Supporting Information

Transition-metal-free K₂S₂O₈-promoted oxidative C-C triple bond

cleavage and esterification leading to α -keto esters

Jin-Xin Lan,^a Yu Shu,^a Yang Zhou,^a Liu-Yu Shen,^a Fei Meng,^a

and Wen-Chao Yang^{a,*}

^a School of Plant Protection, Yangzhou University, Yangzhou 225009, P.

R. China; <u>wccyang@126.com</u>

Table of Contents for Supporting Information

1. General information	S2
2. Preparation of the starting materials	S2
3. General procedure for the synthesis of 3a	S2
4. Characterization data for the products	S4
5. References	S20
6. NMR spectra of compound	S21

1. General considerations

All reactions were carried out under nitrogen atmosphere. ¹H NMR and ¹³C NMR spectra were measured on a Bruker Avance NMR spectrometer (600 MHz/151 MHz/565 NMR) in CDCl₃ as solvent and recorded in ppm relative to internal tetramethylsilane standard. Chemical shifts (δ) were reported in ppm, and coupling constants (*J*) were given in Hertz (Hz). Data were reported as s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet. High-resolution mass spectra (HRMS) were recorded on a Bruker MicroTOF ESI mass spectrometer or a Micromass CI-TOF mass spectrometer.

2. Preparation of the starting materials

The chemicals and solvents were purchased from commercial supplierseither Aldrich (USA), Energy Chemical (Shanghai) or Shanghai Chemical Company (P. R. China). All solvents were dried and freshly distilled in N_2 prior to use. Products were purified by flash chromatographyon 200-300 mesh silica gel.

3. General procedure for the synthesis of 2a

In a 15 mL pressure-resistant tube, a magnetic stirrer was added, and 1,3diphenylprop-2-en-1-one (1, 0.20 mmol), EtOH (2, 2 mL), $K_2S_2O_8$ (4 equiv, 0.80 mmol), NaNO₂ (2 equiv, 0.40 mmol) were added. The reaction was performed at 110 °C for 18 h. After the reaction was completed, the mixture was concentrated to obtain the crude product, which was further purified by rapid chromatography (silica gel, petroleum ether / ethyl acetate = 30 : 1) to obtain the desired product **3a** in a yield of 71 %.

4. Characterization Data for Products

Ethyl 2-oxo-2-phenylacetate (3a)^[1]

Yellow liquid \cdot (25 mg, 71% yield) ¹H NMR (400 MHz, CDCl₃) δ 8.04 - 7.99 (m, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 4.46 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.4, 163.8, 134.9, 132.5, 130.0, 128.9, 62.3, 14.1. The characterization data matched the literature.

Ethyl 2-oxo-2-(p-tolyl)acetate (3b)^[1]

Yellow liquid , (27 mg, 69% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 4.36 (q, J = 7.2 Hz, 2H), 2.36 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 186.1, 164.0, 146.2, 130.1, 130.0, 129.6, 62.2, 21.9, 14.1. The characterization data matched the literature. Ethyl 2-(4-isopropylphenyl)-2-oxoacetate (3c) ^[3]

Yellow liquid [,] (31 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.98 - 7.90 (m, 2H), 7.36 (d, J = 8.3 Hz, 2H), 4.45 (q, J = 7.1 Hz, 2H), 1.42 (dd, J = 8.7, 5.6 Hz, 3H), 1.29 (dd, J = 9.4, 4.6 Hz, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 186.1, 164.0, 156.8, 130.3, 130.3, 127.0, 62.2, 34.4, 23.5, 14.1. The characterization data matched the literature.

Ethyl 2-(4-methoxyphenyl)-2-oxoacetate (3d)^[1]

Yellow liquid \cdot (27 mg, 66% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, J = 8.9 Hz, 2H), 6.97 (d, J = 8.9 Hz, 2H), 4.43 (q, J = 7.1 Hz, 2H), 3.88 (s, 3H), 1.41 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 184.9, 165.0, 164.1, 132.5, 125.4, 114.2, 62.1, 55.6, 14.1. The characterization data matched the literature.

Ethyl 2-(4-fluorophenyl)-2-oxoacetate(3e)^[1]

Yellow liquid , (31 mg, 66% yield).¹H NMR (600 MHz, CDCl₃) δ 8.12 - 8.05 (m, 2H), 7.19 (t, J = 8.5 Hz, 2H), 4.45 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 184.6, 167.7, 166.0, 163.4, 133.0 (d, J = 9.8 Hz), 116.3 (d, J = 21.9 Hz), 62.5, 14.1. ¹⁹F NMR (565 MHz, CDCl₃) δ -101.24. The characterization data matched the literature.

Ethyl 2-(4-chlorophenyl)-2-oxoacetate (3f)^[1]

Yellow liquid , (30 mg, 71% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 8.6 Hz, 2H), 7.42 (d, J = 8.6 Hz, 2H), 4.40 – 4.35 (m, 2H), 1.35 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 184.9, 163.2, 141.6, 131.4, 129.3, 62.5, 14.1. The characterization data matched the literature.

Ethyl 2-(4-bromophenyl)-2-oxoacetate(3g)^[1]

Yellow liquid , (30 mg, 71% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.93 - 7.87 (m, 2H), 7.66 (d, J = 8.2 Hz, 2H), 4.45 (d, J = 7.1 Hz, 2H), 1.42 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 185.1, 163.2, 132.3, 131.5, 131.4, 130.5, 62.6, 14.1. The characterization data matched the literature.

Ethyl 2-oxo-2-(4-(trifluoromethyl)phenyl)acetate(3h)^[2]

Yellow liquid , (30 mg, 67% yield).¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, J = 8.1 Hz, 2H), 7.71 (d, J = 8.1 Hz, 2H), 4.40 (d, J = 7.2 Hz, 2H), 1.36 (t, J = 6.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 185.0, 162.8, 130.4, 130.0, 128.9, 125.9 (d, J = 4.0 Hz), 62.8, 14.1. ¹⁹F NMR (565 MHz, CDCl₃) δ -63.39. The characterization data matched the literature.

Ethyl 2-(4-cyanophenyl)-2-oxoacetate(3i)^[1]

Yellow liquid , (30 mg, 72% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.15 (dd, J = 8.2, 1.3 Hz, 22H), 7.74 (dd, J = 8.3, 1.3 Hz, 2H), 4.42 (m, J = 7.1, 1.2 Hz, 2H), 1.42 (m, J = 7.1, 1.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 165.0, 134.3, 132.2, 130.1, 118.0, 116.3, 61.8, 14.3. The characterization data matched the literature.

Ethyl 2-(3-chlorophenyl)-2-oxoacetate (3j)^[1]

Yellow liquid · (31 mg, 74% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.01 (dd, J = 4.1, 2.4 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.64 – 7.61 (m, 1H), 7.46 (t, J = 7.9 Hz, 1H), 4.46 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 184.8, 163.0, 134.8, 130.2, 129.8, 128.2, 62.6, 14.1. The characterization data matched the literature.

Ethyl 2-(3-methoxyphenyl)-2-oxoacetate (3k)^[1]

Yellow liquid , (29 mg, 69% yield). ¹**H NMR (600 MHz, CDCl₃) δ** 7.96 – 7.90 (m, 1H), 7.64 (td, *J* = 7.4, 1.6 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.17 (dd, *J* = 10.4, 8.7 Hz, 1H), 4.44 (q, *J* = 7.1 Hz, 2H), 1.40 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR (151 MHz, CDCl₃) δ** 186.3, 163.8, 159.9, 133.7, 129.9, 123.1, 121.8, 113.2, 62.3, 55.5, 14.1. The characterization data matched the literature.

Ethyl 2-(2-fluorophenyl)-2-oxoacetate (3l)

Yellow liquid , (27 mg, 68% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.96 - 7.90 (m, 1H), 7.64 (td, J = 7.4, 1.6 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.17 (dd, J = 10.4, 8.7 Hz, 1H), 4.44 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.2Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 184.1, 164.1, 163.6, 161.8, 136.7, 136.7, 130.8, 124.9, 124.8, 116.6, 116.5, 62.5, 13.9. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₀H₁₀FO₃ 197.0614, found 197.0614.

Ethyl 2-oxo-2-(o-tolyl)acetate (3m) [1]

Yellow liquid , (27 mg, 69% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, J = 7.6 Hz, 1H), 7.51 – 7.46 (m, 1H), 7.32 (dd, J = 12.0, 7.7 Hz, 2H), 4.43 (d, J = 7.2 Hz, 2H), 2.61 (s, 3H), 1.41 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 188.8, 164.6, 141.3, 133.6, 132.3, 132.2, 131.2, 125.9, 62.2, 21.4, 14.1. The characterization data matched the literature.

Ethyl 2-(2-(methylthio)phenyl)-2-oxoacetate(3n)

Yellow liquid , (32 mg, 67% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.84 - 7.75 (m, 1H), 7.58 - 7.52 (m, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.29 - 7.24 (m, 1H), 4.43 (m, J = 7.0, 1.3 Hz, 2H), 2.47 (d, J = 1.3 Hz, 3H), 1.41 (m, J = 7.2, 1.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 187.0, 164.0, 144.4, 133.8, 133.1,130.3, 126.5, 124.2, 62.4, 16.5, 14.1. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₁H₁₃SO₃ 225.0585, found 225.0580.

Ethyl 2-(2-bromo-4,5-dimethoxyphenyl)-2-oxoacetate (30)

Yellow liquid , (42 mg, 66% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.25 (s, 1H), 6.98 (s, 1H), 4.35 (q, J = 7.2 Hz, 2H), 3.88 (s, 3H), 3.84 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 186.4, 163.7, 153.7, 148.6, 126.7, 116.1, 115.3, 113.8, 62.7, 56.5, 56.2, 13.8. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₂H₁₄BrO₅ 317.0025, found 317.0031.

Methyl 2-oxo-2-phenylacetate (3p) [2]

Yellow liquid [,] (23 mg, 70% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.02 (d, J = 7.8 Hz, 2H), 7.67 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 7.8 Hz, 2H), 3.98 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 186.0, 164.0, 135.0, 132.4, 130.1, 128.9, 52.8. The characterization data matched the literature.

Methyl 2-oxo-2-(p-tolyl)acetate(3q)^[2]

Yellow liquid , (26 mg, 67% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 7.9 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 3.97 (s, 3H), 2.44 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 185.71, 164.25, 146.37, 130.23, 130.00, 129.65, 52.71, 21.93. The characterization data matched the literature.

Ethyl 2-([1,1'-biphenyl]-2-yl)-2-oxoacetate (3r)

Yellow liquid · (39 mg, 77% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.74 (dd, J = 7.7, 0.7 Hz, 1H), 7.55 (td, J = 7.6, 1.1 Hz, 1H), 7.44 – 7.40 (m, 1H), 7.38 (d, J = 7.6 Hz, 1H), 7.35 – 7.30 (m, 3H), 7.26 – 7.23 (m, 2H), 3.65 (q, J = 7.2 Hz, 2H), 0.96 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 189.6, 162.5, 143.0, 139.4, 134.5, 132.8, 130.3, 130.1, 129.6, 128.7, 128.2, 127.6, 62.1, 13.6. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₆H₁₅O₃ 255.1021, found 255.1022.

Ethyl 2-(4'-methoxy-5-methyl-[1,1'-biphenyl]-2-yl)-2-oxoacetate (3s)

Yellow liquid · (44 mg, 73% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, J = 7.9 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.23 (d, J = 8.8 Hz, 3H), 6.93 (d, J = 8.6 Hz, 2H), 3.83 (s, 3H), 3.77 (q, J = 7.2 Hz, 2H), 2.45 (s, 3H), 1.06 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 189.5, 163.0, 159.8, 143.7, 143.0, 133.7, 132.0, 131.7, 130.8, 130.8, 130.5, 130.2, 128.5, 128.0, 114.0, 61.9, 55.3, 21.7, 13.6. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₈H₁₉O₄ 299.1283, found 299.1282.

Ethyl 2-(4',5-dimethoxy-[1,1'-biphenyl]-2-yl)-2-oxoacetate (3t)

Yellow liquid , (46 mg, 74% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, J = 8.7 Hz, 1H), 7.26 – 7.23 (m, 2H), 6.97 (dd, J = 8.7, 2.5 Hz, 1H), 6.95 – 6.92 (m, 2H), 6.87 (d, J = 2.5 Hz, 1H), 3.89 (s, 3H), 3.83 (s, 3H), 3.77 – 3.72 (m, 2H), 1.08 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, **CDCl₃)** δ 188.3, 163.5, 163.1, 159.9, 145.6, 132.9, 131.9, 130.7, 130.1, 128.4, 126.9, 115.3, 113.9, 113.0, 61.8, 55.6, 55.3, 13.6. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₈H₁₉O₅ 315.1232, found 315.1236.

Ethyl 2-(4-fluoro-4'-methoxy-[1,1'-biphenyl]-2-yl)-2-oxoacetate (3u)

Yellow liquid · (40 mg, 67% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.41 (dd, *J* = 8.6, 2.7 Hz, 1H), 7.32 (dd, *J* = 8.5, 5.2 Hz, 1H), 7.23 (td, *J* = 8.2, 2.7 Hz, 1H), 7.14 – 7.10 (m, 2H), 6.90 – 6.83 (m, 2H), 3.76 (s, 3H), 3.71 (q, *J* = 7.2 Hz, 2H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 187.4, 161.5, 161.1, 159.9, 158.9, 137.8, 137.8, 134.8, 134.7, 130.9, 130.8, 129.8, 129.7, 118.9, 118.7, 115.7, 115.5, 113.1, 61.2, 54.3, 12.6. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₇H₁₆FO₄ 303.1033, found 303.1027.

Ethyl 2-(4'-methoxy-3'-methyl-[1,1'-biphenyl]-2-yl)-2-oxoacetate (3v)

Yellow liquid · (37 mg, 67% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.79 (dd, J = 7.7, 0.8 Hz, 1H), 7.60 (td, J = 7.6, 1.3 Hz, 1H), 7.48 – 7.41 (m, 2H), 7.16 – 7.06 (m, 2H), 6.85 (d, J = 8.1 Hz, 1H), 3.86 (s, 3H), 3.77 (q, J= 7.2 Hz, 2H), 2.25 (s, 3H), 1.04 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 189.9, 162.7, 158.0, 143.0, 134.5, 132.7, 131.7, 131.4, 130.2, 129.9, 128.3, 127.1, 127.0, 109.9, 61.9, 55.4, 16.1, 13.6. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₈H₁₉O₄ 299.1283, found 299.1282.

Ethyl 2-(4'-methoxy-2'-methyl-[1,1'-biphenyl]-2-yl)-2-oxoacetate (3w)

Yellow liquid , (38 mg, 69% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, J = 7.7 Hz, 1H), 7.60 (dd, J = 10.9, 4.1 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 7.6 Hz, 1H), 6.98 (d, J = 8.3 Hz, 1H), 6.79 (d, J = 1.9 Hz, 1H), 6.74 (dd, J = 8.3, 2.3 Hz, 1H), 3.82 (s, 3H), 3.78 – 3.71 (m, 2H), 2.15 (s, 3H), 1.09 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 189.6, 163.5, 159.7, 142.4, 138.4, 134.9, 132.6, 132.4, 131.0, 130.7, 129.9, 127.4, 115.8, 110.6, 62.0, 55.2, 20.5, 13.6. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₈H₁₉O₄ 299.1283, found 299.1286.

Ethyl 2-(5-fluoro-4'-methoxy-[1,1'-biphenyl]-2-yl)-2-oxoacetate (3x)

Yellow liquid , (38 mg, 70% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.83 (m, J = 8.1, 6.0, 1.5 Hz, 1H), 7.28 – 7.21 (m, 2H), 7.19 – 7.09 (m, 2H), 6.95 (dd, J = 8.6, 1.7 Hz, 2H), 3.84 (d, J = 1.6 Hz, 3H), 3.77 (m, J = 7.2, 1.5 Hz, 2H), 1.06 (m, J = 7.2, 1.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 188.4, 165.9, 164.2, 162.6, 160.3, 145.8 (d, J = 9.0 Hz) , 133.1 (d, J =9.8 Hz), 133.0, 130.7, 117.0 (d, J = 22.1 Hz), 114.6 (d, J = 22.1 Hz), 114.3, 62.2, 55.4, 13.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -105.16. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₇H₁₆FO₄ 303.1033, found 303.1032.

Yellow liquid · (38 mg, 71% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.93 (t, J = 9.5 Hz, 2H), 7.85 (dd, J = 8.6, 1.2 Hz, 1H), 7.76 (d, J = 8.6 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.47 (dd, J = 8.5, 6.9 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.02 (dd, J = 8.5, 1.4 Hz, 2H), 3.89 (d, J = 1.2 Hz, 3H), 3.79 (m, J = 7.2, 1.3 Hz, 2H), 1.11 (m, J = 7.1, 1.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 190.5, 163.6, 160.0, 142.0, 135.6, 133.3, 132.3, 132.0, 128.3, 128.2, 128.2, 127.3, 127.0, 125.2, 113.7, 62.0, 55.4, 13.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₁₈O₄Na 357.1103, found 357.1093.

Ethyl 2-(4'-ethoxy-[1,1'-biphenyl]-2-yl)-2-oxoacetate(3z)

Yellow liquid , (38 mg, 68% yield). ¹**H NMR (600 MHz, CDCl₃) δ** 7.93 (t, J = 9.5 Hz, 1H), 7.85 (dd, J = 8.6, 1.2 Hz, 1H), 7.76 (d, J = 8.6 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.47 (dd, J = 8.5, 6.9 Hz, 2H), 7.33 – 7.27

(m, 2H), 7.02 (dd, J = 8.5, 1.4 Hz, 2H), 3.89 (d, J = 1.2 Hz, 3H), 3.79 (m, J = 7.2, 1.3 Hz, 1H), 1.11 (m, J = 7.1, 1.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 189.9, 162.7, 159.3, 142.8, 134.5, 132.8, 131.7, 130.8, 130.2, 130.0, 127.2, 114.7, 63.6, 62.0, 14.8, 13.7. HRMS (ESI-TOF) m/z: [M + H]+ calcd for C₁₈H₁₉O₄ 299.1283, found 299.1282.

Ethyl 2-oxo-2-(2-(thiophen-2-yl)phenyl)acetate(3aa)

Yellow liquid · (38 mg,71% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 7.7 Hz, 1H), 7.61 (t, J = 7.5 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.42 (d, J = 5.2 Hz, 1H), 7.04 (m, J = 5.1, 3.5, 1.3 Hz, 1H), 6.93 (d, J = 3.5 Hz, 1H), 3.91 (m, J = 7.2, 1.4 Hz, 2H), 1.11 (m, J = 7.2, 1.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 189.3, 162.0, 141.2, 135.1, 132.7, 130.3, 130.2, 129.5, 128.2, 127.9, 127.7, 62.3, 13.8. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₄H₁₃SO₃ 261.0585, found 261.0577.

Ethyl 2-(4'-methoxy-[1,1'-biphenyl]-2-yl)-2-oxoacetate (3ab)

Yellow liquid · (40 mg, 71% yield). ¹H NMR (600 MHz, CDCl3) δ 7.79 (dd, J = 7.7, 1.1 Hz, 1H), 7.61 (m, J = 7.6, 1.3 Hz, 1H), 7.46 (m, J = 7.6, 1.0 Hz, 1H), 7.43 (d, J = 7.7 Hz, 1H), 7.24 (d, J = 8.7 Hz, 2H), 6.96 – 6.93 (m, 2H), 3.84 (s, 3H), 3.79 (q, J = 7.2 Hz, 2H). ¹³C NMR (151 MHz, CDCl3) δ 189.8, 162.7, 159.8, 142.7, 134.5, 132.7, 131.8, 130.8, 130.2, 130.0, 127.2, 114.1, 62.0, 55.3, 13.6. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₇H₁₇O₄ 285.1172, found 285.1180.

5. References

- [1] Q. Yu, Y. Zhang and J.-P. Wan, Ambient and aerobic carbon–carbon bond cleavage toward α-ketoester synthesis by transition-metal-free photocatalysis, Green Chem., 2019, 21, 3436–3441.
- [2] R. Liu, Q. Liu, H. Meng, H. Ding, J. Hao, Z. Ji, H. Yue and W. Wei, Metal-free visible-light-induced aerobic oxidation of α-diazoesters leading to α-ketoesters in air, Org. Chem. Front., 2021, 8, 1970–1975.
- [3] S-E Wang, L-F Wang, Q-Q He and R-H Fan, Destruction and Construction: Application of Dearomatization Strategy in Aromatic Carbon–Nitrogen Bond Functionalization, Angew Chem Int Ed, 2015, 54, 13655-13658.

6. NMR spectra of compound

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) of **3a**

 ^1H NMR (600 MHz, CDCl_3) and ^{13}C NMR (151 MHz, CDCl_3) of 3b

 ^1H NMR (600 MHz, CDCl₃) and ^{13}C NMR (151 MHz, CDCl₃) of 3c

 ^1H NMR (600 MHz, CDCl_3) and ^{13}C NMR (151 MHz, CDCl_3) of 3d

 ^1H NMR (600 MHz, CDCl₃) and ^{13}C NMR (151 MHz, CDCl₃) of 3e

¹⁹F NMR (600 MHz, CDCl₃) of **3e**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

^1H NMR (600 MHz, CDCl₃) and ^{13}C NMR (151 MHz, CDCl₃) of 3f

 ^1H NMR (600 MHz, CDCl_3) and ^{13}C NMR (151 MHz, CDCl_3) of 3g

 ^1H NMR (600 MHz, CDCl₃) and ^{13}C NMR (151 MHz, CDCl₃) of 3h

¹⁹F NMR of **3h** in CDCl₃ (600 MHz, CDCl₃)

---63.39

^1H NMR (600 MHz, CDCl₃) and ^{13}C NMR (151 MHz, CDCl₃) of 3i

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) of **3**j

 ^1H NMR (600 MHz, CDCl_3) and ^{13}C NMR (151 MHz, CDCl_3) of 3k

 ^1H NMR (600 MHz, CDCl₃) and ^{13}C NMR (151 MHz, CDCl₃) of **31**

 $^1\mathrm{H}$ NMR (600 MHz, CDCl_3) and $^{13}\mathrm{C}$ NMR (151 MHz, CDCl_3) of 3m

 ^1H NMR (600 MHz, CDCl₃) and ^{13}C NMR (151 MHz, CDCl₃) of 3n

 ^1H NMR (600 MHz, CDCl₃) and ^{13}C NMR (151 MHz, CDCl₃) of 3o

S36

O ∐ MeO OEt

NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) of **3p**

NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) of **3**q

NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) of 3r

NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) of **3s**

NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) of **3t**

NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) of 3u

NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) of 3v

NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) of 3w

NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) of 3x

¹⁹F NMR of **3x** in CDCl₃ (600 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) of 3y

NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) of 3z

NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) of 3aa

NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) of **3ab**

