Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

> Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Titanium-catalyzed Radical-type

Deuteriodeboronation of Arylboronates

Zhihui Wang, Biao Ma, Haocong Li, Yiru Wang and Zhanyu Li*

Chemical Engineering and Resource Utilization, College of Chemistry, Northeast Forestry University, Harbin 150040, China. E-mail: Lizy567@nefu.edu.cn.

Table of contents

1. General information	S2
2. Optimization of the reaction condition	S3
3. General steps in the titanium-catalysed arylboronate deuteriodeboronation reaction	S5
4. Gram-scale synthesis and synthesis of deuterated N-methylduloxetine	S5
5. Mechanism Studies	S7
6. Synthesis of catalysts and catalyst intermediate	S9
7. Experimental procedures and characterization of the products	S10
8. References	S25
9. Spectroscopic Data	S27

1. General information

All experiments were performed under a nitrogen atmosphere unless otherwise noted. All solvents were purchased from the highest commercial grade and were not further purified. Further purification. Flash column chromatography was performed using silica gel (200-300 mesh). Thin layer chromatography (TLC) was performed using silica gel 60 F254 plates for thin layer chromatography. NMR spectra were recorded for ¹H NMR (500 MHz), ¹³C NMR (126 MHz) using TMS as an internal standard and Bruker AV 500 as an instrument and ¹H NMR (600 MHz), ¹³C NMR (151 MHz) using TMS as an internal standard and Bruker AV 600 as aninstrument. Chemical shifts (ppm) were referenced to CDCl₃ (δ : 7.26 ppm) or DMSO- d_6 (δ : 2.50 ppm). Te ¹³C NMR spectra were recorded by the same ¹³C NMR spectra were obtained from the same NMR spectrometer and calibrated with CDCl₃ (δ : 77.00 ppm)or DMSO- d_6 (δ : 39.52 ppm). The abbreviations for NMR data were NMR data are abbreviated as s (singlet), d (doublet), t (triplet), q (quadruplet), quin (quintuplet), sxt (sextuplet). High-resolution mass spectra (HRMS) were obtained with Thermo Fisher Scientific Orbitrap Exploris 120 spectrometers. (Hetero)arylboronates 1a-1ak were synthesised from the corresponding (hetero)arylboronic acids according to methods in the literature¹.

2. Optimization of the reaction condition

Table S1 Evaluation of catalysts.

Reaction conditions: 1a (0.2 mmol), 2a (0.5 mL), Catalyst (10 mol%) and Cs_2CO_3 (2.0 equiv.) were stirred with 120 °C under N₂ for 24 h.

Table S2 Evaluation of different base.

Entry	Base	Yield/%		
1	Cs_2CO_3	82		
2	NaOH	67		
3	K ₂ CO ₃	51		
4	K ₃ PO ₄	75		
5	CH ₃ OK	67		
6	'BuOK	63		
7	CH ₃ ONa	59		
8	DBU	trace		
9	Et ₃ N	trace		

Reaction conditions: **1a** (0.2 mmol), **2a** (0.5 mL), $Cp_2Ti(OMe)_2$ (10 mol%) and Base (2.0 equiv.) were stirred with 120 °C under N₂ for 24 h.

Table S3 Evaluation of different amount of base.

Bneop	Cp ₂ Ti(OMe) ₂ 10 m	
	+ CD ₃ CN Cs ₂ CO ₃ X equiv 120 °C, N ₂ 24 h	
1a	2a	3a
Entry	X/equiv.	Yield/%
1	0.5	67
2	1	70
3	1.5	74
4	2	82
5	2.5	78

Reaction conditions: **1a** (0.2 mmol), **2a** (0.5 mL), $Cp_2Ti(OMe)_2$ (10 mol%) and Cs_2CO_3 (X equiv.) were stirred with 120 °C under N₂ for 24 h.

Table S4 Evaluation of different reaction times.

Bneop		Cp ₂ Ti(OMe) ₂ 10 mol%	
	+ CD ₃ CN	Cs ₂ CO ₃ 2.0 equiv. 120 °C, N ₂	
1a	2a	X h	3a
Entry		X/h	Yield/%
1		4	21
2		12	48
3		16	70
4		24	82
5		36	82

Reaction conditions: **1a** (0.2 mmol), **2a** (0.5 mL), $Cp_2Ti(OMe)_2$ (10 mol%) and Cs_2CO_3 (2.0 equiv.) were stirred with 120 °C under N₂ for X h.

Table S5 Evaluate different reaction temperature.

Cp ₂ Ti(OMe) ₂ 10 mol%	
+ CD ₃ CN Cs ₂ CO ₃ 2.0 equiv. Temperature, N ₂ 24 h	
2a	3a
Temperature/°C	Yield/%
120	82
100	70
80	33
50	N.R.
	+ CD_3CN Cs ₂ CO ₃ 2.0 equiv. Temperature, N ₂ 24 h 2a Temperature/°C 120 100 80

Reaction conditions: **1a** (0.2 mmol), **2a** (0.5 mL), $Cp_2Ti(OMe)_2$ (10 mol%) and Cs_2CO_3 (2.0 equiv.) were stirred under N₂ for 24 h.

3. General steps in the titanium-catalysed arylboronate

deuteriodeboronation reaction

A 10 mL Schlenk tube containing 1-naphthylboronate **1a** (0.2 mmol, 1.0 equiv.), $Cp_2Ti(OMe)_2$ (0.02 mmol, 10 mol%), Cs_2CO_3 (0.4 mmol, 2.0 equiv.), and deuterated acetonitrile **2a** (0.5 mL). The tube was then filled with N₂ and sealed. The reaction was placed on a magnetic stirrer at 120 °C for 24 h. Upon completion, the solvent was removed under reduced pressure and the product was separated by column chromatography to give product **3a** (20.9 mg, 82% yield, 99%D), which was analyzed by ¹H NMR to determine the deuterium incorporation rate.

4. Gram-scale synthesis and synthesis of deuterated

methylduloxetine

4.1 Gram-scale synthesis

A mixture of 2-naphthylboronate **1b** (3.6 g, 15 mmol, 1.0 equiv.), deuterated acetonitrile **2a** (10 mL), $Cp_2Ti(OMe)_2$ (0.36 g, 1.5 mmol, 10 mol%) and Cs_2CO_3 (9.77 g, 30 mmol, 2.0 equiv.) was prepared and stirred for 24 h at 120 °C under N₂. After completion of the reaction, the crude residue was concentrated under reduced pressure. Purification by column chromatography gave 1.07 g of crude residue, **3b** as a white

solid in 56% yield.

4.2 Synthesis of deuterated N-methylduloxetine

A mixture of 4-fluoro-1-naphthylboronate 1g (129 mg, 0.5 mmol, 1.0 equiv.), CD₃CN (1 mL), Cp₂Ti(OMe)₂ (15 mg, 0.05 mmol, 10 mol%), and Cs₂CO₃ (326 mg, 1 mmol, 2.0 equiv.) was charged into a dried 10 mL Schlenk tube under nitrogen atmosphere. The system was evacuated and backfilled with N₂ (three cycles) before being immersed in a heating module at 120 °C for 24 h with vigorous stirring. After cooling to ambient temperature, volatiles were removed under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/ethyl acetate 10:1) to afford 3g (63 mg, 86% yield) as a colorless oil. In a dried 10 mL reaction tube, (S)-N,N-dimethyl-3-hydroxy-3-(2-thienyl)propanamine (37 mg, 0.2 mmol, 1.0 equiv.) was dissolved in anhydrous DMSO (2 mL). Sodium hydride (5 mg, 0.2 mmol, 1.0 equiv.) was added portionwise at room temperature. After stirring for 20 min, KOAc (19.6 mg, 0.2 mmol, 1.0 equiv.) was introduced, followed by an additional 15 min of stirring. Compound 3g (29 mg, 0.24 mmol, 1.2 equiv.) was then added, and the reaction mixture was heated at 60 °C for 12 h. The cooled mixture was diluted with H₂O (10 mL) and adjusted to pH 5-6 with 1 M HCl. The aqueous layer was subsequently basified to pH 10-12 using 2 M NaOH and extracted with ethyl acetate $(3 \times 15 \text{ mL})$. The combined organic extracts were washed with brine (10 mL), dried over anhydrous MgSO₄, filtered, and concentrated in vacuo. Purification by column chromatography (10% methanol in dichloromethane) give the desired white solid product **3am** (52mg, 84%, 99%D). ¹H NMR (600 MHz, CDCl₃) δ : 8.37 (dd, J = 5.6,

4.0 Hz, 1H), 7.80–7.76 (m, 1H), 7.52–7.47 (m, 2H), 7.28 (dd, J = 7.8, 4.4 Hz, 1H), 7.21 (d, J = 4.7 Hz, 1H), 7.07 (d, J = 3.3 Hz, 1H), 6.94 (dd, J = 4.9, 3.7 Hz, 1H), 6.88 (d, J = 7.7 Hz, 1H), 5.79–5.76 (m, 1H), 2.54–2.49 (m, 2H), 2.49–2.42 (m, 1H), 2.26 (s, 6H), 2.20 (td, J = 13.2, 6.2 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ : 153.57, 145.41, 134.62, 127.54, 126.65, 126.40, 126.25, 125.75, 125.31, 124.82, 124.75, 122.30, 120.36(t, J = 24.16 Hz,), 107.15, 74.77, 55.88, 45.71, 37.14. Spectroscopic data in agreement with the literature².

5. Mechanism Studies

To a dried 10 mL Schlenk tube were added 2-naphthylboronate **1b** (0.048 g, 0.2 mmol, 1.0 equiv.), $Cp_2Ti(OMe)_2$ (0.005 g, 0.02 mmol, 10 mol%), Cs_2CO_3 (0.131 g, 0.4 mmol, 2.0 equiv.), TEMPO (0.0625 g, 0.4 mmol, 2.0 equiv.) and deuterated acetonitrile **2a** (0.5 mL). The reaction was placed on a magnetic stirrer at 120 °C for 24 h under N₂ atmosphere. After completion of the reaction the solvent was removed by vacuum concentration and the product was detected by TLC as trace.

To a dried 10 mL Schlenk tube was added catalyst **Cat 11** (0.066 g, 0.2 mmol, 1.0 equiv.), Cs_2CO_3 (0.131 g, 0.4 mmol, 2.0 equiv.) and CH_3CN (0.5 mL). The reaction was placed in a magnetic stirrer and stirred at 120 °C for 24 h under N₂ atmosphere. Upon completion of the reaction, the products of benzene were analyzed by HRMS in the reaction mixture. HRMS (ESI-TOF, m/z) Calcd for C_6H_7 (M+H)⁺: 79.0542, found: 79.0549.

To a dried Schlenk tube, add compound **2a** (0.048 g, 0.2 mmol, 1.0 equiv.), $Cp_2Ti(OMe)_2$ (0.005 g, 0.02 mmol, 10 mol%), and Cs_2CO_3 (0.131 g, 0.4 mmol, 2.0 equiv.) followed by CH₃CN (0.5 mL). The reaction mixture was stirred under a N₂ atmosphere at 120 °C for 24 h using a magnetic stirrer. After the reaction, we performed HRMS analysis of the reaction mixture of the template reaction and detected the product of protonation of the acetonitrile radical with the acetonitrile titanium intermediate after ten consecutive additions of the imine.

To a dried Schlenk tube, add compound **2b** (0.048 g, 0.2 mmol, 2.0 equiv.), $Cp_2Ti(OMe)_2$ (0.025 g, 0.1 mmol), and Cs_2CO_3 (0.131 g, 0.4 mmol, 2.0 equiv.) followed by CH₃CN (0.5 mL). The reaction mixture was stirred under a N₂ atmosphere at 120 °C for 24 h using a magnetic stirrer. After the reaction, we performed HRMS analysis of the reaction mixture for the template reaction and detected products of intermediates I II III IV.

6. Synthesis of catalysts and catalyst intermediate

Cp₂TiCl₂ (**Cat 1**) (0.248 g, 1.0 mmol, 1.0 equiv.) was placed in a dry three-necked flask, 25 mL of anhydrous Et₂O was added under N₂ atmosphere, and PhMgBr (0.71 mL, 2.8 M in 2-MeTHF, 2.0 mmol, 2.0 equiv.) was added slowly at 20 °C. The reaction lasted for 15 min. and resulted in a pale yellow solution. Then 0.5 mL of anhydrous 1,4-dioxane was added and a white solid was formed immediately and stirring was continued for 16 h. At the end of the reaction, the solid was washed with toluene. After filtration, the filtrate was concentrated and dried under vacuum to give orange crystals **Cat 11** (Yield: 88%). ¹H NMR (600 MHz, CDCl₃) δ : 6.98 (dd, *J* = 10.1, 4.5, 4H), 6.91–6.87 (m, 6H), 6.21 (s, 10H). ¹³C NMR (151 MHz, CDCl₃) δ : 191.07, 134.81, 126.38, 123.56, 115.75.

A dry three-necked flask was charged with Cp₂TiCl₂ (**Cat 1**) (0.497 g, 2.0 mmol, 1.0 equiv.) under N₂ atmosphere. Anhydrous THF (25 mL) was introduced via syringe, followed by sequential dropwise addition of CH₃OH (0.256 g, 8.0 mmol, 4.0 equiv.) and Et₃N (0.405 g, 4.0 mmol, 2.0 equiv.) at 25 °C, and the reaction was stirred for 3 h at 70 °C. At the end of the reaction, the solid was washed with anhydrous THF and the solvent was concentrated and dried in vacuum to give an orange solid **Cat 5** (Yield: 82%). ¹H NMR (600 MHz, CDCl₃) δ : 5.93 (s, 10H), 3.87 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ : 112.05, 65.95.

All remaining titanium-related catalysts were obtained by the general procedure described in the published article³.

7. Experimental procedures and characterization of the products

naphthalene-1-d(3a)

Following the general procedure described above, the reaction of **1a** (0.2 mmol, 48 mg), Cs₂CO₃ (0.4 mmol, 131 mg) was reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3a** (21 mg, 82% yield, 99%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.86 (dd, J = 5.7, 3.7 Hz, 3H), 7.53–7.44 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ : 133.50, 133.44, 127.95, 127.91, 127.63 (t, J = 25.2 Hz), 125.89, 125.78. Spectroscopic data in agreement with the literature⁴.

naphthalene-2-d(3b)

Following the general procedure described above, the reaction of **1b** (0.2 mmol, 48 mg) Cs₂CO₃ (0.4 mmol, 131 mg) was reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3b** (18 mg, 71% yield, 90%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.86 (dd, J = 5.8, 3.2 Hz, 4H), 7.50 (dd, J = 6.3, 3.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ : 133.51, 127.96, 127.84, 125.89, 125.80, 125.44(t, J = 22.68 Hz). Spectroscopic data in agreement with the literature⁴.

1-phenylnaphthalene-4-d(3c)

Following the general procedure described above, the reaction of **1c** (0.2 mmol, 64 mg) Cs₂CO₃ (0.4 mmol, 131 mg) was reacted with deuterated acetonitrile (0.5 mL) to give a colorless oil **3c** (35 mg, 85% yield, 69%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.93 (d, *J* = 8.6 Hz, 2H), 7.56–7.49 (m, 6H), 7.45 (dt, *J* = 8.1, 4.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ : 140.81, 140.29, 133.76, 131.64, 130.12, 128.30, 128.25, 127.54, 127.27 (t, *J* = 12.6 Hz), 126.96, 126.07, 126.06, 125.80, 125.30. HRMS (ESI-TOF, m/z) Calcd for C₁₆H₁₂D (M+H)⁺: 206.1074, found: 206.1049.

1,1'-binaphthalene-4-d(**3d**)

Following the general procedure described above, the reaction of **1d** (0.2 mmol, 73 mg) Cs₂CO₃ (0.4 mmol, 131 mg) was reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3d** (48 mg, 94% yield, 97%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.97 (dd, J = 8.2, 4.1 Hz, 3H), 7.64–7.59 (m, 2H), 7.50 (dd, J = 16.6, 7.1 Hz, 4H), 7.42 (d, J = 8.4 Hz, 2H), 7.34–7.28 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ : 138.50, 138.49, 133.56, 133.48, 132.89, 128.18, 128.13, 127.93, 127.87, 127.60 (t, J = 25.2 Hz), 126.60, 126.01, 125.84, 125.42, 125.29. HRMS (ESI-TOF, m/z) Calcd for C₂₀H₁₄D (M+H)⁺: 256.1231, found: 256.1260.

1-methylnaphthalene-4-d(3e)

Following the general procedure described above, the reaction of 1e (0.2 mmol, 51 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL)

to give a white solid **3e** (22 mg, 79% yield, 94%D). ¹H NMR (500 MHz, CDCl₃) δ : 8.02 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.57–7.48 (m, 2H), 7.39 (d, J = 6.9 Hz, 1H), 7.34 (d, J = 6.9 Hz, 1H), 2.72 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ : 134.29, 133.49, 132.61, 128.49, 126.58, 126.07 (t, J = 25.2 Hz), 125.73, 125.56, 125.47, 124.14, 19.43. Spectroscopic data in agreement with the literature⁴.

1-methoxynaphthalene-4-d(**3f**)

Following the general procedure described above, the reaction of **1f** (0.2 mmol, 54 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3f** (25 mg, 79% yield, 99%D). ¹H NMR (500 MHz, CDCl₃) δ : 8.30–8.26 (m, 1H), 7.84–7.80 (m, 1H), 7.53–7.48 (m, 2H), 7.40 (d, J = 7.6 Hz, 1H), 6.83 (d, J = 7.6 Hz, 1H), 4.02 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ : 155.46, 134.42, 127.42, 126.41, 125.89, 125.76, 125.20, 121.99, 120.24, 119.94 (t, J = 25.2 Hz), 103.78, 55.53. Spectroscopic data in agreement with the literature⁵.

1-fluoronaphthalene-4-d(3g)

Following the general procedure described above, the reaction of **1g** (0.2 mmol, 52 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a colorless oil **3g** (25 mg, 86% yield, 99%D). ¹H NMR (500 MHz, CDCl₃) δ : 8.13 (dd, J = 5.5, 3.9 Hz, 1H), 7.91–7.84 (m, 1H), 7.59–7.52 (m, 2H), 7.44–7.38 (m, 1H), 7.16 (dd, J = 10.6, 7.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ : 158.82(d, J = 252 Hz), 134.82 (d, J = 5.04 Hz), 127.49 (d, J = 2.52 Hz), 126.85, 126.19 (d, J = 1.26

Hz), 125.52 (d, J = 2.52 Hz), 123.66, 123.37 (t, J = 25.2 Hz), 120.55 (d, J = 5.04 Hz), 109.36 (d, J = 20.16 Hz). Spectroscopic data in agreement with the literature⁴.

1-chloronaphthalene-4-d(**3h**)

Following the general procedure described above, the reaction of **1h** (0.2 mmol, 55 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a colorless oil **3h** (30 mg, 94% yield, 89%D). ¹H NMR (500 MHz, CDCl₃) δ : 8.29 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.2 Hz, 1H), 7.64–7.53 (m, 3H), 7.40 (dd, J = 7.4, 4.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ : 131.94, 130.82, 128.24, 128.19, 127.18, 126.87 (t, J = 23.94 Hz), 126.18, 125.74, 125.62, 124.43. Spectroscopic data in agreement with the literature⁶.

1-bromonaphthalene-4-d(3i)

Following the general procedure described above, the reaction of **1i** (0.2 mmol, 64 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a colorless oil **3i** (39 mg, 97% yield, 98%D). ¹H NMR (500 MHz, CDCl₃) δ : 8.25 (d, J = 8.5 Hz, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 7.4 Hz, 1H), 7.60 (d, J = 7.5 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.33 (d, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ : 134.59, 132.02, 129.93, 128.29, 127.64 (t, J = 25.2 Hz), 127.36, 127.13, 126.73, 126.10, 122.84. Spectroscopic data in agreement with the literature⁷.

2-ethoxynaphthalene-1-d(3j)

Following the general procedure described above, the reaction of **1j** (0.2 mmol, 57 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a colorless oil **3j** (33 mg, 97% yield, 50%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.79–7.72 (m, 3H), 7.47–7.42 (m, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.18–7.14 (m, 2H), 4.16 (q, *J* = 7.0 Hz, 2H), 1.50 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ : 156.95 (CH), 156.90 (CD), 134.65 (CH), 134.58 (CD), 129.37 (CH), 129.36 (CD), 128.93 (CH), 128.92 (CD), 127.67 (CH/CD), 126.74 (CH), 126.68 (CD), 126.32 (CH/CD), 123.52 (CH/CD), 119.04 (CH/CD), 106.57 (CH), 106.26 (t, *J* = 25.2 Hz, CD), 63.47 (CH/CD), 14.86 (CH/CD). HRMS (ESI-TOF, m/z) Calcd for C₁₂H₁₂DO (M+H)⁺: 174.1023, found: 174.0997.

2-ethoxynaphthalene-6-d(3k)

Following the general procedure described above, the reaction of **1k** (0.2 mmol, 57 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a colorless oil **3k** (17 mg, 50% yield, 98%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.74 (dd, J = 16.5, 7.9 Hz, 3H), 7.43 (d, J = 8.2 Hz, 1H), 7.15 (dd, J = 11.3, 2.4 Hz, 2H), 4.16 (q, J = 7.0 Hz, 2H), 1.49 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ : 156.98, 134.68, 129.42, 128.96, 127.60, 126.78, 126.27, 123.28(t, J = 25.2 Hz), 119.07, 106.60, 63.52, 14.91.

HRMS (ESI-TOF, m/z) Calcd for C₁₂H₁₂DO (M+H)⁺: 174.1023, found: 174.1037.

1,2-dihydroacenaphthylene-5-d(3l)

Following the general procedure described above, the reaction of **11** (0.2 mmol, 53 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **31** (20 mg, 56% yield, 99%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.62 (d, J = 8.2 Hz, 1H), 7.47 (dt, J = 8.0, 4.2 Hz, 2H), 7.31 (d, J = 6.8 Hz, 2H), 3.43 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ : 146.04, 139.32, 131.56, 127.82, 127.71, 122.21, 121.95 (t, J = 25.2 Hz), 119.20, 30.39. HRMS (ESI-TOF, m/z) Calcd for C₁₂H₉D (M+H)⁺: 156.0918, found: 156.0938.

phenanthrene-9-d(3m)

Following the general procedure described above, the reaction of **1m** (0.2 mmol, 58 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3m** (29 mg, 80% yield, 98%D). ¹H NMR (500 MHz, CDCl₃) δ : 8.72 (d, J = 8.2 Hz, 2H), 7.92 (d, J = 7.7 Hz, 2H), 7.77 (s, 1H), 7.71–7.59 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ : 132.16, 132.10, 130.42, 128.69, 128.64, 127.04, 126.91 (t, J = 27.72 Hz), 126.68, 122.78. Spectroscopic data in agreement with the literature⁴.

pyrene-1-d(3n)

Following the general procedure described above, the reaction of **1n** (0.2 mmol, 63 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3n** (38 mg. 95% yield, 99%D). ¹H NMR (500 MHz, CDCl₃) δ : 8.21 (d, J = 7.6 Hz, 3H), 8.10 (s, 4H), 8.06–8.00 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ : 131.24, 131.16, 127.49, 127.45, 125.97, 125.85, 125.05, 124.77, 124.73 (t, J = 23.94 Hz). Spectroscopic data in agreement with the literature⁸.

triphenylene-2-d(30)

Following the general procedure described above, the reaction of **10** (0.2 mmol, 68 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **30** (33 mg, 71% yield, 94%D). ¹H NMR (500 MHz, CDCl₃) δ : 8.67 (dd, J = 5.8, 3.4 Hz, 6H), 7.67 (dd, J = 6.2, 3.2 Hz, 5H). ¹³C NMR (126 MHz, CDCl₃) δ : 129.81, 127.24, 126.95 (t, J = 23.94 Hz), 123.33, 123.21. HRMS (ESI-TOF, m/z) Calcd for C₁₈H₁₂D (M+H)⁺: 230.1074, found: 230.1081.

9,9'-spirobi[fluorene]-2-d(**3p**)

Following the general procedure described above, the reaction of **1p** (0.2 mmol, 85 mg), Cs_2CO_3 (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3p** (35 mg, 57% yield, 90%D). ¹H NMR (500 MHz, CDCl₃ δ : 7.86 (d, J = 7.6 Hz, 4H), 7.38 (t, J = 7.5 Hz, 4H), 7.12 (t, J = 7.5 Hz, 3H), 6.78–6.71

(m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ : 148.80, 141.80, 127.73 (t, J = 13.86 Hz), 124.07, 123.96, 120.01. Spectroscopic data in agreement with the literature⁴.

fluoranthene-3-d(3q)

Following the general procedure described above, the reaction of **1q** (0.2 mmol, 63 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a yellow solid **3q** (20 mg, 50% yield, 96%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.98–7.91 (m, 4H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.68–7.62 (m, 2H), 7.40 (dd, *J* = 5.5, 3.1 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ : 139.49, 137.00, 132.42, 129.94, 127.99, 127.88, 127.58, 126.64, 126.37 (t, *J* = 25.2 Hz), 121.57, 120.09. HRMS (ESI-TOF, m/z) Calcd for C₁₆H₁₀D(M+H)⁺: 204.0918, found: 204.0910.

1-methyl-1H-indole-5-d(3r)

Following the general procedure described above, the reaction of **1r** (0.2 mmol, 49 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3r** (12 mg, 46% yield, 98%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.65 (s, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.24 (d, J = 8.2 Hz, 1H), 7.07 (d, J = 2.8 Hz, 1H), 6.50 (d, J = 2.8 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ : 136.69, 128.81, 128.46, 121.39, 120.77, 119.00 (t, J = 23.94 Hz), 109.19, 100.89, 32.85. Spectroscopic data in agreement with the literature⁴.

9-phenyl-9H-carbazole-3-d(**3s**)

Following the general procedure described above, the reaction of **1s** (0.2 mmol, 74 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3s** (20 mg, 42% yield, 93%D). ¹H NMR (500 MHz, CDCl₃) δ : 8.19–8.13 (m, 2H), 7.64–7.56 (m, 4H), 7.45 (d, J = 28.6 Hz, 5H), 7.30 (ddd, J = 8.0, 4.7, 3.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ : 140.91, 137.73, 129.89, 127.47, 127.17, 126.11 (t, J = 25.2 Hz), 125.93, 125.82, 123.36, 120.31, 120.20, 119.90, 109.78. Spectroscopic data in agreement with the literature⁴.

dibenzo[b,d]thiophene-4-d(3t)

Following the general procedure described above, the reaction of **1t** (0.2 mmol, 59 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3t** (30 mg, 83% yield, 90%D). ¹H NMR (500 MHz, CDCl₃) δ : 8.20–8.15 (m, 2H), 7.87 (dd, J = 5.9, 3.1 Hz, 1H), 7.50–7.45 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ : 139.46, 139.34, 135.56, 126.73, 126.61, 124.38, 122.84, 122.56 (t, J = 25.2 Hz), 121.60. Spectroscopic data in agreement with the literature⁴.

dibenzo[b,d]furan-4-d(**3u**)

Following the general procedure described above, the reaction of 1u (0.2 mmol, 56 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL)

to give a white solid **3u** (29 mg, 86% yield, 53%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.97 (d, J = 7.7 Hz, 2H), 7.59 (d, J = 8.2 Hz, 1H), 7.50–7.45 (m, 2H), 7.36 (t, J = 7.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ : 156.30, 156.25, 127.25, 127.14, 124.34, 122.80, 120.77, 111.79, 111.55 (t, J = 25.2 Hz). Spectroscopic data in agreement with the literature⁸.

dibenzo[b,d]thiophene-2-d(3v)

Following the general procedure described above, the reaction of **1v** (0.2 mmol, 60 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3v** (15 mg, yield 42%, 90%D). ¹H NMR (500 MHz, CDCl₃) δ : 8.17 (t, *J* = 4.5 Hz, 2H), 7.89–7.84 (m, 2H), 7.47 (dd, *J* = 6.0, 3.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ : 139.44, 135.56, 126.71, 126.61, 124.36, 124.09 (t, *J* = 25.2 Hz), 122.83, 121.59, 121.48. Spectroscopic data in agreement with the literature⁹.

9-ethyl-9H-carbazole-3-d(3w)

Following the general procedure described above, the reaction of **1w** (0.2 mmol, 64 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3w** (18 mg, yield 46%, 88%D). ¹H NMR (500 MHz, CDCl₃) δ : 8.19–8.13 (m, 2H), 7.51 (dt, *J* = 7.1, 3.1 Hz, 2H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 6.2 Hz, 1H), 4.42 (q, *J* = 7.2 Hz, 2H), 1.48 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ : 139.95, 125.62, 125.51, 122.95, 120.44, 120.33, 118.75, 118.49 (t, *J* = 25.2 Hz), 108.44, 37.53, 13.83. Spectroscopic data in agreement with the literature⁵.

1,1'-biphenyl-4-d(3x)

Following the general procedure described above, the reaction of 1x (0.2 mmol, 53 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid 3x (11 mg, 36% yield, 97%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.61 (d, J = 7.9 Hz, 4H), 7.45 (dt, J = 7.8, 3.6 Hz, 4H), 7.36 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ : 141.26, 128.78, 128.67, 127.27, 126.99 (t, J = 25.2 Hz). Spectroscopic data in agreement with the literature⁴.

1,1'-biphenyl-3-d(3y)

Following the general procedure described above, the reaction of **1y** (0.2 mmol, 53 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3y** (9 mg, 30% yield, 80%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.66–7.59 (m, 4H), 7.46 (t, J = 7.8 Hz, 3H), 7.41–7.34 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ : 141.35, 128.88, 128.78, 128.59, 128.39, 127.29 (t, J = 12.6 Hz), 127.26. Spectroscopic data in agreement with the literature⁵.

1,1':3',1"-terphenyl-5'-d(**3**z)

Following the general procedure described above, the reaction of 1z (0.2 mmol, 69 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL)

to give a white solid 3z (12 mg, 26% yield, 98%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.83 (s, 1H), 7.67 (d, J = 7.9 Hz, 4H), 7.62–7.58 (m, 2H), 7.48 (t, J = 7.6 Hz, 4H), 7.39 (t, J = 7.4 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ : 141.82, 141.22, 128.85, 127.45, 126.21, 126.17 (t, J = 16.38 Hz). HRMS (ESI-TOF, m/z) Calcd for C₁₈H₁₄D (M+H)⁺: 232.1231, found: 232.1201.

1-(phenyl-4-d)naphthalene(3aa)

Following the general procedure described above, the reaction of **1aa** (0.2 mmol, 63 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a colorless oil **3aa** (31 mg, 76% yield, 99%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.91 (dd, J = 23.5, 8.4 Hz, 3H), 7.53 (d, J = 6.0 Hz, 6H), 7.48–7.43 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ : 140.87, 140.38, 133.90, 131.73, 130.19, 128.38, 128.27, 128.00, 127.75, 127.35, 127.05 (t, J = 25.2 Hz), 126.15, 126.14, 125.88, 125.50. HRMS (ESI-TOF, m/z) Calcd for C₁₆H₁₂D (M+H)⁺: 206.1074, found: 206.1051.

4-methyl-1,1'-biphenyl-4'-d(**3ab**)

Following the general procedure described above, the reaction of **1ab** (0.2 mmol, 56 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3ab** (13 mg, 38% yield, 97%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.60 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.28 (s, 2H), 2.41 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ : 141.19, 138.39, 137.05, 129.50,

128.63, 127.02, 127.00, 126.71 (t, J = 25.2 Hz), 21.13. Spectroscopic data in agreement with the literature⁹.

4-pentyl-1,1'-biphenyl-4'-d(**3ac**)

Following the general procedure described above, the reaction of **1ac** (0.2 mmol, 67 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3ac** (18 mg, 40% yield, 95%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.60 (d, J = 8.1 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.28 (s, 2H), 2.68–2.63 (m, 2H), 1.67 (p, J = 7.3 Hz, 2H), 1.37 (dt, J = 7.1, 3.9 Hz, 4H), 0.92 (t, J = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ : 142.14, 141.22, 138.57, 128.85, 128.61, 127.01, 126.68 (t, J = 25.2 Hz), 35.62, 31.60, 31.24, 22.61, 14.09. HRMS (ESI-TOF, m/z) Calcd for C₁₇H₂₀D (M+H)⁺: 226.1700, found: 226.1708.

1-phenoxybenzene-4-d(3ad)

Following the general procedure described above, the reaction of **1ad** (0.2 mmol, 57 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a colorless oil **3ad** (12 mg, 35% yield, 84%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.34 (dt, J = 7.6, 3.7 Hz, 4H), 7.11 (t, J = 7.4 Hz, 1H), 7.02 (d, J = 8.0 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ : 157.35, 129.85, 129.75, 123.33, 123.06 (t, J = 25.2 Hz), 119.00. Spectroscopic data in agreement with the literature⁴.

trimethyl(phenyl-4-d)silane(3ae)

Following the general procedure described above, the reaction of **1ae** (0.2 mmol, 53 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a colorless oil **3ae** (12 mg, 40% yield, 99%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.62 (d, J = 2.2 Hz, 4H), 0.32 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ : 141.69, 139.44, 133.95, 126.64 (t, J = 25.2 Hz), -0.94. Spectroscopic data in agreement with the literature¹⁰.

4-bromo-1,1'-biphenyl-4'-d(**3af**)

Following the general procedure described above, the reaction of **1af** (0.2 mmol, 69 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3af** (17 mg, 37% yield, 99%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.58–7.53 (m, 4H), 7.48–7.42 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ : 140.16, 140.03, 131.88, 128.81, 128.77, 127.38 (t, J = 25.2 Hz), 126.97, 121.55. Spectroscopic data in agreement with the literature⁴.

[1,1'-biphenyl]-4-carbonitrile-4'-d(**3ag**)

Following the general procedure described above, the reaction of **1ag** (0.2 mmol, 58 mg), Cs_2CO_3 (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3ag** (17 mg, 47% yield, 99%D) was obtained. ¹H NMR (500

MHz, CDCl₃) δ : 7.73 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ : 145.71, 139.21, 132.62, 129.14, 129.03, 128.42 (t, J = 23.94 Hz), 127.76, 127.25, 118.98, 110.93. HRMS (ESI-TOF, m/z) Calcd for C₁₃H₉DN (M+H)⁺: 181.0870, found: 181.0863.

phenyl(phenyl-4-d)methanone(3ah)

Following the general procedure described above, the reaction of **1ah** (0.2 mmol, 59 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3ah** (17 mg, 47% yield, 94%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.81 (d, *J* = 8.1 Hz, 4H), 7.62–7.57 (m, 1H), 7.53–7.46 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ : 196.81, 137.61, 132.45, 132.15 (t, *J* = 25.2 Hz), 130.09, 128.30, 128.19. Spectroscopic data in agreement with the literature¹¹.

9-(phenyl-4-d)-9H-carbazole(3ai)

Following the general procedure described above, the reaction of **1ai** (0.2 mmol, 74 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3ai** (13 mg, 27% yield, 95%D). ¹H NMR (500 MHz, CDCl₃) δ : 8.16 (d, J = 7.7 Hz, 2H), 7.64–7.56 (m, 4H), 7.45–7.40 (m, 4H), 7.30 (ddd, J = 8.0, 4.5, 3.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ : 140.92, 137.73, 129.78, 127.17 (t, J = 25.2 Hz), 125.93, 123.36, 120.31, 119.90, 109.78. Spectroscopic data in agreement with the literature⁵.

N,*N*-diphenylaniline-4-d(**3aj**)

Following the general procedure described above, the reaction of **1aj** (0.2 mmol, 72 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3aj** (20 mg, 41% yield, 95%D). ¹H NMR (500 MHz, CDCl₃) δ : 7.31–7.26 (m, 6H), 7.12 (d, *J* = 7.9 Hz, 6H), 7.04 (t, *J* = 7.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ : 147.73, 129.08, 128.97, 124.04, 122.54, 122.27 (t, *J* = 25.2 Hz). Spectroscopic data in agreement with the literature⁴.

1-phenyl-2-(phenyl-4-d)-1H-benzo[d]imidazole(3ak)

Following the general procedure described above, the reaction of **1ak** (0.2 mmol, 77 mg), Cs₂CO₃ (0.4 mmol, 131 mg) were reacted with deuterated acetonitrile (0.5 mL) to give a white solid **3ak** (16 mg, 30% yield, 86%D). ¹H NMR (500 MHz, DMSO- d_6) δ : 7.80 (d, J = 7.8 Hz, 1H), 7.60–7.51 (m, 5H), 7.43 (d, J = 7.0 Hz, 2H), 7.38–7.26 (m, 4H), 7.20 (d, J = 8.0 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ : 152.25, 142.68, 137.45, 136.83, 130.52, 130.09, 129.62, 129.37, 128.84, 128.73, 128.00, 123.91, 123.32, 119.72, 110.99. Spectroscopic data in agreement with the literature¹².

8. References

- 1. K. Ukai, M. Aoki, J. Takaya and N. Iwasawa, J. Am. Chem. Soc., 2006, **128**, 8706-8707.
- X. Wang, M.-H. Zhu, D. P. Schuman, D. Zhong, W.-Y. Wang, L.-Y. Wu, W. Liu, B. M. Stoltz and W.-B. Liu, *J. Am. Chem. Soc.*, 2018, 140, 10970-10974.

- (a) W. Hao, J. H. Harenberg, X. Wu, S. N. MacMillan and S. Lin, J. Am. Chem. Soc., 2018, 140, 3514-3517; (b) T. Liedtke, P. Spannring, L. Riccardi and A. Gansaeuer, Angew. Chem., Int. Ed., 2018, 57, 5006-5010; (c) G. A. Luinstra, J. Organomet. Chem., 1996, 517, 209-215; (d) R. B. Richrath, T. Olyschlaeger, S. Hildebrandt, D. G. Enny, G. D. Fianu, R. A. Flowers, II and A. Gansaeuer, Chem. Eur. J., 2018, 24, 6371-6379; (e) E. i. Negishi and T. Takahashi, Science of Synthesis, Thieme Chemistry, 2003.
- J. Dong, M. Yu, F. Yue, H. Song, Y. Liu, L. Wu, D. Si, C. Yang, G. Yang and Q. Wang, Org. Lett., 2022, 24, 2064-2068.
- 5. B.-D. Wu, J. Zhu, Q. Liu, L. Cao, H. Gu and J.-P. Lang, *Tetrahedron Lett.*, 2024, **144**, 155152.
- M. Wang, W. H. Pang, O. Y. Yuen, S. S. Ng and C. M. So, *Org. Lett.*, 2023, 25, 8429-8433.
- 7. S. Vanderheiden, B. Bulat, T. Zevaco, N. Jung and S. Braese, *Chem. Commun.*, 2011, **47**, 9063-9065.
- 8. R. Qu, S. Wan, X. Zhang, X. Wang, L. Xue, Q. Wang, G.-J. Cheng, L. Dai and Z. Lian, *Angew. Chem., Int. Ed.*, 2024, **136**, e202400645.
- 9. Z.-Y. Wang, X. Zhang, W.-Q. Chen, G.-D. Sun, X. Wang, L. Tan, H. Xu and H.-X. Dai, *Angew. Chem., Int. Ed.*, 2024, **63**, e202319773.
- C. Liu, Z. Chen, C. Su, X. Zhao, Q. Gao, G.-H. Ning, H. Zhu, W. Tang, K. Leng, W. Fu, B. Tian, X. Peng, J. Li, Q.-H. Xu, W. Zhou and K. P. Loh, *Nat. Commun.*, 2018, 9, 80-88.
- 11. Y. Yang, X. Gao, X. Zeng, J. Han and B. Xu, *Chem. Eur. J*, 2021, **27**, 1297-1300.
- B. Zhang, C. Qiu, S. Wang, H. Gao, K. Yu, Z. Zhang, X. Ling, W. Ou and C. Su, *Sci. Bull.*, 2021, 66, 562-569.

9. Spectroscopic Data

¹H NMR (500 MHz, CDCl₃) of compound **3a**.

¹³C NMR (126 MHz, CDCl₃) of compound **3a**.

	[133.50 [133.44 [127.95 [127.91 [127.83	L125.78							
170 160 150	140 130 12	20 110 100	90 80 fl (ppm)	 60	50 40) 30	20	10	 0

¹H NMR (500 MHz, CDCl₃) of compound **3b**.

$^{13}\mathrm{C}$ NMR (126 MHz, CDCl_3) of compound **3b**.

S28

¹H NMR (500 MHz, CDCl₃) of compound **3c**.

¹H NMR (500 MHz, CDCl₃) of compound **3d**.

¹³C NMR (126 MHz, CDCl₃) of compound **3d**.

¹H NMR (500 MHz, CDCl₃) of compound **3e**.

¹³C NMR (126 MHz, CDCl₃) of compound **3e**.

¹H NMR (500 MHz, CDCl₃) of compound **3f**.

¹H NMR (500 MHz, CDCl₃) of compound **3g**.

¹³C NMR (126 MHz, CDCl₃) of compound **3g**.

¹H NMR (500 MHz, CDCl₃) of compound **3i**.

¹³C NMR (126 MHz, CDCl₃) of compound **3i**.

¹H NMR (500 MHz, CDCl₃) of compound **3**l.

¹³C NMR (126 MHz, CDCl₃) of compound **3l**.

¹H NMR (500 MHz, CDCl₃) of compound **3m**.

¹³C NMR (126 MHz, CDCl₃) of compound **3m**.

¹H NMR (500 MHz, CDCl₃) of compound **3n**.

¹³C NMR (126 MHz, CDCl₃) of compound **3n**.

¹H NMR (500 MHz, CDCl₃) of compound **30**.

¹³C NMR (126 MHz, CDCl₃) of compound **30**.

¹H NMR (500 MHz, CDCl₃) of compound **3p**.

¹³C NMR (126 MHz, CDCl₃) of compound **3p**.

^1H NMR (500 MHz, CDCl₃) of compound $\boldsymbol{3q}.$

¹³C NMR (126 MHz, CDCl₃) of compound **3q**.

110 100 90 80 fl (ppm) ¹H NMR (500 MHz, CDCl₃) of compound **3r**.

¹³C NMR (126 MHz, CDCl₃) of compound **3r**.

¹H NMR (500 MHz, CDCl₃) of compound **3s**.

¹³C NMR (126 MHz, CDCl₃) of compound **3s**.

¹H NMR (500 MHz, CDCl₃) of compound **3t**.

¹³C NMR (126 MHz, CDCl₃) of compound **3t**.

¹H NMR (500 MHz, CDCl₃) of compound **3u**.

¹³C NMR (126 MHz, CDCl₃) of compound **3u**.

¹H NMR (500 MHz, CDCl₃) of compound **3v**.

¹H NMR (500 MHz, CDCl₃) of compound **3w**.

¹³C NMR (126 MHz, CDCl₃) of compound **3w**.

90 80 f1 (ppm)

¹³C NMR (126 MHz, CDCl₃) of compound **3**y.

¹H NMR (500 MHz, CDCl₃) of compound **3z**.

¹³C NMR (126 MHz, CDCl₃) of compound **3z**.

¹H NMR (500 MHz, CDCl₃) of compound **3aa**.

¹³C NMR (126 MHz, CDCl₃) of compound **3aa**.

¹³C NMR (126 MHz, CDCl₃) of compound **3ab**.

¹H NMR (500 MHz, CDCl₃) of compound **3ae**.

S57

90 80 fl (ppm)

¹H NMR (500 MHz, CDCl₃) of compound **3aj**.

¹³C NMR (126 MHz, CDCl₃) of compound **3aj**.

3	00	5	-	511	5	N	5	
5	õ	6	õ	LÔ.	÷	C)	0	
		· ·						
5	6	∞	4	0	0	0	2	
4	0	0	0	C1	2	0	0	
		-	-		-	-		
	-	-	- L-		1	_	_	
		-	~	_	4	-		

¹H NMR (500 MHz, DMSO- d_6) of compound **3ak**.

¹³C NMR (126 MHz, DMSO- d_6) of compound **3ak**.

^1H NMR (600 MHz, CDCl₃) of compound **3am**.

¹³C NMR (151 MHz, CDCl₃) of compound **3am**.

S64

^{13}C NMR (151 MHz, CDCl_3) of compound Cat 5.

-112.05

-65.95

¹³C NMR (151 MHz, CDCl₃) of compound Cat 11.

