Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Access to 4-Methylene-phospholenes through BF₃•Et₂O Catalyzed Isomerization of 3,4-Dimethylphosphole Sulfides

Meng Xiao, Yingqiang Wang, Lihui Chen* and Rongqiang Tian*

College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.

E-mail: chenlh@zzu.edu.cn; tianrq@zzu.edu.cn

Table of Contents

General Information	S2
Experimental Procedures and Characterization Data	S2
References	S16
NMR Spectrums	S17

General information

All reactions were performed under nitrogen using solvents dried by standard methods except for special statement. Toluene and THF were dried with Na and distilled before use. NMR spectra were obtained using BrukerAV300 spectrometer. All spectra were recorded in CDCl₃. All coupling constants (*J* values) were reported in hertz (Hz). Chemical shifts were expressed in parts per million (ppm) downfield from internal TMS (¹H). ¹³C and ³¹P spectra were recorded with proton decoupling. HRMS spectra were obtained by waters UPLC G2-XS Q-tof mass spectrometer. Melting Point: heating rate: 4°C/min, the thermometer was not corrected. Silica gel (200-300 mesh) were used for the chromatographic separations. All commercially available reagents were used without further purification. All new compounds were synthesized in small scale, and were purified by column chromatography or thin layer chromatography. 3,4-dimethyl-1-phenylphosphole was prepared according to the literature method.^[1]

Experimental Procedures and Characterization Data

Table S1. Screening of Lewis Acids for the Isomerization of 1a

Entry	Lewis acid	Yield
1	Sc(OTf) ₃ (20 mol%)	No reaction
2	FeCl ₂ (20 mol%)	No reaction
3	FeCl ₃ (20 mol%)	No reaction
4	ZnCl ₂ (20 mol%)	No reaction
5	AlCl ₃ (20 mol%)	18%
6	BF ₃ ·Et ₂ O (20 mol%)	54%
7	BBr ₃ (20 mol%)	27%
8	BF ₃ ·Et ₂ O (30 mol%)	83%

Me Me +
$$S_8$$
 $\xrightarrow{1 \text{ h}}$ 60 °C $\xrightarrow{\text{Ph}}$ S_8

A THF (20 mL) solution of 3,4-dimethyl-1-phenylphosphole (1 mL, 5 mmol) and sulfur powder (192 mg, 6 mmol) was heated at 60 °C for 1 hour. The solution was cooled down to room temperature and the solvent was removed by rotary evaporation. Purification was performed via column chromatography on silica using a 5:1 mixture of petroleum ether and ethyl acetate as the eluent to afford **1a** (1.01 g, 92%) as yellow solid.

Phosphole sulfide **1a** is a known compound.^[2] **31P{1H} NMR (121 MHz, CDCl₃)** δ 46.3 (s). **1H NMR (300 MHz, CDCl₃)** δ 7.89 – 7.80 (m, 2H), 7.53 – 7.40 (m, 3H), 6.14 (d, J = 30.9 Hz, 2H), 2.13 (s, 6H).

Me
$$S_8$$
 S_8 S_8

General procedure for the synthesis of phosphole sulfides 1b-1g

A 50 mL Schlenk tube was charged with nitrogen. Excess lithium wire was then added to a solution of 3,4-dimethyl-1-phenylphosphole (1 mL, 5 mmol) in THF (10 mL) at room temperature. The mixture was stirred at room temperature for 3 hours, yielding phospholide lithium and phenyllithium. After removing the lithium wire, *t*-BuCl (5 mmol) was added to the reaction mixture and heated for 1 hour to quench the phenyllithium. Subsequently, 12 mmol (2.4 eq.) of Ar-X and 1.25 mmol (0.25 eq.) of NiBr₂ were added to the reaction mixture, which was then refluxed for 4 hours. Sulfurization was completed by adding sulfur powder and heating the mixture at 60 °C for 1 hour. After cooling to room temperature, the mixture was filtered through a celite pad. The filtrate was evaporated to dryness, and the resulting residue was purified by column chromatography on silica gel using a 5:1 mixture of petroleum ether and ethyl acetate as the eluent, yielding phosphole sulfides **1b-1g**.

General procedure for the synthesis of phosphole sulfides 1h-1n

A 50 mL Schlenk tube was charged with nitrogen. Excess lithium wire was then added to a solution of 3,4-dimethyl-1-phenylphosphole (1 mL, 5 mmol) in THF (10 mL) at room temperature. The mixture was stirred at room temperature for 3 hours, yielding phospholide lithium and phenyllithium. After removing the lithium wire, *t*-BuCl (5 mmol) was added to the reaction mixture and heated for 1 hour to quench the phenyllithium. Subsequently, 6 mmol (1.2 eq.) of R-X was added to the reaction mixture at -30 °C and maintained at this temperature for 0.5 h. Sulfurization was completed by adding sulfur powder and heating the mixture at 60 °C for 1 hour. After cooling to room temperature, the mixture was filtered through a celite pad. The filtrate was evaporated to dryness, and the resulting residue was purified by column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate as the eluent, yielding phosphole sulfides **1h-1n**.

1b: yellow solid, **m.p.** 66.8-70.0 °C. ethyl acetate/petroleum ether = 1:5, R_f = 0.40, 413.1 mg, 33%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 45.7 (s). ¹H NMR (300 MHz, CDCl₃) δ 7.76 (dd, J=13.2, 8.7 Hz, 2H), 6.93 (dd, J = 8.4, 1.8 Hz, 2H), 6.10 (d, J = 30.8 Hz, 2H), 3.83 (s, 3H), 2.12 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃) 162.74 (d, J_{CP} = 2.9 Hz), 153.2 (d, J_{CP} = 17.7 Hz), 132.4 (d, J_{CP} = 13.4 Hz), 126.0 (d, J_{CP} = 82.9 Hz), 118.2 (d, J_{CP} = 85.3 Hz), 114.3 (d, J_{CP} = 14.0 Hz), 55.4 (s), 17.4 (d, J_{CP} = 17.8 Hz). HRMS (ESI) [M+Na]⁺ Calcd. for C₁₃H₁₅NaOPS⁺: 273.0474; Found: 273.0468.

1c: yellow solid, m.p. 82.1-84.3 °C. ethyl acetate/petroleum ether = 1:5, R_f = 0.40, 488.3 mg, 39%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 46.4 (s). ¹H NMR (300 MHz, CDCl₃) δ 7.57 – 7.15 (m, 3H), 7.08 – 6.87 (m, 1H), 6.11 (d, J = 31.0 Hz, 2H), 3.83 (s, 3H), 2.12 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 159.8 (d, J_{CP} = 15.8 Hz), 153.8 (d, J_{CP} = 17.7 Hz), 129.9 (d, J_{CP} = 14.7 Hz), 129.3 (d, J_{CP} = 78.4 Hz), 125.6 (d, J_{CP} = 82.7 Hz), 122.1 (d, J_{CP} = 11.3 Hz), 117.7 (d, J_{CP} = 2.7 Hz), 116.0 (d, J_{CP} = 13.4 Hz), 55.5 (s), 17.5 (d, J_{CP} = 17.9 Hz). **HRMS (ESI)** [M+Na]⁺ Calcd. for C₁₃H₁₅NaOPS⁺: 273.0474; Found: 273.0467.

1d: yellow solid, **m.p.** 108.3-112.0 °C. ethyl acetate/petroleum ether = 1:5, $R_f = 0.40$, 437.6 mg, 35%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 39.9 (s). ¹H NMR (300 MHz, CDCl₃) δ 7.76 (dd, J = 7.5, 1.4 Hz, 1H), 7.71 (dd, J = 7.5, 1.4 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.07 – 6.86 (m, 2H), 6.31 (d, J = 29.8 Hz, 2H), 3.90 (s, 3H), 2.07 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 160.9 (d, $J_{CP} = 2.7$ Hz), 152.4 (d, $J_{CP} = 19.2$ Hz), 133.7 (d, $J_{CP} = 2.2$ Hz), 132.9 (d, $J_{CP} = 9.0$ Hz), 124.2 (d, $J_{CP} = 85.8$ Hz), 120.9 (d, $J_{CP} = 12.4$ Hz), 119.7 (d, $J_{CP} = 81.9$ Hz), 111.6 (d, $J_{CP} = 6.3$ Hz), 56.0 (s), 17.5 (d, $J_{CP} = 18.2$ Hz). **HRMS (ESI)** [M+Na]⁺ Calcd. for C₁₃H₁₅NaOPS⁺: 274.0507; Found: 274.0499.

1e: yellow solid, **m.p.** 115.0-118.5 °C. ethyl acetate/petroleum ether = 1:5, $R_f = 0.40$, 354.8 mg, 30%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 48.9 (s). ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, J = 4.3 Hz, 1H), 7.80 (dd, J = 13.5, 7.6 Hz, 1H), 7.37 (t, J = 7.1 Hz, 1H), 7.14 (t, J = 7.3 Hz, 1H), 6.59 (d, J = 29.8 Hz, 2H), 2.09 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 153.7 (d, J = 19.3 Hz), 142.0 (d, J = 8.9 Hz), 136.2 (d, J = 85.0 Hz), 132.8 (s), 132.8 (d, J = 14.4 Hz), 128.0 (d, J = 11.2 Hz), 123.1 (d, J = 85.6 Hz), 99.2 (d, J = 7.8 Hz), 17.7 (d, $J_{CP} = 18.0$ Hz). HRMS (ESI) [M+Na]⁺ Calcd. for $C_{12}H_{21}FNaPS^+$: 261.0274; Found: 261.0266.

1f: yellow solid, **m.p.** 76.2-79.6 °C. ethyl acetate/petroleum ether = 1:5, $R_f = 0.40$, 606.4 mg, 45%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 44.8 (s). ¹H NMR (300 MHz, CDCl₃) δ 8.81 (d, J = 8.1 Hz, 1H), 8.03 – 7.73 (m, 3H), 7.64 – 7.53 (m, 1H), 7.51 – 7.42 (m, 1H), 7.31 (d, J = 7.5 Hz, 1H), 6.45 (d, J = 30.6 Hz, 2H), 1.96 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 153.1 (d, $J_{CP} = 18.4$ Hz), 133.8 (d, $J_{CP} = 9.0$ Hz), 133.3 (s), 133.2 (d, $J_{CP} = 3.1$ Hz), 130.2 (d, $J_{CP} = 10.8$ Hz), 129.3 (s), 128.5 (s), 127.5 (s), 127.0 (d, $J_{CP} = 56.2$ Hz), 126.1 (d, $J_{CP} = 7.1$ Hz), 124.8 (d, $J_{CP} = 14.2$ Hz), 124.5 (d, $J_{CP} = 83.8$ Hz), 17.6 (d, $J_{CP} = 17.6$ Hz). **HRMS (ESI)** [M+Na]⁺ Calcd. for C₁₆H₁₅NaPS⁺: 293.0525 ; Found: 293.0516.

1g: pink solid, **m.p.** 86.7-89.0 °C. ethyl acetate/petroleum ether = 1:5, $R_f = 0.40$, 323.6 mg, 23%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 35.3 (s). ¹H NMR (300 MHz, CDCl₃) δ 8.40 (d, J = 10.9 Hz, 1H), 7.93 – 7.80 (m, 2H), 7.44 – 7.34 (m, 2H), 6.22 (d, J = 31.3 Hz, 2H), 2.16 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 154.0 (d, $J_{CP} = 19.0$ Hz), 141.7 (d, $J_{CP} = 11.9$ Hz), 139.1 (d, $J_{CP} = 16.0$ Hz), 137.2 (d, $J_{CP} = 13.5$ Hz), 125.1 (s), 125.0 (s), 124.4 (d, $J_{CP} = 81.1$ Hz), 124.2 (s), 123.1 (s), 123.1 (s), 17.6 (d, $J_{CP} = 18.2$ Hz). **HRMS (ESI)** [M+Na]⁺ Calcd. for C₁₄H₁₃NaPS₂⁺: 299.0089; Found: 299.0087.

1h: yellow solid, ethyl acetate/petroleum ether = 1:5, R_f = 0.40, 569.7 mg, 49%, known compound.^[2] ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 50.7 (s). ¹H NMR (300 MHz, CDCl₃) δ 7.17 – 7.03 (m, 5H), 5.84 (d, J = 30.9 Hz, 2H), 3.28 (d, J = 14.4 Hz, 2H), 1.80 (s, 6H).

1i: yellow solid, m.p. 75.6-82.4 °C. ethyl acetate/petroleum ether = 1:5, R_f = 0.40, 794.6 mg, 44%. 31P{¹H} NMR (121 MHz, DMSO-d6) δ 51.2 (s). ¹H NMR (300 MHz, DMSO-d6) δ 7.37 (d, J = 7.7 Hz, 1H), 6.98 – 6.79 (m, 2H), 6.54 (d, J = 5.7 Hz, 1H), 5.70 (d, J = 31.6 Hz, 2H), 3.27 (d, J = 15.5 Hz, 2H), 1.44 (s, 6H). ¹³C{¹H} NMR (75 MHz, DMSO-d6) δ 153.70 (d, J_{CP} = 17.1 Hz), 139.47 (d, J_{CP} = 2.7 Hz), 136.08 (d, J_{CP} = 8.9 Hz), 131.18 (d, J_{CP} = 4.8 Hz), 129.24 (d, J_{CP} = 3.5 Hz), 127.97 (d, J_{CP} = 3.6 Hz), 122.69 (d, J_{CP} = 78.4 Hz), 102.45 (d, J_{CP} = 6.8 Hz), 45.03 (d, J_{CP} = 44.3 Hz), 17.10 (d, J_{CP} = 17.4 Hz). HRMS (ESI) [M+H]⁺ Calcd. for C₁₃H₁₅IPS⁺: 360.9672; Found: 360.9664.

1j: yellow solid, m.p. 46.5-52.0 °C. ethyl acetate/petroleum ether = 1:5, R_f = 0.40, 831.5 mg, 67%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 50.9 (s). ¹H NMR (300 MHz, CDCl₃) δ 7.07 (s, 4H), 5.96 (d, J = 30.8 Hz, 2H), 3.36 (d, J = 14.2 Hz, 2H), 2.31 (d, J = 2.4 Hz, 3H), 1.96 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 153.4 (d, J_{CP} = 16.8 Hz), 136.8 (d, J_{CP} = 4.2 Hz), 129.6 (d, J_{CP} = 5.5 Hz), 128.9 (d, J_{CP} = 3.2 Hz), 128.8 (s), 123.4 (d, J_{CP} = 79.1 Hz), 39.8 (d, J_{CP} = 46.2 Hz), 21.2 (s), 17.4 (d, J_{CP} = 17.1 Hz). HRMS (ESI) [M+H]⁺ Calcd. for C₁₄H₁₈PS⁺: 249.0862; Found: 249.0860.

1k: Yellow solid, ethyl acetate/petroleum ether = 1:5, $R_f = 0.40$, 819.0 mg, 65%. ³¹P{¹H} NMR (121 MHz, CDCl3) δ 51.9 (s). ¹H NMR (300 MHz, CDCl3) δ 7.14 (bs, 2H), 7.00-6.94 (m, 2H), 5.96 (d, J = 30.9 Hz, 2H), 3.37 (d, J = 14.2 Hz, 2H), 1.97 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl3) δ 153.8 (d, J = 17.0 Hz), 131.3 (d, J = 5.4 Hz), 131.2 (d, J = 5.3 Hz), 127.8 (d, J = 13.8 Hz), 123.0 (d, J = 79.3 Hz), 115.1 (d, J = 21.1 Hz), 39.4 (d, J = 46.4 Hz), 17.3 (d, J = 17.1 Hz). **HRMS (ESI)** [M+H]⁺ Calcd. for C₁₃H₁₅FPS⁺: 253.0611; Found: 253.0608

11: yellow oil, ethyl acetate/petroleum ether = 1:10, R_f = 0.40, 605.2 mg, 60%, known compound.^[3] 3¹P{¹H} NMR (121 MHz, CDCl₃) δ 51.9 (s). ¹H NMR (300 MHz, CDCl₃) δ 5.77 (d, J = 31.5 Hz, 2H), 1.82 (s, 6H), 1.76 – 1.67 (m, 2H), 1.39 – 1.29 (m, 2H), 1.21 – 1.09 (m, 2H), 0.67 (t, J = 7.2 Hz, 3H).

1m: yellow oil, ethyl acetate/petroleum ether = 1:10, R_f = 0.40, 622.8 mg, 55%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 51.6 (s). ¹H NMR (300 MHz, CDCl₃) δ 6.01 (d, J = 31.2 Hz, 2H), 2.07 (s, 6H), 2.03 – 1.90 (m, 2H), 1.70 – 1.54 (m, 2H), 1.42 – 1.22 (m, 6H), 0.88 (t, J = 6.7 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 153.0 (d, J_{CP} = 16.9 Hz), 124.0 (d, J_{CP} = 78.0 Hz), 31.5 (d, J_{CP} = 51.0 Hz), 31.2 (s), 30.2 (d, J_{CP} = 14.8 Hz), 23.6 (d, J_{CP} = 3.7 Hz), 22.4 (s), 17.4 (d, J_{CP} = 16.9 Hz), 14.0 (s). **HRMS (ESI)** [M+H]⁺ Calcd. for C₁₂H₂₂PS⁺: 229.1175; Found: 229.1173.

1n: yellow oil, ethyl acetate/petroleum ether = 1:10, R_f = 0.30, 511.2 mg, 44%, known compound. [3] **31P**{**1H} NMR** (**121 MHz, CDCl₃**) δ 43.7 (s). **1H NMR** (**300 MHz, CDCl₃**) δ 5.95 (d, J = 31.5 Hz, 2H), 4.02 (q, J = 6.9 Hz, 2H), 2.99 (d, J = 14.1 Hz, 2H), 1.94 (s, 6H), 1.11 (t, J = 6.9 Hz, 3H).

Me Me Me Me Me Me
$$t ext{-BuOK, THF}$$
 $t ext{-BuOK, THF}$ $t ext{$

In a 75 mL heavy wall pressure tube, *t*-BuOK (1.2 eq.) was added to a solution of 3,4-dimethyl-1-phenylphosphole (1 mL, 5 mmol) in THF (10 mL). The solution was stirred at 140 °C in an oil bath for 14 h. After cooling to room temperature, open the cap and transfer the 2-phenylphospholide solution to another 50 mL Schlenk flask. *n*-BuI was then added to the reaction mixture at -30 °C and maintained at this temperature for 0.5 h. Sulfurization was completed by adding sulfur powder and heating the mixture at 60 °C for 1 hour. After cooling to room temperature, the mixture was filtered through a celite pad. The filtrate was evaporated to dryness, and the resulting residue was purified by column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate as the eluent, yielding phosphole sulfide **10** as yellow solid.

10: yellow solid, **m.p.** 58.6-60.7 °C. ethyl acetate/petroleum ether = 1:10, R_f = 0.40, 276.4 mg, 39%. **31P**{**1H**} **NMR** (**121 MHz, CDCl₃**) δ 56.7 (s). **1H NMR** (**300 MHz, CDCl₃**) δ 7.55 (d, J = 7.7 Hz, 2H), 7.44 – 7.30 (m, 3H), 6.06 (d, J = 31.2 Hz, 1H), 2.14 (s, 3H), 2.02 (d, J = 2.4 Hz, 3H), 1.97 – 1.79 (m, 2H), 1.58 – 1.18 (m, 4H), 0.83 (t, J = 7.1 Hz, 3H). **13C**{**1H**} **NMR** (**75 MHz, CDCl₃**) δ 154.0 (d, J_{CP} = 16.0 Hz), 145.8 (d, J_{CP} = 24.2 Hz), 135.5 (d, J_{CP} = 75.2 Hz), 133.4 (d, J_{CP} = 11.8 Hz), 128.9 (d, J_{CP} = 4.4 Hz), 128.6 (s), 128.1 (d, J_{CP} = 1.2 Hz), 121.5 (d, J_{CP} = 78.0 Hz), 31.2 (d, J_{CP} = 49.6 Hz), 25.0 (d, J_{CP} = 3.9 Hz), 23.6 (d, J_{CP} = 15.4 Hz), 18.1 (d, J_{CP} = 16.2 Hz), 14.4 (d, J_{CP} = 13.3 Hz), 13.6(s). **HRMS** (**ESI**) [M+H]⁺ Calcd. for C₁₆H₂₂PS⁺: 277.1175; Found: 277.1166.

General procedure for the isomerization of phosphole sulfides.

In a 25 mL Schlenk tube, 15 μ L (0.12 mmol, 0.3 eq.) BF₃·Et₂O was added to a solution of phosphole sulfides 1 (0.4 mmol) in toluene (3 mL). The reaction mixture was stirred at 100 °C in an oil bath for 6 h. After cooling to room temperature, the mixture was evaporated to dryness, and the resulting residue was purified by column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate as the eluent, yielding isomerization product **2a-2n**.

2a, ethyl acetate/petroleum ether = 1:5, R_f = 0.40, 74.6mg 83%, known compound. [4] ³¹**P**{¹**H**} **NMR** (**121 MHz, CDCl₃**) δ 49.8 (s). ¹**H NMR (300 MHz, CDCl₃)** δ 7.86 – 7.93(m, 2H), 7.53 – 7.42 (m 3H), 6.11 (d, J = 24.9 Hz, 1H), 5.37 (d, J = 46.5 Hz, 2H), 3.32 – 3.11 (m, 2H), 2.14 (s, 3H).

2b: yellow oil, ethyl acetate/petroleum ether = 1:5, $R_f = 0.40$, 78.8 mg, 78%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 47.9 (s). ¹H NMR (300 MHz, CDCl₃) δ 7.74 (dd, J = 13.2, 8.5 Hz, 2H), 6.96 (dd, J = 8.6, 2.0 Hz, 2H), 6.09 (d, J = 24.9 Hz, 1H), 5.35 (d, J = 44.6 Hz, 2H), 3.84 (s, 3H), 3.42 – 2.98 (m, 2H), 2.13 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.4 (d, $J_{CP} = 2.9$ Hz), 156.1 (d, $J_{CP} = 12.9$ Hz), 145.5 (d, $J_{CP} = 9.6$ Hz), 132.8 (d, $J_{CP} = 13.1$ Hz), 127.9 (d, $J_{CP} = 78.1$ Hz), 123.6 (d, $J_{CP} = 85.5$ Hz), 114.0 (d, $J_{CP} = 13.8$ Hz), 112.7 (d, $J_{CP} = 13.8$ Hz), 55.4 (s), 40.5 (d, $J_{CP} = 59.6$ Hz), 16.4 (d, $J_{CP} = 17.3$ Hz). **HRMS (ESI)** [M+Na]⁺ Calcd. for C₁₃H₁₅NaOPS⁺: 273.0474; Found: 273.0463.

2c: yellow oil, ethyl acetate/petroleum ether = 1:5, $R_f = 0.40$, 80.1 mg, 80%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 50.1 (s). ¹H NMR (300 MHz, CDCl₃) δ 7.52 – 7.25 (m, 3H), 7.03 (d, J = 7.9 Hz, 1H), 6.10 (d, J = 25.1 Hz, 1H), 5.48 – 5.25 (m, 2H), 3.85 (s, 3H), 3.39 – 3.06 (m, 2H), 2.14 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 159.6 (d, $J_{CP} = 15.7$ Hz), 156.6 (d, $J_{CP} = 12.7$ Hz), 145.4 (d, $J_{CP} = 9.3$ Hz), 134.3 (d, $J_{CP} = 78.5$ Hz), 129.7 (d, $J_{CP} = 14.6$ Hz), 127.4 (d, $J_{CP} = 78.1$ Hz), 122.7 (d, $J_{CP} = 11.0$ Hz), 117.6 (d, $J_{CP} = 2.9$ Hz), 116.2 (d, $J_{CP} = 13.3$ Hz), 112.9 (d, $J_{CP} = 13.9$ Hz), 55.5 (s), 40.3 (d, $J_{CP} = 59.2$ Hz), 16.4 (d, $J_{CP} = 17.3$ Hz). **HRMS (ESI)** [M+H]⁺ Calcd. for C₁₃H₁₆OPS⁺: 251.0654; Found: 251.0656.

2d: yellow oil, ethyl acetate/petroleum ether = 1:5, $R_f = 0.40$, 68.7 mg, 74%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 48.2 (s). ¹H NMR (300 MHz, CDCl₃) δ 8.16 (ddd, J = 16.7, 7.6, 1.5 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 6.89 (dd, J = 8.1, 5.7 Hz, 1H), 6.05 (d, J = 25.3 Hz, 1H), 5.49 – 5.15 (m, 2H), 3.78 (s, 3H), 3.54 (dd, J = 17.3, 9.2 Hz, 1H), 3.14 – 2.95 (m, 1H), 2.07 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 160.2 (d, $J_{CP} = 2.9$ Hz), 154.9 (d, $J_{CP} = 14.3$ Hz), 146.8 (d, $J_{CP} = 10.4$ Hz), 135.4 (d, $J_{CP} = 10.6$ Hz), 134.0 (d, $J_{CP} = 2.5$ Hz), 126.7 (d, $J_{CP} = 80.4$ Hz), 120.9 (d, $J_{CP} = 12.9$ Hz), 119.7 (d, $J_{CP} = 78.6$ Hz), 111.2 (d, $J_{CP} = 14.8$ Hz), 110.8 (d, $J_{CP} = 6.1$ Hz), 55.5 (s), 38.5 (d, $J_{CP} = 61.8$ Hz), 16.3 (d, $J_{CP} = 18.0$ Hz). HRMS (ESI) [M+Na]⁺ Calcd. for C₁₃H₁₅NaOPS⁺: 273.0474; Found: 273.0448.

2e: yellow oil, ethyl acetate/petroleum ether = 1:5, $R_f = 0.40$, 66.1 mg, 71%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 57.1 (s). ¹H NMR (300 MHz, CDCl₃) δ 7.99 (dd, J = 7.8, 3.7 Hz, 1H), 7.88 – 7.77 (m, 1H), 7.54 – 7.34 (m, 1H), 7.19 – 6.98 (m, 1H), 6.40 (d, J = 23.6 Hz, 1H), 5.33 (dd, J = 34.8, 1.6 Hz, 2H), 3.19 - 3.74 (dm, 2H), 2.11 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 157.0 (d, J = 14.4 Hz), 145.0 (d, J = 10.5 Hz), 142.0 (d, J = 8.8 Hz), 137.5 (d, $J_{CP} = 83.7$ Hz), 133.3 (d, J = 12.0 Hz), 132.5 (d, J = 2.7 Hz), 127.9 (d, J = 11.1 Hz), 125.4 (d, J = 81.9 Hz), 113.4 (d, J = 14.4 Hz), 98.0 (d, $J_{CP} = 8.2$ Hz), 38.8 (d, $J_{CP} = 59.7$ Hz), 16.6 (d, $J_{CP} = 17.3$ Hz). HRMS (ESI) [M+Na]⁺ Calcd. for $C_{12}H_{21}FNaPS^+$: 261.0274; Found: 261.0277.

2f: yellow oil, ethyl acetate/petroleum ether = 1:5, $R_f = 0.40$, 84.4 mg, 81%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 49.1 (s). ¹H NMR (300 MHz, CDCl₃) δ 8.59 (d, J = 8.3 Hz, 1H), 8.04 – 7.86 (m, 3H), 7.70 – 7.41 (m, 3H), 6.50 (d, J = 24.1 Hz, 1H), 5.33 (d, J = 49.0 Hz, 2H), 3.29 - 3.64 (dm, 2H), 2.15 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 156.0 (d, $J_{CP} = 13.8$ Hz), 145.3 (d, $J_{CP} = 9.7$ Hz), 134.1 (d, $J_{CP} = 9.2$ Hz), 132.8 (d, $J_{CP} = 3.0$ Hz), 131.6 (d, $J_{CP} = 9.5$ Hz), 131.1 (d, $J_{CP} = 10.7$ Hz), 130.0 (s), 129.6 (d, $J_{CP} = 1.2$ Hz), 127.00 (s), 126.9 (d, $J_{CP} = 60.4$ Hz), 125.9 (s), 125.8 (s), 124.6 (d, $J_{CP} = 14.1$ Hz), 113.4 (d, $J_{CP} = 13.8$ Hz), 39.5 (d, J = 58.3 Hz), 16.6 (d, $J_{CP} = 17.3$ Hz). **HRMS** (ESI) [M+Na]⁺ Calcd. for C₁₆H₁₅NaPS⁺: 293.0525; Found: 293.0531.

2g: yellow oil, ethyl acetate/petroleum ether = 1:5, $R_f = 0.40$, 84.2 mg, 78%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 40.1 (s). ¹H NMR (300 MHz, CDCl₃) δ 8.42 (d, J = 11.1 Hz, 1H), 7.97 – 7.87 (m, 1H), 7.73 – 7.64 (m, 1H), 7.44 – 7.36 (m, 2H), 6.21 (d, J = 25.4 Hz, 1H), 5.67 – 5.33 (m, 2H), 3.48 (dd, J = 17.9, 8.2 Hz, 1H), 3.18 (t, J = 16.2 Hz, 1H), 2.17 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 157.7 (d, $J_{CP} = 14.1$ Hz), 146.4 (d, $J_{CP} = 10.5$ Hz), 143.4 (d, $J_{CP} = 12.0$ Hz), 141.7 (d, $J_{CP} = 16.6$ Hz), 138.3 (d, $J_{CP} = 13.2$ Hz), 129.7 (s), 129.0 (s), 128.6 (s), 127.9 (s), 126.2 (d, $J_{CP} = 19.3$ Hz), 124.3 (d, $J_{CP} = 39.2$ Hz), 115.0 (d, $J_{CP} = 14.3$ Hz), 39.3 (d, $J_{CP} = 60.7$ Hz), 17.7 (d, $J_{CP} = 17.6$ Hz). **HRMS (ESI)** [M+Na]⁺ Calcd. for C₁₄H₁₃NaPS₂⁺: 299.0089; Found: 299.0092

2h: yellow oil, ethyl acetate/petroleum ether = 1:5, $R_f = 0.40$, 69.5 mg, 74%. ³¹P{¹H} NMR (121 MHz, CDCl3) δ 55.1 (s). ¹H NMR (300 MHz, CDCl3) δ 7.39 – 7.23 (m, 3H), 7.21 – 7.14 (m, 2H), 5.95 (d, J = 25.3 Hz, 1H), 5.10 (dd, J = 32.1, 1.2 Hz, 2H), 3.45 (dd, J = 14.5, 3.0 Hz, 2H), 3.10 (dd, J = 17.4, 7.0 Hz, 1H), 2.83 (dd, J = 24.1, 9.9 Hz, 1H), 1.94 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl3) δ 156.4 (d, $J_{CP} = 12.0$ Hz), 144.7 (d, $J_{CP} = 9.3$ Hz), 131.9 (d, $J_{CP} = 8.6$ Hz), 129.9 (d, $J_{CP} = 5.5$ Hz), 128.5 (d, $J_{CP} = 3.4$ Hz), 127.2 (d, $J_{CP} = 3.9$ Hz), 125.8 (d, $J_{CP} = 74.3$ Hz), 112.2 (d, $J_{CP} = 13.1$ Hz), 43.5 (d, $J_{CP} = 46.3$ Hz), 36.0 (d, $J_{CP} = 56.7$ Hz), 16.2 (d, $J_{CP} = 16.6$ Hz). HRMS (ESI) [M+H]⁺ Calcd. for C₁₃H₁₆PS⁺: 235.0705; Found: 235.0704.

2i: yellow oil, ethyl acetate/petroleum ether = 1:5, $R_f = 0.40$, 101.3 mg, 66%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 55.59 (s). ¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, J = 7.9 Hz, 1H), 7.41 – 7.34 (m, 1H), 7.32 – 7.24 (m, 1H), 7.01 – 6.85 (m, 1H), 6.02 (d, J = 25.6 Hz, 1H), 5.19 – 5.01 (m, 2H), 3.73 (dd, J = 14.9, 3.5 Hz, 2H), 3.25 (dd, J = 17.4, 7.0 Hz, 1H), 2.86 (t, J = 15.9 Hz, 1H), 1.93 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 156.4 (d, $J_{CP} = 12.1$ Hz), 144.6 (d, $J_{CP} = 9.2$ Hz), 139.9 (d, $J_{CP} = 3.2$ Hz), 135.6 (d, $J_{CP} = 8.7$ Hz), 131.1 (d, $J_{CP} = 4.8$ Hz), 128.9 (d, $J_{CP} = 3.8$ Hz), 128.3 (d, $J_{CP} = 3.4$ Hz), 125.7 (d, $J_{CP} = 74.1$ Hz), 112.0 (d, $J_{CP} = 13.4$ Hz), 101.4 (d, $J_{CP} = 7.0$ Hz), 47.7 (d, $J_{CP} = 4.8$ Hz), 36.8 (d, $J_{CP} = 56.2$ Hz), 16.3 (d, $J_{CP} = 16.7$ Hz). HRMS (ESI) [M+Na]⁺ Calcd. for C₁₃H₁₄INaPS⁺: 382.9491; Found: 382.9510.

2j (0.2mmol): The reaction was set up with 0.2 mmol **1j**. Yellow oil, ethyl acetate/petroleum ether = 1:5, $R_f = 0.40$, 21.7 mg, 45%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 54.7 (s). ¹H NMR (300 MHz,

CDCI₃) δ 7.16 – 6.94 (m, 4H), 5.95 (d, J = 25.3 Hz, 1H), 5.12 (d, J = 31.2 Hz, 2H), 3.41 (dd, J = 14.3, 2.2 Hz, 2H), 3.09 (dd, J = 17.4, 7.0 Hz, 1H), 2.90 – 2.70 (m, 1H), 2.31 (d, J = 2.3 Hz, 3H), 1.95 (s, 3H). ¹³**C**{¹**H**} **NMR** (**75 MHz, CDCI₃**) δ 156.2 (d, J_{CP} = 11.8 Hz), 144.8 (d, J_{CP} = 9.0 Hz), 136.9 (d, J_{CP} = 4.0 Hz), 129.7 (d, J_{CP} = 5.4 Hz), 129.2 (d, J_{CP} = 3.3 Hz), 128.7 (d, J_{CP} = 8.7 Hz), 126.0 (d, J_{CP} = 74.1 Hz), 112.2 (d, J_{CP} = 13.1 Hz), 43.0 (d, J_{CP} = 46.8 Hz), 35.9 (d, J_{CP} = 56.6 Hz), 21.1 (s), 16.3 (d, J_{CP} = 16.5 Hz). **HRMS** (**ESI**) [M+H]⁺ Calcd. for C₁₄H₁₈PS⁺: 249.0862; Found: 249.0872.

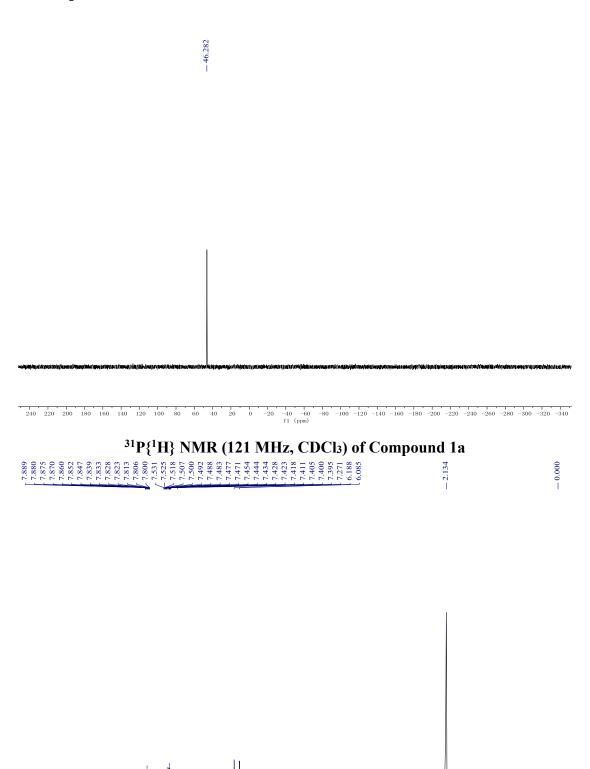
2k: yellow oil, ethyl acetate/petroleum ether = 1:5, $R_f = 0.40$, 73.9 mg, 71%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 55.0 (s). ¹H NMR (300 MHz, CDCl₃) δ 7.20 – 7.11 (m, 2H), 6.99 (t, J = 8.6 Hz, 2H), 5.94 (d, J = 25.3 Hz, 1H), 5.25 – 5.05 (m, 2H), 3.41 (d, J = 14.2 Hz, 2H), 3.08 (dd, J = 17.5, 6.9 Hz, 1H), 2.91 – 2.75 (m, 1H), 1.97 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 156.6 (d, J = 12.0 Hz), 144.6 (d, J = 9.2 Hz), 131.4 (d, J = 13.5 Hz), 131.4 (d, J = 2.6 Hz), 125.6 (d, J = 75.3 Hz), 115.6 (d, J = 3.2 Hz), 115.3 (d, J = 3.3 Hz), 112.4 (d, J = 13.1 Hz), 42.6 (d, $J_{CP} = 46.6$ Hz), 36.0 (d, $J_{CP} = 56.6$ Hz), 16.3 (d, $J_{CP} = 16.5$ Hz). **HRMS (ESI)** [M+H]⁺ Calcd. for C₁₃H₁₅FPS⁺: 253.0611; Found: 253.0622.

21: yellow oil, ethyl acetate/petroleum ether = 1:10, $R_f = 0.40$, 60.8 mg, 75%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 56.0 (s). ¹H NMR (300 MHz, CDCl₃) δ 6.03 (d, J = 25.4 Hz, 1H), 5.28 (d, J = 31.7 Hz, 2H), 3.11 (dd, J = 17.3, 6.6 Hz, 1H), 2.90 (t, J = 15.9 Hz, 1H), 2.03 (t, J = 7.5 Hz, 5H), 1.70 – 1.51 (m, 2H), 1.41 - 1.61 (dm, 4H), 0.93 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 155.6 (d, $J_{CP} = 12.0$ Hz), 145.1 (d, $J_{CP} = 9.0$ Hz), 126.7 (d, $J_{CP} = 73.3$ Hz), 112.4 (d, $J_{CP} = 13.1$ Hz), 36.8 (d, $J_{CP} = 55.7$ Hz), 35.1 (d, $J_{CP} = 52.2$ Hz), 25.2 (d, $J_{CP} = 3.9$ Hz), 23.7 (d, $J_{CP} = 15.7$ Hz),

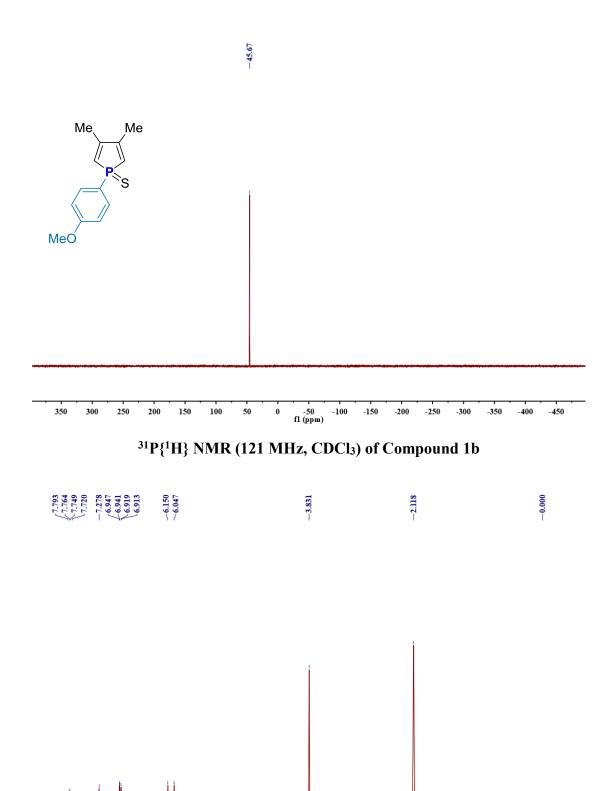
16.3 (d, $J_{CP} = 16.4 \text{ Hz}$), 13.7 (s). **HRMS (ESI)** [M+H]⁺ Calcd. for C₁₀H₁₈PS⁺: 201.0862; Found: 201.0860.

2m: yellow oil, ethyl acetate/petroleum ether = 1:10, R_f = 0.40, 66.8 mg, 69%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 54.8 (s). ¹H NMR (300 MHz, CDCl₃) δ 6.03 (d, J = 25.5 Hz, 1H), 5.28 (d, J = 31 Hz, 2H), 3.10 (dd, J = 17.4, 6.6 Hz, 1H), 2.90 (t, J = 15.9 Hz, 1H), 2.09 – 1.94 (m, 5H), 1.68 – 1.54 (m, 2H), 1.38 (dd, J = 9.5, 4.4 Hz, 2H), 1.29 (dd, J = 8.3, 5.3 Hz, 4H), 0.88 (t, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 155.5 (d, J_{CP} = 12.1 Hz), 145.2 (d, J_{CP} = 9.0 Hz), 126.8 (d, J_{CP} = 73.2 Hz), 112.4 (d, J_{CP} = 13.0 Hz), 36.9 (d, J_{CP} = 55.7 Hz), 35.3 (d, J_{CP} = 51.9 Hz), 31.3 (s), 30.2 (d, J_{CP} = 15.3 Hz), 23.1 (d, J_{CP} = 3.9 Hz), 22.4 (s), 16.3 (d, J_{CP} = 16.4 Hz), 14.0 (s). **HRMS (ESI)** [M+Na]⁺ Calcd. for C₁₂H₂₁NaPS⁺: 251.0994; Found: 251.1006.

2n: yellow oil, ethyl acetate/petroleum ether = 1:5, $R_f = 0.30$, 66.6 mg, 72%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 49.7 (s). ¹H NMR (300 MHz, CDCl₃) δ 6.02 (d, J = 25.7 Hz, 1H), 5.25 (d, J = 31.1 Hz, 2H), 4.14 – 3.99 (m, 2H), 3.42 (dd, J = 17.6, 8.4 Hz, 1H), 3.19 (d, J = 2.6 Hz, 1H), 3.14 (d, J = 2.2 Hz, 1H), 2.89 (t, J = 16.1 Hz, 1H), 1.97 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 165.9 (d, $J_{CP} = 6.2$ Hz), 156.8 (d, $J_{CP} = 13.7$ Hz), 144.5 (d, $J_{CP} = 10.3$ Hz), 125.7 (d, $J_{CP} = 76.2$ Hz), 113.0 (d, $J_{CP} = 14.4$ Hz), 61.7 (s), 43.3 (d, $J_{CP} = 42.0$ Hz), 36.7 (d, $J_{CP} = 58.2$ Hz), 16.3 (d, $J_{CP} = 17.6$ Hz), 14.1 (s). **HRMS (ESI)** [M+Na]⁺ Calcd. for C₁₀H₁₅NaO₂PS⁺: 253.0423; Found: 253.0419.


20 (0.2mmol): yellow oil, ethyl acetate/petroleum ether = 1:10, R_f = 0.40, 40.0 mg, 70%. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 60.9 (s). ¹H NMR (300 MHz, CDCl₃) δ 7.43 – 7.36 (m, 2H), 7.32 –

7.20 (m, 3H), 5.36 – 5.09 (m, 2H), 3.13 (dd, J = 17.3, 6.6 Hz, 1H), 2.95 – 2.78 (m, 1H), 1.88 – 1.75 (m, 5H), 1.43 – 1.28 (m, 2H), 1.18 - 1.24 (m, 2H), 0.72 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 149.2 (d, $J_{CP} = 19.1$ Hz), 144.4 (d, $J_{CP} = 8.3$ Hz), 137.9 (d, $J_{CP} = 69.9$ Hz), 133.7 (d, $J_{CP} = 9.4$ Hz), 128.9 (d, $J_{CP} = 4.4$ Hz), 128.3 (s), 128.0 (d, $J_{CP} = 1.4$ Hz), 112.2 (d, $J_{CP} = 12.2$ Hz), 36.0 (d, $J_{CP} = 55.6$ Hz), 33.8 (d, $J_{CP} = 50.3$ Hz), 25.0 (d, $J_{CP} = 3.9$ Hz), 23.5 (d, $J_{CP} = 15.9$ Hz), 13.8 (d, $J_{CP} = 12.6$ Hz), 13.6 (s). **HRMS (ESI)** [M+Na]⁺ Calcd. for C₁₆H₂₁NaPS⁺: 299.0994; Found: 299.1013.


References:

- [1] A. Breque, F. Mathey, P. Savignac, Synthesis, 1981, 1981, 983.
- [2] T. Moller, P. Wonneberger, N. Kretzschmar and E. Hey-Hawkins, *Chem. Commun.*, 2014, **50**, 5826.
- [3] Y. Hou, M. Cui, K. Zhang, L. Chen, R. Tian, Org. Chem. Front., 2022, 9, 6606.
- [4] W. Luo, A. Ciric, R. Tian, F. Mathey, Organometallics, 2010, 29, 1862–1864.

NMR Spectrums

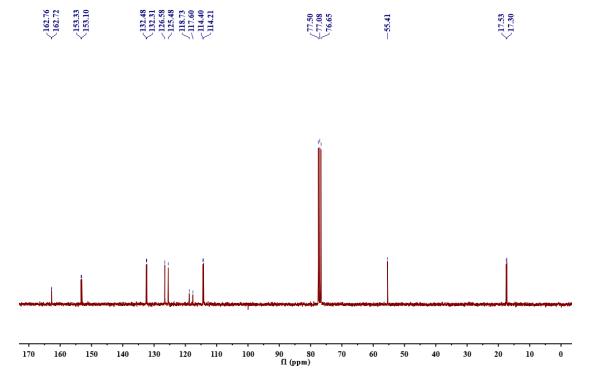
¹H NMR (300 MHz, CDCl₃) of Compound 1a

¹H NMR (300 MHz, CDCl₃) of Compound 1b

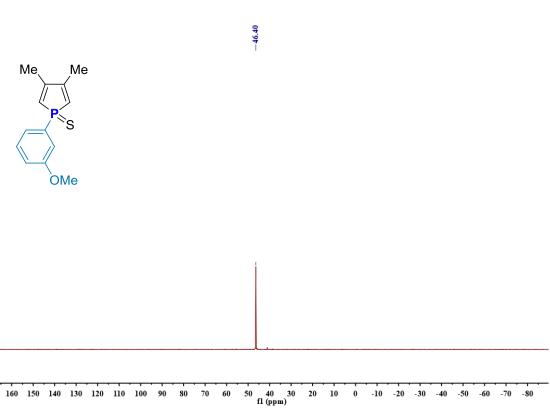
5.5

5.0

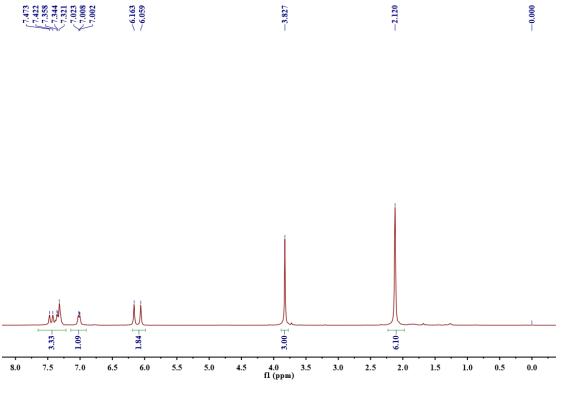
2.0

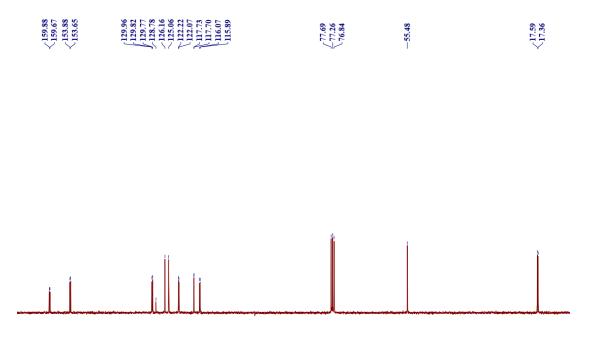

1.5

0.5


-0.5

2.5

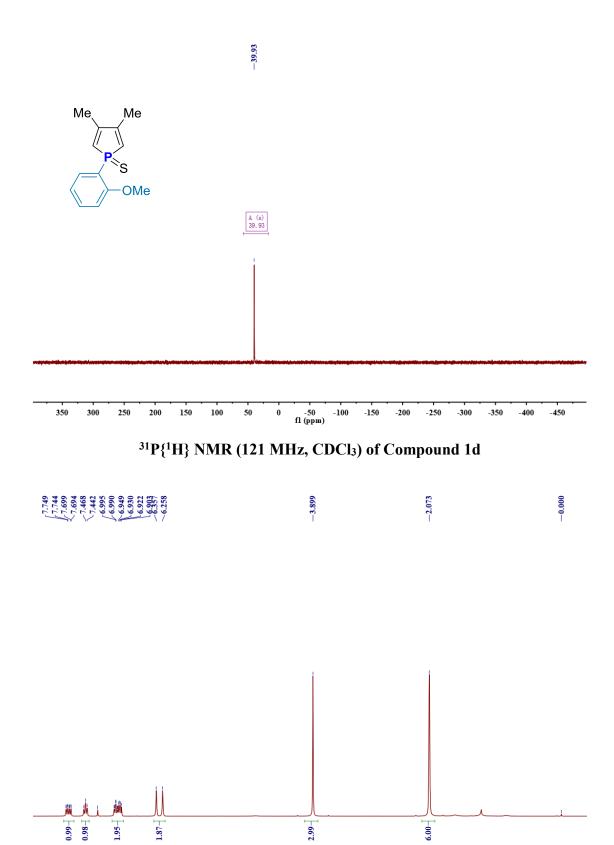

0.98


 $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 1b

 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 1c

¹H NMR (300 MHz, CDCl₃) of Compound 1c

 $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 1c


110

160

150

140

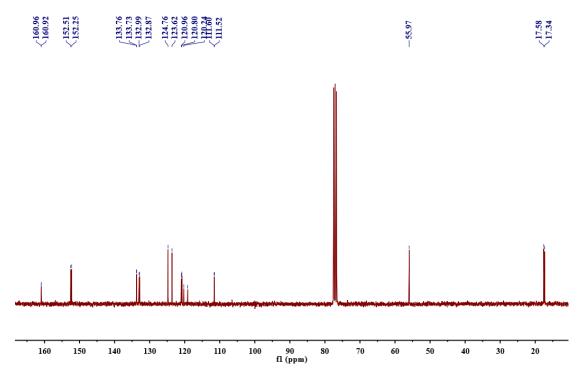
90 80 fl (ppm)

¹H NMR (300 MHz, CDCl₃) of Compound 1d

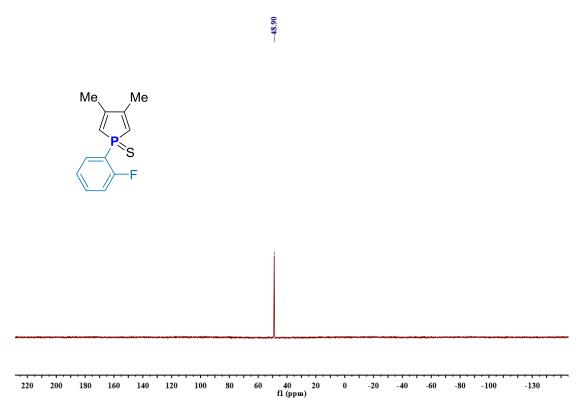
5.5

6.0

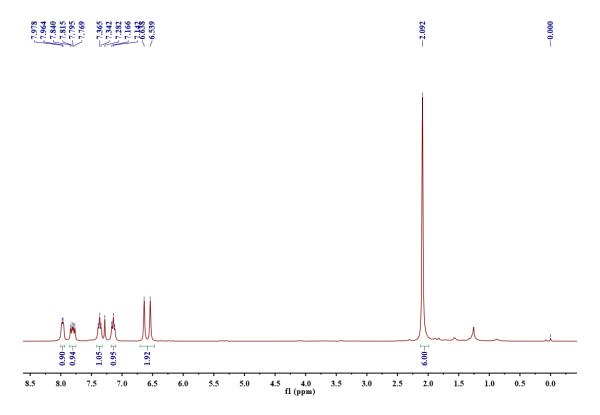
4.0 3.5 fl (ppm)

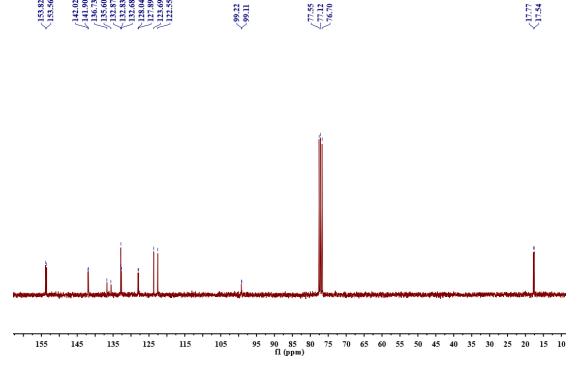

2.0

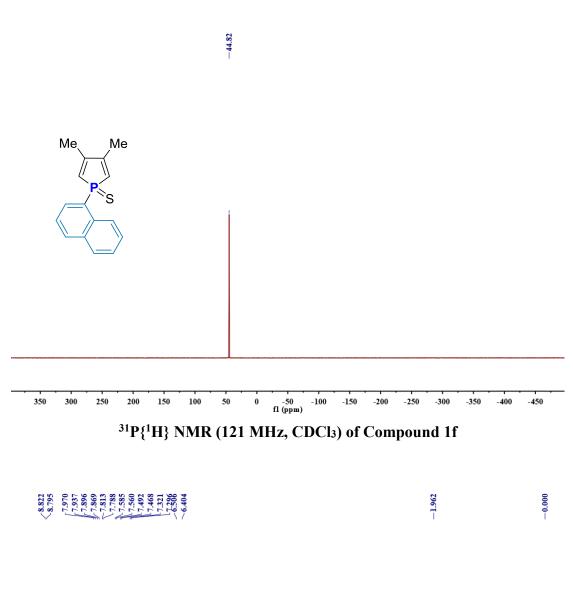
1.5

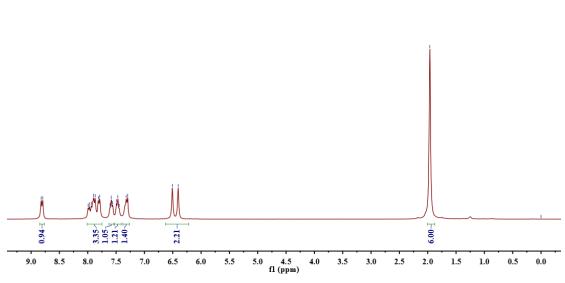

0.5

0.0

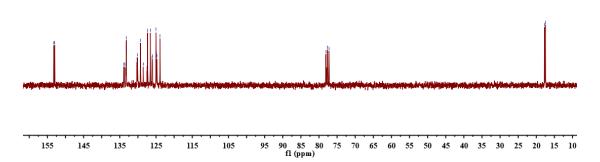

2.5


 $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 1d

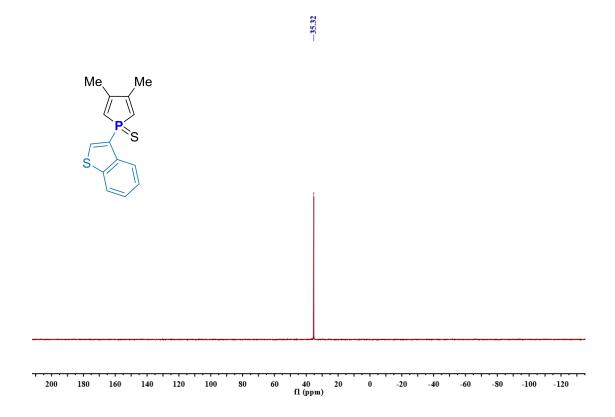

 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 1e

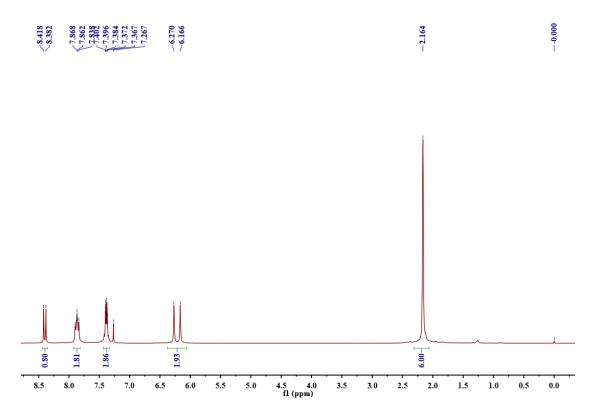


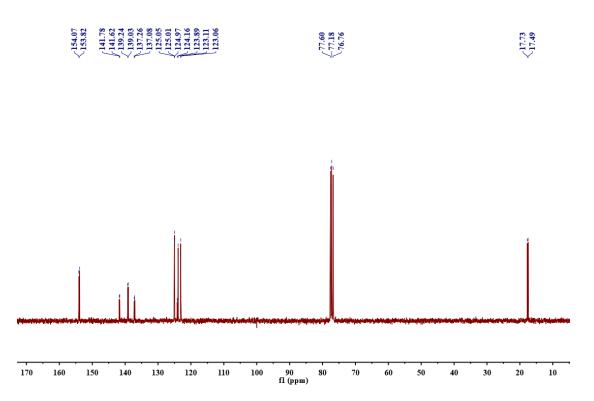
¹H NMR (300 MHz, CDCl₃) of Compound 1e

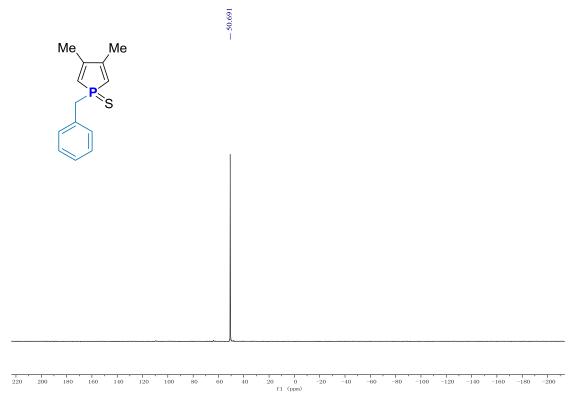


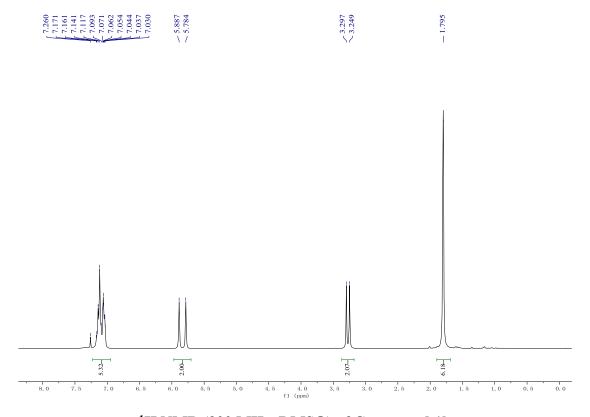
¹³C{¹H} NMR (75 MHz, CDCl₃) of Compound 1e

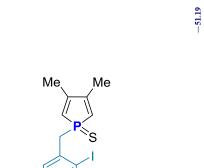


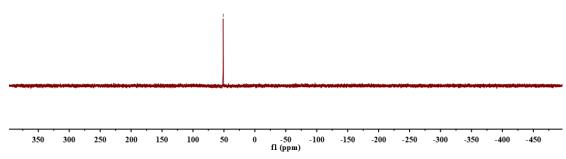

¹H NMR (300 MHz, CDCl₃) of Compound 1f


 $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 1f

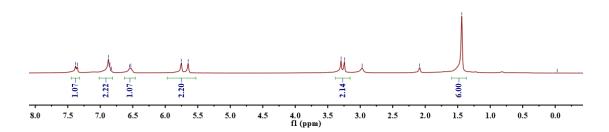

 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 1g

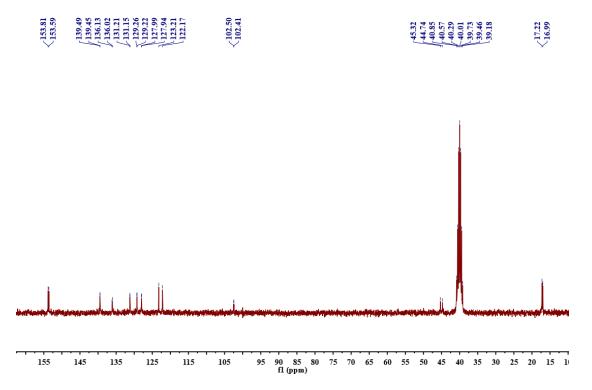

 $^1\mbox{H}$ NMR (300 MHz, CDCl3) of Compound 1g


 $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 1g

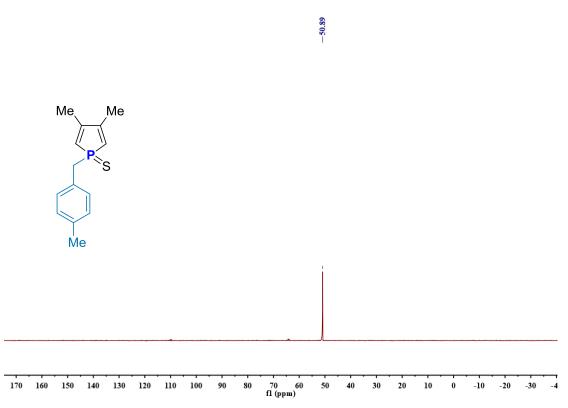


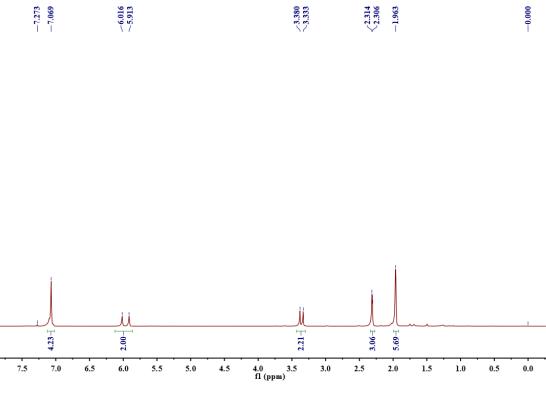
 $^{31}P\{^{1}H\}$ NMR (121 MHz, DMSO) of Compound 1h

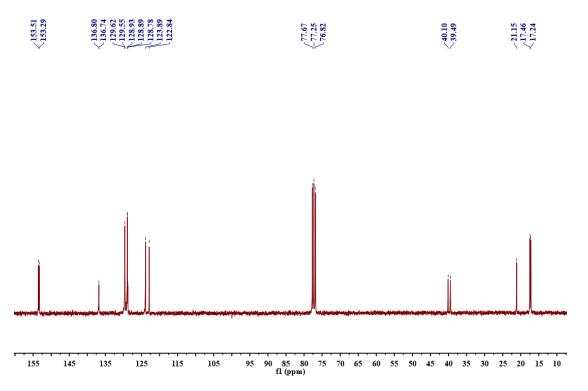

¹H NMR (300 MHz, DMSO) of Compound 1h

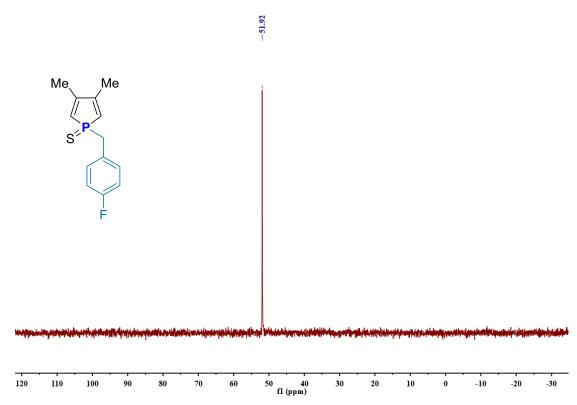


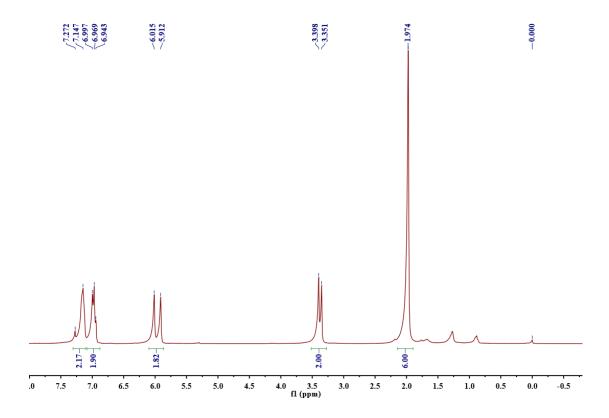
 $^{31}P\{^{1}H\}$ NMR (121 MHz, DMSO) of Compound 1i

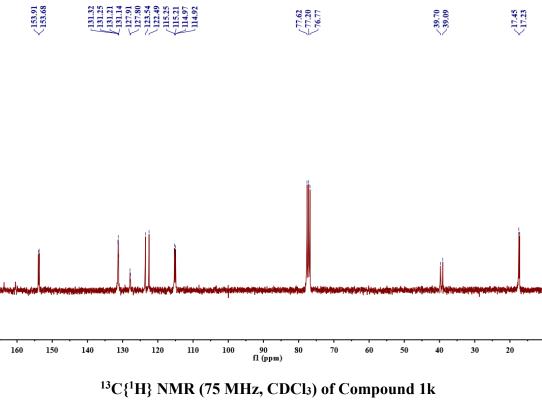


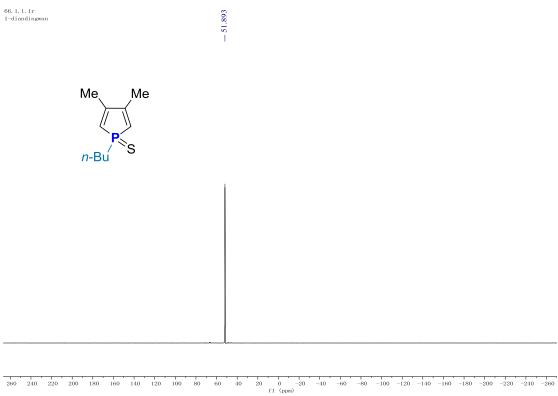

 $^1\mbox{H}$ NMR (300 MHz, DMSO) of Compound 1i


 $^{13}C\{^{1}H\}$ NMR (75 MHz, DMSO) of Compound 1i

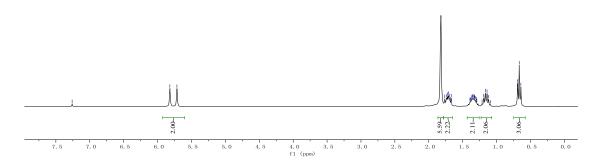

 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 1j

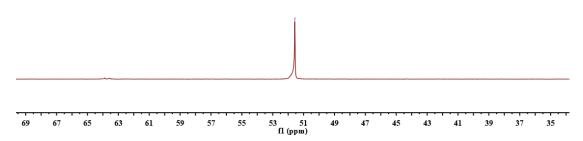

¹H NMR (300 MHz, CDCl₃) of Compound 1j

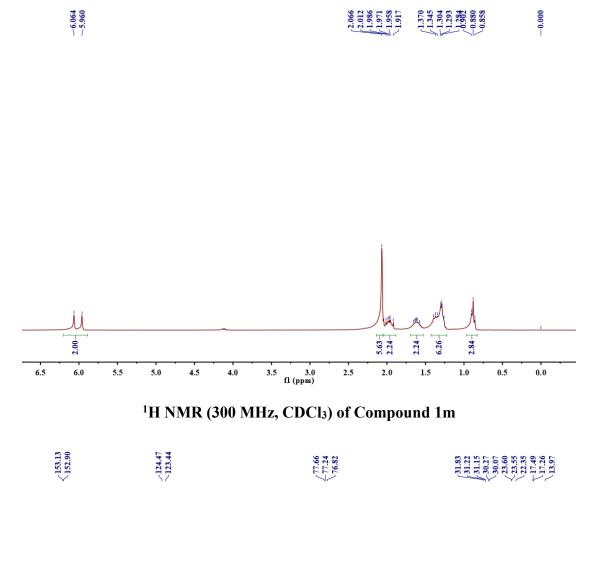

 $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) of Compound 1j



 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 1k

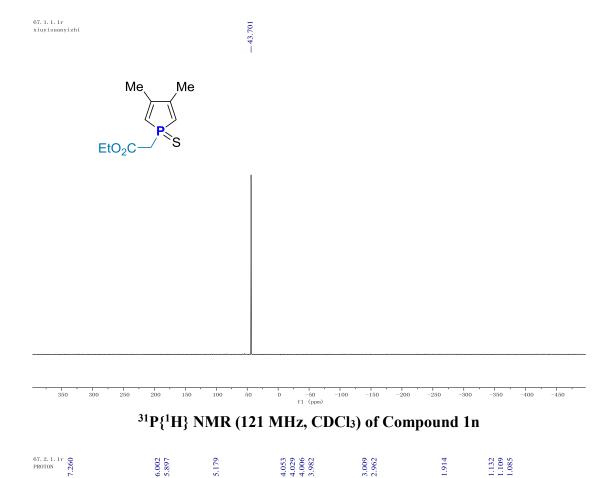

 ^{1}H NMR (300 MHz, CDCl₃) of Compound 1k

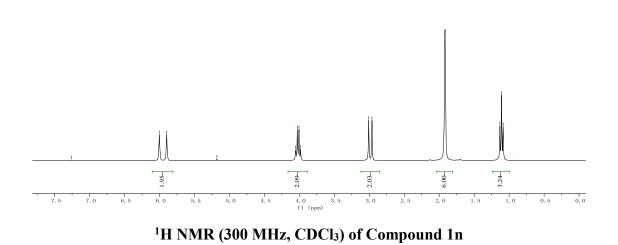

 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 11



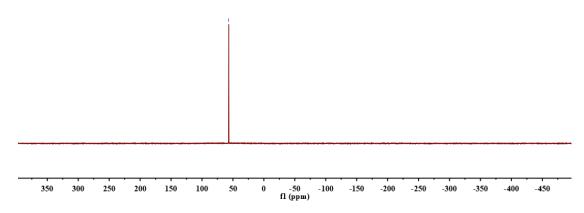
¹H NMR (300 MHz, CDCl₃) of Compound 11

-51.57

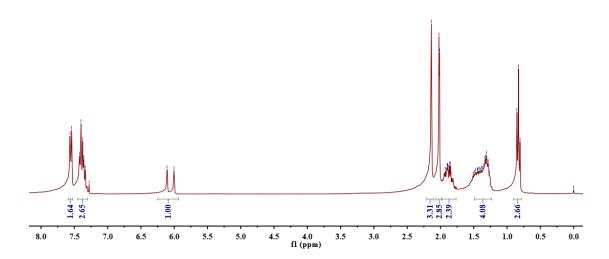


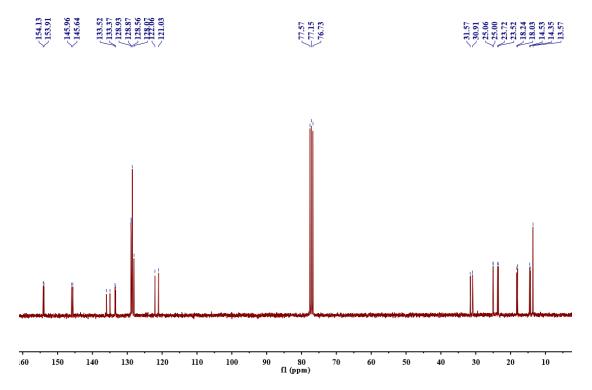

 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 1m

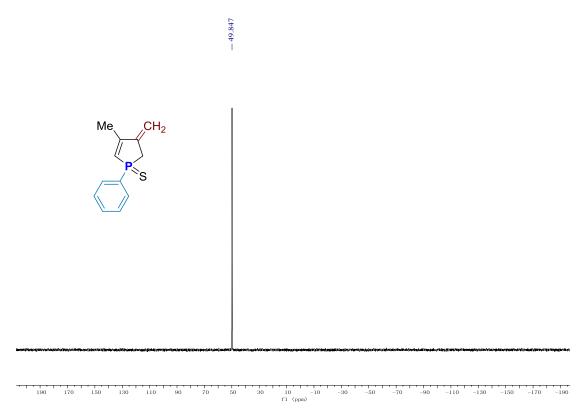
 $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) of Compound 1m

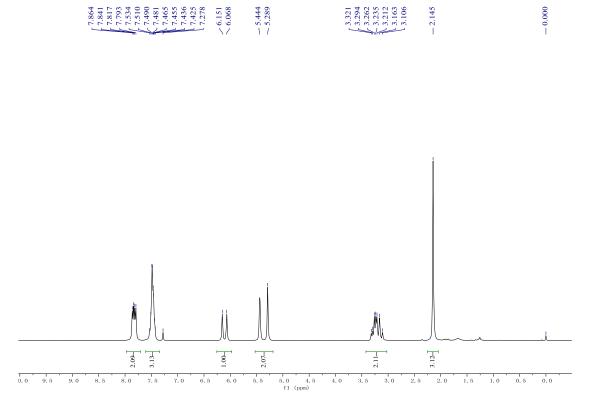


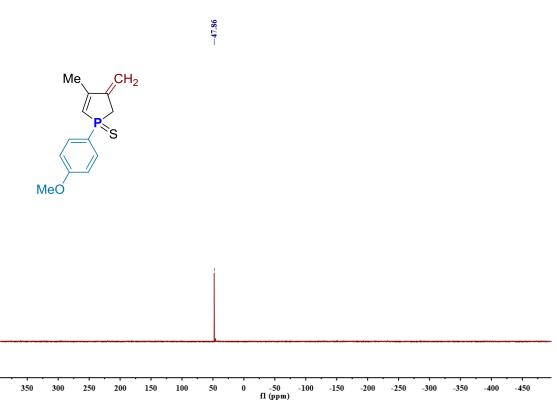
S35

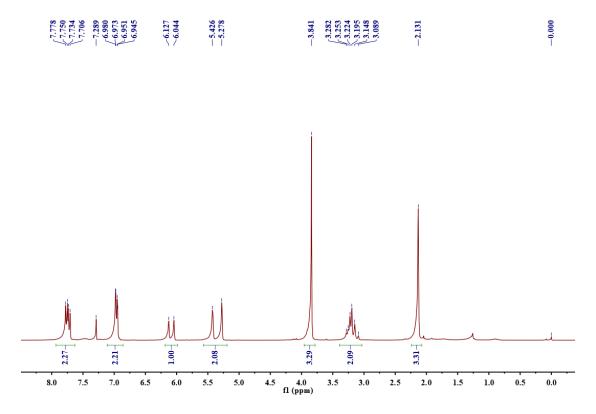

 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 10

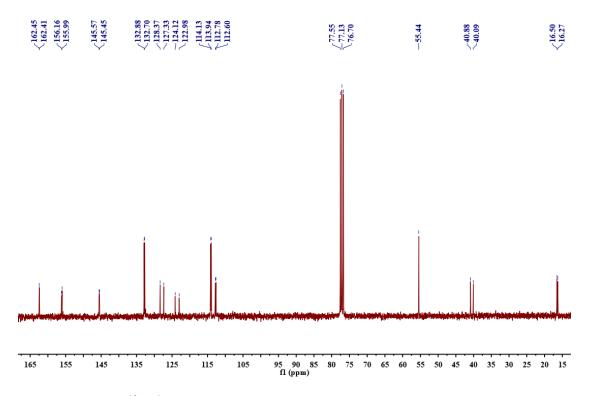


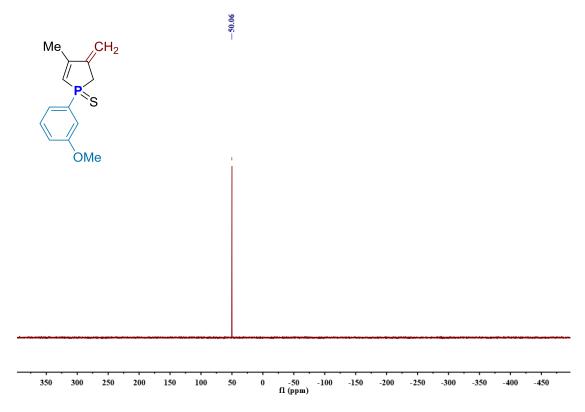



 $^{1}\mathrm{H}$ NMR (300 MHz, CDCl₃) of Compound 10

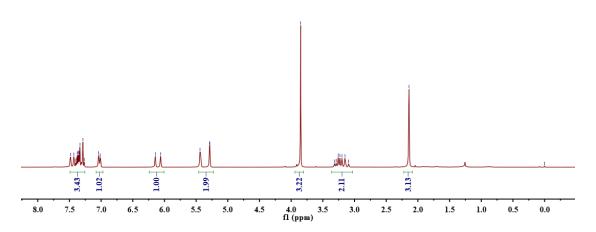

 $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 10


 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 2a

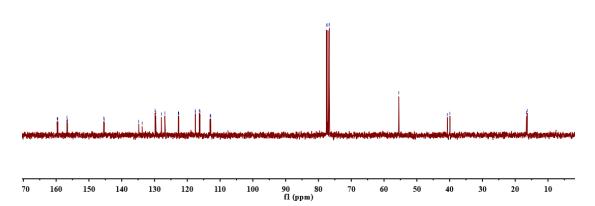

¹H NMR (300 MHz, CDCl₃) of Compound 2a

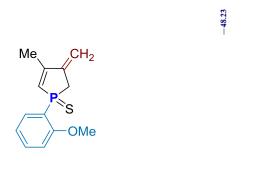

 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 2b

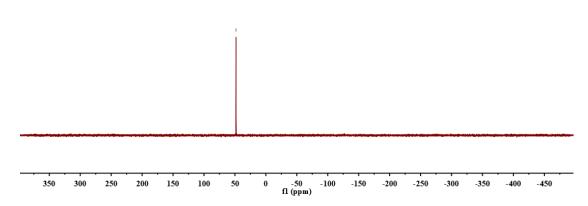
¹H NMR (300 MHz, CDCl₃) of Compound 2b

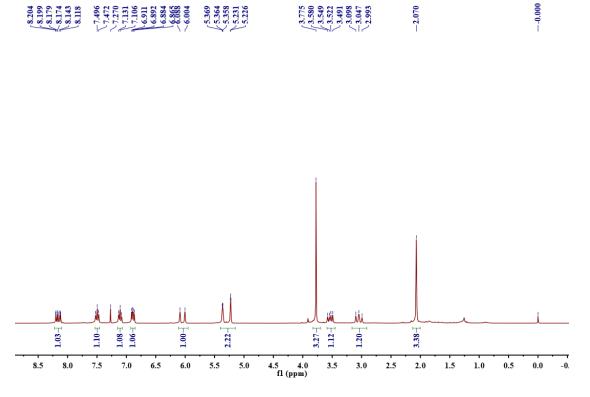


 $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 2b

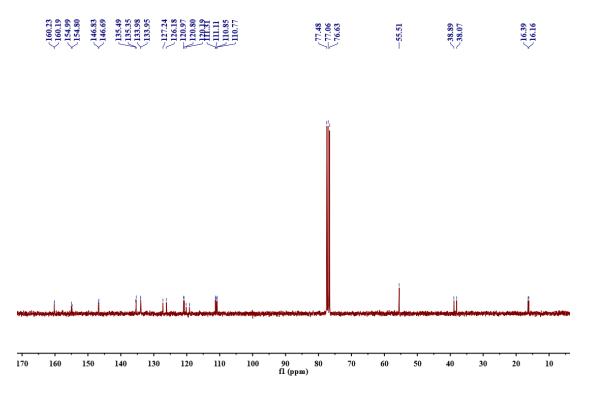

 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 2c

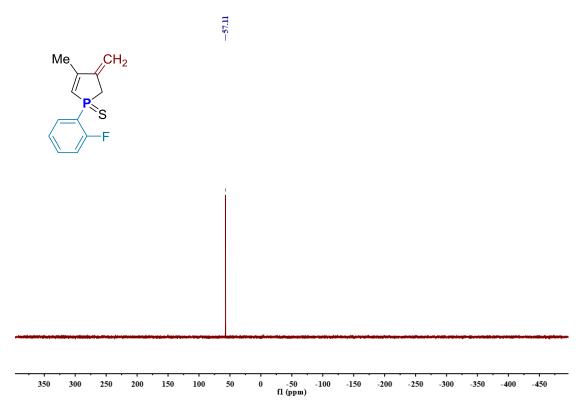



¹H NMR (300 MHz, CDCl₃) of Compound 2c

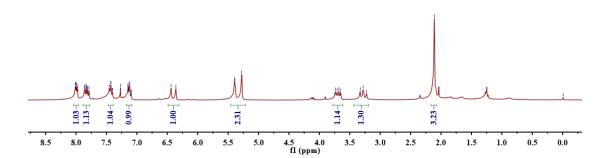


 $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 2c

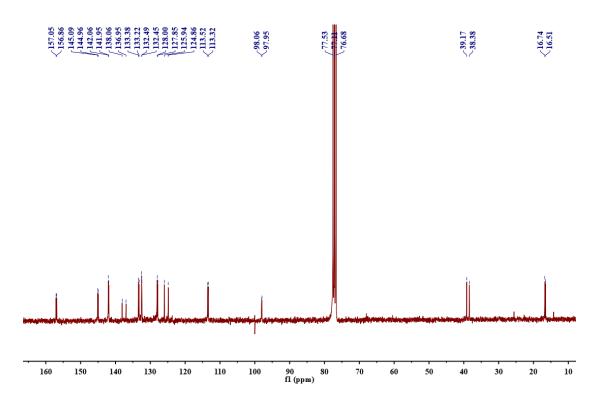



 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 2d

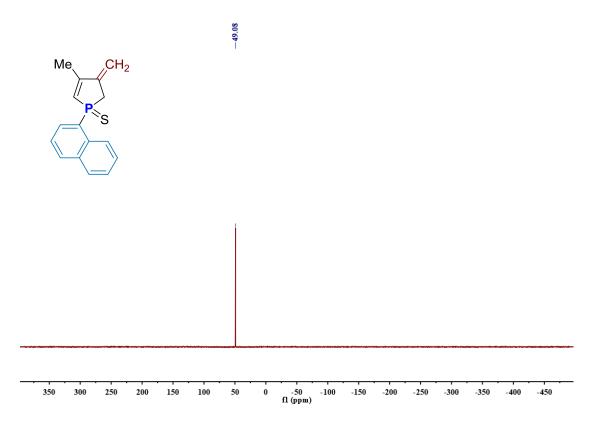
¹H NMR (300 MHz, CDCl₃) of Compound 2d

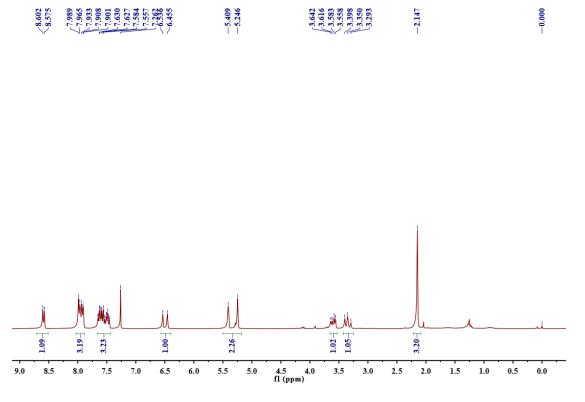


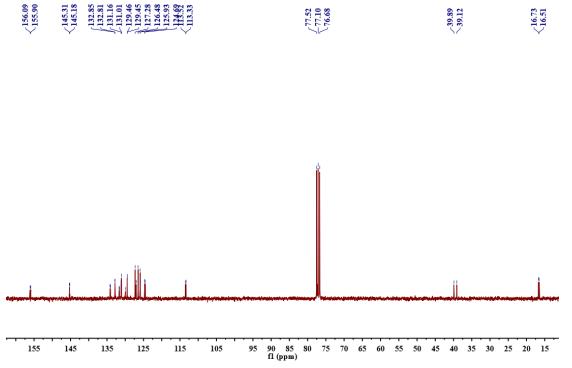
 $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 2d

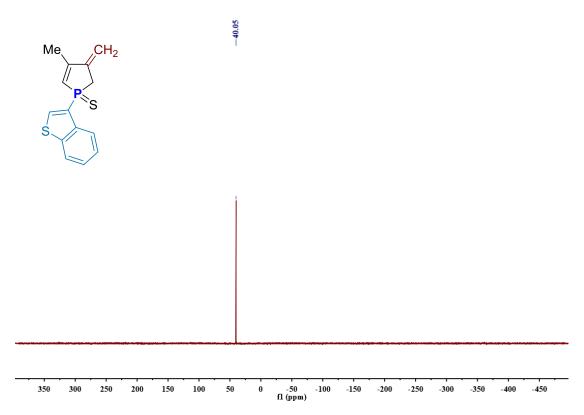


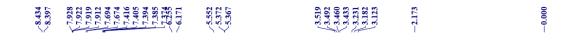
 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 2e

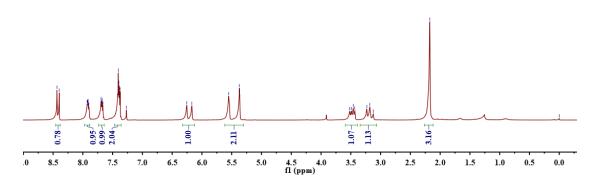



¹H NMR (300 MHz, CDCl₃) of Compound 2e

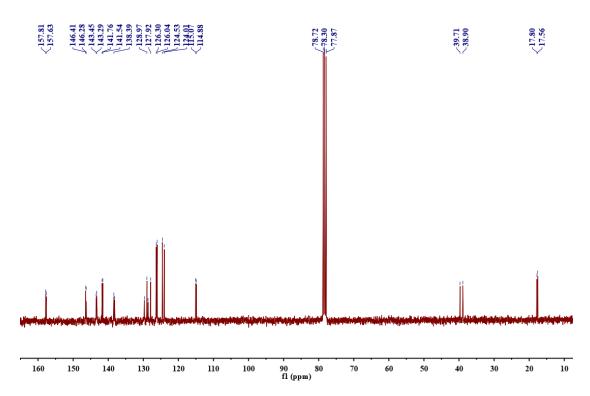

 $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 2e


 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 2f

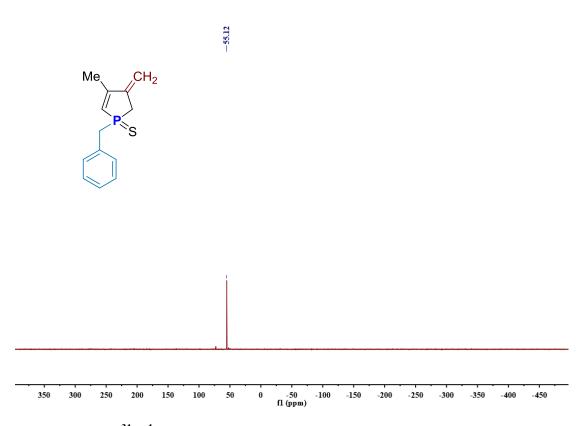

¹H NMR (300 MHz, CDCl₃) of Compound 2f



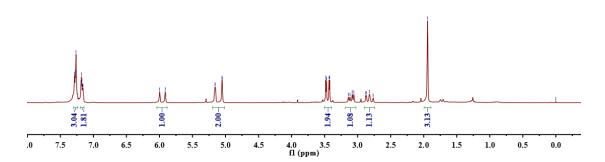
$^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 2f



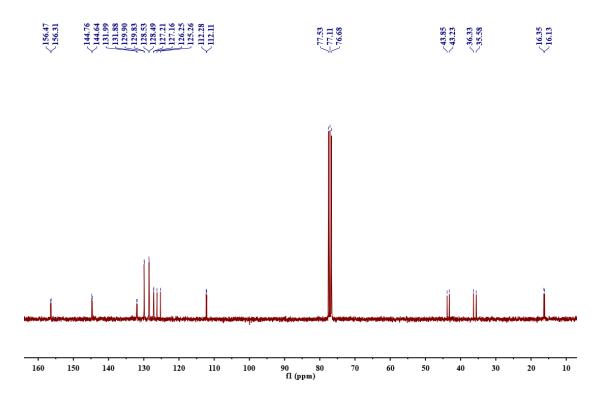
 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 2g



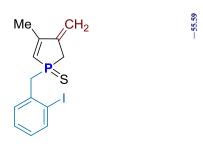
^{1}H NMR (300 MHz, CDCl₃) of Compound 2g

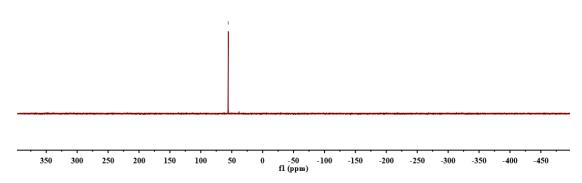


 $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 2g

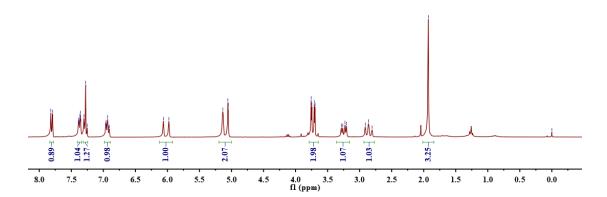


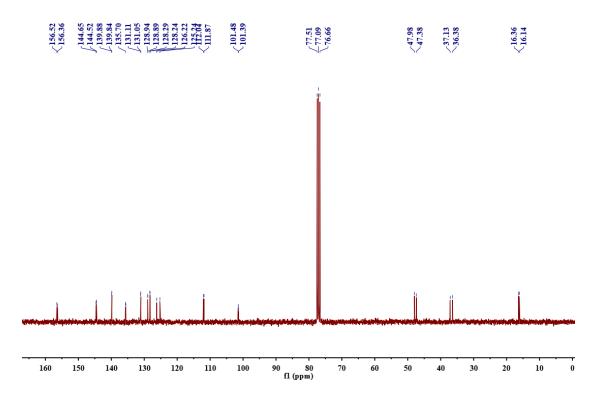
 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 2h



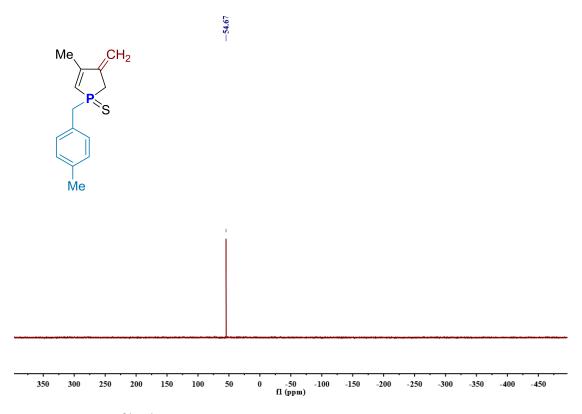


¹H NMR (300 MHz, CDCl₃) of Compound 2h

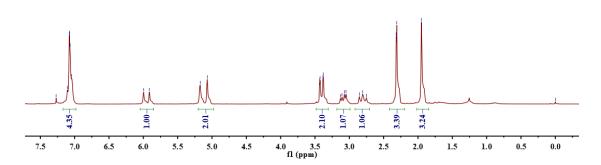

$^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 2h



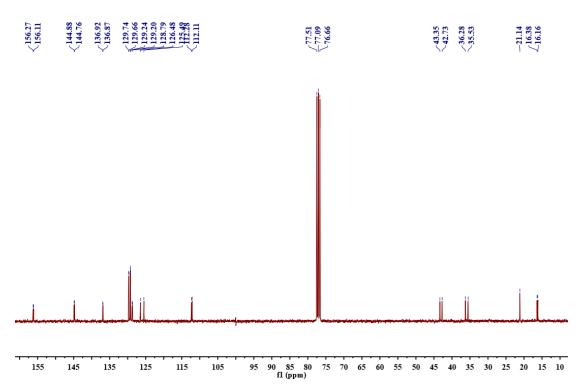
³¹P{¹H} NMR (121 MHz, CDCl₃) of Compound 2i



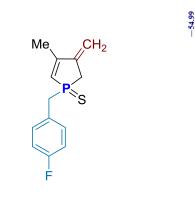
 $^{\mbox{\tiny 1}}\mbox{H}$ NMR (300 MHz, CDCl $_{\mbox{\tiny 3}}\mbox{)}$ of Compound 2i

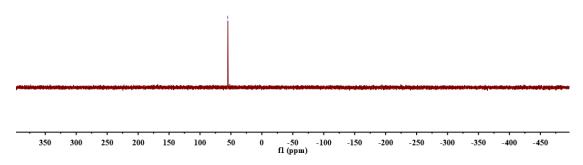


 $^{\scriptscriptstyle{13}}\text{C}\{^{\scriptscriptstyle{1}}\text{H}\}$ NMR (75 MHz, CDCl $_{\scriptscriptstyle{3}})$ of Compound 2i

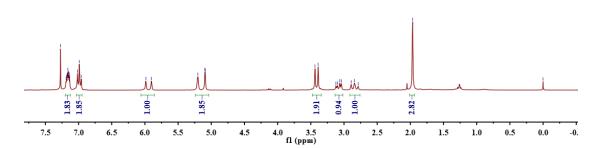


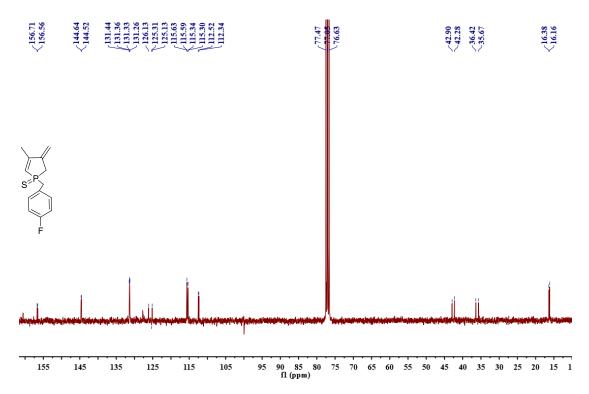
 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 2j



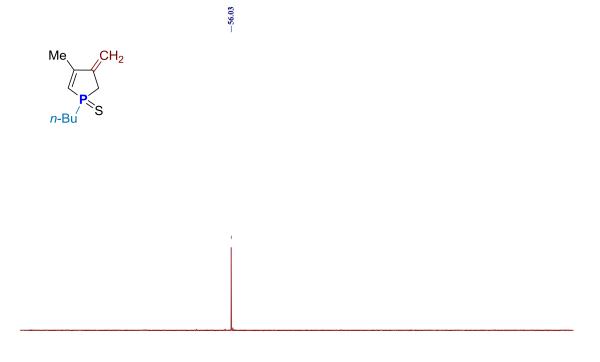


¹H NMR (300 MHz, CDCl₃) of Compound 2j


 $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) of Compound 2j



 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 2k



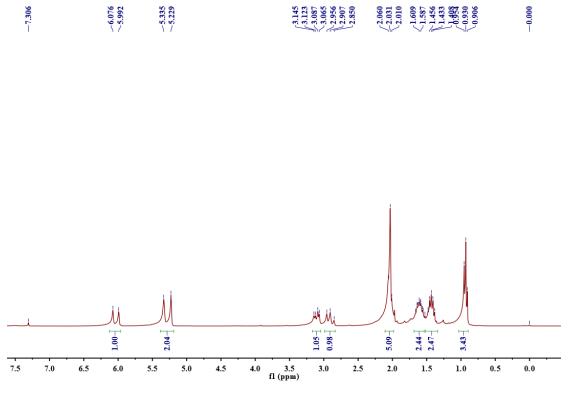
¹H NMR (300 MHz, CDCl₃) of Compound 2k

 $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 2k

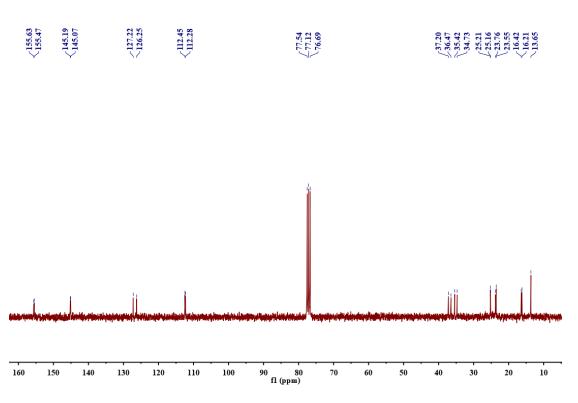
 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 2l

350

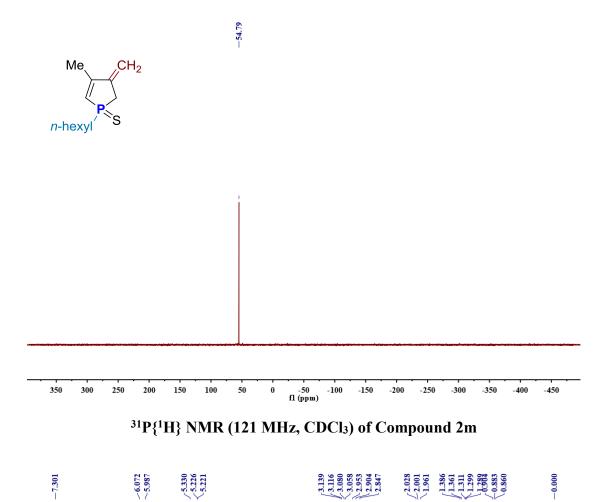
300

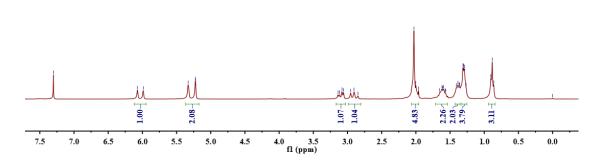

250

200

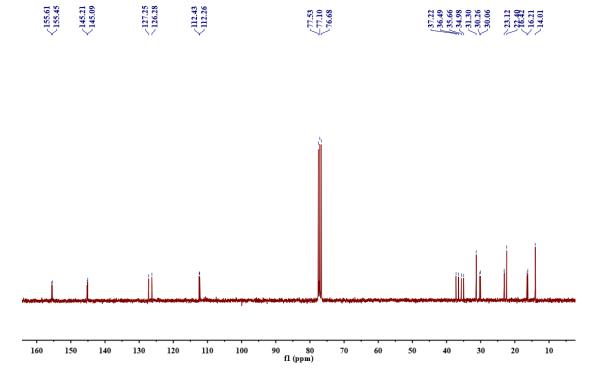

-50 -100 fl (ppm)

-250

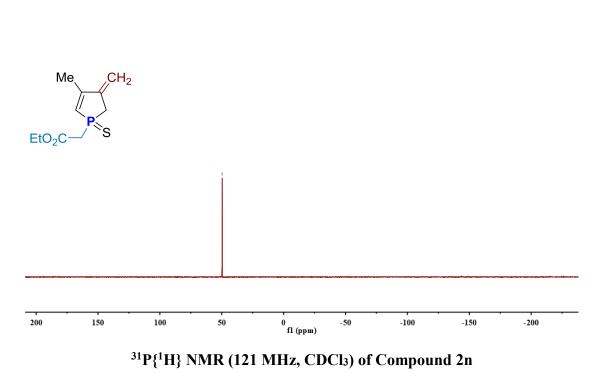

-450



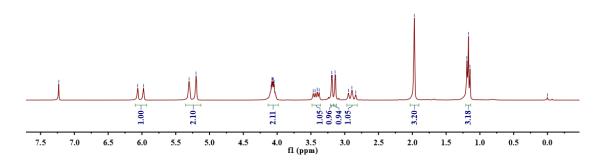
¹H NMR (300 MHz, CDCl₃) of Compound 21



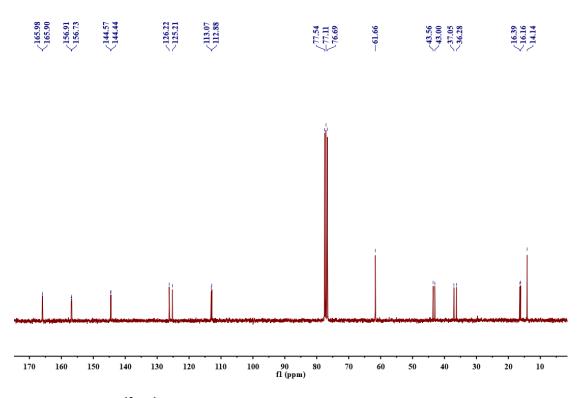
 $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) of Compound 2l



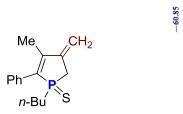
¹H NMR (300 MHz, CDCl₃) of Compound 2m

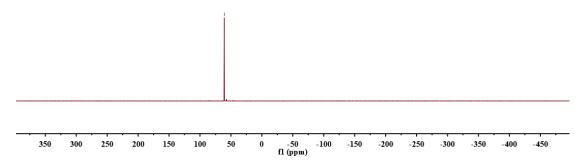

 $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 2m

-49.71

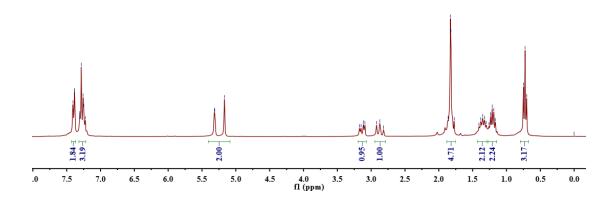


S56

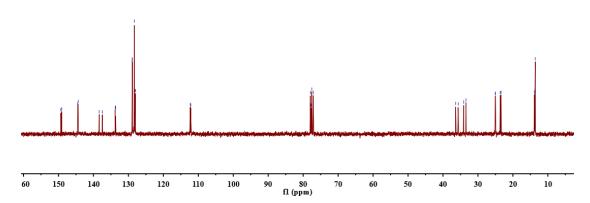




¹H NMR (300 MHz, CDCl₃) of Compound 2n


 $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CDCl₃) of Compound 2n

 $^{31}P\{^{1}H\}$ NMR (121 MHz, CDCl₃) of Compound 20



¹H NMR (300 MHz, CDCl₃) of Compound 20

¹³C{¹H} NMR (75 MHz, CDCl₃) of Compound 20