Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Reversible Photocycloaddition of 8-Pyrenylvinylguanine for Photoreactive Serinol Nucleic Acid (SNA)

Keiji Murayama, Ayaka Ikeda, Fuminori Sato, and Hiroyuki Asanuma

Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Fig. S1 Melting profile of duplex between RNA and SNA containing $2^{PV}G$ (**SNA-2^{PV}G/RNA-2C**, black line, $T_m = 40.4 \text{ °C}$) and $2^{PV}A$ (**SNA-2^{PV}A/RNA-2U**, red line, $T_m = 31.0 \text{ °C}$). Conditions: 100 mM NaCl, 10 mM phosphate buffer (pH 7.0). The concentration of oligonucleotides was 5.0 µM.

Fig. S2 (Left) Absorption spectra of **SNA-2^{PV}A/RNA-2U** at indicated times of irradiation with 447 nm light. (Right) Absorption spectra of **SNA-2^{PV}A/RNA-2U** after 10 min irradiation with 447 nm and after irradiation for indicated times with 350 nm light. Irradiation was performed at 20 °C. Conditions: 100 mM NaCl, 10 mM phosphate buffer (pH 7.0). The concentration of oligonucleotides was 5.0 μM.

Fig. S3 (Left) Absorption spectra of **SNA-2**^{PV}**G** single strand at indicated times of irradiation with 447 nm light. (Right) Absorption spectra of **SNA-2**^{PV}**G** single strand after 1 h irradiation with 447 nm and after irradiation for indicated times with 350 nm light. Irradiation was performed at 20 °C. Conditions: 100 mM NaCl, 10 mM phosphate buffer (pH 7.0). The concentration of oligonucleotides was 5.0 μ M (upper two panels) and 1.0 μ M (lower two panels).

Fig. S4 (Left) The ratio of monomeric ^{PV}G in **SNA-2^{PV}G** single strand at different concentrations. The ratio of the monomers was calculated from the absorbance at 400 nm. (Right) Plot of $-\ln([^{PV}G]/[^{PV}G]_0)$ as a function of time at the initial stage of the reaction. Conditions: 100 mM NaCl, 10 mM phosphate buffer (pH 7.0). The concentration of oligonucleotides was 5.0 µM (closed circles) and 1.0 µM (open circles).

Fig. S5 Melting profile of **SNA-2^{PV}A/RNA-2U** before (black line) and after irradiation with 447 nm light (purple line) and 350 nm light (blue line). Conditions: 100 mM NaCl, 10 mM phosphate buffer (pH 7.0). The concentration of oligonucleotides was 5.0 μM.

Fig. S6 (Left) Ratios of remaining monomeric ^{PV}G after multiple photoswitching cycles with 447 nm and 350 nm to **SNA-2^{PV}G/RNA-2C** duplex. The concentration of remaining monomers was calculated by using absorption spectra recorded after each irradiation. (Middle and right) Absorption spectra of **SNA-2^{PV}G/RNA-C** after repeated irradiation cycles. Samples were irradiated at 447 nm for 1 h and at 350 nm for 1 h, alternatively. Conditions: 100 mM NaCl, 10 mM phosphate buffer (pH 7.0) 20 °C. The concentration of oligonucleotides was 5.0 μM.

Fig. S7 Schematics of the predicted mechanism and favorable orientation for interstrand photocrosslinking reaction of ^{PV}Gs.

Fig. S8 Schematics of photocycloaddition of ^{PV}Gs via *trans-cis* isomerization in single stranded SNA-1^{PV}G.

Fig. S9 (Left) The %ratios of remaining monomeric ^{PV}G after multiple photoswitching cycles with 447 nm and 350 nm to **SNA-1^{PV}G** single strand. The concentration of remaining monomers was calculated by using absorption spectra recorded after each irradiation. (Middle and right) Absorption spectra of **SNA-1^{PV}G** after repeated irradiation cycles. Samples were irradiated at 447 nm for 20 min and at 350 nm for 10 min, alternatively. Conditions: 100 mM NaCl, 10 mM phosphate buffer (pH 7.0) 20 °C. The concentration of oligonucleotide was 5.0 μM.

Fig. S10 (Left) Absorption spectra of **SNA-1^{PV}G** single strand at indicated times of irradiation with 447 nm light. (Right) Absorption spectra of **SNA-1^{PV}G** single strand after 1 h irradiation with 447 nm and after irradiation for indicated times with 350 nm light. Irradiation was performed at 20 °C. Conditions: 100 mM NaCl, 10 mM phosphate buffer (pH 7.0). The concentration of oligonucleotides was 1.0 μM.

Fig. S11 (Left) The ratio of crosslinking ^{PV}G in **SNA-1^{PV}G** single strand at different concentration. In order to ignore spectral changes caused by *cis*-isomerization, calculations of crosslinking ratio were performed at 376 nm, which is near the isosbestic point of *trans-cis* isomerization and where there is no absorption of the cross-linked ^{PV}Gs. (Right) Plot of $-\ln([^{PV}G]_0)$ as a function of time at the initial stage of the reaction. [^{PV}G] is a concentration of un-crosslinked ^{PV}Gs. Conditions: 100 mM NaCl, 10 mM phosphate buffer (pH 7.0). The concentration of oligonucleotides was 5.0 µM (closed circles) and 1.0 µM (open circles).

Fig. S12 (Left) The absorption spectra of single-stranded **SNA-0^{PV}G** ((*S*)-ACTGGTCA-(*R*)) before and after irradiation with 350 nm light. (Right) The absorption spectra of **SNA-0^{PV}G/RNA-2C** duplex before and after irradiation with 350 nm light. Change in the absorbance at 260 nm was less than 1%. Conditions: 100 mM NaCl, 10 mM phosphate buffer (pH 7.0). The concentration of oligonucleotides was 5.0 μ M.

Fig. S13 The absorption spectra of single-stranded **SNA-1**^{PV}**A** ((*S*)-GCT^{PV}AATGC -(*R*)) before and after irradiation with (A) 447 nm light and (B) 350 nm light. (C) The ratio of monomeric ^{PV}A in SNA-1^{PV}A single strands after irradiation at 447 nm (red circles) and 350 nm (blue squares). (D) Melting profile of the duplex of pre-crosslinked SNA-1^{PV}A and RNA-2U (purple line) and after irradiation with 350 nm light (blue line). Conditions: 100 mM NaCl, 10 mM phosphate buffer (pH 7.0). The concentration of oligonucleotides was 5.0 μ M.

¹H-NMR, ¹³C-NMR, and ³¹P-NMR spectrum of **10**

Results of MALDI-TOF MS:

SNA-2^{PV}G: Obsd. m/z 2980.6 (Calcd. for [M + H⁺]: m/z 2981.7)

SNA-1^{PV}G: Obsd. m/z 2755.5 (Calcd. for [M + H⁺]: m/z 2755.6)

Results of HPLC:

Buffer A: 50 mM ammonium formate

Buffer B: mixture of 50 mm ammonium formate and acetonitrile (50:50, v/v)

A Mightysil RP-18GP II column heated to 65 °C was used for HPLC analyses. The flow rate was 0.5 mL min⁻¹. A buffer A and buffer B were used as mobile phases. HPLC chromatograms were monitored at 260 nm. Spectra of peaks at each retention time were recorded on JASCO EXTREMA HPLC system.

SNA-2^{PV}G: From 25% buffer B to 60% buffer B.

Even after purification, two SNA sequences showed multiple peaks in the HPLC chart. We checked MS of all fractions of these peaks by MALDI-TOF and found only the desired MS peak. Additionally, re-subjection of the collected samples at different retention times produced the same HPLC chart with multiple peaks. Furthermore, denaturing PAGE of the purified sample indicated a single pure band (Fig. 4B and 5E). Therefore, we concluded that the multiple HPLC peaks were derived from the higher-order structures of the SNA strand, despite sufficient purity.