Supplementary Information

Ketenes as dienophiles in *aza*-Diels-Alder reactions with dicyanohydrazones for access to pyridazin-3(2*H*)-ones

Chen Zhu,^{‡,a} Jing Zhang,^{‡,a} Jiaxin Yang,^a Xinxin Li,^a Xinyu Wang,^a Hu Shi,^b Hui Jin,^{*,a} and Lixin Zhang^{*,a}

^aInstitute of Functional Molecules, Shenyang University of Chemical Technology, National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang 110142, People's Republic of China. E-mail: hjin@syuct.edu.cn, ^bSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China.

[‡]These authors contributed equally to this work.

*Corresponding Authors. E-mail: hjin@syuct.edu.cn; zhanglixin@syuct.edu.cn.

Contents

1. General information	S 1
2. Preparation and characterization of pyridazin- $3(2H)$ -ones 3	S 1
3. Control experiments	S7
4. Preliminary exploration for the synthesis of 3-alkyl/unsubstituted 2-pyridones	S9
5. Computational studies	S 10
6. X-ray crystal structure of 3e (CCDC 2379960)	S 19
7. Copies of ¹ H and ¹³ C NMR spectra	S21
8. Copies of MS spectra	S47
9. References	S55

1. General information

Unless stated otherwise, reagents were used directly as obtained commercially. Reactions were monitored by TLC using silica gel GF254 plates. Flash column chromatography was performed using silica gel. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra were recorded on Bruker AV III 400MHz or 600MHz NMR spectrometers. Chemical shifts are reported in ppm using tetramethylsilane or the residual solvent peak as a reference. Infrared spectra were recorded on a Bruker Tensor 27 FT-IR. HRMS were recorded on a Waters Xevo G2-XS TOF mass spectrometer. Computational studies were carried out with Spartan'24 and Gaussian 16 platform. Single crystal X-ray diffraction data was collected using a Bruker D8 Quest diffractometer (Cu K α , λ = 1.54178 Å).

Dicyanohydrazones^{[1],} and aminomethylene malononitriles^[2] were prepared according to previously reported procedures.

2. Preparation and characterization of pyridazin-3(2H)-ones 3

General procedure

To a stirred solution of **1** (0.20 mmol, 1 equiv.) and acid chloride **2** (0.24 mmol, 1.2 equiv.) in dichloromethane (2 mL) were added DIPEA (0.40 mmol, 2 equiv.). The reaction mixture was stirred for 1 h at room temperature and then extracted with ethyl acetate. The combined organic layer was washed with saturated brine, dried over Na_2SO_4 , and concentrated in vacuo to give the crude product which was purified by column chromatography (petroleum ether:ethyl acetate = 2:1) to afford the desired product **3**.

4-amino-6-oxo-1-phenyl-1,6-dihydropyridazine-3-carbonitrile (3a)

Following the general procedure with **1a** (34.0 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3a** was obtained as a faint yellow solid (39.0 mg, 92% yield). **Gram scale**: Following the general procedure with **1a** (1.35 g, 8.00 mmol) acetyl chloride (752mg, 9.60 mmol) and DIPEA (2.06g, 16.00 mmol), **3a** was obtained as a faint yellow solid (1.58 g, 93% yield); ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.51 –7.46 (m,4H), 7.46 –7.41 (m, 1H), 7.00 (s, 2H), 5.83 (s, 1H) ppm; ¹³C NMR (151 MHz, DMSO) δ 159.6, 149.3, 141.1, 129.0, 128.8, 126.2, 116.9, 113.7, 98.8 ppm; **IR** (KBr): v = 3400, 3368, 3193, 2238, 1660, 1584, 1331, 1200, 832, 748, 683 cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+H]⁺ Calcd for C₁₁H₉N₄O 213.0776, found 213.0779.

4-amino-6-oxo-1-(o-tolyl)-1,6-dihydropyridazine-3-carbonitrile (3b)

Following the general procedure with **1b** (36.6 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3b** was obtained as a faint yellow solid (23.5 mg, 52% yield); ¹**H NMR** (600 MHz, CDCl₃) δ 7.40 – 7.36 (m, 1H), 7.34 – 7.30 (m, 2H), 7.22-7.19 (m, 1H), 6.07 (s, 1H), 4.92 (s, 2H), 2.16 (s, 3H) ppm; ¹³**C NMR** (151 MHz, DMSO-*d*₆) δ 159.6, 149.5, 140.6, 135.2, 131.03, 129.6, 127.8, 127.1, 116.8, 113.6, 98.7, 17.3 ppm; **IR** (KBr): v = 3418, 3175, 2921, 1666, 1618, 1330, 1208, 830, 748, 620 cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+H]⁺ Calcd for C₁₂H₁₁N₄O 227.0933, found 227.0936.

4-amino-6-oxo-1-(m-tolyl)-1,6-dihydropyridazine-3-carbonitrile (3c)

Following the general procedure with **1c** (36.6 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3c** was obtained as a faint yellow solid (26.2 mg, 58% yield); ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.39 –7.33 (m,1H), 7.30 –7.22 (m, 3H), 6.99 (s, 2H), 5.82 (s, 1H), 2.35 (s, 3H) ppm; ¹³**C NMR** (151 MHz, DMSO) δ 159.6, 149.3, 141.1, 138.6, 129.5, 128.8, 126.6, 123.4, 116.7, 113.7, 98.8, 21.2 ppm; **IR** (KBr): v = 3391, 3200, 1643, 1615, 1443, 1208, 1199, 861, 748, 620 cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+H]⁺ Calcd for C₁₂H₁₁N₄O 227.0933, found 227.0933.

4-amino-6-oxo-1-(p-tolyl)-1,6-dihydropyridazine-3-carbonitrile (3d)

NH₂

Following the general procedure with **1d** (36.6 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3d** was obtained as a faint yellow solid (27.6 mg, 61% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.37 (m, 2H), 7.28 –7.27 (m,2H), 6.11 (s, 1H), 4.85 (s, 2H), 2.40 (s, 3H) ppm; ¹³C NMR (151 MHz, DMSO-*d*₆) δ 159.6, 149.3, 138.7, 138.4, 129.4, 126.0, 116.7, 113.79, 98.8, 21.1 ppm; **IR** (KBr): v = 3406, 3336, 3208, 2239, 1629, 1330, 1198, 822, 638 cm⁻¹; **HRMS** (ESI-QTOF) *m*/*z* [M+H]⁺ Calcd for C₁₂H₁₁N₄O 227.0933, found 227.0936.

4-amino-1-(4-(tert-butyl)phenyl)-6-oxo-1,6-dihydropyridazine-3-carbonitrile (3e)

Following the general procedure with **1e** (45.0 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3e** was obtained as a faint yellow solid (38.6 mg, 72% yield); ¹**H NMR** (600 MHz, CDCl₃) δ 7.50-7.41 (m, 4H), 7.42 (d, *J* = 8.7 Hz, 2H), 6.06 (s, 1H), 4.98 (s, 2H), 1.34 (s, 9H) ppm; ¹³**C NMR** (151 MHz, CDCl₃) δ 160.2, 152.2, 147.2, 137.8, 125.9, 124.8, 116.4, 112.4, 101.2, 34.81, 31.2 ppm; **IR** (KBr): v = 3352, 3191, 2964, 1621, 1454, 1337, 1207, 839, 752 cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+H]⁺ Calcd for C₁₅H₁₇N₄O 269.1402, found 269.1409.

4-amino-1-(4-methoxyphenyl)-6-oxo-1,6-dihydropyridazine-3-carbonitrile (3f)

Following the general procedure with **1f** (40.0 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3f** was obtained as a faint yellow solid (37.8 mg, 78% yield); ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.38 (d, *J* = 9.1 Hz, 2H), 7.00 (d, *J* = 9.1 Hz, 2H), 6.95 (s, 2H), 5.80 (s, 1H), 3.79 (s, 3H) ppm; ¹³**C NMR** (151 MHz, DMSO) δ 158.6, 158.3, 148.2, 133.0, 126.4, 115.4, 113.0, 112.7, 97.7, 54.8 ppm; **IR** (KBr): v = 3402, 3327, 3182, 2920, 2234, 1660, 1616, 1509, 1242, 1022, 829 cm⁻¹; **HRMS** (ESI-QTOF) *m*/*z* [M+H]⁺ Calcd for C₁₂H₁₁N₄O₂ 243.0882, found 243.0886.

4-amino-1-(2-fluorophenyl)-6-oxo-1,6-dihydropyridazine-3-carbonitrile (3g)

Following the general procedure with **1g** (37.6 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3g** was obtained as a faint yellow solid (31.3 mg, 68% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.50-7.44 (m, 1H), 7.42 – 7.36 (m, 1H), 7.3 - 7.27 (m, 1H), 7.25 -7.21 (m, 1H), 6.06 (s, 1H), 4.88 (s, 2H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 158.6 (d, J = 256.6 Hz), 131.3 (d, J = 7.8 Hz), 128.1 (d, J = 13.0 Hz), 124.7 (d, J = 3.5 Hz), 116.7 (d, J = 19.5 Hz), 156.1, 147.2, 128.3, 117.3, 112.1, 100.9 ppm; IR (KBr): v = 3414, 3173, 1672, 1622, 1494, 1228, 1102, 1003, 829, 756, 621 cm⁻¹; HRMS (ESI-QTOF) *m/z* [M+H]⁺ Calcd for C₁₁H₈N₄OF 231.0682, found 231.0685.

4-amino-1-(3-fluorophenyl)-6-oxo-1,6-dihydropyridazine-3-carbonitrile (3h)

Following the general procedure with **1h** (37.6 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3h** was obtained as a faint yellow solid (33.1 mg, 72% yield); ¹**H NMR** (600 MHz, DMSO- d_6) δ 7.57 –7.50 (m, 1H), 7.47 – 7.42 (m, 1H), 7.40 –7.36 (m, 1H), 7.33 – 7.28 (m, 1H), 7.06 (s, 2H), 5.83 (s, 1H) ppm; ¹³**C NMR** (151 MHz, DMSO)

δ 161.9 (d, J = 244.1 Hz), 142.3 (d, J = 11.1 Hz), 130.7 (d, J = 9.0 Hz), 115.8 (d, J = 21.3 Hz), 113.6 (d, J = 13.7 Hz).159.4, 149.3, 122.4, 117.3, 113.8, 98.7 ppm; **IR** (KBr): v = 3397, 3214, 2242, 1662, 1589, 1484, 1238, 827, 685 cm⁻¹; **HRMS** (ESI-QTOF) m/z [M+H]⁺ Calcd for C₁₁H₈N₄OF 231.0682, found 231.0685.

4-amino-1-(4-fluorophenyl)-6-oxo-1,6-dihydropyridazine-3-carbonitrile (3i)

Following the general procedure with **1i** (37.6 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3i** was obtained as a faint yellow solid (37.7 mg, 82% yield); ¹H NMR (600 MHz, DMSO-*d*₆) (δ , ppm): 7.55 –7.50 (m, 2H), 7.32 –7.30 (m, 2H), 7.02 (s, 2H), 5.82 (s, 1H) ppm; ¹³C NMR (151 MHz, DMSO-*d*₆) δ 161.8 (d, *J* = 245.3 Hz), 159.6, 149.4, 137.4 (d, *J* = 3.4 Hz), 128.5 (d, *J* = 8.4 Hz), 117.0, 115.9 (d, *J* = 22.7 Hz), 113.7, 98.8 ; **IR** (KBr): v = 3406, 3337, 3196, 2238, 1660, 1501, 1332, 1226, 834, 632 cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+H]⁺ Calcd for C₁₁H₈N₄OF 231.0682, found 231.0686.

4-amino-1-(4-chlorophenyl)-6-oxo-1,6-dihydropyridazine-3-carbonitrile (3j)

Following the general procedure with **1j** (40.8 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3j** was obtained as a faint yellow solid (44.3 mg, 90% yield); ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.63 (s, 1H), 7.53 – 7.48 (m, 3H), 7.06 (s, 2H), 5.83 (s, 1H) ppm; ¹³C NMR (151 MHz, DMSO) δ 159.5, 149.4, 139.9, 133.3, 129.1, 128.0, 117.3, 113.6, 98.7 ppm; IR (KBr): v = 3402, 3330, 3200, 2239, 1659, 1583, 1471, 1331, 1198, 1027, 836, 682 cm⁻¹; HRMS (ESI-QTOF) *m/z* [M+H]⁺ Calcd for C₁₁H₈N₄OCI 247.0387, found 247.0389.

4-amino-1-(4-bromophenyl)-6-oxo-1,6-dihydropyridazine-3-carbonitrile (3k)

Following the general procedure with **1k** (49.6 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3k** was obtained as a faint yellow solid (49.9 mg, 86% yield); ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.67 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.03 (s, 2H), 5.80 (s, 1H) ppm; ¹³**C NMR** (151 MHz, DMSO) δ 159.46, 149.40, 140.34, 132.03, 128.30, 121.76, 117.32, 113.64, 98.71 ppm; **IR** (KBr): v = 3407, 3332, 3221, 1671, 1458, 1331, 1196, 999, 827, 711cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+H]⁺ Calcd for C₁₁H₈N₄OBr 290.9881, found 290.9879.

4-amino-6-oxo-1-(4-(trifluoromethyl)phenyl)-1,6-dihydropyridazine-3-carbonitrile (3I)

Following the general procedure with **1I** (47.6 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3I** was obtained as a faint yellow solid (53.2 mg, 95% yield);¹**H NMR** (600 MHz, DMSO-*d*₆) (δ , ppm): 7.82 (s, 4H), 7.11 (s, 2H), 5.85 (s, 1H) ppm; ¹³**C NMR** (151 MHz, DMSO) δ 159.4, 149.4, 144.2, 128.9 (q, *J* = 32.1 Hz), 127.0, 126.2 (q, *J* = 3.8 Hz), 124.3 (d, *J* = 272.0 Hz), 117.8, 113.6, 98.7 ppm; **IR** (KBr): v = 3404, 3332, 3220, 1671, 1590, 1322, 1109, 1068, 844 cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+H]⁺ Calcd for C₁₁H₈N₄OF 281.0650, found 281.0656 C₁₂H₈N₄OF₃

4-amino-1-(4-nitrophenyl)-6-oxo-1,6-dihydropyridazine-3-carbonitrile (3m)

Following the general procedure with **1m** (43.0 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3m** was obtained as a faint yellow solid (47.8 mg, 93% yield); ¹**H NMR** (600 MHz, DMSO-*d*₆) (δ , ppm): 8.33 (d, *J* = 9.0 Hz, 2H), 7.85 (d, *J* = 9.1 Hz, 2H), 7.15 (s, 2H), 5.84 (s, 1H) ppm; ¹³**C NMR** (151 MHz, DMSO) δ 159.3, 149.3, 146.9, 145.9, 127.0, 124.4, 118.2, 113.4, 98.5 ppm; **IR** (KBr): v = 3434, 3338, 3218, 2234, 1690, 1652, 1526, 1350, 1192, 855, 707 cm⁻¹; **HRMS** (ESI-QTOF) *m*/*z* [M+H]⁺ Calcd for C₁₁H₈N₅O₃ 258.0627, found 258.0631.

4-amino-1-(4-cyanophenyl)-6-oxo-1,6-dihydropyridazine-3-carbonitrile (3n)

Following the general procedure with **1n** (39.0 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3n** was obtained as a faint yellow solid (45.1 mg, 95% yield); ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.98 (d, *J* = 8.5 Hz, 2H), 7.76 (d, *J* = 8.4 Hz, 2H), 7.12 (s, 2H), 5.83 (s, 1H) ppm; ¹³**C NMR** (151 MHz, DMSO) δ 159.3, 149.3, 144.5, 133.3, 126.9, 118.7, 118.0, 113.5, 111.2, 98.6 ppm; **IR** (KBr): v = 3388, 3321, 3215, 2921, 2236, 1632, 1590, 1451, 1330, 1196, 835, 737 cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+H]⁺ Calcd for C₁₂H₈N₅O 238.0729, found 238.0731.

4-amino-1-(naphthalen-2-yl)-6-oxo-1,6-dihydropyridazine-3-carbonitrile (30)

Following the general procedure with **1o** (44.0 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3o** was obtained as a faint yellow solid (37.2 mg, 71% yield); ¹**H NMR** (400 MHz, DMSO-d₆) δ 8.14 – 7.93 (m, 4H), 7.65 – 7.53 (m, 3H), 7.05 (s, 2H), 5.88 (s, 1H) ppm; ¹³**C NMR** (151 MHz, CDCl₃) δ 159.77, 149.45, 138.77, 132.93, 132.70, 128.68, 128.60, 128.11, 127.48, 127.29, 124.70, 124.36, 117.15, 113.77, 98.86 ppm; **IR** (KBr): v = 3417, 3332, 3247, 1672, 1588, 1329, 1194, 847, 737 cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+Na]⁺ Calcd for C₁₅H₁₀N₄ONa 285.0752, found 285.0756.

4-amino-5-methyl-6-oxo-1-phenyl-1,6-dihydropyridazine-3-carbonitrile (3p)

Following the general procedure with **1a** (34.0 mg, 0.20 mmol), propionyl chloride (22.2 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3p** was obtained as a faint yellow solid (33.0 mg, 73% yield); ¹H NMR (400 MHz, DMSO-d₆) δ 7.52 – 7.42 (m, 5H), 6.63 (s, 2H), 1.93 (s, 3H) ppm;¹³C NMR (151 MHz, DMSO) δ 160.05, 145.28, 141.71, 129.07, 128.83, 126.38, 116.66, 114.11, 108.59, 10.33 ppm; **IR** (KBr): v = 3431, 3344, 3213, 1625, 1591, 1205, 763, 695 cm⁻¹; HRMS (ESI-QTOF) *m/z* [M+H]⁺ Calcd for C₁₂H₁N₄O 227.0933, found 227.0934.

4-amino-5-ethyl-6-oxo-1-phenyl-1,6-dihydropyridazine-3-carbonitrile (3q)

Following the general procedure with **1a** (34.0 mg, 0.20 mmol), butyryl chloride (25.6 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3q** was obtained as a faint yellow solid (38.9 mg, 81% yield); ¹H NMR (400 MHz, DMSO-d₆) δ 7.52 – 7.40 (m, 5H), 6.65 (s, 2H), 2.51 – 2.43 (m, 2H), 0.98 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (101 MHz, DMSO) δ 159.6, 144.5, 141.6, 129.0, 128.8, 126.3, 116.9, 114.1, 114.1, 17.3, 11.4 ppm; **IR** (KBr): v = 3446, 3328, 3214, 2963, 2237, 1619, 1422, 1204, 758, 699 cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+H]⁺ Calcd for C₁₃H₁₃N₄O 241.1089, found 241.1093.

4-amino-6-oxo-1-phenyl-5-propyl-1,6-dihydropyridazine-3-carbonitrile (3r)

Following the general procedure with **1a** (34.0 mg, 0.20 mmol), valeryl chloride (28.9 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3r** was obtained as a faint yellow solid (31.5 mg, 62% yield); ¹**H NMR** (400 MHz, DMSO-d₆) δ 7.73 – 7.28 (m, 5H), 6.64 (s, 2H), 2.48 – 2.31 (m, 2H), 1.50 – 1.32 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, DMSO) δ 159.8, 144.9, 141.6, 129.0, 128.7, 126.3, 116.9, 114.1, 112.8, 25.8, 19.9, 14.3 ppm; **IR** (KBr): v =

3448, 3325, 3210, 2962, 2233, 1624, 1439, 1205, 772, 700 cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+H]⁺ Calcd for C₁₄H₁₄N₄ONa 227.1065, found 227.1061.

4-amino-5-benzyl-6-oxo-1-phenyl-1,6-dihydropyridazine-3-carbonitrile (3s)

Following the general procedure with **1a** (34.0 mg, 0.20 mmol), hydrocinnamoyl chloride (40.5 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3s** was obtained as a faint yellow solid (51.4 mg, 85% yield); ¹H NMR (400 MHz, DMSO-d₆) δ 7.54 – 7.39 (m, 5H), 7.33 – 7.12 (m, 5H), 6.80 (s, 2H), 3.84 (s, 2H) ppm; ¹³C NMR (101 MHz, DMSO) δ 159.9, 145.3, 141.5, 139.0, 129.0, 128.8, 128.6, 126.5, 126.3, 117.1, 114.0, 111.4, 29.1 ppm; **IR (KBr):** v = 3401, 3339, 3226, 2238, 1660, 1630, 1587, 1487, 1201,933, 768, 699 cm⁻¹; HRMS (ESI-QTOF) *m/z* [M+H]⁺ Calcd for C₁₈H₁₅N₄O 303.1246, found 303.1248.

4-amino-1-(4-chlorophenyl)-5-methyl-6-oxo-1,6-dihydropyridazine-3-carbonitrile (3t)

Following the general procedure with **1j** (40.8 mg, 0.20 mmol), propionyl chloride (22.2 mg, 0.24 mmol) and DIPEA (51.7 mg, 0.40 mmol), **3t** was obtained as a faint yellow solid (37.4 mg, 72% yield); ¹H NMR (400 MHz, DMSO-d₆) δ 7.55 (s, 4H), 6.68 (s, 2H), 1.92 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 159.93, 45.3, 140.4, 133.2, 129.0, 128.1, 116.9, 114.0, 108.4, 10.3 ppm; **IR** (KBr): v = 3414, 3355, 3251, 2241, 1664, 1601, 1513, 1407,1355, 1205, 1093, 831 cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+H]⁺ Calcd for C₁₂H₁₀N₄OCI 261.0543, found 261.0541.

3. Control experiments

3.1 Preparation and characterization of 4a and 4b

To a stirred solution of **1** (0.20 mmol, 1 equiv.) and acid chloride **2** (0.24 mmol, 1.2 equiv.) in dichloromethane (2 mL) were added DMAP (0.40 mmol, 2equiv.). The reaction mixture was stirred for 1h at room temperature and then extracted with ethyl acetate. The combined organic layer was washed with saturated brine, dried over Na_2SO_4 , and concentrated in vacuo to give the crude product which was purified by column chromatography (petroleum ether:ethyl acetate = 4:1) to afford the desired product **4**.

N-acetyl-N-phenylcarbonohydrazonoyl dicyanide (4a)

Following the general procedure with **1a** (34.0 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DMAP (48.9 mg, 0.40 mmol), **4a** was obtained as a faint yellow solid (31.8 mg, 75% yield); ¹**H NMR** (400 MHz, DMSO-d₆) δ 7.78 – 6.96 (m, 5H), 2.49 (s, 3H); ¹³**C NMR** (101 MHz, DMSO) δ 172.7, 134.9, 132.3, 129.9, 129.8, 113.9, 107.4, 90.7, 21.7 ppm; **IR** (KBr): v = 3450, 3010, 2228, 1852, 1730, 1590, 1490, 1365, 1240, 1164, 953, 720 cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+Na]⁺ Calcd for C₁₁H₈N₄O 235.0596, found 235.1392.

N-acetyl-N-(4-chlorophenyl)carbonohydrazonoyl dicyanide (4b)

Following the general procedure with **1j** (34.0 mg, 0.20 mmol), acetyl chloride (18.8 mg, 0.24 mmol) and DMAP (48.9 mg, 0.40 mmol), **4b** was obtained as a faint yellow solid (38.4 mg, 78% yield); ¹**H NMR** (400 MHz, DMSO-d₆) δ 7.65 (d, *J* = 8.6 Hz, 2H), 7.50 (d, *J* = 8.6 Hz, 2H), 2.48 (s, 3H); ¹³**C NMR** (101 MHz, DMSO) δ 172.7, 137.0, 133.7, 132.0, 129.9, 113.8, 107.6, 91.1, 21.7 ppm; **IR** (KBr): v = 3455, 2983, 2945, 2230, 1736, 1531, 1487, 1356, 1225, 1124, 905, 836 cm⁻¹; **HRMS** (ESI-QTOF) *m*/*z* [M+Na]⁺ Calcd for C₁₁H₈N₄OCI 247.0384, found 247.1301.

3.2 Preparation and characterization of 4c [3]

To a stirred solution of **1j** (1.00 mmol, 1 equiv.) and KOH(1.00 mmol, 1 equiv.) in methanol (15 mL). The reaction mixture was stirred for 3h at room temperature, the methanol is then largely distilled off in a vacuum, ether is added to the residue, and the formed potassium salt is filtered off with suction and dried at 60-90°C.in a vacuum. (0.20 mmol) of dry potassium salt of potassium 1-(4-chlorophenyl)-2-(dicyanomethylene)hydrazin-1-ide is suspended in 10 ml of dry acetonitrile, and a solution of (0.24 mmol) of propionyl chloride in 10 ml of acetonitrile is added dropwise at room temperature, with stirring, The mixture is stirred for 3 hours at room temperature and then heated for 5 hours to 50°C. The solvent is distilled off in a vacuum, and the residue is taken up with ether; filtration is effected and concentration is again carried out.

N-(4-chlorophenyl)-N-propionylcarbonohydrazonoyl dicyanide (4c)

Following the general procedure with **1p** (1.00 mmol, 1 equiv.) ,KOH(1.00 mmol, 1 equiv.) and (0.24 mmol) of propionyl chloride, **4c** was obtained as a faint yellow solid of 65% yield; ¹H **NMR** (400 MHz, DMSO-d₆) δ 7.65 (d, *J* = 8.7 Hz, 2H), 7.50 (d, *J* = 8.7 Hz, 2H), 2.89 (q, *J* = 7.3 Hz, 2H), 1.10 (t, *J* = 7.3 Hz, 3H); ¹³C **NMR** (101 MHz, DMSO) δ 175.7, 137.0, 133.9, 132.0, 129.9, 113.8, 107.6, 90.8, 26.7, 8.7 ppm; **IR** (KBr): v = 3452, 3069, 2231, 1736, 1522, 1485, 1371, 1244, 1173, 1015, 944, 905, 731 cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+Na]⁺ Calcd for C₁₂H₉N₄ONaCl 283.0365, found 283.0363.

4. Preliminary exploration for the synthesis of 3-alkyl/unsubstituted 2-pyridones

4.1 Optimization of the reaction conditions

entry	2	base	solvent	7 , yield (%) ^b	8, yield (%) ^ь
1	2b	DIPEA	CH ₂ Cl ₂	7b , 65	8b , 25
2	2b	Et₃N	CH ₂ Cl ₂	7b , 43	8b , 48
3	2b	DBU	CH_2CI_2	7b , 78	8b , 0
4	2b	КОН	CH ₂ Cl ₂	7b , 60	8b , 0
5	2b	Et₃N	DMF	7b , 73	8b , 5
6	2b	Et ₃ N	PhCl	7b , 75	8b , 12
7	2b	Et ₃ N	ACN	7b , 72	8b , 10
8	2b	Et₃N	Acetone	7b , 80	8b , 8
9	2b	Et ₃ N	Toluene	7b , 75	8b , 6
10	2a	Et₃N	CH_2CI_2	7a , 82	8a , 0

^a Unless otherwise specified, the reactions were conducted using **6** (0.20 mmol), **2** (0.24 mmol), base (0.40 mmol) in 3 mL of solvent at 25 $^{\circ}$ C for 1 hour. ^b Isolated yields based on **6**.

4.2 Characterization of compounds 7

N-(2,2-dicyanovinyl)-N-phenylacetamide (7a)

¹**H NMR** (400 MHz, DMSO-d6) δ 8.65 (s, 1H), 7.99 – 7.06 (m, 5H), 2.12 (s, 3H); ¹³**C NMR** (101 MHz, DMSO) δ 170.4, 153.8, 136.2, 131.4, 130.3, 129.6, 115.7, 110.5, 62.1, 23.0 ppm; **IR** (KBr): v = 3416, 3052, 2225, 1956, 1724, 1606, 1495, 1366, 1343, 1251, 1154, 983, 692 cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+Na]⁺ Calcd for C₁₂H₉N₃ONa 234.0643, found 234.0643.

N-(2,2-dicyanovinyl)-N-phenylpropionamide (7b)

¹**H NMR** (400 MHz, DMSO-d₆) δ 8.68 (s, 1H), 7.73 – 6.90 (m, 5H), 2.32 (q, J = 7.1 Hz, 2H), 0.98 (t, J = 7.2 Hz, 3H); ¹³**C NMR** (101 MHz, DMSO) δ 173.5, 153.2, 135.8, 131.4, 130.3, 129.8, 115.7, 110.5, 61.9, 28.2, 8.7 ppm; **IR** (KBr): v = 3444, 3050, 2956, 2944, 2228, 1735, 1601, 1585, 1492, 1344, 1206, 1156, 1119, 1062, 968, 705 cm⁻¹; **HRMS** (ESI-QTOF) *m/z* [M+Na]⁺ Calcd for C₁₃H₁₁N₃ONa 248.0800, found 248.1217.

4.3 Characterization of compound 8b

4-amino-5-methyl-6-oxo-1-phenyl-1,6-dihydropyridine-3-carbonitrile

¹H NMR (400 MHz, DMSO-d₆) δ 8.26 (s, 1H), 7.59 – 7.21 (m, 5H), 6.26 (s, 2H), 1.85 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 161.1, 150.5, 144.9, 140.7, 129.2, 128.6, 127.5, 116.2, 99.9, 84.2, 10.6 ppm; IR (KBr): v = 3329, 2922, 2852, 2220, 1673, 1456, 1377, 1261 cm⁻¹; HRMS (ESI-QTOF) m/z [M+H]⁺ Calcd for C₁₃H₁₂N₃O 226.0980, found 226.0982.

5. Computational studies

5.1 FMO maps and orbital energies of tautomerized dicyanohydrazones and ketene 2"

The calculations were performed using DFT (density functional theory) computations employing the ω B97X-D method with 6-311+G* basis set with Spartan'24 (Wavefunction, Inc.: Irvine, CA, USA, 2024) platform.

Molecule	0540	The sum a dum anni sa	4116/200	15)	NIN 4D	Cating at a s	I MILLION
Moleculi	2 QSAR	Thermodynamics	ΔHJ (298	.15)	NIVIK	Esumates	Oundes
📩 r	Name:						
📩 F	ormula: C ₁₃ ł	H14N4					
📩 E	HOMO: -8.	16 eV	*	ΕL	JMO: -0.6	3 eV	
🔬 (😓 Conformers: 3		2	We	ight: 226.2	83 amu	
📩 F	Noint Group: C1		📩 Mass: 226.122 amu				
📩 ι	ωB97X-D/6-3	B1G*//N/A Energy: -72	22.464240	au			
2	Opt. Energy:	Not Available					
📩 (Dipole Mom	ent: 5.46 debye, 🔲 🛛	isplay Dip	ole V	ector		
	<u>@</u> v	Vikipedia			Cher	nSpider	

Figure S1 Calculated molecule properties of 1e"

Figure S3 LUMO map and orbital energy of 1e"

Molecule	QSAR	Thermodynamics	ΔHf(298	.15)	NMR	Estimates	Utilities
۹ 📩	Jame:						
📩 F	ormula: C10	HsF3N4					
📩 Е	HOMO: -8.	76 eV		E	LUMO: -1.1	8 eV	
📩 🤇	Conformers:	3	*	W	eight: 238.1	73 amu	
📩 P	oint Group:	C1	2	М	ass: 238.04	7 amu	
ي 😓	0B97X-D/6-3	31G*//N/A Energy: -90	02.184998	au			
🔬 o	Opt. Energy:	Not Available					
📩 C	Dipole Mom	ent: 4.36 debye, 🗌 🛙	Display Dip	ole	Vector		
) v	Vikipedia			Cher	nSpider	

Figure S4 Calculated molecule properties of 1I'

Figure S6 LUMO map and orbital energy of 1I"

Molecule	QSAR Thermodynamic	5 ΔHf(298	1.15)	NMR	Estimates	Utilities	
📩 N	lame: ketene						
📩 F	ormula: C2H2O						
📩 E	HOMO: -8.68 eV	2	EL	UMO: 1.28	eV		
📩 c	onformers: 1	2	We	ight: 42.03	8 amu		
📩 P	🎭 Point Group: C2v			📩 Mass: 42.011 amu			
🔬 μ	B97X-D/6-31G*//ωB97X-D/6-3	811+G** Ener	gy: -1	52.543373	au		
📩 ω	B97X-D/6-311+G** Opt. Ener <u>c</u>	y: -152.5921	51 au				
📩 D	ipole Moment: 1.46 debye, 🗌) Display Dip	ole V	ector			
	🧾 Wikipedia			Cher	nSpider		

Figure S7 Calculated molecule properties of 2a'

Figure S8 HOMO map and orbital energy of 2a'

1.3 ev

Figure S9 LUMO map and orbital energy of 2a'

Figure S10 The possible interactions between the FMOs of 1" and 2a'

5.3 Reaction profile for the reaction between 1a" and 2a'

We collected the TS structure and energy profile in the reaction of **1a**" with **2a**'. All geometric structures were optimized using the Gaussian 16 program package^[4]. The geometry of all reactants and transition states were optimized using B3LYP hybrid functional^[5,6]. The 6-31G (d) basis set ^[7] for C, O, N and H atoms. Harmonic vibrational frequency analysis was calculated at the same level to verify that reactants, intermediates, and products have positive frequencies, while transition states have and have only one imaginary frequency. Also, the intrinsic reaction coordinates (IRC) have been calculated to ensure that the transition states are connected to the corresponding reactants and products. To obtain more accurate energies, solution-phase single point energy calculations were performed at the ω B97X-D/def2-TZVP. A polarized continuum model based on the solute electron density (SMD) was utilized to simulate the solvent effect of CH₂Cl₂ solution.^[8]

Figure S11. Calculataed energy profile for the annulation of 1a" and 2a'

С	1.97816200	-0.86321600	-0.22903800
С	2.61478000	0.37307800	-0.29754000
С	2.80886900	-2.00339400	-0.06417700
N	3.49819300	-2.93521300	0.06617000
N	0.62044800	1.07084600	-0.16547300
N	-0.10425700	-0.03656600	-0.35095600
С	-1.49114500	-0.26296200	-0.19540900
С	-2.04676700	-1.41039900	0.39791200
С	-2.33381500	0.76185800	-0.65128300
С	-3.42780100	-1.52560800	0.51594900
Н	-1.38667300	-2.18873700	0.76438400
С	-3.71671300	0.63740300	-0.53093100
Н	-1.88804500	1.63979100	-1.10755800
С	-4.26795700	-4.26795700	0.05259500
Н	-3.85543200	-2.41097600	0.97847400
Н	-4.36324400	1.43219600	-0.89185500
Н	-5.34531400	-0.60109500	0.15290500
N	3.47793100	1.05112000	-0.83707800
Н	3.85900800	1.88104700	-0.38020400
С	0.80706000	2.31043800	0.64503900
С	1.63387900	1.51992900	1.34531300
0	0.18530000	3.03346500	-0.01355300
Н	2.52545600	2.00110200	1.74321900
Н	1.17433700	0.72976200	1.92983300

Table S1. Cartesian Coordinates of the TS structure.

5.4 FMO maps and orbital energies of 1a", 6' and ketene 2b'

The calculations were performed using DFT (density functional theory) computations employing the ω B97X-D method with 6-311+G* basis set with Spartan'24 (Wavefunction, Inc.: Irvine, CA, USA, 2024) platform.

cule Pr	operties						8
Molecu	le QSAR	Thermodynamics	ΔHf(298	.15)	NMR	Estimates	Utilities
*	Name:						
*	Formula: C _a H	6N4					
*	E HOMO: -8.	34 eV	*	ELU	JMO: -0.7	4 eV	
*	Conformers:	3	2	We	ight: 170.1	75 amu	
*	Point Group:	C1	2	Ma	ss: 170.05	9 amu	
*	ωB97X-D/6-3	1G*//N/A Energy: -56	5.235709	au			
*	Opt. Energy:	Not Available					
*	Dipole Mome	ent: 4.44 debye, 🗌 🛛	Display Dip	ole Ve	ector		
	<u>v</u>	/ikipedia			Cher	nSpider	

Figure S12 Calculated molecule properties of 1a"

Figure S14 LUMO map and orbital energy of 1a"

Molecule	QSAR	Thermodynamics	ΔHf(298	.15)	NMR	Estimates	Utilities
📩 N	ame:						
📩 Fo	ormula: C10H	17Na					
📩 E	HOMO: -8.1	l6 eV		EI	LUMO: -0.1	3 eV	
📩 c	onformers:	2	*	W	eight: 169.1	87 amu	
📩 Pi	oint Group:	C1	2	м	ass: 169.06	4 amu	
📩 ພ	B97X-D/6-3	1G*//N/A Energy: -54	49.232966	au			
👌 ο	pt. Energy: I	Not Available					
📩 D	ipole Mome	nt: 3.37 debye, 🗌 D	Display Dip	ole	/ector		
	10 w	ʻikipedia			Cher	nSpider	

Figure S15 Calculated molecule properties of 6'

Figure S17 LUMO map and orbital energy of 6'

Molecul	O O CAR	Thormodynamics	446(209	15)	NIMAD	Ectimates	Utilition
worecu	e Qoan	mernodynamics	AH) (296	.13)	INIVIA	countates	Othitles
*	Name: methy	lketene					
	Formula: C₃H	40					
	E HOMO: -8.	23 eV		EL	UMO: 1.27	eV	
2	👌 Conformers: 1		2	We	ight: 56.06	5 amu	
*	📩 🛛 Point Group: Cs		👌 Mass: 56.026 amu				
8	ωB97X-D/6-3	1G*//N/A Energy: -19	91.844882	au			
	Opt. Energy:	Not Available					
*	Dipole Mome	ent: 1.97 debye, 🗌 E	Display Dip	ole V	ector		
	0 v	/ikipedia			Cher	nSpider	

Figure S18 Calculated molecule properties of 2b'

Figure S20 LUMO map and orbital energy of 2b'

Figure S21 The possible interactions between the FMOs of 1a", 6' and 2'

6. X-ray crystal structure of 3e (CDCC 2379960)

Figure S22. X-ray crystal structure of 3e

Bond precision:	C-C = 0.0058 A	Wavelength=0.71073	
Cell:	a=11.6652(12)	b=11.4053(12)	c=22.148(2)
	alpha=90	beta=90	gamma=90
Temperature: 296 k	(
Calculated Reporte	d		
Volume	2946.7(5)	2946.7(5)	
Space group	Pbca	Pbca	
Hall group	-P 2ac 2ab	-P 2ac 2ab	
Moiety formula	C15 H16 N4 O	?	
Sum formula	C15 H16 N4 O	C15 H16 N4 O	

Mr	268.32	268.32
Dx,g cm-3	1.210	1.210
Z	8	8
Mu (mm-1)	0.080	0.080
F000	1136.0	1136.0
F000'	1136.40	
h,k,lmax	13,13,26	13,13,26
Nref	2626 2620	
Tmin,Tmax	0.984,0.984	0.864,0.864
Tmin'	0.984	
Correction method=	# Reported T Limits: T	min=0.864 Tmax=0.864
AbsCorr = MULTI-S	CAN	
Data completeness	= 0.998	Theta(max)= 25.101
R(reflections)= 0.09	021(1718)	wR2(reflections)=
0.2229(2620)		
S = 1.158		Npar= 184

7.Copies of ¹H and ¹³C NMR spectra

ZC-2-71-12.10.1.1r 1H NMR ZC-2-71-12 in DMSO

¹H NMR spectrum of compound **3a** (600 MHz, DMSO)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR spectrum of compound **3a** (151 MHz, DMSO)

YJX-1-65.20.1.1r 1H NMR YJX-1-65 in CDCL3

¹³C NMR spectrum of compound **3b** (151 MHz, DMSO)

¹H NMR spectrum of compound **3c** (600 MHz, DMSO)

¹³C NMR spectrum of compound **3c** (151 MHz, DMSO)

80

¹³C NMR spectrum of compound **3f** (151 MHz, DMSO)

¹³C NMR spectrum of compound **3g** (151 MHz, CDCl₃)

¹³C NMR spectrum of compound **3h** (151 MHz, DMSO)

¹H NMR spectrum of compound **3i** (600 MHz, DMSO)

¹³C NMR spectrum of compound **3i** (151 MHz, DMSO)

¹H NMR spectrum of compound **3j** (600 MHz, DMSO)

¹³C NMR spectrum of compound **3j** (151 MHz, DMSO)

¹³C NMR spectrum of compound **3k** (151 MHz, DMSO)

¹H NMR spectrum of compound **3I** (600 MHz, DMSO)

¹³C NMR spectrum of compound **3I** (151 MHz, DMSO)

¹H NMR spectrum of compound **3m** (600 MHz, DMSO)

 ^{13}C NMR spectrum of compound 3m (151 MHz, DMSO)

¹H NMR spectrum of compound **3n** (600 MHz, DMSO)

¹³C NMR spectrum of compound **3n** (151 MHz, DMSO)

¹H NMR spectrum of compound **3o** (400 MHz, DMSO)

¹³C NMR spectrum of compound **30** (151 MHz, DMSO)

¹H NMR spectrum of compound **3p** (400 MHz, DMSO)

¹³C NMR spectrum of compound **3p** (151 MHz, DMSO)

¹³C NMR spectrum of compound **3q** (101 MHz, DMSO)

¹³C NMR spectrum of compound **3r** (101 MHz, DMSO)

ZC-8-9.10.fid 1H NMR ZC-8-9 in DMSO

¹³C NMR spectrum of compound **3s** (101 MHz, DMSO)

¹H NMR spectrum of compound **3t** (400 MHz, DMSO)

¹³C NMR spectrum of compound **3t** (101 MHz, DMSO)

¹H NMR spectrum of compound **4a** (400 MHz, DMSO)

¹³C NMR spectrum of compound 4a (101 MHz, DMSO)

¹H NMR spectrum of compound **4b** (400 MHz, DMSO)

¹³C NMR spectrum of compound **4b** (101 MHz, DMSO)

¹H NMR spectrum of compound **4c** (400 MHz, DMSO)

¹H NMR spectrum of compound **4c** (101 MHz, DMSO)

¹H NMR spectrum of compound **7a** (400 MHz, DMSO)

¹³C NMR spectrum of compound **7a** (101 MHz, DMSO)

ZC-8-65.10.1.1r 1H NMR ZC-8-65 in DMSO

¹H NMR spectrum of compound **7b** (400 MHz, DMSO)

¹³C NMR spectrum of compound **7b** (101 MHz, DMSO)

ZC-8-70.10.1.1r 1H NMR ZC-8-70 in DMSO

¹H NMR spectrum of compound **8b** (400 MHz, DMSO)

¹³C NMR spectrum of compound **8b** (101 MHz, DMSO)

8. Copies of MS spectra

HRMS conditions: electrospray ionization source operating in the positive ion mode, capillary voltage: 3.5 kv, ion source temperature: 110° C, desolvation temperature: 400° C, nitrogen flow rate: 800 L/h.

HRMS spectrum of 3d

HRMS spectrum of 3e

HRMS spectrum of 3i

HRMS spectrum of 3n

HRMS spectrum of 30

HRMS spectrum of 3q

HRMS spectrum of 3r

HRMS spectrum of 3s

HRMS spectrum of 3t

HRMS spectrum of 4a

HRMS spectrum of 7a

HRMS spectrum of 8b

9. References

[1] Corre, L. L.; Tak-Tak, L.; Guillard, A.; Prestat, G.; Gravier-Pelletier, C. and Busca, P. Microwave-assisted preparation of 4-amino-3-cyano-5-methoxycarbonyl-N-arylpyrazoles as building blocks for the diversity-oriented synthesis of pyrazole-based polycyclic scaffolds. *Org. Biomol. Chem.*, 2015, **13**, 409-423.

[2] Schmitt, S. M.; Stefan, K. and Wiese, M. Pyrrolopyrimidine Derivatives as Novel Inhibitors of Multidrug Resistance-Associated Protein 1 (MRP1, ABCC1). *J. Med. Chem.*, 2016, **59**, 3018-3033.

[3] Buchel, K. H.; Hammann, I.; Unterstenhofer, G. and Grewe, F. United STATES Patent -United States, US3660462, on 09 Dec 1969.

[4] Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li,
X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.;
Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.;

Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

[5] Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. *J. Phys. Chem.* 1994, **98**, 11623.

[6] Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* 1993, **98**, 5648.

[7] Lu, T.; Chen, Q. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems, *J. Comput. Chem.*, 2022, **43**, 539.

[8] (a) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, *J. Phys. Chem. B* 2009, **113**, 6378-6396; (b) Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution, *J. Chem. Phys.* 2002, **117**, 43-54.