green liquid **3p** (49.8 mg, 73% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.71 (d, J = 7.8 Hz, 1H), 7.28 (t, J = 7.6 Hz, 2H), 7.24 – 7.29 (m, 3H), 7.09 – 7.04 (m, 1H), 6.67 – 6.62 (m, 1H), 4.83 (d, J = 16.6 Hz, 1H), 4.60 (d, J = 16.6 Hz, 1H), 4.12 – 4.00 (m, 2H), 3.71 (d, J = 13.4 Hz, 1H), 3.27 (d, J = 13.4 Hz, 1H), 1.31 (s, 3H), 1.08 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 191.07, 171.68, 152.50, 150.89, 140.01, 138.03, 128.65, 127.42, 127.23, 124.81, 121.98, 117.51, 61.70, 57.69, 52.46,

17.51, 13.97.¹⁹**F NMR** (565 MHz, CDCl₃) δ -126.14. **HRMS** (ESI) m/z: Calcd for C₂₀H₂₁FNO₃⁺ [M + H]⁺: 342.1500; found: 342.1495.

Ethyl

1-benzyl-8-chloro-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (3q)

A yellowish green liquid **3q** (27.9 mg, 39% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 7.8 Hz, 1H), 7.53 – 7.46 (m, 3H), 7.40 (t, J = 7.6 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 6.90 (t, J = 7.8 Hz, 1H), 4.94 (d, J = 16.6 Hz, 1H), 4.62 (d, J = 16.6 Hz, 1H), 4.24 – 4.15 (m, 2H), 3.77 (d, J = 14.2 Hz, 1H), 3.33 (d, J = 14.2 Hz, 1H), 1.39 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 192.43, 172.48, 149.12, 137.85, 137.22, 128.53, 127.67, 127.47, 124.78, 124.36, 120.79, 61.85, 56.61, 55.58, 51.73, 18.45, 13.98. HRMS (ESI) m/z: Calcd for C₂₀H₂₀ClNaNO₃⁺ [M + Na]⁺: 380.1024; found: 380.1067.

Ethyl 1-benzyl-6-bromo-5-fluoro-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-c arboxylate (3r)

A yellowish green liquid **3r** (29.4 mg, 35% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.38 – 7.32 (m, 3H), 7.29 (t, J = 7.2 Hz, 1H), 7.29 (d, J = 7.6 Hz, 2H), 6.37 (d, J = 9.2 Hz, 1H), 4.65 (d, J = 16.8 Hz, 1H), 4.55 (d, J = 16.8 Hz, 1H), 4.20 – 4.09 (m, 2H), 3.93 (d, J = 13.0 Hz, 1H), 3.51 (d, J = 13.0 Hz, 1H), 1.41 (s, 3H), 1.15 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 188.33, 171.48, 160.02, 158.27, 150.85, 138.28, 136.10, 128.99, 127.74, 126.51, 110.10, 109.06, 96.57, 61.85, 58.07, 56.04, 53.30, 17.35, 13.96. ¹⁹F NMR (565 MHz, CDCl₃) δ -104.59. HRMS (ESI) m/z: Calcd for C₂₀H₂₀BrFNO₃⁺ [M + H]⁺: 420.0606; found: 420.0600.

Ethyl 1-benzyl-6,7-dimethoxy-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-car boxylate (3s)

A yellowish green liquid **3s** (30.7 mg, 40% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.43 (s, 1H), 7.37 – 7.32 (m, 2H), 7.30 – 7.26 (m, 3H), 6.11 (s, 1H), 4.59 (d, J = 16.4 Hz, 1H), 4.52 (d, J = 16.4 Hz, 1H), 4.29 – 4.00 (m, 2H), 3.93 (d, J = 12.4 Hz, 1H), 3.85 (s, 3H), 3.70 (s, 3H), 3.45 (d, J = 12.4 Hz, 1H), 1.44 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 190.06, 172.28, 155.89, 147.92, 142.18, 137.44, 128.88, 127.55, 126.81, 111.22, 109.39, 96.31, 61.53, 59.54, 56.12, 55.81, 53.19, 17.85, 14.04. HRMS (ESI) m/z: Calcd for C₂₂H₂₅NaNO₅⁺ [M + Na]⁺: 406.1625; found: 406.1617.

Ethyl 1-(cyclopropylmethyl)-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carb oxylate (3t)

A yellowish green liquid **3t** (36.8 mg, 64% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, J = 6.6 Hz, 1H), 7.37 (t, J = 7.8 Hz, 1H), 6.81 (d, J = 8.6 Hz, 1H), 6.73 (t, J = 7.2 Hz, 1H), 4.19 – 4.07 (m, 2H), 3.92 (d, J = 12.6 Hz, 1H), 3.48 – 3.40 (m, 2H), 3.11 (dd, J = 14.8, 7.2 Hz, 1H), 1.10 – 1.02 (m, 1H), 0.62 – 0.54 (m, 2H), 0.33 – 0.21 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 191.95, 172.11, 150.68, 135.27, 129.07, 118.60, 116.89, 112.81, 61.44, 58.07, 55.34, 53.17, 17.50, 13.97, 8.21, 3.99, 3.14. HRMS (ESI) m/z: Calcd for C₁₇H₂₁NaNO₃⁺ [M + Na]⁺: 310.1414; found: 310.1421.

Ethyl 1,3-dimethyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (3u)

A yellowish green liquid 3u (29.7 mg, 60% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ

7.95 (d, J = 7.8 Hz, 1H), 7.41 (t, J = 6.8 Hz, 1H), 6.77 (t, J = 7.0 Hz, 1H), 6.69 (d, J = 8.4 Hz, 1H), 4.14 (q, J = 7.2 Hz, 2H), 3.82 (d, J = 12.4 Hz, 1H), 3.31 (d, J = 12.4 Hz, 1H), 3.01 (s, 3H), 1.43 (s, 3H), 1.14 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 191.94, 172.00, 151.58, 135.40, 128.81, 118.76, 117.39, 112.91, 61.49, 60.24, 53.48, 39.05, 17.50, 13.98. **HRMS** (ESI) m/z: Calcd for C₁₄H₁₈NO₃⁺ [M + H]⁺: 248.1281; found: 248.1277.

Ethyl 3-methyl-1-(2-methylallyl)-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (3v)

A yellowish green liquid 3v (31.6 mg, 55% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (400 MHz, cdcl₃) δ 7.92 (d, J = 7.8 Hz, 1H), 7.32 (t, J = 7.7 Hz, 1H), 6.72 (t, J = 7.4 Hz, 1H), 6.64 (d, J = 8.5 Hz, 1H), 4.90 (s, 1H), 4.81 (s, 1H), 4.11 (qd, J = 6.9, 3.2 Hz, 2H), 3.84 (d, J = 8.6 Hz, 3H), 3.38 (d, J = 12.7 Hz, 1H), 1.74 (s, 3H), 1.42 (s, 3H), 1.13 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, cdcl₃) δ 191.67, 171.93, 150.74, 139.81, 135.19, 128.72, 118.39, 117.11, 113.29, 111.84, 61.45, 58.32, 57.71, 53.03, 20.09, 17.57, 13.92. HRMS (ESI) m/z: Calcd for C₁₇H₂₁NNaO₃⁺ [M + Na]⁺: 310.1414; found: 310.1429.

1-benzyl-3-methyl-4-oxo-1,2,3,4-tetrahydroquinoline-3-carbonitrile (3w)

A yellowish green liquid **3w** (43.1 mg, 78% yield) was isolated by column chromatography (5/1 petroleum ether/ethyl acetate). ¹H NMR (600 MHz, CDCl₃) δ 8.00 – 7.95 (m, 1H), 7.43 – 7.39 (m, 1H), 7.39 – 7.36 (m, 2H), 7.32 (d, J = 7.4 Hz, 3H), 6.87 – 6.80 (m, 2H), 4.66 (q, J = 16.4 Hz, 2H), 3.78 (d, J = 12.6 Hz, 1H), 3.50 (d, J = 12.6 Hz, 1H), 1.58 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 189.95, 170.42, 149.41, 135.45, 135.24, 135.06, 128.81, 127.95, 126.81, 125.89, 123.45, 121.63, 119.58, 112.55, 109.24, 60.78, 57.06, 54.32, 52.01, 16.34, 12.86. HRMS (ESI) m/z: Calcd for C₁₈H₁₆NaN₂O⁺ [M + Na]⁺: 299.1155; found: 299.1142.

7. References

- Wiklund, P.; Bergman, J. Ring Forming Reactions of Imines of 2-Aminobenzaldehyde and Related Compounds. Org. Biomol. Chem., 2003, 1, 367–372.
- [2] Wang W.; Lu X.-H.; Dong X.-C.; Zhao W.-L. Synthesis of Azaspiro[3.4]octanes via [3+2] Cycloaddition. *Chin. J. Org. Chem.* 2015, 35 (1), 137.
- [3] He, J.-N.; Zheng, N.; Li, M.; Zheng, Y.-B.; Song, W.-Z. Cu-Catalyzed Four-Component Polymerization of Alkynes, Sulfonyl Azides, Nucleophiles and Electrophiles. *Polym. Chem.* 2021, 12 (30), 4347–4358.
- [4] Adak, L.; Chattopadhyay, K.; Ranu, B. C. Palladium Nanoparticle-Catalyzed C–N Bond Formation. A Highly Regio- and Stereoselective Allylic Amination by Allyl Acetates. J. Org. Chem. 2009, 74 (10), 3982–3985.

8. NMR Spectral Data

400 MHz for ¹H NMR in CDCl₃

151 MHz for ¹³C NMR in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

565 MHz for $^{19}\mathrm{F}\,\mathrm{NMR}$ in CDCl_3

54

151 MHz for ¹³C NMR in CDCl₃

151 MHz for ¹³C NMR in CDCl₃

565 MHz for $^{19}\mathrm{F}\,\mathrm{NMR}$ in CDCl_3

151 MHz for ¹³C NMR in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (nnm)

151 MHz for $^{13}\mathrm{C}$ NMR in CDCl_3

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

101 MHz for ¹³C NMR in CDCl₃

565 MHz for $^{19}\mathrm{F}\,\mathrm{NMR}$ in CDCl_3

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

151 MHz for $^{\rm 13}C$ NMR in CDCl_3

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

9. HPLC Spectral Data of 3a

<Peak Table>

PDA Ch1 254nm										
Peak#	Ret. Time	S/N	Noise	Area	Height	Area%				
1	19.975	136.52	1778.84	5876846	242842	49.988				
2	20.908	130.34	1778.84	5879706	231861	50.012				
Total				11756552	474703	100.000				

<Peak Table>

PDA Ch1 254nm										
Peak#	Ret. Time	S/N	Noise	Area	Height	Area%				
1	20.041	20.32	8225.37	4194072	167120	82.473				
2	21.013	4.78	8225.37	891335	39352	17.527				
Total				5085407	206472	100.000				