Supporting Information

Stereoinversion in Pd-Catalyzed Allylic Substitution Induced by Modification of Olefinic Moiety in Chiral Phosphine-Acrylamide Ligands

Kohei Watanabe ^{a*}, Yuto Toba ^b, Shimpei Mita ^b, Yusuke Kanda ^b, Toru Yagi ^b, Kento Kanauchi ^b, Manami Kumada ^b, Yasushi Yoshida ^{b,c,d,e}, Yoshio Kasashima ^f, Ryo Takita ^g, Masami Sakamoto ^{b,c}, Takashi Mino ^{b,c,d*},

^a Faculty of Education, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

^b Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

^c Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

^d Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inageku, Chiba 263-8522, Japan

^e Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

^f Education Center, Chiba Institute of Technology, 2-2-1 Shibazono, Narashino, Chiba 275-0023, Japan

^g School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

*E-mail: k-watanabe@chiba-u.jp, tmino@faculty.chiba-u.jp

Table of Contents

1. General information	<u>S3</u>
2. Palladium-catalyzed allylic alkylation of dimethylmalonate with (S,aS)-ligands	S3
3. Experimental Section	S4
3-1. Experimental Procedures and Product Characterization	S4
3-2. References for Product Characterization	
4. DFT calculations	S16
4-1. General Information for DFT Calculations	S16
4-2. Investigation of π -allyl-palladium complex with (<i>S</i> ,a <i>R</i>)-4e and -4f	
4-3. Visualization of non-covalent interactions using NCIPLOT	
4-4. References for DFT calculations	<u>S</u> 19
5. NMR spectra and chiral phase HPLC chart	S22
5-1. ¹ H NMR, ¹³ C{ ¹ H} NMR and ³¹ P{ ¹ H} NMR of 4	S22
5-2. ¹ H NMR, ¹³ C{ ¹ H} NMR and chiral phase HPLC chart of 8	S58
5-3. ¹ H NMR, ¹³ C{ ¹ H} NMR and chiral phase HPLC chart of 10	S76
6. Cartesian Coordinates and Energies	<u>_</u> S112

1. General information

Melting point was measured by an AS ONE micromelting point apparatus and are uncorrected. NMR spectra were recorded with 400 (Bruker AVANCE III-400M) and 500 MHz (Bruker AVANCE NEO 500) spectrometers in CDCl₃ as a solvent at room temperature unless otherwise noted. Chemical shifts (δ) are given in ppm relative to TMS (¹H), external 85% H₃PO₄ (³¹P), or residual CHCl₃ (¹³C) as a reference. All ¹³C and ³¹P NMR spectra recorded with the use of broadband proton decoupling. The coupling constants J are given in Hz, and the peak patterns are indicated as follows: s, singlet; d, doublet, t, triplet; g, quartet; m, multiplet. Optical rotation was measured on JASCO P-2100. HRMS was measured with an orbitrap mass spectrometer (Thermo Fisher Exactive). The ee value was determined by HPLC (JASCO GULLIVER 900 or 2000 system) equipped with a chiral column. Unless otherwise noted, all reagents were used without further purification. A high-power LED light source (Asahi spectra) CL-1501 was used for an irradiation source. Single-crystal X-ray data were collected on a Bruker AXS D8 VENTURE CCD using Cu Ka radiation. The structure was solved by the direct method of full matrix least-squares using SHELXS-97. All crystals for single-crystal Xray diffraction analysis were obtained by slow evaporation in chloroform-hexane at room temperature.

2. Palladium-catalyzed allylic alkylation of dimethylmalonate with (S,aS)-ligands

We summarized the results of the palladium-catalyzed allylic alkylation of 1,3diphenyl-2-propenyl acetate (**6a**) with dimethyl malonate (**7a**) using (*S*,a*S*)-ligands in **Table S1**. Although the yields and enantioselectivity varied, the product configuration trends were consistent with those observed using (*S*,a*R*)-ligands in **Table 1**, except for ligand (*S*,a*S*)-4c.

Table S1. Palladium-catalyzed asymmetric allylic alkylation with dimethyl malonate with (S,aS)-3 and 4a-f.^{*a*}

Entry	Chiral ligand	Yield $(\%)^b$	ee (%) ^c
1	(<i>S</i> ,a <i>S</i>)- 3	62	71 (<i>S</i>)
2	(<i>S</i> ,a <i>S</i>)-4a	86	58 (S)
3	(<i>S</i> ,a <i>S</i>)-4b	37	81 (<i>S</i>)
4	(<i>S</i> ,a <i>S</i>)-4c	61	74 (S)
5	(<i>S</i> ,a <i>S</i>)-4d	72	47 (<i>R</i>)
6	(<i>S</i> ,a <i>S</i>)-4e	15	67 (<i>R</i>)
7	(S,aS)-4f	82	48(R)

^{*a*} The reactions were carried out on a 0.2 mmol scale of 1,3-diphenyl-2-propenyl acetate (1.0 equiv.) in PhMe (0.5 M, 0.4 mL) at room temperature with 3.0 equiv. of dimethyl malonate and BSA in the presence of 10 mol% of LiOAc and chiral ligand (4 mol%) and $[Pd(\eta^3-C_3H_5)Cl]_2$ (2 mol%; Pd = 4 mol%).

^b Isolated yield.

^{*c*} Determined by HPLC analysis using a chiral column.

3. Experimental Section

3-1. Experimental Procedures and Product Characterization

Preparation of Amide (S,aS)-4a and (S,aR)-4a.

To the solution of aminophosphine (S)-5 (158 mg, 0.4 mmol) in THF (1.5 mL) was added pyridine (0.1 mL, 1.2 mmol), DMAP (19.6 mg, 0.16 mmol) and *trans*-4-methoxycinnamoyl chloride (157 mg, 0.8 mmol) at room temperature. The reaction mixture was stirred at 60 °C (using an oil bath). After 24 h, the reaction mixture was diluted with ether and sat. NaHCO₃ aq. The organic layer was washed with brine and dried over MgSO₄. The filtrate was concentrated with a rotary evaporator, and the residue was purified by column chromatography (elution with *n*-hexane/ether = 4/1).

(*S*,*aS*)-*N*-(2-(Diphenylphosphanyl)-6-methylphenyl)-(*E*)-3-(4-methoxyphenyl)-*N*-(1-phenylethyl)acrylamide ((*S*,*aS*)-4a) (dr = >20:1). 24% yield (52.8 mg, 0.10 mmol) as a white solid; [α]²⁰_D = +384 (*c* 0.78, CHCl₃); mp 186-188 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.42 (m, 2H), 7.37-7.13 (m, 13H), 7.05-7.01 (m, 4H), 6.90 (d, *J* = 8.8 Hz, 2H), 6.72 (d, *J* = 8.8 Hz, 2H), 5.36 (d, *J* = 15.5 Hz, 1H), 5.09 (q, *J* = 7.1 Hz, 1H), 3.77 (s, 3H), 2.03 (d, *J* = 7.1 Hz, 3H), 1.72 (s, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.0 (d, *J*_{CP} = 1.0 Hz), 160.4, 145.2 (d, *J*_{CP} = 25.0 Hz), 141.4, 140.4, 139.0 (d, *J*_{CP} = 14.0 Hz), 138.5 (d, *J*_{CP} = 3.0 Hz), 137.1 (d, *J*_{CP} = 14.0 Hz), 135.1 (d, *J*_{CP} = 12.0 Hz), 135.0 (d, *J*_{CP} = 22.0 Hz) × 2, 133.0, 132.9 (d, *J*_{CP} = 18.0 Hz) × 2, 132.1, 129.4 (d, *J*_{CP} = 3.0 Hz) × 2, 129.3 × 2, 129.2 (d, *J*_{CP} = 1.0 Hz), 128.5 (d, *J*_{CP} = 8.0 Hz) × 2, 128.3 (d, *J*_{CP} = 6.0 Hz) × 2, 128.1 (d, *J*_{CP} = 10.0 Hz) × 2, 128.0 × 2, 127.8, 127.3, 117.5, 113.6 × 2, 63.8 (d, *J*_{CP} = 5.0 Hz), 55.2, 21.5 (d, *J*_{CP} = 5.0 Hz), 18.3 (d, *J*_{CP} = 2.0 Hz); ³¹P {¹H} NMR (162 MHz, CDCl₃) δ –15.5; HRMS (ESI-orbitrap-MS) *m*/*z* calcd for C₃₇H₃₄O₂NP + H 556.2400 found 556.2390. (*S*,*aR*)-*N*-(2-(Diphenylphosphanyl)-6-methylphenyl)-(*E*)-3-(4-methoxyphenyl)-*N*-(1-phenylethyl)acrylamide ((*S*,*aR*)-4a) (dr = >20:1). 53% yield (117.3 mg, 0.21 mmol) as a white solid; $[\alpha]^{20}_{D} = -136$ (*c* 0.96, CHCl₃); mp 201-203 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 15.3 Hz, 1H), 7.36-7.28 (m, 7H), 7.24-7.11 (m, 8H), 7.04-6.92 (m, 5H), 6.71 (d, *J* = 8.7 Hz, 2H), 5.99 (q, *J* = 7.1 Hz, 1H), 5.54 (d, *J* = 15.5 Hz, 1H), 3.76 (s, 3H), 1.77 (s, 3H), 1.70 (d, *J* = 7.1 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 166.9 (d, *J*_{CP} = 1.0 Hz), 160.4, 143.3 (d, *J*_{CP} = 27.0 Hz), 141.4, 141.2, 140.1 (d, *J*_{CP} = 15.0 Hz), 139.1 (d, *J*_{CP} = 3.0 Hz), 137.5 (d, *J*_{CP} = 12.0 Hz), 136.5 (d, *J*_{CP} = 13.0 Hz), 134.3 (d, *J*_{CP} = 22.0 Hz) × 2, 133.9 (d, *J*_{CP} = 2.0 Hz), 132.9 (d, *J*_{CP} = 18.0 Hz) × 2, 132.3, 129.4 × 2, 128.9 (d, *J*_{CP} = 1.0 Hz) × 2, 128.7, 128.4 (d, *J*_{CP} = 5.0 Hz) × 2, 128.3 (d, *J*_{CP} = 8.0 Hz) × 2, 128.2, 128.1, 127.8, 127.7 × 2, 127.2, 117.1 (d, *J*_{CP} = 1.0 Hz), 113.6 × 2, 57.6 (d, *J*_{CP} = 2.0 Hz), 55.2, 20.7 (d, *J*_{CP} = 10.0 Hz), 19.1 (d, *J*_{CP} = 4.0 Hz); ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -16.4; HRMS (ESI-orbitrap-MS) *m*/*z* calcd for C₃₇H₃₄O₂NP + H 556.2400 found 556.2390.

Preparation of Amide (S,aS)-4b and (S,aR)-4b.

To the solution of aminophosphine (*S*)-**5** (395 mg, 1.0 mmol) in THF (3.75 mL) was added pyridine (0.25 mL, 3.0 mmol), DMAP (48.9 mg, 0.4 mmol) and *trans*-4-nitrocinnamoyl chloride (423 mg, 2.0 mmol) at room temperature. The reaction mixture was stirred at 60 °C (using an oil bath). After 24 h, the reaction mixture was diluted with ether and water. The organic layer was washed with brine and dried over MgSO₄. The filtrate was concentrated with a rotary evaporator, and the residue was purified by column chromatography (elution with *n*-hexane/ether = 2/1).

(*S*,a*S*)-*N*-(2-(Diphenylphosphanyl)-6-methylphenyl)-(*E*)-3-(4-nitrophenyl)-*N*-(1phenylethyl)acrylamide ((*S*,a*S*)-4b) (dr = >20:1). 8% yield (46.8 mg, 0.08 mmol) as a yellow solid; [α]²⁰_D = +273 (*c* 0.54, CHCl₃); mp 235-236 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06-8.02 (m, 2H), 7.43-7.12 (m, 15H), 7.03-6.95 (m, 6H), 5.53 (d, *J* = 15.5 Hz, 1H), 5.20 (q, *J* = 7.0 Hz, 1H), 2.05 (d, *J* = 6.9 Hz, 3H), 1.77 (s, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 165.5 (d, *J*_{CP} = 0.7Hz), 147.6, 144.4 (d, *J*_{CP} = 24.8 Hz), 144.3, 140.9, 139.4 (d, *J*_{CP} = 13.9 Hz), 138.3 (d, *J*_{CP} = 3.1 Hz), 137.8, 136.9 (d, *J*_{CP} = 11.9 Hz), 135.3 (d, *J*_{CP} = 22.9 Hz) × 2, 134.7 (d, *J*_{CP} = 12.6 Hz), 132.9 (d, *J*_{CP} = 1.5 Hz), 132.7 (d, *J*_{CP} = 17.9 Hz) × 2, 132.3, 129.49 (d, *J*_{CP} = 5.3 Hz), 2, 128.2 × 2, 128.1, 128.0 × 2, 127.5, 123.9, 123.6 × 2, 63.9 (d, *J*_{CP} = 5.8 Hz), 21.6 (d, *J*_{CP} = 5.3 Hz), 18.3 (d, *J*_{CP} = 2.0 Hz); ³¹P {¹H} NMR (162 MHz, CDCl₃) δ –15.7; HRMS (ESI-orbitrap-MS) *m/z* calcd for C₃₆H₃₁O₃N₂P + H 571.2145 found 571.2140.

(*S*,*aR*)-*N*-(2-(Diphenylphosphanyl)-6-methylphenyl)-(*E*)-3-(4-nitrophenyl)-*N*-(1-phenylethyl)acrylamide ((*S*,*aR*)-4b) (dr = >20:1). 25% yield (144.4 mg, 0.25 mmol) as a yellow solid; $[\alpha]^{20}_{D} = -191$ (*c* 0.54, CHCl₃); mp 178-180 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04-8.00 (m, 2H), 7.44-7.16 (m, 16H), 7.06-7.02 (m, 4H), 6.97-6.93 (m, 1H),

5.99 (q, J = 7.1 Hz, 1H), 5.70 (d, J = 15.5 Hz, 1H), 1.82 (s, 3H), 1.79 (d, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 165.5 (d, $J_{CP} = 1.1$ Hz), 147.5, 142.5 (d, $J_{CP} = 27.2$ Hz), 141.1, 141.0, 140.2 (d, $J_{CP} = 14.5$ Hz), 138.8 (d, $J_{CP} = 3.5$ Hz), 138.4, 137.3 (d, $J_{CP} = 12.6$ Hz), 135.4 (d, $J_{CP} = 12.8$ Hz), 134.6 (d, $J_{CP} = 1.8$ Hz) × 2, 133.5 (d, $J_{CP} = 1.8$ Hz), 132.6 (d, $J_{CP} = 18.0$ Hz) × 2, 132.5, 129.0, 128.8 (d, $J_{CP} = 1.5$ Hz) × 2, 128.5 (d, $J_{CP} = 9.7$ Hz), 128.4 × 2, 128.3 (d, $J_{CP} = 2.6$ Hz) × 2, 128.2 × 2, 128.1, 127.8 × 2, 127.4, 123.43, 123.40 × 2, 58.0 (d, $J_{CP} = 1.8$ Hz), 20.5 (d, $J_{CP} = 10.8$ Hz), 19.0 (d, $J_{CP} = 2.2$ Hz); ³¹P{¹H} NMR (121 MHz, CDCl₃) δ –16.2; HRMS (ESI-orbitrap-MS) m/z calcd for C₃₆H₃₁O₃N₂P + H 571.2145 found 571.2139.

Preparation of Amide (*S*,a*S*)-4c and (*S*,a*R*)-4c.

To the solution of aminophosphine (*S*)-**5** (791 mg, 2.0 mmol) in THF (7.5 mL) was added pyridine (0.48 mL, 6.0 mmol), DMAP (97.7 mg, 0.80 mmol) and *trans*-crotonyl chloride (0.38 mL, 4.0 mmol) at room temperature. The reaction mixture was stirred at 40 °C (using an oil bath). After 24 h, the reaction mixture was diluted with ether and sat. NaHCO₃ aq. The organic layer was washed with brine and dried over MgSO₄. The filtrate was concentrated with a rotary evaporator, and the residue was purified by column chromatography (elution with *n*-hexane/ether = 3/1).

(*S*,**a***S*)-*N*-(2-(Diphenylphosphanyl)-6-methylphenyl)-*N*-(1-phenylethyl)-(*E*)-2butenamide ((*S*,**a***S*)-4c) (dr = >20:1). 22% yield (207.7 mg, 0.45 mmol) as a light yellow solid; $[\alpha]^{20}_{D} = +93.8$ (*c* 0.23, CHCl₃); mp 169-171 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.15 (m, 15H), 7.01-6.95 (m, 3H), 6.59 (dq, *J* = 14.9 and 6.9 Hz, 1H), 5.03 (q, *J* = 7.0 Hz, 1H), 4.88 (dq, *J* = 14.9 and 1.6 Hz, 1H), 1.96 (d, *J* = 7.0 Hz, 3H), 1.74 (s, 3H), 1.34 (dd, *J* = 6.9 and 1.6 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 166.4, 145.1 (d, *J*_{CP} = 24.9 Hz), 141.4, 140.1, 138.9 (d, *J*_{CP} = 13.2 Hz), 138.2 (d, *J*_{CP} = 2.9 Hz), 137.0 (d, *J*_{CP} = 12.5 Hz), 135.15 (d, *J*_{CP} = 10.3 Hz), 135.08 (d, *J*_{CP} = 2.2 Hz) × 2, 132.9 (d, *J*_{CP} = 1.5 Hz), 132.8 (d, *J*_{CP} = 18.3 Hz) x 2, 132.0, 129.3 (d, *J*_{CP} = 2.2 Hz) × 2, 129.1, 128.3 (d, *J*_{CP} = 5.1 Hz), 21.5 (d, *J*_{CP} = 4.4 Hz), 18.3 (d, *J*_{CP} = 2.2 Hz), 17.6; ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -15.8; HRMS (ESI-orbitrap-MS) *m/z* calcd for C₃₁H₃₀ONP + H 464.2138 found 464.2131.

(*S*,*aR*)-*N*-(2-(Diphenylphosphanyl)-6-methylphenyl)-*N*-(1-phenylethyl)-(*E*)-2butenamide ((*S*,*aR*)-4c) (dr = >20:1). 22% yield (199.3 mg, 0.43 mmol) as a light yellow solid; $[\alpha]^{20}_{D} = -130$ (*c* 0.20, CHCl₃); mp 156-158 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.09 (m, 18H), 6.68 (dq, *J* = 15.0 and 6.9 Hz, 1H), 5.90 (q, *J* = 7.1 Hz, 1H), 5.04 (dq, *J* = 15.0 and 1.6 Hz, 1H), 1.75 (s, 3H), 1.66 (d, *J* = 7.2 Hz, 3H), 1.34 (dd, *J* = 6.9 and 1.6 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.4 (d, *J*_{CP} = 1.5 Hz), 143.2 (d, *J*_{CP} = 27.1 Hz), 141.5, 141.0, 140.0 (d, *J*_{CP} = 14.7 Hz), 138.9 (d, *J*_{CP} = 2.9 Hz), 137.6 (d, *J*_{CP} = 13.2 Hz), 136.3 (d, *J*_{CP} = 13.2 Hz), 134.4 (d, *J*_{CP} = 22.0 Hz) × 2, 133.7 (d, *J*_{CP} = 2.2 Hz), 132.8 (d, *J*_{CP} = 18.3 Hz) × 2, 132.2, 128.8 × (2 + 1), 128.3 (d, *J*_{CP} = 5.9 Hz) × 2, 128.2 (d, $J_{CP} = 8.1 \text{ Hz}) \times 2$, 128.1, 128.0, 127.6 × 2, 127.1, 123.5, 57.4 (d, $J_{CP} = 1.5 \text{ Hz}$), 20.7 (d, $J_{CP} = 10.3 \text{ Hz}$), 19.0 (d, $J_{CP} = 2.2 \text{ Hz}$), 17.6; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ –16.5; HRMS (ESI-orbitrap-MS) m/z calcd for C₃₁H₃₀ONP + H 464.2138 found 464.2129.

Preparation of Amide (S,aS)-4d and (S,aR)-4d.

To the solution of aminophosphine (*S*)-**5** (158.2 mg, 0.4 mmol) in THF (1.5 mL) was added pyridine (0.1 mL, 1.2 mmol), DMAP (19.6 mg, 0.16 mmol) and 3-methylcrotonyl chloride (0.089 mL, 4.0 mmol) at room temperature. The reaction mixture was stirred at 60 °C (using an oil bath). After 24 h, the reaction mixture was diluted with ether and sat. NaHCO₃ aq. The organic layer was washed with brine and dried over MgSO₄. The filtrate was concentrated with a rotary evaporator, and the residue was purified by column chromatography (elution with *n*-hexane/ether = 4/1).

(*S*,a*S*)-*N*-(2-(Diphenylphosphanyl)-6-methylphenyl)-3-methyl-*N*-(1-phenylethyl)-2-butenamide ((*S*,a*S*)-4d) (dr = >20:1). 28% yield (54.1 mg, 0.11 mmol) as a white solid; [α]²⁰_D = +94.4 (*c* 0.34, CHCl₃); mp 134-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.37 (m, 2H), 7.30-7.11 (m, 13H), 6.97-6.92 (m, 3H), 5.05 (q, *J* = 7.0 Hz, 1H), 4.77-4.76 (m, 1H), 1.91 (d, *J* = 1.3 Hz, 3H), 1.89 (d, *J* = 7.2 Hz, 3H), 1.81 (s, 3H), 1.30 (d, *J* = 1.0 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.6, 150.4, 145.9 (d, *J*_{CP} = 26.4 Hz), 141.7, 138.5 (d, *J*_{CP} = 12.7 Hz), 138.3 (d, *J*_{CP} = 3.9 Hz), 137.5 (d, *J*_{CP} = 12.7 Hz), 135.9 (d, *J*_{CP} = 13.7 Hz), 134.6 (d, *J*_{CP} = 22.5 Hz) × 2, 133.4 (d, *J*_{CP} = 1.0 Hz), 132.8 (d, *J*_{CP} = 18.6 Hz) × 2, 132.0, 129.3 (d, *J*_{CP} = 2.9 Hz) × 2, 128.9, 128.4 (d, *J*_{CP} = 7.8 Hz) × 2, 128.1 (d, *J*_{CP} = 4.9 Hz) × 2, 127.9, 127.8 × 2, 127.7, 127.0, 118.8, 62.6 (d, *J*_{CP} = 4.9 Hz), 27.0, 21.6 (d, *J*_{CP} = 6.8 Hz), 19.8, 18.4 (d, *J*_{CP} = 3.9 Hz); ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -15.9; HRMS (ESI-orbitrap-MS) *m/z* calcd for C₃₂H₃₂ONP + H 478.2294 found 478.2288.

(*S*,*aR*)-*N*-(2-(Diphenylphosphanyl)-6-methylphenyl)-3-methyl-*N*-(1-phenylethyl)-2-butenamide ((*S*,*aR*)-4d) (dr = >20:1). 61% yield (116.8 mg, 0.24 mmol) as a light yellow oil; [α]²⁰_D = +161 (*c* 0.68, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.11 (m, 18H), 5.87 (q, *J* = 7.1 Hz, 1H), 4.94-4.93 (m, 1H), 1.91 (d, *J* = 1.2 Hz, 3H), 1.82 (s, 3H), 1.56 (d, *J* = 7.2 Hz, 3H), 1.30 (d, *J* = 0.9 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.6 (d, *J*_{CP} = 1.0 Hz), 151.6, 144.2 (d, *J*_{CP} = 27.4 Hz), 142.1, 139.7 (d, *J*_{CP} = 13.7 Hz), 138.7 (d, *J*_{CP} = 2.9 Hz), 138.0 (d, *J*_{CP} = 13.7 Hz), 137.2 (d, *J*_{CP} = 13.7 Hz), 134.3 (d, *J*_{CP} = 2.0 Hz), 133.7 (d, *J*_{CP} = 20.5 Hz) × 2, 133.1 (d, *J*_{CP} = 19.6 Hz) × 2, 132.4, 128.5 (d, *J*_{CP} = 1.0 Hz) × 2, 128.4 (d, *J*_{CP} = 2.0 Hz) × 2, 128.3, 128.22, 128.18 (d, *J*_{CP} = 6.9 Hz) × 2, 127.72 (d, *J*_{CP} = 4.9 Hz) × 2, 127.69, 126.9, 118.7 (d, *J*_{CP} = 1.0 Hz), 57.0 (d, *J*_{CP} = 2.9 Hz), 27.1, 20.8 (d, *J*_{CP} = 8.8 Hz), 19.9, 19.2 (d, *J*_{CP} = 2.0 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ-16.9; HRMS (ESI-orbitrap-MS) *m*/*z* calcd for C₃₂H₃₂ONP + H 478.2294 found 478.2285.

Preparation of Amide (*S*,a*S*)-4e and (*S*,a*R*)-4e.

To the solution of aminophosphine (S)-5 (158 mg, 0.4 mmol) in THF (1.5 mL) was added triethylamine (0.33 mL, 2.4 mmol), DMAP (19.6 mg, 0.16 mmol) and 3-

chloropropionyl chloride (157 mg, 0.8 mmol) at room temperature. The reaction mixture was stirred at 40 °C (using an oil bath). After 72 h, the reaction mixture was diluted with ether and sat. NaHCO₃ aq. The organic layer was washed with brine and dried over MgSO₄. The filtrate was concentrated with a rotary evaporator. To the (1.5 mL) THF solution of residue without purification, 'BuOK (179.54 mg, 1.6 mmol) was added. The reaction mixture was stirred at room temperature. After 18 h, the reaction mixture was diluted with brine and dried over MgSO₄. The filtrate was concentrated with a rotary evaporator, and the reaction mixture was stirred at room temperature. After 18 h, the reaction mixture was diluted with ether and sat. NaHCO₃ aq. The organic layer was washed with brine and dried over MgSO₄. The filtrate was concentrated with a rotary evaporator, and the residue was purified by column chromatography (elution with *n*-hexane/ether = 3/1).

(S,aS)-N-(2-(Diphenylphosphanyl)-6-methylphenyl)-N-(1-

phenylethyl)acrylamide ((*S*,**a***S*)-4e) (dr = >20:1). 14% yield (24.5 mg, 0.055 mmol) as a light yellow solid; $[\alpha]^{20}_{D} = +59.0$ (*c* 0.17, CHCl₃); mp 171-173 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39-6.96 (m, 18H), 6.02 (dd, *J* = 16.6 and 2.1 Hz, 1H), 5.22 (dd, *J* = 16.6 and 10.2 Hz, 1H), 4.95 (dd, *J* = 10.2 and 2.0 Hz, 1H), 4.93 (q, *J* = 7.2 Hz, 1H), 1.98 (d, *J* = 7.0 Hz, 3H), 1.67 (s, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 166.2 (d, *J*_{CP} = 0.6 Hz), 145.1 (d, *J*_{CP} = 25.1 Hz), 141.2, 138.7 (d, *J*_{CP} = 13.8 Hz), 138.3 (d, *J*_{CP} = 3.1 Hz), 136.8 (d, *J*_{CP} = 12.1 Hz), 135.06 (d, *J*_{CP} = 12.3 Hz), 135.05 (d, *J*_{CP} = 22.2 Hz) × 2, 133.13 (d, *J*_{CP} = 1.3 Hz), 133.07 (d, *J*_{CP} = 18.5 Hz) × 2, 132.1, 129.4 (d, *J*_{CP} = 2.6 Hz) × 2, 129.2, 127.4, 126.1, 63.9 (d, *J*_{CP} = 5.5 Hz), 21.2 (d, *J*_{CP} = 5.5 Hz), 18.2 (d, *J*_{CP} = 2.0 Hz); ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -15.4; HRMS (ESI-orbitrap-MS) *m/z* calcd for C₃₀H₂₈ONP + H 450.1981 found 450.1982.

(S,aR)-N-(2-(Diphenylphosphanyl)-6-methylphenyl)-N-(1-

phenylethyl)acrylamide ((*S*,*aR*)-4e) (dr = >20:1). 12% yield (21.0 mg, 0.047 mmol) as a light yellow solid; $[\alpha]^{20}_{D}$ = +159 (*c* 0.15, CHCl₃); mp 60-62 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.08 (m, 18H), 6.08 (dd, *J* = 16.7 and 2.0 Hz, 1H), 5.86 (q, *J* = 7.1 Hz, 1H), 5.32 (dd, *J* = 16.6 and 10.2 Hz, 1H), 5.00 (dd, *J* = 10.2 and 2.0 Hz, 1H), 1.77 (s, 3H), 1.66 (d, *J* = 7.0 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.3 (d, *J*_{CP} = 0.9 Hz), 143.1 (d, *J*_{CP} = 27.3 Hz), 141.4, 140.1 (d, *J*_{CP} = 14.7 Hz), 138.9 (d, *J*_{CP} = 3.5 Hz), 137.3 (d, *J*_{CP} = 12.8 Hz), 136.0 (d, *J*_{CP} = 12.7 Hz), 134.7 (d, *J*_{CP} = 21.8 Hz) × 2, 133.7 (d, *J*_{CP} = 2.0 Hz), 133.1 (d, *J*_{CP} = 18.5 Hz) × 2, 132.3, 129.0, 128.90, 128.88, 128.7 (d, *J*_{CP} = 0.9 Hz), 128.5 (d, *J*_{CP} = 5.9 Hz) × 2, 128.4 (d, *J*_{CP} = 7.5 Hz) × 2, 128.3 (d, *J*_{CP} = 4.6 Hz) × 2, 127.8 × 2, 127.3, 126.9, 58.0 (d, *J*_{CP} = 2.0 Hz), 20.8 (d, *J*_{CP} = 10.3 Hz), 19.1 (d, *J*_{CP} = 2.2 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ –15.9; HRMS (ESI-orbitrap-MS) *m/z* calcd for C₃₀H₂₈ONP + H 450.1981 found 450.1985.

Preparation of Amide (S,aS)-4f.

The CHCl₃ solution (2.0 mL) of aminophosphine (*S*,a*S*)-**3** (42.1 mg, 0.080 mmol) in pyrex glass test tube, which was deoxygenated by argon bubbling, was irradiated using a LED at 365 nm (Power: 50%, Distance: 20 cm) at room temperature. After 2 h, the

reaction mixture was concentrated with a rotary evaporator, and the residue was purified by preparative TLC (elution with *n*-hexane/ether = 3/1).

(S,aS)-N-(2-(Diphenylphosphanyl)-6-methylphenyl)-N-(1-

phenylethyl)allocinnamamide ((*S*,**a***S*)-4**f**). 28% yield (11.8 mg, 0.026 mmol) as a white solid; $[\alpha]^{20}_{D} = +161$ (*c* 0.13, CHCl₃); mp 148-150 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60-6.96 (m, 23H), 6.07 (d, *J* = 12.8 Hz, 1H), 5.05 (d, *J* = 12.8 Hz, 1H), 4.88 (q, *J* = 7.0 Hz, 1H), 1.93 (d, *J* = 7.0 Hz, 3H), 1.75 (s, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 166.8, 145.8 (d, *J*_{CP} = 26.0 Hz), 141.6, 138.6 (d, *J*_{CP} = 3.5 Hz), 138.5 (d, *J*_{CP} = 13.4 Hz), 137.8, 137.0 (d, *J*_{CP} = 12.7 Hz), 135.9 (d, *J*_{CP} = 12.8 Hz), 134.9, 134.6 (d, *J*_{CP} = 21.6 Hz) × 2, 133.7 (d, *J*_{CP} = 2.4 Hz) × 2, 129.1, 128.6 (d, *J*_{CP} = 7.5 Hz) × 2, 128.4 (d, *J*_{CP} = 2.0 Hz) × 2, 128.3, 128.2, 127.99 × 2, 127.98, 127.8 × 2, 127.3, 123.3 (d, *J*_{CP} = 0.7 Hz), 63.6 (d, *J*_{CP} = 5.0 Hz), 13.6 (d, *J*_{CP} = 2.2 Hz); ³¹P {¹H} NMR (162 MHz, CDCl₃) δ -16.3; HRMS (ESI-orbitrap-MS) *m*/*z* calcd for C₃₆H₃₂ONP + H 526.2294 found 526.2294.

Preparation of Amide (S,aR)-4f.

The CHCl₃ solution (10 mL) of aminophosphine (*S*, *aR*)-**3** (210 mg, 0.40 mmol) in pyrex glass test tube, which was deoxygenated by argon bubbling, was irradiated using a LED at 365 nm (Power: 50%, Distance: 20 cm) at room temperature. After 2 h, the reaction mixture was concentrated with a rotary evaporator. This reaction was performed four more times, and the all of residue was purified by column chromatography (elution with *n*-hexane/cHCl₃/ether = 25/8/1).

(S,aR)-N-(2-(Diphenylphosphanyl)-6-methylphenyl)-N-(1-

phenylethyl)allocinnamamide ((*S*,*aR*)-4f). (rotamer ratio at C(=O)-N bond = 18:1) 9% yield (19.4 mg, 0.037 mmol) as a light yellow solid; $[\alpha]^{20}{}_{D}$ = +173 (*c* 0.18, CHCl₃); mp 50-52 °C; ¹H NMR (400 MHz, CDCl₃) (major rotamer) δ 7.59-7.08 (m, 23H), 6.11 (d, *J* = 12.8 Hz, 1H), 5.91 (q, *J* = 7.1 Hz, 1H), 5.14 (d, *J* = 12.8 Hz, 1H), 1.74 (s, 3H), 1.61 (d, *J* = 7.1 Hz, 3H); (minor rotamer) δ 7.67-7.65 (m, 2H), 7.59-7.08 (m, 19H), 6.77-6.74 (m, 2H), 6.75 (d, *J* = 12.8 Hz, 1H), 6.48 (d, *J* = 12.7 Hz, 1H), 5.91 (q, *J* = 7.1 Hz, 1H), 1.45 (s, 3H), 1.40 (d, *J* = 7.2 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) (major rotamer) δ 166.9 (d, *J*_{CP} = 0.7 Hz), 143.6 (d, *J*_{CP} = 28.0 Hz), 141.4, 139.9 (d, *J*_{CP} = 14.0 Hz), 139.2 (d, *J*_{CP} = 3.7 Hz), 138.5, 137.5 (d, *J*_{CP} = 13.3 Hz), 136.8 (d, *J*_{CP} = 12.5 Hz), 135.0, 134.3 (d, *J*_{CP} = 2.2 Hz), 134.1 (d, *J*_{CP} = 21.4 Hz) × 2, 133.3 (d, *J*_{CP} = 18.4 Hz) × 2, 132.5 (d, *J*_{CP} = 5.9 Hz) × 2, 128.40, 128.38 (d, *J*_{CP} = 7.4 Hz) × 2, 128.36, 128.0, 127.73 × 2, 127.72 × 2, 127.3, 122.7 (d, *J*_{CP} = 2.2 Hz), 57.4 (d, *J*_{CP} = 1.5 Hz), 20.7 (d, *J*_{CP} = 8.8 Hz), 19.2 (d, *J*_{CP} = 2.2 Hz); ³¹P {¹H} NMR (162 MHz, CDCl₃) (major rotamer) δ -15.5; HRMS (ESI-orbitrap-MS) *m/z* calcd for C₃₆H₃₂ONP + H 526.2294 found 526.2286.

General Procedure for the Pd-Catalyzed Allylic Alkylation of Malonates.

To a mixture of $[Pd(\eta^3-C_3H_5)Cl]_2$ (1.48 mg, 4 µmol), (*S*,a*R*)-4d (3.82 mg, 8 µmol), and LiOAc (1.32 mg, 20 µmol) in a DCM (0.4 mL) was added BSA (0.15 mL, 0.60 mmol), allylic ester (0.20 mmol), and malonate (0.60 mmol) at room temperature under an Ar atmosphere. After the stirring was continued for 24 h at room temperature, the reaction mixture was diluted with ether and water. The organic layer was washed with brine and dried over MgSO₄. The filtrate was concentrated with a rotary evaporator, and the residue was purified by column chromatography (elution with *n*-hexane/EtOAc = 10/1).

(*S*)-(–)-Dimethyl (*E*)-2-(1,3-diphenylallyl)malonate ((*S*)-8a) (Table 2, entry 3).¹ Compound (*S*)-8a was obtained according to the general procedure in 99% yield (64.5 mg, 0.20 mmol) as a colorless oil; 95% ee; $[\alpha]^{20}_D$ –18.4 (*c* 0.24, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.19 (m, 10H), 6.48 (d, *J* = 15.8 Hz, 1H), 6.33 (dd, *J* = 15.7 and 8.6 Hz, 1H), 4.27 (dd, *J* = 10.9 and 8.7 Hz, 1H), 3.96 (d, *J* = 10.9 Hz, 1H), 3.70 (s, 3H), 3.51 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.1, 167.7, 140.1, 136.7, 131.7, 129.0, 128.7 × 2, 128.4 × 2, 127.8 × 2, 127.5, 127.1, 126.3 × 2, 57.6, 52.6, 52.4, 49.1; HPLC (Daicel CHIRALPAK[®] AD-3, 0.46 ϕ × 25 cm; Hexane:2-PrOH = 90:10, 0.50 mL/min, UV 254 nm) *t*_R = 25.8 min (minor) and 33.2 min (major).

(*S*)-(–)-Diethyl (*E*)-2-(1,3-diphenylallyl)malonate ((*S*)-8b) (Table 2, entry 11).¹ Compound (*S*)-8b was obtained according to the general procedure in 79% yield (56.0 mg, 0.16 mmol) as a yellow oil; 89% ee; $[\alpha]^{20}_{D}$ –16.3 (*c* 0.24, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.18 (m, 10H), 6.47 (d, *J* = 16.2 Hz, 1H), 6.33 (dd, *J* = 15.6 and 8.5 Hz, 1H), 4.26 (dd, *J* = 10.5 and 8.6 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 4.00-3.95 (m, 2H), 3.91 (d, *J* = 11.1 Hz, 1H), 1.21 (t, *J* = 7.1 Hz, 3H), 1.01 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 167.8, 167.4, 140.2, 136.8, 131.6, 129.3, 128.6 × 2, 128.4 × 2, 127.9 × 2, 127.5, 127.0, 126.3 × 2, 61.5, 61.3, 57.7, 49.2, 14.1, 13.7; HPLC (Daicel CHIRALPAK[®] AD-3, 0.46 ϕ × 25 cm; Hexane:2-PrOH = 90:10, 0.50 mL/min, UV 254 nm) *t*_R = 22.2 min (minor) and 29.3 min (major).

(*S*)-(–)-Dibenzyl (*E*)-2-(1,3-diphenylallyl)malonate ((*S*)-8d) (Table 2, entry 13).¹ Compound (*S*)-8c was obtained according to the general procedure in 88% yield (83.6 mg, 0.18 mmol) as a yellow oil; 89% ee; $[\alpha]^{20}D$ –5.8 (*c* 0.22, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.19 (m, 18H), 7.06-7.04 (m, 2H), 6.41 (d, *J* = 16.0 Hz, 1H), 6.30 (dd, *J* = 15.7 and 8.5 Hz, 1H), 5.10 (q, *J* = 9.7 Hz, 2H), 4.93 (q, *J* = 9.8 Hz, 2H), 4.29 (dd, *J* = 10.6 and 8.6 Hz, 1H), 4.04 (d, *J* = 11.0 Hz, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 167.5, 167.1, 140.0, 136.6, 135.1, 135.0, 131.8, 128.9, 128.7 × 2, 128.5 × 2, 128.4 × (2+2), 128.3 × 2, 128.3, 128.1, 128.0 × 2, 127.9 × 2, 127.5, 127.1, 126.4 × 2, 67.3, 67.1, 57.7, 49.2; HPLC (Daicel CHIRALPAK[®] AD-H, 0.46 ϕ × 25 cm; Hexane:2-PrOH = 85:15, 0.50 mL/min, UV 254 nm) *t*_R = 39.1 min (minor) and 47.9 min (major).

(*R*)-(+)-Diethyl (*E*)-2-(1,3-diphenylallyl)-2-methylmalonate ((*R*)-8e) (Table 2, entry 14).¹ Compound (*R*)-8e was obtained according to the general procedure in 65% yield

(47.9 mg, 0.13 mmol) as a yellow oil; 86% ee; $[\alpha]^{20}{}_{D}$ +32.1 (*c* 0.25, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.18 (m, 10H), 6.70 (dd, *J* = 15.9 and 9.1 Hz, 1H), 6.44 (d, *J* = 15.9 Hz, 1H), 4.29 (d, *J* = 9.2 Hz, 1H), 4.19-4.15 (m, 2H), 4.09-4.07 (m, 2H), 1.47 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H), 1.16 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 171.2, 170.9, 139.4, 137.3, 132.5, 129.6 × 2, 128.8, 128.4 × 2, 128.2 × 2, 127.3, 127.1, 126.3 × 2, 61.3, 61.3, 58.8, 53.7, 18.7, 14.0, 13.9; HPLC (Daicel CHIRALPAK[®] AD-H, 0.46 ϕ × 25 cm+ AD-3, 0.46 ϕ × 25 cm; Hexane:2-PrOH = 99:1, 0.30 mL/min, UV 254 nm) *t*_R = 78.2 min (minor) and 95.7 min (major).

(*S*)-(–)-Dimethyl (*E*)-2-(1,3-di-*p*-chlorophenylallyl)malonate ((*S*)-8f) (Table 2, entry 15).¹ Compound (*S*)-8f was obtained according to the general procedure in 96% yield (75.2 mg, 0.19 mmol) as a yellow solid, mp 72-74 °C; 88% ee; $[\alpha]^{20}D$ –3.9 (*c* 0.18, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.21 (m, 8H), 6.40 (d, *J* = 15.7 Hz, 1H), 6.26 (dd, *J* = 15.6 and 8.7 Hz, 1H), 4.23 (dd, *J* = 10.8 and 8.5 Hz, 1H), 3.89 (d, *J* = 10.7 Hz, 1H), 3.71 (s, 3H), 3.55 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 167.9, 167.5, 138.4, 135.0, 133.3, 133.0, 131.0, 129.2 × 2, 129.1, 128.9 × 2, 128.6 × 2, 127.5 × 2, 57.3, 52.7, 52.6, 48.3; HPLC (Daicel CHIRALPAK[®] AD-3, 0.46 ϕ × 25 cm; Hexane:2-PrOH = 85:15, 0.50 mL/min, UV 254 nm) *t*_R = 31.4 min (minor) and 46.0 min (major).

(*S*)-(–)-Dimethyl (*E*)-2-(1,3-diphenylallyl)malonate ((*S*)-8a) (Table 2, entry 16).¹ Compound (*S*)-8a was obtained according to the general procedure in 60% yield (38.8 mg, 0.12 mmol) as a yellow oil; 92% ee; $[\alpha]^{20}D$ –14.4 (*c* 0.23, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.19 (m, 10H), 6.48 (d, *J* = 15.8 Hz, 1H), 6.33 (dd, *J* = 15.9 and 8.8 Hz, 1H), 4.26 (dd, *J* = 10.9 and 8.7 Hz, 1H), 3.95 (d, *J* = 10.9 Hz, 1H), 3.71 (s, 3H), 3.52 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 168.2, 167.7, 140.1, 136.8, 131.8, 129.0, 128.7 × 2, 128.4 × 2, 127.8 × 2, 127.5, 127.1, 126.3 × 2, 57.6, 52.6, 52.4, 49.2; HPLC (Daicel CHIRALPAK[®] AD-3, 0.46 ϕ × 25 cm; Hexane:2-PrOH = 90:10, 0.50 mL/min, UV 254 nm) *t*_R = 26.5 min (minor) and 34.3 min (major).

General Procedure for the Pd-Catalyzed Allylic Alkylation of Indoles.

To a mixture of indole or substituted indole (0.22 mmol), allylic ester (0.20 mmol), (S,aR)-4d (5.7 mg, 12 µmol), $[Pd(\eta^3-C_3H_5)Cl]_2$ (2.2 mg, 6 µmol), and K₂CO₃ (55.3 mg, 0.4 mol) was added DCM (0.2 mL) at room temperature under an Ar atmosphere. After stirring for 18 h at room temperature, the mixture was quenched with water and diluted with diethyl ether. The organic layer was washed with water and brine, and dried over MgSO₄. The filtrate was concentrated with a rotary evaporator and the residue was purified by column chromatography (elution with *n*-hexane/EtOAc/Et₃N = 20/4-2/1).

(*R*)-(-)-3-((*E*)-1,3-Diphenylallyl)-1*H*-indole ((*R*)-10a) (Table 3, entry 15).² Compound (*R*)-10a was obtained according to the general procedure in 90% yield (56.0 mg, 0.18 mmol) as a brown solid; mp 123-124 °C; 95% ee; $[\alpha]^{20}$ D –38.6 (*c* 0.32, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.42 (d, *J* = 7.1 Hz, 1H), 7.36-7.14 (m, 12H), 7.03-6.99 (m, 1H), 6.84 (d, J = 2.3 Hz, 1H), 6.71 (dd, J = 7.4 and 15.8 Hz, 1H), 6.42 (d, J = 15.5 Hz, 1H), 5.11 (d, J = 7.3 Hz, 1H); ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 143.3, 137.4, 136.6, 132.5, 130.5, 128.5 × (2 + 2), 128.4 × 2, 127.1, 126.8, 126.4, 126.3 × 2, 122.6, 122.0, 119.8, 119.4, 118.5, 111.1, 46.1; HPLC (Daicel CHIRALPAK[®] IB, 0.46 ϕ × 25 cm; Hexane:EtOH = 99:1, 1.0 mL/min, UV 254 nm) $t_{\rm R}$ = 36.7 min (major) and 41.2 min (minor).

(*R*)-(-)-3-((*E*)-1,3-Diphenylallyl)-6-methyl-1*H*-indole ((*R*)-10b) (Table 4, entry 2).² Compound (*R*)-10b was obtained according to the general procedure in 34% yield (21.7 mg, 0.067 mmol) as a brown solid; mp 138-140 °C; 92% ee; $[\alpha]^{20}D-31.8$ (*c* 0.27, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.37-7.14 (m, 12H), 6.86-6.81 (m, 2H), 6.71 (dd, *J* = 15.7 and 7.4 Hz, 1H), 6.43 (d, *J* = 15.8 Hz, 1H), 5.08 (d, *J* = 7.4 Hz, 1H), 2.42 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 143.4, 137.5, 137.1, 132.6, 131.9, 130.4, 128.44 × (2 + 2), 128.36 × 2, 127.1, 126.3 × (2 + 1), 124.6, 121.9, 121.1, 119.5, 118.5, 111.0, 46.2, 21.7; HPLC (Daicel CHIRALPAK[®] IB, 0.46 ϕ × 25 cm; Hexane:EtOH = 99:1, 0.5 mL/min, UV 254 nm) *t*_R = 71.2 min (major) and 79.0 min (minor).

(*R*)-(-)-3-((*E*)-1,3-Diphenylallyl)-6-methoxy-1*H*-indole ((*R*)-10c) (Table 4, entry 3).² Compound (*R*)-10c was obtained according to the general procedure in 67% yield (45.7 mg, 0.13 mmol) as a brown solid; mp 150-152 °C; 97% ee; $[\alpha]^{20}D - 33.4$ (*c* 0.25, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.37-7.17 (m, 11H), 6.82 (d, *J* = 2.2 Hz, 1H), 6.76 (dd, *J* = 2.3 and 1.0 Hz, 1H), 6.73-6.67 (m, 2H), 6.43 (d, *J* = 15.8 Hz, 1H), 5.06 (d, *J* = 7.5 Hz, 1H) 3.80 (s, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 156.4, 143.3, 137.4 × (1 + 1), 132.5, 130.4, 128.44 × 2, 128.42 × 2, 128.37 × 2, 127.1, 126.34, 126.27 × 2, 121.3, 121.1, 120.5, 118.6, 109.3, 94.5, 55.6, 46.2; HPLC (Daicel CHIRALPAK[®] IB, 0.46 ϕ × 25 cm; Hexane:EtOH = 99:1, 0.9 mL/min, UV 254 nm) *t*_R = 81.3 min (major) and 95.1 min (minor).

(*R*)-(-)-6-Benzyloxy-3-((*E*)-1,3-diphenylallyl)-1*H*-indole ((*R*)-10d) (Table 4, entry 4).² Compound (*R*)-10d was obtained according to the general procedure in 89% yield (73.6 mg, 0.18 mmol) as a brown solid; mp 131-133 °C; 95% ee; $[\alpha]^{20}D -28.3$ (*c* 0.15, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.43-7.16 (m, 16H), 6.81 (d, *J* = 2.1 Hz, 1H), 6.76 (dd, *J* = 8.7 and 2.3 Hz, 1H), 6.71-6.65 (m, 2H), 6.41 (d, *J* = 15.8 Hz, 1H), 5.04-5.03 (m, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 155.5, 143.3, 137.4, 137.3, 137.2, 132.5, 130.4, 128.51 × 2, 128.44 × 2, 128.40 × 2, 128.37 × 2, 127.8, 127.4 × 2, 127.1, 126.33, 126.25 × 2, 121.5, 121.3, 120.4, 118.5, 110.0, 95.9, 70.4, 46.2; HPLC (Daicel CHIRALPAK[®] IA-3, 0.46 ϕ × 25 cm; Hexane:EtOH = 99:1, 0.7 mL/min, UV 254 nm) *t*_R = 189.7 min (minor) and 208.0 min (major).

(*R*)-(-)-3-((*E*)-1,3-Diphenylallyl)-6-nitro-1*H*-indole ((*R*)-10e) (Table 4, entry 5).² Compound (*R*)-10e was obtained according to the general procedure in 56% yield (40.0 mg, 0.11 mmol) as a brown solid; mp 55-57 °C; 95% ee; $[\alpha]^{20}$ _D -46.7 (*c* 0.18, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 8.33 (d, *J* = 1.9 Hz, 1H), 7.90 (dd, *J* = 8.8 and 1.9 Hz, 1H), 7.43-7.20 (m, 12H), 6.69 (dd, J = 15.9 and 7.5 Hz, 1H), 6.42 (d, J = 15.7 Hz, 1H), 5.12 (d, J = 7.3 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 143.2, 142.4, 137.0, 135.1, 131.41, 131.38, 131.1, 128.64 × 2, 128.55 × (2+1), 128.3 × 2, 127.5, 126.8, 126.3 × 2, 119.7 (1+1), 114.9, 108.2, 45.9; HPLC (Daicel CHIRALPAK[®] IA-3, 0.46 ϕ × 25 cm; Hexane:EtOH = 98:2, 0.5 mL/min, UV 254 nm) $t_{\rm R} = 127.6$ min (minor) and 136.5 min (major).

(*R*)-(-)-3-((*E*)-1,3-Diphenylallyl)-6-fluoro-1*H*-indole ((*R*)-10f) (Table 4, entry 6).² Compound (*R*)-10f was obtained according to the general procedure in 74% yield (48.7 mg, 0.15 mmol) as a brown solid; mp 51-53 °C; 96% ee; $[\alpha]^{20}D-21.4$ (*c* 0.12, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.36-7.17 (m, 11H), 6.99 (dd, *J* = 9.7 and 2.2 Hz, 1H), 6.83-6.65 (m, 3H), 6.42 (d, *J* = 15.8 Hz, 1H), 5.06 (d, *J* = 7.2 Hz, 1H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 159.9 (d, *J*_{C-F} = 238.1 Hz), 143.1, 137.3, 136.5 (d, *J*_{C-F} = 12.5 Hz), 132.2, 130.7, 128.49 × 2, 128.45 × 2, 128.40 × 2, 127.2, 126.5, 126.3 × 2, 123.3, 122.8 (d, *J*_{C-F} = 3.3 Hz), 120.6 (d, *J*_{C-F} = 10.1 Hz), 118.7, 108.2 (d, *J*_{C-F} = 24.2 Hz), 97.4 (d, *J*_{C-F} = 26.0 Hz), 46.1; HPLC (Daicel CHIRALPAK[®] IA-3, 0.46 ϕ × 25 cm; Hexane:EtOH = 99:1, 0.6 mL/min, UV 254 nm) *t*_R = 75.1 min (minor) and 80.9 min (major).

(*R*)-(-)-6-Chloro-3-((*E*)-1,3-diphenylallyl)-1*H*-indole ((*R*)-10g) (Table 4, entry 7).² Compound (*R*)-10g was obtained according to the general procedure in 87% yield (59.8 mg, 0.17 mmol) as a brown solid; mp 55-57 °C; 96% ee; $[\alpha]^{20}D$ –26.1 (*c* 0.13, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.36-7.18 (m, 12H), 6.97 (dd, *J* = 8.5 and 1.9 Hz, 1H), 6.85 (d, *J* = 1.4 Hz, 1H), 6.68 (dd, *J* = 15.8 and 7.4 Hz, 1H), 6.41 (d, *J* = 15.6 Hz, 1H), 5.06 (d, *J* = 7.4 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 142.9, 137.3, 137.0, 132.0, 130.7, 128.49 × 2, 128.47 × 2, 128.37 × 2, 128.0, 127.3, 126.5, 126.3 × 2, 125.3, 123.2, 120.7, 120.2, 118.8, 111.0, 46.0; HPLC (Daicel CHIRALPAK[®] IA-3, 0.46 ϕ × 25 cm; Hexane:EtOH = 99:1, 0.5 mL/min, UV 254 nm) *t*_R = 87.7 min (minor) and 93.1 min (major).

(*R*)-(-)-6-Bromo-3-((*E*)-1,3-diphenylallyl)-1*H*-indole ((*R*)-10h) (Table 4, entry 8).² Compound (*R*)-10h was obtained according to the general procedure in 86% yield (66.9 mg, 0.17 mmol) as a brown solid; mp 129-131 °C; 95% ee; $[\alpha]^{20}D - 20.3$ (*c* 0.23, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.48 (d, *J* = 1.5 Hz, 1H), 7.37-7.19 (m, 11H), 7.11 (dd, *J* = 8.5 and 1.7 Hz, 1H), 6.86 (dd, *J* = 2.4 and 1.0 Hz, 1H), 6.68 (dd, *J* = 15.8 and 7.4 Hz, 1H), 6.41 (d, *J* = 15.8 Hz, 1H), 5.07 (d, *J* = 7.4 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 142.9, 137.3, 137.2, 132.0, 130.7, 128.49 × 2, 128.47 × 2, 128.36 × 2, 127.3, 126.5, 126.3 × 2, 125.6, 123.2, 122.7, 121.1, 118.8, 115.6, 114.0, 46.0; HPLC (Daicel CHIRALPAK[®] IA-3, 0.46 ϕ × 25 cm; Hexane:2-PrOH = 98:2, 0.9 mL/min, UV 254 nm) *t*_R = 52.5 min (minor) and 58.1 min (major).

(R)-(-)-3-((E)-1,3-Diphenylallyl)-5-methoxy-1*H*-indole ((R)-10j) (Table 4, entry 10).² Compound (R)-10j was obtained according to the general procedure in 73% yield

(49.7 mg, 0.15 mmol) as a brown solid; mp 55-57 °C; 93% ee; $[\alpha]^{20}_{D}$ –34.8 (*c* 0.11, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.37-7.17 (m, 11H), 6.85-6.81 (m, 3H), 6.70 (dd, *J* = 15.8 and 7.4 Hz, 1H), 6.43 (d, *J* = 15.9 Hz, 1H), 5.06 (d, *J* = 7.2 Hz, 1H), 3.70 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.7, 143.2, 137.4, 132.4, 131.7, 130.5, 128.46 × 2, 128.45 × 2 128.40 × 2, 127.13, 127.12, 126.4, 126.3 × 2, 123.4, 118.2, 112.1, 111.8, 101.6, 55.7, 46.1; HPLC (Daicel CHIRALPAK[®] IB, 0.46 ϕ × 25 cm; Hexane:EtOH = 99:1, 0.9 mL/min, UV 254 nm) *t*_R = 53.9 min (major) and 67.3 min (minor).

(*R*)-(–)-5-Bromo-3-((*E*)-1,3-diphenylallyl)-1*H*-indole ((*R*)-10k) (Table 4, entry 11).² Compound (*R*)-10k was obtained according to the general procedure in 82% yield (63.1 mg, 0.16 mmol) as a brown solid; mp 141-143 °C; 95% ee; $[\alpha]^{20}D-25.1$ (*c* 0.14, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.53-7.52 (m, 1H) 7.38-7.19 (m, 12H), 6.93 (dd, *J* = 2.5 and 0.92 Hz, 1H), 6.69 (dd, *J* = 15.8 and 7.3 Hz, 1H), 6.40 (d, *J* = 15.8 Hz, 1H), 5.07 (d, *J* = 7.3 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 142.8, 137.2, 135.2, 132.0, 130.7, 128.49 × (2+2), 128.47, 128.3 × 2, 127.2, 126.5, 126.3 × 2, 124.9, 123.8, 122.2, 118.4, 112.7, 112.6, 45.8; HPLC (Daicel CHIRALPAK[®] IB, 0.46 ϕ × 25 cm; Hexane:EtOH = 99:1, 0.9 mL/min, UV 254 nm) *t*_R = 62.6 min (major) and 71.8 min (minor).

(*R*)-(-)-4-Bromo-3-((*E*)-1,3-diphenylallyl)-1*H*-indole ((*R*)-10l) (Table 4, entry 12).² Compound (*R*)-10l was obtained according to the general procedure in 72% yield (55.5 mg, 0.14 mmol) as a brown solid; mp 81-83 °C; 82% ee; $[\alpha]^{20}D-35.1$ (*c* 0.015, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.36-7.17 (m, 12H), 7.03-6.96 (m, 2H), 6.74 (dd, *J* = 15.8 and 6.5 Hz, 1H), 6.22 (dd, *J* = 15.8 and 1.3 Hz, 1H), 5.90 (d, *J* = 7.0 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 143.9, 137.7, 137.6, 133.7, 130.6, 128.9 × 2, 128.4 × 2, 128.2 × 2, 127.0, 126.2 × 2, 126.1, 124.9, 124.8, 124.3, 122.9, 119.0, 114.3, 110.5, 44.7; HPLC (Daicel CHIRALPAK[®] IA-3, 0.46 ϕ × 25 cm; Hexane:2-PrOH = 99:1, 0.5 mL/min, UV 254 nm) *t*_R = 80.4 min (minor) and 88.5 min (major).

(*R*)-(-)-3-((*E*)-1,3-Diphenylallyl)-2-phenyl-1*H*-indole ((*R*)-10m) (Table 4, entry 13).² Compound (*R*)-10m was obtained according to the general procedure in 72% yield (55.8 mg, 0.14 mmol) as a brown solid; mp 87-89 °C; 89% ee; $[\alpha]^{20}D$ –58.3 (*c* 0.17, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.55-7.15 (m, 18H), 7.02-6.98 (m, 1H), 6.89 (dd, *J* = 15.8 and 7.3 Hz, 1H), 6.41 (dd, *J* = 15.9 and 1.1 Hz, 1H), 5.28 (d, *J* = 7.1 Hz, 1H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 143.4, 137.4, 136.2, 135.6, 132.9, 132.2, 131.0, 128.8 × 2, 128.6 × 2, 128.4 × 2, 128.3 × 2, 128.2 × 2, 128.0, 127.9, 127.1, 126.3 × 2, 126.1, 122.1, 121.2, 119.7, 113.8, 110.9, 45.1; HPLC (Daicel CHIRALPAK[®] IB, 0.46 ϕ × 25 cm; Hexane:EtOH = 99:1, 0.9 mL/min, UV 254 nm) *t*_R = 20.9 min (major) and 23.0 min (minor).

3-2. References for Product Characterization

- Mino, T.; Takaya, K.; Koki, K.; Akimoto, N.; Yoshida, Y.; Kasashima, Y.; Sakamoto, M. Axially chiral *N*-alkyl-*N*-cinnamoyl amide type P,olefin ligands for Pd-catalyzed reactions. *Org. Biomol. Chem.* **2023**, *21*, 2775-2778.
- (2) Tanaka, Y.; Mino, T.; Akita, K.; Sakamoto, M.; Fujita, T. Development of Chiral (S)-Prolinol-Derived Ligands for Palladium-Catalyzed Asymmetric Allylic Alkylation: Effect of a Siloxymethyl Group on the Pyrrolidine Backbone. J. Org. Chem. 2004, 69, 6679-6687.

4. DFT Calculations

4-1. General Information for DFT Calculations

All calculations were carried with the Gaussian 16 (revision C.01) program package.¹ The molecular structures and harmonic vibrational frequencies were obtained using ω B97X-D functional²/ SDD³ (for Palladium atom) and 6-31+G^{*4} basis sets (for other atoms) were used. Geometry optimization and vibrational analysis were performed at the same level. All stationary points were optimized without any symmetry assumptions and characterized by normal coordinate analysis at the same level of theory (number of imaginary frequencies, NIMAG, 0 for minima and 1 for TSs). The thermal corrections were computed at 298.15 K and 1 atm. Connectivity of the stationary points was the "pseudo" intrinsic reaction coordinate (IRC) method,⁵ where IRC calculations were performed for 20 to 50 steps form the TS (in both forward and backward directions) and subsequent structures were optimized to obtain the corresponding local minima.⁶ Single point energies were calculated at the ω B97X-D/def2-TZVPP⁷ level of theory for the whole molecules and the self-consistent reaction field (SCRF) method based on the polarizable continuum model (smd)⁸ was employed to evaluate the solvent reaction field (acetonitrile; e = 36.64). The reported energies are a sum of potential energies calculated at the ω B97X-D/SDD and 6-31+G* level of theory and the thermochemistry corrections. The Non-Covalent Interaction (NCI) analysis was performed by NCIPLOT version 4.29 and visualized by Visual Molecular Dynamics (VMD)¹⁰.

4-2. Investigation of π -allyl-palladium complex with (*S*,a*R*)-4e and -4f

Figure S1. The comparison energy between the M- and W-type π -allyl palladium complexes with (*S*,a*R*)-4e and -4f. Energy changes and bond lengths at the ω B97X-D/def2-TZVPP/SMD(MeCN)// ω B97X-D/SDD (for palladium atom) and 6-31+G* (for the rest) are shown in kcal/mol and Å, respectively.

We also investigated the π -allyl complexes with ligands (*S*,a*R*)-4e and -4f, which yielded products with the opposite stereochemistry compared to (*S*,a*R*)-3. For the acrylamide ligand 4e, olefin-coordinated palladium complexes were found to be more stable. In particular, the W-type complex (4e-Olefin-W) is slightly more stable than the M-type complex (4e-Olefin-M) due to two CH- π interactions of the aromatic ring on the π -allyl with acrylamide olefin and with benzene ring on phosphine atom.

In the case of **4f**, the cis-isomer of **3**, olefin-coordinated palladium complexes were also preferred over oxygen-coordinated complexes, although the energy gap was small. Notably, the W-type complex (**4f-Olefin-W**) exhibited a π - π interaction between the benzene ring of the cis-cinnamoyl group and aromatic ring on the π -allyl. Additionally, CH- π interaction between the hydrogen on π -allyl group and the aromatic ring on the phosphine further stabilized this W-type complex, making it the predominant species. These calculations suggest that palladium complexes with (*S*,*aR*)-**4e** and **4f** preferentially adopt a W-type conformation, though the underlying stabilizing interactions differ. These results align with experimental observations.

4-3. Visualization of non-covalent interactions using NCIPLOT

We visualized the non-covalent interactions (NCIs), such as π - π and CH- π interactions, in the stable complexes **3-Olefin-M**, **4d-O-W**, **4e-Olefin-W**, and **4f-Olefin-W** using NCIPLOT software⁹ (Figure S2). The green patches indicate regions where positive van der Waals forces contribute to complex stabilization.

Figure S2. Visualization of π - π and CH- π interactions in the stable complexes 3-Olefin-M, 4d-O-W, 4e-Olefin-W, and 4f-Olefin-W using NCIPLOT.

4-4. References for DFT calculations

 Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016

- (2) Chai, J. D.; Head-gordon, M. Long-range corrected double-hybrid density functionals. J. Chem. Phys. 2009, 131, 174105–174117.
- (3) (a) Fuentealba, P.; Preuss, H.; Stoll, H.; Szentpaly, L. V. A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds. *Chem. Phys. Lett.* **1982**, *89*, 418–422. (b) Szentpaly, L. V.; Fuentealba, P.; Preuss, H.; Stoll, H. Pseudopotential calculations on Rb₂⁺, Cs₂⁺, RbH⁺, CsH⁺ and the mixed alkali dimer ions. *Chem. Phys. Lett.*, **1982**, *93*, 555–559.
- (4) (a) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li-F. J. Comput. Chem. 1983, 4, 294–301. (b) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72, 650–654.
- (5) (6) (a) Fukui, K. The path of chemical reactions the IRC approach. Acc. Chem. Res. 1981, 14, 363–368. (b) Ishida, K.; Morokuma, K.; Komornicki, A. The intrinsic reaction coordinates. An ab initio calculation for HNC→HCN and H⁻+CH₄→ CH₄+H⁻. J. Chem. Phys. 1977, 66, 2153–2156. (c) Gonzalez, C.; Schlegel, H. B. An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154–2161. (d) Gonzalez, C.; Schlegel, H. B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523–5527.
- (6) Isegawa, M.; Sameera, W. M. C.; Sharma, A. K.; Kitanosono, T.; Kato, M.; Kobayashi, S.; Morokuma, K. Copper-Catalyzed Enantioselective Boron Conjugate Addition: DFT and AFIR Study on Different Selectivities of Cu(I) and Cu(II) Catalysts. *ACS Catal.* 2017, 7, 5370–5380.
- (7) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* 2005, 7, 3297–3305.
- (8) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* 2009, *113*, 6378–6396.

- (9) (a) Boto, R. A.; Peccati, F.; Laplaza, R.; Quan, C.; Carbone, A.;Piquemal, J.-P.; Maday, Y.; Contreras-García, J. NCIPLOT4: Fast, robust, and quantitative analysis of noncovalent interactions. *J. Chem.Theory Comput.* 2020, *16*, 4150-4158. (b) Contreras-García, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D. N.; Yang, W. NCIPLOT: program for plotting noncovalent interaction regions. *J. Chem. Theory Comput.* 2011, *7*, 625-632. (c) Johnson, E. R.; Keinan, S.; Mori-Sanchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. *J. Am. Chem. Soc.* 2010, *132*, 6498-6506.
- (10) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. *J. Molec. Graphics* **1996**, *14*, 33–38.

5. NMR Spectra and chiral phase HPLC chart 5-1. ¹H NMR, ¹³C{¹H} NMR and ³¹P{¹H} NMR of 4 ¹H NMR, ¹³C{¹H} NMR and ³¹P{¹H} NMR of (*S*,a*S*)-4a

	DAT IM OBNUC EXMOD OFR OBSET OBF IN POINT FREQU SCANS ACQTM PD PW1 CTEMP SLVNT EXREF BF RGAIN PRNT_DATT COMNT	14/Jan/2021 17:50:37 31P ZGPG30 161.98 MHz 0.0 kHz 10001.57 Hz 32768 51020.41 Hz 32 0.6423 s 2.0 s 10.0 μ s 17.15 °C CDCL ₃ 157.9655 ppn 0.25 Hz 2050 E 2024/May/08 17:50:22
150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100-110-120-130-140-150 δ/ppm(³¹ P)		

¹H NMR, ¹³C{¹H} NMR and ³¹P{¹H} NMR of (S,aR)-4a

	DATIM 14/Jan/2021 18:00:36 OBVUC 3P EXMOD ZGPG30> OFR 161.98 MHz OBSET 0.0 kHz OBFIN 10001.57 Hz POINT 32768 FREQU 51020.41 Hz SCANS 64 ACQTM 0.6423 s PD 2.0 s PW1 10.0 µs CTEMP 17.15 °C SLVNT CDCL3> EXREF 157.9655 pp BF 0.25 Hz RGAIN 2050 PRNT_DATE 2024/Apr/30 08:51:08 COMNT
60 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100-110-120-130-140-150- δ/ppm (³¹ P)	

¹H NMR, ¹³C{¹H} NMR and ³¹P{¹H} NMR of (*S*,a*S*)-4b

25	7
2 2	DATIM 11/Dec/2020 14:01:14
	OBNUC ³¹ P
	EXMOD ZGPG30>
	OFK 162.0 MHZ OBSET 0.0 kHz
	0.0 KHZ 0BFIN 9993, 149 Hz
	POINT 32768
	FREQU 51020.41 Hz
	SCANS 134
	ACQIM 0.6423 s
	PD 2.0 S
	CTEMP 19.81 °C
	SLVNT CDCL ₃ >
	EXREF 157.4744 ppm
	BF 0.25 Hz
	$\frac{1}{10000000000000000000000000000000000$
	COMNT
	COMPATI
\$0 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -1	160
δ/ppm (³¹ P)	

¹H NMR, ¹³C{¹H} NMR and ³¹P{¹H} NMR of (S,aR)-4b

9	
214	DATIM 11/Dec/2020 14:14:18
91	OBNUC 31P
	EXMOD ZGPG30> OFR 162 0 MHz
	OBSET 0.0 kHz
	OBFIN 9993.149 Hz
	POINT 32768
	SCANS 128
	ACQTM 0.6423 s
	PD 2.0 s
	PW1 15.0 μs
	SLVNT CDCL ₂ >
	EXREF 157.4744 ppm
	BF 0.25 Hz
	RGAIN 203 PRNT DATE 2024/Apr/30 00:11:30
	COMNT
l	
0/ минс т /	

¹H NMR, ¹³C{¹H} NMR and ³¹P{¹H} NMR of (*S*,a*S*)-4c

	DATIM 01/Sep/2021 14:57:07 OBNUC ³¹ P EXMOD ZGPG30> OFR 162.0 MHz OBSET 0.0 kHz OBSET 0.0 kHz OBFIN -1.3506 Hz POINT 131072 (ZeroFil: :x4) FREQU 51020.41 Hz SCANS 16 ACQTM 0.6423 s PD 2.0 s PW1 15.0 μs CTEMP 24.11 °C SLVNT CDCL ₃ > EXREF -15.8 ppm BF 1.557 Hz RGAIN 203 PRNT_DATE 2024/Apr/30 11:44:13 COMNT
60 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100-110-120-130-140-150-16 δ/ppm (³¹ P)	30
¹H NMR, ¹³C{¹H} NMR and ³¹P{¹H} NMR of (S,aR)-4c

	16. 53 16.	$ \begin{array}{ccccc} DATIM & 01/Sep/2021 \ 15:06:00 \\ OBNUC & ^{31P} \\ EXMOD & ZGPG30 \rangle \\ OFR & 162.0 \ MHz \\ OBSET & 0.0 \ kHz \\ OBSET & 0.0 \ kHz \\ OBFIN & 9993. \ 149 \ Hz \\ POINT & 32768 \\ FREQU & 51020. \ 41 \ Hz \\ SCANS & 16 \\ ACQTM & 0.6423 \ s \\ PD & 2.0 \ s \\ PU & 15.0 \ \mu s \\ CTEMP & 24.11 \ cC \\ SLVNT & CDCL_3 \rangle \\ EXREF & 157. \ 4744 \ ppm \\ BF & 0.25 \ Hz \\ RGAIN & 203 \\ PRNT \ DATE & 2024/Apr/30 \ 11:54:55 \\ COMNT \\ \end{array} $
L		
160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 $_{\delta/ppi}$	0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 - n (³¹ P)	160

¹H NMR, ¹³C{¹H} NMR and ³¹P{¹H} NMR of (*S*,a*S*)-4d

	DATIM 05/Apr/2021 17:13:43 OBNUC ^{31P} EXMOD ZGPG30> OFR 162.0 MHz OBSET 0.0 kHz OBFIN 9993.154 Hz POINT 32768 FREQU 51020.41 Hz SCANS 16 ACQTM 0.6423 s PD 2.0 s PW1 15.0 µS CTEMP 22.61 °C SLVNT CDCL3> EXREF 157.9652 pp BF 0.25 Hz RGAIN 203 PRNT_DATE 2024/Apr/30 12:09:07 COMNT
160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100-110-120-130-140-15 δ/ppm (³ P)	

¹H NMR, ¹³C{¹H} NMR and ³¹P{¹H} NMR of (S,aR)-4d

	DATIM 05 OBNUC EXMOD OFR OBSET OBFIN POINT FREQU SCANS ACQTM PD PW1 CTEMP SLVNT	/Apr/2021 17:23:11 ^{31p} ZGPG30> 162.0 MHz 0.0 kHz 9993.154 Hz 32768 51020.41 Hz 16 0.6423 s 2.0 s 15.0 µs 22.61 °C CDCL3>
	EXREF BF RGAIN PRNT_DATE COMNT	157.9652 pp 0.25 Hz 203 2024/Apr/30 12:21:38
60 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100-110-120-130-140-150-1 δ/ppm(³¹ P)	60	

¹H NMR, ¹³C{¹H} NMR and ³¹P{¹H} NMR of (*S*,a*S*)-4e

	-	
. 4106	DATIM 03	/Jun/2022 15:46:44
13	OBNUC	31P
	OFR	162.0 MHz
	OBSET	0.0 kHz
	POINT	32768
	FREQU	51020.41 Hz
	ACQTM	0.6423 s
	PD DW1	2.0 s
	CTEMP	15. 0 μs 23. 31 °C
	SLVNT	CDCL ₃ >
	BF	0.25 Hz
	RGAIN DDNT DATE	203
	COMNT	2024/Apr/30 12.27.30
	-	
60 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 - s/ppm/(3IP)	160	
9/ hhii ()		

¹H NMR, ¹³C{¹H} NMR and ³¹P{¹H} NMR of (S,aR)-4e

	-	
. 8974	DATIM O	3/Jun/2022 16:31:53
	OBNUC	31p
	EXMOD	ZGPG30> 162 0 MHz
	OBSET	0.0 kHz
	OBFIN	9993.157 Hz
	FREQU	51020.41 Hz
	SCANS	32
	ACQTM	0.6423 s 2 0 s
	PW1	15.0 μs
	CTEMP	23. 51 °C
	EXREF	157.9551 pp
	BF	0.25 Hz
	RGAIN PRNT DATE	203 2024/Apr/30 12:32:39
	COMNT	2024/ Api/ 00 12:02:00
60 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -	160	
δ/ ppm (°'r)		

¹H NMR, ¹³C{¹H} NMR and ³¹P{¹H} NMR of (*S*,a*S*)-4f

	DATIM 21/Jan/2022 18:23:40 OBNUC ³¹ P EXMOD ZGPG30> OFR 162.0 MHz OBSET 0.0 kHz OBFIN 9993.162 Hz POINT 32768 FREQU 51020.41 Hz SCANS 128 ACQTM 0.6423 s PD 2.0 s PW1 15.0 us
	CTEMP 20.71 ° ⊂ SLVNT CDCL ₃ > EXREF 157.9351 ppr BF 0.25 Hz RGAIN 203 PRNT_DATE 2024/Apr/30 12:39:02 COMNT 201
160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 δ/ppm (³¹ P)	

¹H NMR, ¹³C{¹H} NMR and ³¹P{¹H} NMR of (S,aR)-4f

5-2. ¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of 8

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (S)-8a (Table 2, Entry 4)

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (*S*)-**8b** (Table 2, Entry 11)

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (*S*)-8d (Table 2, Entry 13)

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (R)-8e (Table 2, Entry 14)

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (*S*)-8f (Table 2, Entry 15)

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (*S*)-8a (Table 2, Entry 16)

AD-3, 0.5 mL/min, Hex:2-PrOH=90:10

5-3. ¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of 10

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (*R*)-10a (Table 3, Entry 15 and Table 4, Entry 1)

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (R)-10b (Table 4, Entry 2)

IB,flow0.5,Hex:EtOH=99:1

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (R)-10c (Table 4, Entry 3)

IB, 0.9mL/min, Hex:EtOH=99:1

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (R)-10d (Table 4, Entry 4)

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (*R*)-10e (Table 4, Entry 5)

IA-3, 0.5 mL/min, Hex:EtOH=98:2, UV 254 nm, CD 254 nm

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (R)-10f (Table 4, Entry 6)

IA,flow0.5,Hex:EtOH=99:1

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (R)-10g (Table 4, Entry 7)

IA-3,flow0.5,Hex:EtOH=99:1

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (*R*)-10h (Table 4, Entry 8)

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (*R*)-10j (Table 4, Entry 10)

IB,flow0.9,Hex:EtOH=99:1

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (*R*)-10k (Table 4, Entry 11)

IB,flow0.9,Hex:EtOH=99:1

¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (*R*)-10l (Table 4, Entry 12)

IA-3,0.7, Hex:EtOH=99:1
¹H NMR, ¹³C{¹H} NMR and chiral phase HPLC chart of (*R*)-10m (Table 4, Entry 13)

Chromatogram

IB,flow0.9,Hex:EtOH=99:1

6. Cartesian Coordinates and Energies

3-Olefin-M

at wb97xd/6-31+G* & SDD (for Pd) Energy = -2569.005145 A.U. Thermal correction to Gibbs Free Energy = 0.744763 A.U. Sum of electronic and thermal Free Energies =

-2568.260382 A.U.

at wb97xd/def2-TZVPP/smd(MeCN) Energy = -2569.87330545 A.U.

С	-2.90791400 -0.57839800 -1.95260700
С	-2.96569300 0.72535100 -1.46820800
Η	-2.13104400 -0.81101600 -2.68396500
Η	-3.78558200 1.03483600 -0.82502800
С	-1.86375000 1.60269400 -1.68322300
Η	-1.31628800 1.43644200 -2.60983300
С	-3.96158400 -1.59119500 -1.84798800
С	-5.22646600 -1.31905200 -1.30800900
С	-3.70031700 -2.87460400 -2.35333900
С	-6.20756500 -2.30376900 -1.28551500
Η	-5.46085400 -0.33414300 -0.91628300
С	-4.67655300 -3.86373200 -2.31314500
Н	-2.72026100 -3.09644500 -2.77064800
С	-5.93515000 -3.57778700 -1.78304000
Η	-7.18743400 -2.07647100 -0.87705700
Η	-4.45990400 -4.85280700 -2.70454700
Η	-6.70389700 -4.34444000 -1.76438200
Pd -	-1.15899900 -0.03432000 -0.44792400
Р	0.85263400 1.05451600 0.22856400
С	-0.42425700 -1.85522900 0.68552200
С	1.96707800 0.08428800 1.33573100
Η	-0.06386900 -1.52130800 1.65171800
С	-1.74802100 -2.16977100 0.51492400
С	2.25615100 -1.27561700 1.08608300
С	2.45225200 0.67491800 2.50444900
Ν	1.86371400 -1.88793900 -0.15157400
Η	-2.00045200 -2.75056900 -0.36888400
С	2.90423500 - 2.05491500 2.05452000
С	3.18872900 -0.07019600 3.42195600
Η	2.24980900 1.71957900 2.71487000
С	3.38196900 -1.42521500 3.20891000
Н	3.57727600 0.40616800 4.31682300
Η	3.90844400 -2.02100000 3.95026500

С	1.97096200 1.69617200 -1.06417100
С	1.59672100 1.70273100 -2.40773300
С	3.23466400 2.18527100 -0.70715100
С	2.45673700 2.20295600 -3.38204600
н	0.64821200 1.27332600 -2.70506600
C	4 09743700 2 68079900 -1 67921900
н	3 55060300 2 17486000 0 33285300
Γ	2 70807000 2 60257200 2 01876000
U U	2.0807000 2.09337300 -3.01870900
п	2.136/8300 2.18960300 -4.42338/00
H	5.07657800 3.05184600 -1.39185400
Н	4.38468/00 3.0/491000 -3.///43000
С	0.41733600 2.50409000 1.25510300
С	-0.41331800 2.28785100 2.36257900
С	0.86436100 3.79672100 0.98145300
С	-0.75654200 3.33662200 3.20579200
Η	-0.78240100 1.28822700 2.57549600
С	0.50874100 4.85143100 1.82192900
Н	1.48279500 3.99482000 0.11239800
С	-0.28951300 4.62396900 2.93800700
Н	-1.38887500 3.15189500 4.06921100
Н	0.85795600 5.85441700 1.59609000
Н	-0 55654400 5 44724800 3 59390700
C	-2 80736400 -2 00683200 1 51825100
c	-3 99465800 -2 73082500 1 35824900
c	-2 67022200 -1 17247300 -2 63908400
c	-5.01968400 -2.62803900 -2.29539300
н	-4 11026800 -3 38629000 0 49953700
C	-3 69362000 -1 06468100 -3 56984200
н	-1 75567400 -0 60470700 2 78339600
C	-4 87404200 -1 79328400 3 39936500
н	-5 93177000 -3 20117400 2 15911500
н	-3 57445800 -0 41679900 4 43321900
н	-5 67316100 -1 71037200 4 12984300
C	-1 85904200 -3 00495800 -1 22446100
c	-2 54123200 3 41432000 -0 07079200
C	-1 18308000 -3 96528100 -1 98660500
C	2 57070700 4 75582000 0 28565600
с ц	2.37570700 4.75582000 0.26505000
n C	-3.03131000 2.07990000 0.30348300
с u	-1.21930900 5.30984200 -1.02703100
n C	1 02558600 5 70876200 0 40587400
с u	2 11221400 5 05026200 1 19168500
н Ц	0.70286700 6.04487000 2.23747600
п п	-0.70280700 0.04487000 $-2.237470001 06055700 6 75752500 0 21640200$
П	-1.90033700 0.73733300 -0.21049300
U U	5.08085800 -5.54500400 1.92201400 4.12826000 2.80216000 1.80707400
п	4.13830900 - 3.80210900 1.80797400
Н	2.71231100 -4.04045300 2.82774000
Н	2.54144100 - 3.95794200 1.06756000
C	2.851/1000 -2.31249/00 -1.19394300
H	2.5/680100 -3.34443100 -1.43145800
C	0.5/093400 -2.29489/00 -0.34962900
0	0.22203600 -2.93782700 -1.33594000
C	4.29565800 -2.29935300 -0.73287100
C	5.03438700 - 3.48338500 - 0.76247700
C	4.94133300 -1.11751500 -0.35535100
C	6.38092900 - 3.49662200 - 0.40153000
Η	4.55115600 -4.40991800 -1.06443900

С	6.28060700 -1.12689000 0.01968800
Η	4.39253700 -0.18026300 -0.34483700
С	7.00521600 -2.31865500 0.00038500
Η	6.93918200 -4.42769800 -0.43254600
Η	6.76253400 -0.20150400 0.32246000
Η	8.05235400 -2.32581300 0.28812800
С	2.69630900 -1.48185700 -2.47072200
Η	1.64925100 -1.43430700 -2.78158800
Η	3.08131700 -0.46997900 -2.32982700
Н	3.27411300 -1.95258400 -3.27260000

3-Olefin-W

at wb97xd/6-31+G* & SDD (for Pd) Energy = -2569.003543 A.U. Thermal correction to Gibbs Free Energy = 0.746302 A.U. Sum of electronic and thermal Free Energies =

-2568.257241 A.U. at wb97xd/def2-TZVPP/smd(MeCN) Energy = -2569.87160499 A.U.

С	-3.52495300	0.04342600 -0.72281600
С	-2.90130800	1.19229700 -1.23762900
Η	-3.95701000	0.09964400 0.27787800
Η	-2.74892100	1.26022000 -2.31230900
С	-2.31847100	2.14083500 -0.37640100
Η	-2.67863800	2.16049000 0.65445000
С	-4.08673600	-0.99429100 -1.60811300
С	-3.38312700	-1.46807100 -2.72406500
С	-5.35677100	-1.51233400 -1.33103900
С	-3.94647500	-2.43212300 -3.55168600
Η	-2.36907700	-1.12316200 -2.91384500
С	-5.92558900	-2.46831400 -2.16882800
Η	-5.90308900	-1.15989500 -0.45981600
С	-5.22146000	-2.93026700 -3.27902200
Η	-3.38428300	-2.80621300 -4.40164500
Η	-6.91679900	-2.85493600 -1.95164400
Η	-5.66037300	-3.68308900 -3.92671700
Pd	-1.34837400	0.13532100 -0.07994500
Р	0.79713800	0.97445900 0.55866600

С	-0.57763200 -1.89603	800 0.53839800
С	1.91849600 -0.20195	200 1.42699800
Н	-0.16311900 -1.79102	200 1.53509100
С	-1.91109000 -2.18205	300 0.38332700
Ċ	2 13744200 -1 50396	000 0.92393300
C	2 44740200 0 1427	9400 2 67188600
N	1 68010/00 -1 85305	2.0710000 800_0 30122500
ц	2 2227/200 2 5/8/1	300 0 50250800
C	2.22374300-2.34841	700 1 71605700
C	2.70392000 -2.47347	/00 1./1003/00
	2 20210000 1 1260	400 3.41343300
п	2.29510000 1.1509	500 2.05174000
C	3.29488200 -2.08801	500 2.951/4900 200 4.27107000
Н	3.59527300 -0.50350	300 4.3/19/800
Н	3.80644900 - 2.83199	900 3.55717000
С	1.80211800 1.6923	5200 -0.77442500
С	1.22871400 1.9081	3200 -2.02662600
С	3.14812900 2.0190	6500 -0.56631000
С	1.97958700 2.4629	4700 -3.05871000
Η	0.19928000 1.6139	3000 -2.20207700
С	3.90198700 2.5645	1900 -1.60001200
Η	3.61128200 1.8366	2300 0.40065900
С	3.31608500 2.7902	6500 -2.84666200
Н	1.52550800 2.6233	9800 -4.03186500
Н	4.94778900 2.8065	3400 -1.43679500
Н	3.90729800 3.2114	7700 -3.65411100
С	0.55465600 2.3032	6800 1.79245400
Č	-0.41525700 2.09509	9400 2.78208000
C	1 26969300 3 5017	3000 1 78270900
c	-0.65690100 3.0612	5000 1.76270500 5100 3.75238600
н		7700 2 70275700
C	1 02635700 1.1709	3600 2.79275700
с u	1.02033700 4.4717	7100 1.00824200
П	2.00324300 3.0997	/100 1.00624200 0400 2.72050500
	1 40076000 2 8866	0400 5./5950500 5400 4.51526700
п	-1.409/0000 2.8800.	7700 2 72 405 (00
H	1.58594000 5.4021	7700 2.73405600
Н	-0.12182/00 5.0132	5900 4.49363200
C	-2.88/53100 -2.28810	900 1.47/67/600
C	-4.04365900 -3.04833	200 1.26590400
С	-2.69946300 -1.67309	900 2.72515700
С	-4.98848400 -3.19778	500 2.27881200
Н	-4.19598600 -3.53263	800 0.30552000
С	-3.64469900 -1.81617	600 3.73215500
Η	-1.81069500 -1.07384	200 2.90794100
С	-4.79371800 -2.57960	400 3.51093000
Η	-5.87572200 -3.79871	800 2.10369000
Η	-3.48838700 -1.33541	600 4.69328200
Н	-5.53092400 -2.69233	300 4.30002500
С	-1.70873000 3.40753	3600 -0.81941300
С	-1.46667500 3.70869	9500 -2.16842300
С	-1.41736100 4.37954	4300 0.14530400
С	-0.92758000 4.9341	1200 -2.53455500
Н	-1.69990500 2.9891	8400 -2.94815700
C	-0.87492300 5.60740	5800 -0.22040400
Н	-1.61786700 4 17294	4500 1.19346400
C	-0.62298300 5.88642	2500 -1.56046500

н	1 86013800 2 68004000 -1 94617600
C	2 16848800 0 59624200 -2 47153200
ч	1 92379400 -0 11457000 -3 26387800
C II	0.70052000 2.06108700 2.78621800
C	-0./9955000 2.90198/00 -2.78021800
C	-0.41500/00 4.20891600 -2.2/518500
C	-2.144/8200 2./5415100 -3.11809400
C	-1.35560900 5.21937600 -2.09977100
Н	0.62187200 4.41094000 -2.02308500
С	-3.08614100 3.76043700 -2.93284900
Н	-2.45571400 1.78639000 -3.50173500
С	-2.69428900 4.99684200 -2.42228400
Н	-1.04003000 6.18754800 -1.72136100
Н	-4.12555300 3.58096300 -3.19012100
Н	-3.42609300 5.78725700 -2.28524700
Pd	0.34518800 0.37543300 -1.32614000
Р	1.05149900 -1.22284500 0.32484500
С	-1.59188500 0.99901500 1.33510000
С	-0.03701600 -1.74470500 1.74307200
Н	-1.63344600 0.60264100 2.34304500
C	-1 31511800 2 29218100 1 09210900
C	-1 44292100 -1 75196100 1 66697300
C	0 56526700 -2 15788200 2 93500300
N	-2 05848900 -1 23212800 0 48031100
C	-2 23931200 -2 18062200 - 2 73611900
C	-0.20986500 -2.60552300 -3.99988400
с ц	164420200 211200700 304751100
Г	1.04420200 -2.11399700 - 5.04751100
	-1.39310300 -2.02083300 -3.89387000
П	0.27074800-2.92713900 4.91884400
Н	-2.19528000 -2.95290100 4.73884500
C	1.59/14800 -2.81204500 -0.39992500
C	1.54256600 -2.96361500 -1.78897400
C	2.01823/00 - 3.8944/900 0.38285400
C	1.91684500 -4.16292200 -2.38994200
H	1.18190800 -2.1442/300 -2.40431/00
C	2.39677100 -5.09184100 -0.21614000
H	2.04258000 - 3.81421400 1.46510800
C	2.3491/600 -5.22/68200 -1.6035/100
H	1.86133800 -4.26745100 -3.46949200
Н	2.72215800 - 5.92309600 0.40198000
H	2.63884300 -6.1654/200 -2.06/95600
C	2.4/194300 -0.52351100 1.23600800
C	2.26313200 0.71484200 1.85878200
C	3.70759400 -1.15674400 1.36080600
C	3.26853000 1.29528000 2.62243300
H	1.30/63000 1.22449300 1.75369100
C	4./1556000 -0.5/002400 2.12585000
H	3.89864600 -2.09927000 0.85757000
C	4.49694900 0.64754700 2.76310400
H	3.09100400 2.25091700 3.10757700
H	5.67652800 -1.06780900 2.21540300
H	5.28372100 1.09715200 3.36176200
C	3.52479600 0.42537400 -1.91657700
С	4.11660000 1.36321600 -1.05907400
С	4.26325800 -0.70327100 -2.29187300
С	5.42463600 1.19384000 -0.62551200

Н	-0.74810900 5.15158800 -3.58309500
Н	-0.65452200 6.34589400 0.54445500
Н	-0.20277200 6.84489500 -1.84976300
С	2.85584600 - 3.92532100 1.31649800
Н	3.89342600 - 4.20915900 1.11644800
Н	2.48806100 - 4.55435300 2.13437500
Н	2.26838900 -4.15166700 0.42438200
С	2.61196700 -2.16626300 -1.52393100
Н	2.25008000 -3.12007700 -1.91943300
С	0.35842600 -2.13952800 -0.61373300
0	-0.05770100 -2.54961100 -1.69203700
С	4.06259200 -2.34250000 -1.12145700
С	4.70883300 -3.54528900 -1.41306700
С	4.80622700 -1.30693700 -0.54718400
С	6.05954900 -3.72289800 -1.11800900
Н	4.14873600 -4.35819000 -1.86988900
С	6.15063100 -1.48306800 -0.23625700
Н	4.32963200 -0.35548400 -0.33197600
С	6.78199300 -2.69426300 -0.51862800
Н	6.54431100 -4.66577000 -1.35359900
Н	6.70918600 -0.67206900 0.22258500
Н	7.83274100 -2.83087000 -0.28076400
С	2.50169300 -1.12945600 -2.64506800
Н	1.45805600 -0.95505400 -2.91666500
Н	2.96783200 -0.18511900 -2.35680500
Н	3.02998800 -1.50920800 -3.52562800

3-0-M

at wb97xd/6-31+G* & SDD (for Pd) Energy = -2568.994407 A.U. Thermal correction to Gibbs Free Energy = 0.74285 A.U. Sum of electronic and thermal Free Energies =

-2568.251557 A.U.

at wb97xd/def2-TZVPP/smd(MeCN) Energy = -2569.85984076 A.U.

С	0.14532500	1.84477100 -2.96247900
С	1.46660700	1.83034500 -2.49664500
Η	-0.14446200	1.10270900 -3.70951000

Н	3.55809800 2.22926200 -0.71652600
С	5.57010600 -0.88049700 -1.84640500
Н	3.81552400 -1.44420600 -2.94962100
С	6.15765700 0.07463600 -1.02125400
Н	5.87135600 1.93246900 0.03271400
Н	6.13148000 -1.75691100 -2.15601000
Н	7.18141500 -0.05274700 -0.68211500
С	-3.74254100 -2.14301000 2.66593700
Н	-4.13750500 -3.02806700 2.15596900
Н	-4.17324400 -2.11683500 3.67054600
Н	-4.10078500 -1.27355000 2.10740600
С	-2.54789500 -2.13841100 -0.60398000
С	-4.07607900 -2.10852500 -0.67987100
С	-4.73243700 -0.89943700 -0.94359200
С	-4.85049500 -3.25590000 -0.49661100
С	-6.12165900 -0.83749100 -0.99447900
Н	-4.15399400 0.00209300 -1.12049600
С	-6.24304900 -3.19735000 -0.55185300
Н	-4.38083500 -4.21492700 -0.30247000
С	-6.88473200 -1.98700000 -0.79414900
Н	-6.60979900 0.11140400 -1.19793400
Н	-6.82383400 -4.10322300 -0.40404300
Н	-7.96880200 -1.93989400 -0.83554400
С	-1.85207100 0.08167100 0.20915900
0	-1.87327100 0.50742700 -0.97519000
Η	-1.35059800 2.63001600 0.05572500
С	-0.95317500 3.30150100 2.08797300
С	-0.98734900 4.65326700 1.71716400
С	-0.54380900 2.96620400 3.38877900
С	-0.64539900 5.64835800 2.62763800
Η	-1.29639900 4.91796200 0.70891200
С	-0.19565400 3.96005700 4.29527100
Н	-0.48030800 1.92410500 3.69128300
С	-0.24928900 5.30345800 3.91849000
Н	-0.68721000 6.69212900 2.33119900
Н	0.12048900 3.68916700 5.29829700
Н	0.02124000 6.07790700 4.62998000
С	-1.96140300 -3.53834100 -0.46372800
Н	-0.87085000 -3.51459600 -0.48009700
Н	-2.27203800 -4.03627000 0.46004400
Н	-2.28949100 -4.14824400 -1.30996800
Н	-2.16151000 -1.69891800 -1.52948800

at wb97xd/6-31+G* & SDD (for Pd) Energy = -2568.996333 A.U. Thermal correction to Gibbs Free Energy = 0.739987 A.U. Sum of electronic and thermal Free Energies = -2568.256346 A.U. at wb97xd/def2-TZVPP/smd(MeCN) Energy = -2569.86576771 A.U. C -1.44878700 2.49082900 0.24383700

C	-1.448/8/00	2.49082900	0.24383700
С	0.89745700	1.13286700	2.15254500
Η	-1.30168900	3.14850700	1.09287800
С	-1.43652900	2.94967200	-1.01909000
С	-0.44718300	1.28189100	2.53696800
С	1.87573300	1.85724400	2.83915700
Ν	-1.45867500	0.59925200	1.77253800
С	-0.82047700	2.12561100	3.59014600
С	1.52171800	2.68898700	3.89643100
Η	2.91807100	1.78377400	2.54431600
С	0.18853500	2.81583000	4.26746600
Η	2.28893900	3.24719500	4.42426000
Η	-0.08172000	3.47843200	5.08529100
С	-1.64968500	1.05535100	0.50085200
0	-1.96964800	0.26323500	-0.41607200
С	-1.76770300 -	0.82988100	2.04233700
Η	-1.15566000 -	1.43159900	1.35668700
С	1.74958800 -	-1.57144000	1.80817600
С	1.19898400 -	-2.78861000	1.39734600
С	2.49444200 -	-1.53006100	2.99338000
С	1.39325900 -	-3.94648300	2.14604500
Η	0.59667500	-2.82764000	0.49233000
С	2.69621500 -	-2.68729300	3.73912600
Η	2.91169600	-0.59158500	3.34700000
С	2.14519000 -	-3.89725100	3.31724200
Η	0.95127400	-4.88291700	1.81864000
Н	3.27636500	-2.64262100	4.65583200
Н	2.29589100	-4.79726300	3.90572300
С	3.01049600	0.62151100	0.29626600

С	-4.77339200 -	2.98542500 -2.90070100
Н	-3.75094800 -	4.87448700 -2.72342800
Н	-5.50468800 -	0.96644100 -3.06926500
Н	-5.76407500 -	-3.43038900 -2.89620900
Н	-1.61650900	2.22130700 -1.80955500
С	-1.20988500	4.32787500 -1.45521600
С	-0.75655000	5.33414100 -0.58698900
С	-1.44585900	4.65350400 -2.79863000
С	-0.56056600	6.62858500 -1.05066500
Н	-0.54318600	5.10486400 0.45328400
С	-1.25375000	5.95131100 -3.26248300
Н	-1.79476100	3.88274900 - 3.48213400
С	-0.81137200	6.94158900 -2.38827200
Н	-0.20851000	7.39789000 -0.37002700
Н	-1.44933400	6.18927500 -4.30354400
Н	-0.65849700	7.95516000 -2.74650100

4d-Olefin-M

at wb97xd/6-31+G* & SDD (for Pd) Energy = -2416.624574 A.U. Thermal correction to Gibbs Free Energy = 0.722749 A.U. Sum of electronic and thermal Free Energies = -2415.901825 A.U. at wb97xd/def2-TZVPP/smd(MeCN) Energy = -2417.43975209 A.U.

C	2.40545900	2.30334300	-1.24/82000
С	3.11186100	1.13145100 -	-1.07620500
Η	1.85657200	2.50793200	-2.14346800
Η	3.94862400	1.07373800	-0.38565500
С	2.58248000 -	0.05327700 -1	1.62486100
Η	1.94189900	0.05000600	-2.50316700
С	2.98048000	3.59435000 -	-0.61908300
С	3.61896800	3.57448400	0.63006700
С	2.85387600	4.81728300 -	-1.28916400
С	4.12495700	4.74349600	1.18624400
Η	3.69220100	2.64422000	1.18856500

С	2.96872800 1.80166100 -0.45862400
С	4.24022600 0.03326200 0.58901400
С	4.14735000 2.39917600 -0.89001900
Н	2.01157800 2.26219700 -0.69905300
C	5.42053400 0.63419100 0.15171000
Н	4.28874700 -0.89974600 1.14146300
C	5.37770100 1.81683100 -0.57981200
н	4 10726600 3 31930900 -1 46560500
Н	6 37408300 0 16718400 0 37914200
Н	6 29929300 2 28330500 -0 91516000
C	-2 26519800 2 32775400 3 96336600
н	-2 89504200 2 44947100 3 07691000
н	-2 65424900 1 47217300 4 52665300
н	-2 38093200 3 21442500 4 59225100
C	-1 39765300 -1 22780400 3 46991200
н	-1 98359200 -0 67378100 4 20893700
и П	1 62464400 2 20012700 3 50302200
п п	-1.02404400 - 2.29012700 - 5.59592200 0.22408200 1.08244600 - 2.67867800
n C	2 21020100 1 15176200 1 72020100
C	-5.21980100 -1.15170800 1.75989100
C	-5.52807000 -2.19817700 0.87115800
C	-4.25928500 -0.45085400 2.55958800
	-4.85220300 -2.55870200 0.65850300
Н	-2./2813600 -2./2429800 0.35396900
C II	-5.58610900 -0.804/4500 2.11/89000
H	-4.035//300 0.36395/00 3.03405200
C	-5.885/9000 -1.861/2800 1.26040900
Н	-5.07465500 -3.37625900 -0.03992500
Н	-6.38582100 -0.25443700 2.60518200
H	-6.91980200 -2.13867200 1.07687200
P	1.405/1200 -0.0624/500 0.82/65800
Pd	0.00083900 -0.57473400 -1.04617100
C	1.48780300 -1.03450300 -2.54737800
С	0.33966200 -1.82970300 -2.79674400
H	1.50839600 -0.04217900 -3.00507400
С	2.82642600 -1.59068300 -2.26623700
С	-0.89776600 -1.18513300 -2.95341400
Н	0.39329300 -2.90359500 -2.63626200
С	3.01182800 -2.79166900 -1.57001600
С	3.95035400 -0.89960100 -2.73073100
Η	-0.89135800 -0.18035400 -3.38151500
С	-2.21510900 -1.84262600 -2.93154900
С	4.28942900 -3.29188200 -1.35037000
Н	2.15580100 -3.33427800 -1.18066100
С	5.22948600 -1.40720800 -2.52551000
Η	3.82311200 0.04296100 -3.25710300
С	-2.37331300 -3.23041200 -2.80874600
С	-3.35882000 -1.03921400 -3.02336900
С	5.40277200 -2.60335100 -1.83392100
Н	4.41722100 -4.22093900 -0.80276600
Η	6.09095100 -0.86178400 -2.89857400
С	-3.64300200 -3.79657000 -2.80049300
Н	-1.50822000 -3.88407800 -2.74192300
С	-4.62862500 -1.60407900 -3.00446700
Н	-3.24846400 0.03950100 -3.09227400
Н	6.40067400 -2.99849800 -1.66862300

Η	-5.31289600 0.25409600 2.10011000
Н	-4.54465900 1.31562600 3.28470100
Η	-4.22077500 1.51430900 1.54907800
С	-3.60309900 -0.53547700 -0.73733400
С	-4.90762800 0.26676800 -0.78270200
С	-4.90655900 1.58368900 -1.26177600
С	-6.12699900 -0.28429000 -0.37956100
С	-6.07854900 2.33370700 -1.29742500
Η	-3.98184800 2.02066100 -1.62235700
С	-7.30398300 0.46277100 -0.41997800
Н	-6.18021000 -1.30565900 -0.01737500
С	-7.28388100 1.77904000 -0.87004800
Η	-6.05161800 3.35281100 -1.67309900
Η	-8.23742100 0.00981400 -0.09810800
Η	-8.19921300 2.36264800 -0.90119400
С	-1.77339300 1.07915900 -0.40959000
0	-1.83341900 1.37632300 -1.60232500
С	-0.51019500 3.84987800 -0.90533300
Η	0.29312000 4.58146800 -1.01956100
Η	-1.44014100 4.41432900 -0.74862300
Н	-0.63893900 3.26280200 -1.81191600
С	0.30826600 3.74192100 1.48917300
Η	0.52593700 3.08325700 2.33430700
Η	-0.41900600 4.49670700 1.81795600
Η	1.21725900 4.28005500 1.20949500
С	-3.80713100 -1.99959600 -0.36874800
Η	-2.86333000 -2.54039800 -0.40071200
Н	-4.23735100 -2.13107600 0.62907200
Н	-4.47993000 -2.46088500 -1.09699600
Η	-3.16334700 -0.49535000 -1.73804400

4d-Olefin-W

at wb97xd/6-31+G* & SDD (for Pd) Energy = -2416.622911 A.U. Thermal correction to Gibbs Free Energy = 0.722473 A.U. Sum of electronic and thermal Free Energies = -2415.900438 A.U.

С	3.35577900 5.98993900 -0.73030200
Н	2.37438600 4.84761900 -2.26465400
С	3.99280500 5.95609000 0.50832000
Н	4.61376000 4.71242900 2.15536100
Н	3.25427600 6.92870400 -1.26613400
Н	4.38475600 6.86952700 0.94484600
Pd	1.08597800 0.85612100 -0.26467300
Р	0.22673800 -1.24546500 0.46201800
С	-0.83038300 1.76135600 0.53705700
С	-1.14911900 -1.18728400 1.69481800
Н	-0.84539500 1.42518500 1.56964400
С	-0.28537400 3.00840900 0.31929000
С	-2.31243900 -0.41607000 1.45484200
Ċ	-0.98555900 -1.80191800 2.93629600
N	-2.56290300 0.10209900 0.13766600
C	-3.22610400 -0.16828100 2.48772300
C	-1 94123300 -1 63809000 3 93662000
н	-0 10875700 -2 40761600 3 13709300
C	-3 02699200 -0 80612800 -3 71942100
н	-1 81346300 -2 13569300 4 89300900
н	-3 74184400 -0 63121900 4 51941300
C	-0.36579500 -2.35550000 -0.85294000
C	-0.50575500 -2.55550000 -0.85254000
C	-0.69126200 -3.69407200 -0.59784300
C	-1 12269100 -2 62487700 -3 13616800
с ц	-1.12209100 -2.02487700 -3.13010800 0.40477000 -0.77242800 -2.31801800
n C	1 18862700 / /0080500 1 61651000
с u	-1.18802700 - 4.49989500 - 1.01051000 0 50217800 4 10222200 0 40414700
п	-0.3931/800 -4.10233300 0.40414/00
с u	-1.40240000 -3.90047000 -2.88800100
п п	1 42245600 5 52801000 1 41216000
п u	-1.43243000 -3.53801900 -1.41210900
п	-1.80449000 -4.39323000 -3.07842400
C	1.38/01400 - 2.03838300 1.3/2/8900
C	2.25258500 -1.27242900 2.54045800
C	2.02918300 - 5.30531300 1.15720200
С	1 00042400 0 24685200 2 50000200
П	1.90942400 -0.24085200 2.50999500
	3.07093900 - 3.88693700 1.92229900
П	1.39/23500 - 3.9/4/3400 0.3/391400
U U	2.7520(700 1.17802700 2.8542(600
Н	3.75296700 -1.17893700 3.85436600
H	3.406/8100 -4.90314600 1./3896/00
H	4.4963/300-3.5251/000 3.49348300
C	3.22624600 -1.37415400 -1.49868100
C	4.29651300 -1.61636400 -0.62559900
C	2.79173200 -2.41290600 -2.33219900
С	4.92714300 -2.85322600 -0.60910400
H	4.64598300 -0.84476400 0.05324300
C	3.41227900 -3.65807900 -2.30358200
Н	1.96576100 -2.24255400 -3.01695900
С	4.48814700 -3.87856800 -1.44714500
Н	5.75986600 -3.02102000 0.06688100
Н	3.06397100 -4.44835500 -2.96170400
Н	4.98578900 -4.84374300 -1.43311300
С	-4.38577700 0.78221200 2.34237600

at wb97xd/def2-TZVPP/smd(MeCN) Energy = -2417.43849387 A.U.

С	-2.37389100	2.88035600 -0.41776900
С	-2.86344400	1.92515800 0.48042900
Η	-2.64183700	2.76501200 -1.47000700
Н	-2.85696200	2.13462700 1.54772500
С	-3.19507700	0.62564500 0.03642300
Н	-3.51573800	0.51851900 -1.00197200
С	-1.98510700	4.23919400 -0.01360800
С	-1.51171000	4.53065300 1.27369200
С	-2.10580000	5.28300700 -0.94021900
С	-1.17189400	5.83145400 1.62277700
Н	-1.37188900	3.73305100 1.99867700
С	-1.76208700	6.58638300 -0.59209600
Н	-2.49222000	5.07678100 -1.93595600
С	-1.29254400	6.86289900 0.69025400
Н	-0.80033800	6.04153900 2.62105300
Н	-1.86728300	7.38553700 -1.31941200
Н	-1.02279700	7.87814300 0.96429300
Pd	-1.07403500	0.98387300 -0.39525800
Р	-0.54305800 -	1.35409800 -0.42495000
С	1.05831200	1.32945800 -1.12033300
С	0.93618700 -	-1.85346200 -1.41961800
Н	1.04830800	0.70400500 -2.00832200
С	0.76902200	2.66107500 -1.31473300
С	2.18925500 -	-1.21807100 -1.23953700
С	0.78808000 -	-2.77298800 -2.45854100
Ν	2.41284600	-0.40123700 -0.07890700
С	3.21888100 -	-1.39720300 -2.17306300
C	1 84485600 -	-3 03566900 -3 32745300
Н	-0 15397100 -	3 28900700 -2 60514100
C	3 02839600	-2 32737100 -3 20335500
н	1 72336800	-3 76800100 -4 11963700
Н	3 83047100	-2 48485400 -3 91998600
C	-0 28948100 -	2.09636700 1.21671000
c	-0.06952300 -	1 24866700 2 30454100
c	-0.20394200 -	3 48324500 1 39667400
C	0.20394200 -	1 77753100 3 56372500
н		0 1704/300 2 165/5800
C	0.04/37300	4 01053800 2 65927600
н	-0.29360300 -	4 15478500 0 54735500
п С	0.29500500	3 15756700 3 74495900
н	0.24040900	-1 10938700 / 39955600
и П	0.10/31/00	5 08640800 2 70181800
п п	0.10431400	2 57084000 4 72744700
п	1.02264500	-3.5/084000 + 4.72/44/00
C	-1.92304300 -	1 71252700 2 51700000
C	-2.2966/500 -	2 28408700 0 72282000
C	-2.03944000 -	J.20470/00 -0./2203700
U U	-3.340/3800 -	2.29120000 -3.23231900
п	-1./0100000-	0.00911000 -2.94033/00
U U	-3.08224300 -	2.608/3300 -1.443/1000 2.65115000 -0.27200000
П	-2.42383100 -	5.03113900 0.2/399000
U	-4.03143300 -	3.38103100 -2.69/61/00
Н	-3.01255200 -	1.89392/00 -4.206/3/00

Н	-4.23039200 -4.69872800 -1.00808700
Н	-4.84320300 -3.83815200 -3.25543300
С	-3.72693400 -0.40665300 0.94814000
С	-3.28400400 -0.53994100 2.27008800
С	-4.73563300 -1.25708600 0.48446400
С	-3.83088600 -1.50598100 3.10501800
Н	-2.48851200 0.09830400 2.64363300
С	-5.29979500 -2.21145000 1.32563800
Н	-5.07615200 -1.17523800 -0.54505800
С	-4.84488800 -2.34240800 2.63552800
Н	-3.46445100 -1.60911100 4.12190400
Н	-6.08822700 -2.85871300 0.95331800
Н	-5.27708000 -3.09297300 3.29052300
С	4.49907700 -0.60290500 -2.14295800
Η	5.31752000 -1.17111900 -1.69126800
Η	4.79630100 -0.34997600 -3.16566600
Η	4.39788300 0.32090300 -1.56989300
С	3.23758600 -0.92583100 1.06089600
С	4.66633800 -0.37390700 1.05756500
С	4.88699900 1.00136800 1.21142400
С	5.78002100 -1.20809900 0.92799100
С	6.17645600 1.52544000 1.19483600
Η	4.04084100 1.66414900 1.35645800
С	7.07336500 -0.68654500 0.91751700
Η	5.65813700 -2.28127900 0.82419700
С	7.27736100 0.68425600 1.04093000
Η	6.32215400 2.59528900 1.31587900
Η	7.92122100 -1.35768800 0.81348100
Η	8.28376500 1.09230000 1.03216300
С	1.79243900 0.80889000 0.07860600
0	1.82394400 1.42809900 1.14126100
С	0.30662500 3.10729300 -2.67428300
Η	1.12909700 3.65064600 - 3.15827000
Η	-0.52341500 3.81566500 -2.59240600
Η	0.01405700 2.27405400 - 3.31891600
С	1.16071100 3.76868700 -0.38044700
Н	0.64847700 4.69938900 -0.63274500
Η	2.24002000 3.93225300 -0.50893500
Η	1.00340400 3.51955800 0.66596900
С	3.17917800 -2.44678200 1.12648000
Н	3.70480700 - 2.78524500 2.02371100
Н	2.14907500 - 2.79026800 1.19553500
Н	3.63741500 - 2.92847500 0.25701300
Н	2.73782700 -0.52785700 1.94869600

4d-O-M

at wb97xd/6-31+G* & SDD (for Pd) Energy = -2416.629995 A.U. Thermal correction to Gibbs Free Energy = 0.720187 A.U. Sum of electronic and thermal Free Energies = -2415.909808 A.U. at wb97xd/def2-TZVPP/smd(MeCN) Energy = -2417.44476538 A.U. С 1.23303400 -2.74822600 -1.22642200 С -0.08802100 -3.10311000 -0.92962300 Η 1.42562100 -2.24118900 -2.17493000 -0.30084000 -3.78429600 -0.10962300 Η C -1.14055800 -2.33064400 -1.49966600 Н -0.96222000 -1.95279400 -2.50826300 С 2.43192900 - 3.24446700 - 0.53116900 С 2.40585800 -4.35295400 0.32534300 С 3.63623400 -2.55159200 -0.71184400 С 3.55925000 -4.75461800 0.99013500 Η 1.49136000 - 4.92339300 0.46295100 С 4.78676900 -2.94891100 -0.03956500 Η 3.66169200 -1.67535800 -1.35433300 С 4.75108000 - 4.05068900 0.81370900 Η 3.53109800 - 5.62328000 1.64111900 5.70986700 -2.39526700 -0.18211300 Η 5.65027300 -4.36659700 1.33423800 Η Pd 0.13995200 -1.00834000 -0.39145800 Р -1.38880200 0.77506900 0.09765200 С 1.76154300 0.75728300 2.54900400 С -0.88989900 2.25781100 1.09965900 Η 1.66765600 1.71165000 3.05693400 С 1.87495500 -0.36408700 3.29461900 С 0.42739000 2.74590000 1.10040100 С -1.86247300 2.96131800 1.81729300 1.44847300 1.96205700 0.45934400 Ν С 0.77777100 3.92692300 1.76568300 С -1.53222000 4.13822800 2.48005100 Η -2.87976200 2.58556600 1.87349000

С	-0.22774300 4.61916100 2.44394000
Η	-2.29486500 4.67750200 3.03353300
Н	0.02220500 5.53592800 2.97099500
С	-2.03307000 1.55938400 -1.42955200
С	-1.59676400 1.09253900 -2.67284000
C	-2 91281500 2 64888500 -1 38951400
c	-2 03382000 1 68915800 -3 85326400
ц	0.80445200 0.26574800 2.72076200
II C	-0.89445200 0.20574800 -2.72070200
	-5.55550900 5.24258700 -2.50724000
П	-5.25551500 5.04555900 -0.45821500
C	-2.91/05900 2.76410400 -3.80181300
Н	-1.6/910/00 1.31//6800 -4.81016600
Н	-4.03897100 4.08502200 -2.52057800
Η	-3.25836300 3.23359600 -4.71942300
С	-2.82166900 0.16292000 1.04363400
С	-2.54883000 -0.39720100 2.29915200
С	-4.13722400 0.22369200 0.58641800
С	-3.58584400 -0.86280600 3.09836900
Η	-1.52220500 -0.45418600 2.65795500
С	-5.17471700 -0.24804700 1.39008000
Н	-4.36230700 0.62690200 -0.39570700
С	-4.90374600 -0.78276000 2.64547300
Н	-3.36878200 -1.28533600 4.07503600
Н	-6.19655800 -0.20075800 1.02596900
Н	-5 71558400 -1 14385800 3 26988100
C	-2 56951300 -2 52262900 -1 18420400
C	-3 00591300 -3 10304100 0 01458900
C	-3 52361400 -2 13310200 -2 13123800
C	-4 35753800 -3 33186800 0 23490700
н	-2 29032000 -3 36889000 0 78791800
C	-4 87989500 -2 35548800 -1 90752500
н	-3 20027100 -1 66650200 -3 05905000
C	-5 29830200 -2 96693100 -0 72893800
н	-4 68099000 -3 78672300 1 16607600
н	-5 60628800 -2 06095300 -2 65006700
и П	6 35423400 3 15158000 0 55517400
C	2 20/82700 / / 0828000 1 70860200
с u	2.20485700 4.40828000 1.79809200
н Ц	2.37003900 4.00114900 0.79803400
и П	2.27847700 3.27747000 2.42450500
II C	1 6001/200 2 02/22500 1 01210000
C	2.01227200 1.67825100 1.44207500
C	2 10845600 0 00454200 2 58027100
C	3.19843600 0.90434200 -2.38927100
C	4.13155300 2.1489/200 -0./5613000
С	4.47901800 0.59872500 -3.04307900
Н	2.32977600 0.53170600 -3.13035100
С	5.41490300 1.83788300 -1.20090500
H	4.00182000 2.74796100 0.14090100
С	5.59314600 1.06161800 -2.34458500
Н	4.60788100 -0.00410900 -3.93768000
Н	6.27829800 2.20508100 -0.65356600
Η	6.59374200 0.82238700 -2.69212600
С	1.76026100 0.78096500 1.08630400
0	2.04651600 -0.22872900 0.40425700
С	1.89930400 -0.25354400 4.79219700

2.82677700 -	0.69096800	5.18241300
1.07531200 -	0.83395100	5.22618900
1.82413400	0.77904400	5.14262700
1.97964900 -	1.76211600	2.74848600
1.98358600 -	2.49536200	3.55998700
2.88756800 -	1.89021300	2.15106100
1.14414300 -	1.99066900	2.07543000
1.16792200	3.37925900	-1.57263100
1.27550900	3.34758600	-2.66033000
0.12241600	3.60561500	-1.34352100
1.79992800	4.18984900	-1.19922200
0.93939500	1.26179300	-1.45218200
	2.82677700 - 1.07531200 - 1.82413400 1.97964900 - 1.98358600 - 2.88756800 - 1.14414300 - 1.16792200 1.27550900 0.12241600 1.79992800 0.93939500	2.82677700 -0.69096800 1.07531200 -0.83395100 1.82413400 0.77904400 1.97964900 -1.76211600 1.98358600 -2.49536200 2.88756800 -1.89021300 1.14414300 -1.99066900 1.16792200 3.37925900 1.27550900 3.34758600 0.12241600 3.60561500 1.79992800 4.18984900 0.93939500 1.26179300

4d-O-W

at wb97xd/6-31+G* & SDD (for Pd) Energy = -2416.626572 A.U. Thermal correction to Gibbs Free Energy = 0.7176 A.U. Sum of electronic and thermal Free Energies =

-2415.908972 A.U. at wb97xd/def2-TZVPP/smd(MeCN) Energy =

-2417.44388481 A.U.

С	-0.90803300 -2.98638100 -1.14479300
С	0.28982100 -3.21436500 -0.44704000
Η	-0.83957200 -2.82165000 -2.22136400
Η	0.28275800 - 3.67613500 0.53718800
С	1.47276300 -2.58748800 -0.91018800
Η	1.55191000 -2.42100300 -1.98753700
С	-2.25176900 -3.33494800 -0.65643300
С	-2.49551800 -3.76013900 0.65763400
С	-3.33217000 -3.23193500 -1.54077000
С	-3.78021600 -4.10139000 1.06223300
Η	-1.68269400 -3.83414100 1.37504200
С	-4.62042400 -3.56211500 -1.13374700
Η	-3.15815000 -2.89405900 -2.55918600
С	-4.84604300 -4.00574400 0.16686500
Н	-3.95202200 -4.44235200 2.07901400

Н	-5.44667100 -3.47777900 -1.83277900
Н	-5.84928100 -4.27390500 0.48467600
Pd	-0.02670200 -1.05915700 -0.55767200
Р	1.37530400 0.74659600 0.16642900
C	-1 45224900 1 89184200 -2 42324000
C	0 92770600 2 52856900 -0 08531400
н	-1 36078100 2 97268700 -2 39513000
$\hat{\mathbf{C}}$	-1 41687900 1 27889700 -3 62473700
c	-0.41002200 2.96397800 -0.05565400
C	1 94272900 3 47963500 -0.22065700
N	-1.45243400 = 1.97318700 - 0.00177400
C	-0.73757600 - 4.32319600 - 0.13870300
C	163145100 - 483211300 - 0.13870500
С Ц	2 08126100 2 16778500 0 27526000
п	2.98120100 5.10778300 -0.27330000
U U	0.30390300 5.24623300 -0.23037400
H	2.42647800 5.56493200 -0.40339300
Н	0.06942900 6.30449300 -0.32209800
C	1.602/5900 0.6802//00 1.98388500
C	0.98183000 -0.33823400 2.71212200
C	2.32/11400 1.660/4300 2.67321100
С	1.08/12800 -0.38/40600 4.099/2100
Н	0.39424000 -1.09058000 2.19051800
С	2.44021000 1.60946000 4.05906500
Н	2.79643100 2.47764900 2.13258000
С	1.81950400 0.58581600 4.77489800
Η	0.59085600 -1.17984100 4.65222400
Η	3.00515500 2.37536700 4.58165600
Η	1.90050600 0.55315200 5.85720800
С	3.03404500 0.65956700 -0.58763100
С	3.09011100 0.70779800 -1.98685700
С	4.21475800 0.54158000 0.14464700
С	4.31546800 0.66725200 -2.64202200
Η	2.17121100 0.79196300 -2.56515200
С	5.44240800 0.49853300 -0.51584300
Η	4.18779400 0.46635800 1.22698400
С	5.49634000 0.56773600 -1.90429800
Η	4.35161800 0.71613800 -3.72641200
Η	6.35673700 0.40154400 0.06173400
Η	6.45458700 0.53765200 -2.41438000
С	2.77637400 -2.68548700 -0.22419800
С	2.89070800 - 2.78299200 1.16822900
С	3.94009000 -2.70957900 -1.00002500
С	4.13767700 -2.90916700 1.76820500
Н	2.00387200 -2.74502300 1.79317500
С	5.18817000 -2.85217700 -0.40197600
Н	3.86851300 -2.61759800 -2.08084000
С	5.29063100 -2.95108500 0.98324100
Н	4.21032500 -2.97749100 2.84960000
Н	6.08096800 -2.87683500 -1.01926500
Н	6.26431200 -3.05807500 1.45206700
C	-2.16822600 4.79306700 -0.14843100
н	-2.57934700 4 83094600 0 86698700
Н	-2 24063700 5 80033400 -0 56743800
Н	-2.80682600 4.12728100 -0.73590500
C	-1.85774700 1.37118200 1.29502800
\sim	

С	-3.33205600 1.0061	5800 1.28956100
С	-3.72342300 -0.30910	0000 1.53597700
С	-4.31454100 1.9770	0600 1.08688700
С	-5.07242500 -0.64869	9400 1.59316800
Н	-2.96823000 -1.08179	9900 1.66173800
С	-5.66491200 1.6401	3000 1.13247100
Н	-4.02781900 3.0056	67300 0.89221200
С	-6.04764700 0.3250	1.39049900
Н	-5.35938100 -1.6779	7000 1.78373200
Н	-6.41826600 2.4061	0.97267100
Н	-7.10037300 0.0612	22700 1.43106100
С	-1.61994600 1.2169	93200 -1.13240500
0	-1.91698800 0.0030	05800 -1.03597700
С	-1.27097300 2.1007	71900 -4.87329300
Н	-2.13532700 1.9394	40200 -5.52961500
Н	-0.38664600 1.7778	33700 -5.43717600
Н	-1.18395200 3.1704	43500 -4.66686500
С	-1.50265400 -0.20932	2200 -3.83749700
Н	-0.63597300 -0.7080	0100 -3.38393800
Н	-1.51463800 -0.4491	7700 -4.90450500
Н	-2.39115300 -0.6271	1500 -3.35820700
С	-1.51787700 2.2843	32500 2.47155600
Н	-1.81963500 1.7770	03400 3.39192200
Н	-0.44734000 2.4962	24800 2.53730000
Н	-2.06250900 3.2313	34200 2.41904500
Н	-1.29431400 0.4363	33400 1.42080700

4e-Olefin-M

at wb97xd/6-31+G* & SDD (for Pd)
Energy = -2338.010142 A.U.
Thermal correction to Gibbs Free Energy =
0.670095 A.U.
Sum of electronic and thermal Free Energies
-2337.340047 A.U.
at wb97vd/def2-T7VPP/smd(MeCN) Energy

at wb97xd/def2-TZVPP/smd(MeCN) Energy = -2338.804468 A.U.

С	2.20650100	2.71243900 -1.15966200
С	2.98070400	1.54113200 -1.06752000

Н	1.54364300 2.80278300 -2.02188700
Н	3.85417000 1.52310900 -0.42137900
С	2.51062600 0.35046800 -1.65564400
н	1 81055300 0 46584400 -2 48522500
C	2 56506700 3 98747500 -0 51280000
C	2.22246400 4.04226600 0.65882000
C	5.55540400 4.04550000 0.05882000 2.105(2.400 5.18242200 1.07854200
C	2.10563400 5.18242200 -1.07854300
С	3.65042900 5.26720400 1.23555100
Н	3.66936800 3.12687000 1.13802900
С	2.42429100 6.40901300 -0.50122900
Η	1.50250200 5.15298400 -1.98312600
С	3.19829500 6.45405200 0.65568000
Η	4.24664200 5.29797600 2.14249100
Η	2.06765200 7.32803100 -0.95589200
Н	3.44646000 7.40907500 1.10832300
Pd	1.03597300 1.07382000 -0.13870400
Р	0.31091800 -1.11569700 0.48119700
C	-0.80139200 1.80554100 0.93738700
Ċ	-0.89544600 -1.20638100 -1.87662800
ч	-0.71573200 + 1.20050100 + 1.07002000
C	0.15400500 2.02144100 0.40052800
C	-0.13499500 2.95144100 0.49952800 2.11774500 0.40004200 1.82662000
C	-2.11//4300 -0.49994300 1.82003900
C	-0.56013500 -1.90193900 3.04061500
N	-2.54374300 0.11993600 0.60004800
Н	-0.44233200 $3.38494900 -0.44546600$
С	-2.94036800 -0.41643800 2.95928600
С	-1.40937000 -1.88383100 4.14265300
Η	0.36426200 - 2.46537500 3.09597200
С	-2.57250600 -1.12984900 4.10501300
Η	-1.14750700 -2.44297900 5.03554700
Η	-3.21376200 -1.08509000 4.98093100
С	-0.47824600 -2.05613500 -0.86277800
С	-0.64038400 -1.46690000 -2.11927300
С	-0.99163000 -3.33909500 -0.63459500
Ċ	-1.28024800 -2.15923300 -3.14475000
н	-0 31070000 -0 44636100 -2 28842500
C	-1 62343200 -4 03357200 -1 66087000
ч	-0.0155//00_3.70050600_0.35176100
C	1 76444700 3 44553000 2 01833400
с u	1 41508900 1 68555900 4 11240600
п	-1.41508800 - 1.08555800 - 4.11240000
п	-2.01800800 -3.02806300 -1.47393900
Н	-2.26499600 -3.98584000 -3.71628800
C	1.73985500 -2.06800000 1.09784900
С	2.55580200 -1.43268500 2.04508700
С	2.04165200 - 3.37030400 0.69988300
С	3.62943300 -2.10577600 2.61613100
Η	2.33778000 -0.41118300 2.35171000
С	3.12507200 - 4.03971500 1.26715700
Η	1.45139100 -3.86664900 -0.06270800
С	3.91116000 - 3.41689200 2.23165800
Н	4.24486700 - 1.60948900 3.36065700
Н	3.35448000 - 5.05143300 0.94654100
Н	4.74843700 - 3.94625000 2.67660400
Ċ	3.23038000 -0.93329400 -1.65814600
С	4.34374800 -1.18317100 -0.84392400

=

С	2.81657500 -1.92440900 -2.55745100
С	5.03660800 -2.38150000 -0.94863200
Н	4.67779200 -0.44566800 -0.12064500
С	3.50569400 -3.12917100 -2.65626000
Н	1.95418100 -1.74662700 -3.19445300
С	4.62267100 -3.35666300 -1.85689300
Н	5.90081400 -2.55879600 -0.31614300
Н	3.17671700 -3.88205900 -3.36604300
Н	5.17100700 -4.29038500 -1.93879400
С	-4.17126500 0.45052800 2.98809500
Н	-4.67890200 0.36171100 3.95197300
Н	-3.90214700 1.50353100 2.84791800
Н	-4.88867700 0.19839500 2.20364100
С	-3.51872500 -0.56743000 -0.29247600
Н	-2.95931700 -0.82176900 -1.19920800
С	-1.84747700 1.16751400 0.05839300
0	-2.03010000 1.56251100 -1.08587400
С	-4.68206600 0.31636600 -0.73413000
С	-5.46525300 -0.14270300 -1.79818800
С	-5.01174400 1.53624400 -0.14778500
С	-6.56529200 0.58243500 -2.24509600
Η	-5.20747800 -1.07671700 -2.29405700
С	-6.11283800 2.26730300 -0.59107700
Η	-4.39799800 1.94180500 0.64866500
С	-6.89845400 1.79143400 -1.63649400
Н	-7.15932300 0.20559900 -3.07265100
Н	-6.34954300 3.21741400 -0.12063300
Н	-7.75564900 2.36133900 -1.98207900
С	-4.03124000 -1.87540100 0.31916300
Н	-3.21295300 -2.52929200 0.62861600
Н	-4.68952800 -1.70530100 1.17482100
Н	-4.61066300 -2.40585300 -0.44018200
Н	0.46783800 3.51381000 1.17091400

4e-Olefin-W

at wb97xd/6-31+G* & SDD (for Pd) Energy = -2338.010115 A.U. Thermal correction to Gibbs Free Energy = 0.669877 A.U.

Sum of electronic and thermal Free Energies = -2337.340238 A.U.

at wb97xd/def2-TZVPP/smd(MeCN) Energy = -2338.80458335 A.U.

С	-2.50716100	2.90256600 -0.51395200
С	-2.82848200	2.02154000 0.52471000
Н	-2.89444100	2.66710500 -1.50730700
Н	-2.68387100	2.33613100 1.55536600
С	-3.15090500	0.67211000 0.24753700
Н	-3.60349200	0.45830300 -0.72252800
С	-2.09677700	4.30261400 -0.32278600
С	-1.48643800	4.75356200 0.85675400
С	-2.31936900	5.21412300 -1.36219000
С	-1.12871800	6.08834900 0.99719300
Н	-1.26224900	4.05670900 1.66048500
С	-1.96367400	6.55267600 -1.21982900
Н	-2.78745200	4.87635600 -2.28421400
С	-1.36923200	6.99215700 -0.03948000
Н	-0.65305300	6.42488000 1.91315500
Н	-2.15114700	7.25058000 -2.02992700
Н	-1.08764200	8.03455200 0.07287000
Pd	-1.11481000	1.06539400 -0.50150700
Р	-0.49768200 -	1.24903200 -0.52395200
С	0.94084900	1.44799300 -1.36950700
С	0.80759000	-1.69327600 -1.75266100
Н	0.95965500	0.99584700 -2.35698500
С	0.36066300	2.67435400 -1.18643900
С	2.08078200	-1.08203100 -1.71089800
С	0.50463100	-2.55750500 -2.80748800
Ν	2.46450900	-0.28995500 -0.57347100
Н	0.54915000	3.23540700 -0.27468000
С	2.99251600	-1.25917000 -2.76184200
С	1.43570300	-2.79740800 -3.81329400
Η	-0.45724300 -	-3.05511400 -2.85137200
С	2.65394400	-2.13505500 -3.79848100
Η	1.19633500	-3.48614400 -4.61756600
Н	3.36236900	-2.29230600 -4.60711100
С	0.12452100	-1.86434700 1.06900000
С	0.17146400	-1.00218500 2.16606100
С	0.62135000	-3.16810800 1.19372500
С	0.68801700	-1.44074500 3.38256600
Η	-0.15295600	0.02780200 2.05924800
С	1.13278100	-3.60700700 2.40990700
Η	0.62731200	-3.83567300 0.33524700
С	1.16324600	-2.74370300 3.50634200
Н	0.73559600	-0.75789800 4.22520100
Н	1.51914500	-4.61776300 2.49965600
Н	1.56997400	-3.08588900 4.45334000
С	-1.92212100 -	-2.28295000 -1.01324400
С	-2.66494900 -	-1.86433000 -2.12669000
С	-2.30732000 -	-3.43858300 -0.33351000
С	-3.75745400 -	-2.60261200 -2.56681800

Н	-2.37860400 -0.96036400 -2.66153500
С	-3.40549700 -4.17726700 -0.77430000
Η	-1.77735200 -3.75976600 0.55653800
С	-4.12828700 -3.76612800 -1.88969900
Η	-4.31872400 -2.27329700 -3.43618600
Н	-3.69839200 -5.07235800 -0.23390500
Н	-4.98157400 -4.34473500 -2.23051800
С	-3.49771100 -0.29646000 1.30699800
С	-3.00087000 -0.19600100 2.61389100
С	-4.38944300 -1.33112300 1.00478200
С	-3.38308400 -1.10830500 3.58844200
Н	-2.30001900 0.59162800 2.87625500
С	-4.78105900 -2.24038800 1.98262700
Н	-4.77800400 -1.42798700 -0.00605200
С	-4.27644700 -2.13412100 3.27574500
Η	-2.98342100 -1.02137200 4.59421300
Η	-5.47787300 -3.03391500 1.73013200
Η	-4.57753100 -2.84445000 4.03976700
С	4.28958300 -0.49668500 -2.82746500
Η	4.86296600 -0.79262600 -3.70968900
Η	4.09724900 0.57996600 -2.89970600
Η	4.91972600 -0.64837700 -1.94812300
С	3.30192000 -0.88102200 0.50763600
Η	2.64787700 -0.95476800 1.38280400
С	1.82046000 0.88361300 -0.28256800
0	1.93141100 1.45207900 0.79460100
С	4.48124500 -0.00570000 0.92049800
С	5.10549100 -0.30871400 2.13469600
С	4.97685600 1.05606600 0.16717100
С	6.21310100 0.41103200 2.57137900
Η	4.71465800 -1.11358300 2.75467700
С	6.08567500 1.78171900 0.60018300
Η	4.48765500 1.34490500 -0.75644300
С	6.71297200 1.45888700 1.79977100
Η	6.68253700 0.15721400 3.51742900
Η	6.45329400 2.60815200 -0.00141200
Η	7.57651500 2.02438200 2.13673900
С	3.77659000 -2.29600400 0.16080400
Η	2.94866400 -2.94667900 -0.12922100
Η	4.52438800 -2.30168400 -0.63603100
Η	4.24210300 -2.72713800 1.05045800
Η	-0.09018100 3.20582300 -2.01862200

4e-O-M

at wb97xd/6-31+G* & SDD (for Pd) Energy = -2338.006574 A.U. Thermal correction to Gibbs Free Energy = 0.664797 A.U. Sum of electronic and thermal Free Energies = -2337.341777 A.U. at wb97xd/def2-TZVPP/smd(MeCN) Energy = -2338.79416412 A.U. C -1.16145700 -2.94704000 0.87305300 C 0.19947100 -3.19662200 0.64615600

С	0.19947100 -3.19662200 0.64615600
Н	-1.44680200 -2.54228900 1.84681800
Н	0.51689100 -3.80965100 -0.19283900
С	1.14965200 -2.39145000 1.33309200
Н	0.86655500 - 2.07282000 2.33872600
С	-2.28122100 -3.43449300 0.05407600
С	-2.11117600 -4.30267900 -1.03346900
С	-3.56537700 -2.95584500 0.34573200
С	-3.20316800 -4.68650000 -1.80387700
Н	-1.12958500 -4.69816900 -1.27899300
С	-4.65544900 -3.33383400 -0.42965000
Н	-3.70372900 -2.25484200 1.16509200
С	-4.47728400 -4.20089800 -1.50605200
Η	-3.06202400 -5.37078400 -2.63520500
Η	-5.64243500 -2.94680600 -0.19566100
Η	-5.32784000 -4.50210200 -2.11023900
Pd	-0.15958400 -1.09603600 0.21133600
Р	1.26882900 0.79012600 -0.18195000
С	-1.82728700 0.52173200 -2.70919800
С	0.71076400 2.22743800 -1.21900200
Н	-1.64040000 1.42672800 -3.27775800
С	-2.04849000 -0.64852100 -3.31260500
С	-0.63466400 2.62997300 -1.26965300
С	1.65777900 2.98347200 -1.91729300
Ν	-1.62090100 1.80053900 -0.62808200
С	-1.04198300 3.76900800 -1.97408600
С	1.27185300 4.12203300 -2.61644900
Н	2.69982900 2.67834000 -1.92876700

Η	-1.60717100	3.26906200	2.45929300
Η	-0.43659500	3.56052300	1.16496400
Η	-2.14059900	4.04209400	0.96331400
Η	-1.11981400	1.17429700	1.30968600
Η	-2.05648300 -	0.72802200 -4	.39515900
Η	-2.23984200 -	1.54774700 -2	2.73103700

4e-O-W

at wb97xd/6-31+G* & SDD (for Pd) Energy = -2338.00609 A.U. Thermal correction to Gibbs Free Energy = 0.666049 A.U. Sum of electronic and thermal Free Energies = -2337.340041 A.U. at wb97xd/def2-TZVPP/smd(MeCN) Energy = -2338.79484193 A.U.

С	-0.99098300 -2.98188000 -1.20166400
С	0.16596300 -3.21279700 -0.44177700
Η	-0.86798500 -2.84315800 -2.27802200
Н	0.10023500 - 3.61658500 0.56535000
С	1.38926400 -2.64438400 -0.88108600
Η	1.52445900 -2.54262600 -1.96079700
С	-2.36987500 -3.25389000 -0.76367500
С	-2.67539000 -3.83323700 0.47633000
С	-3.42020700 -2.90996900 -1.62414100
С	-3.99612700 -4.08150500 0.83158400
Η	-1.88577400 -4.11796100 1.16593900
С	-4.74170200 -3.14783600 -1.26432900
Η	-3.19621300 -2.43918300 -2.57743100
С	-5.03221600 -3.74171900 -0.03853400
Η	-4.21776100 -4.54842100 1.78676300
Η	-5.54419200 -2.87061000 -1.94064900
Η	-6.06311500 -3.93925500 0.24021400
Pd	-0.06717100 -1.05587500 -0.67333300
Р	1.34814000 0.76301300 -0.01547700
С	-1.33880800 1.71322300 -2.80095800
С	0.93664300 2.52575500 -0.42467100
Η	-1.14204500 2.77493000 -2.90652500
С	-1.36818000 0.90865400 -3.86445200

С	-0.06267800	4.51222700 -2.63709900
Н	2.01541600	4.70147700 -3.15506500
Н	-0.35590000	5.39751900 - 3.19465600
C	1 76806600	1 62048200 1 37363700
C	1 35538000	1 08211500 2 59584300
C	2 51587100	2 80489600 1 37471900
C	1 68620500	1 70471200 3 79713000
н	0.75502200	0 17706300 2 60949600
C	2 85187500	3 42565500 2 57372000
н	2.83416500	3 25404400 0 43877400
C	2.03410500	2 87712200 3 78730200
н	1 35172800	1 27736400 4 73784000
н	3 43272800	4 34290300 2 56017800
н Н	2 60//2000	3 36723600 / 721/3800
n C	2.09442900	0.20340000 1.03882500
C	2.79939300	0.29340900 -1.03882300
C	2.03240800	-0.29038900 -2.30139000
C	4.07320000	0.4/494000 -0.30033000
	3.//200300	-0.00923800 -3.034/0300
Н	1.65864400	-0.45146300 -2.71841100
C II	5.19651400	0.09394400 -1.24277600
H	4.20506100	0.90415300 0.48203800
C	5.04896300	-0.46809200 -2.50688300
Н	3.65195700	-1.11446300 -4.01/95800
Н	6.18674600	0.23500700 -0.82024500
Н	5.92533700	-0.75689500 -3.07956200
С	2.60793600	-2.45360700 1.12140600
С	3.18120300	-2.96780300 -0.04956900
С	3.45151800	-2.00249300 2.14341800
С	4.56044500	-3.06995200 -0.17166800
Η	2.55187300	-3.28223300 -0.87742500
С	4.83486800	-2.09739900 2.01824000
Н	3.02079100	-1.58772000 3.05200700
С	5.39150100	-2.64256700 0.86457900
Η	4.99070000	-3.47513300 -1.08226500
Η	5.47483200	-1.75597500 2.82632500
Η	6.46966200	-2.72809300 0.76695700
С	-2.49501900	4.15681900 -2.05817900
Η	-2.88384300	4.47281400 -1.08458600
Η	-2.63458000	4.98554600 -2.75699800
Η	-3.11297400	3.31805800 -2.39617400
С	-1.81277500	1.88859900 0.84137800
С	-3.21515900	1.47183100 1.24302700
С	-3.38439400	0.61879300 2.33366700
С	-4.34193700	1.95541900 0.57924100
С	-4.65857600	0.24959400 2.75667500
Н	-2.50845400	0.23275500 2.85292700
С	-5.61877100	1.58121000 0.99263500
Н	-4.22467500	2.61722000 -0.27443800
С	-5.78110200	0.72755000 2.08216600
H	-4.77636500	-0.41280300 3.60981900
Н	-6.48894100	1.95985800 0.46433200
Н	-6.77664900	0.43944600 2.40632300
C	-1.86575000	0.60063800 -1.22892700
õ	-2.13680100	-0.40987800 -0 54894800
c	-1 47281300	3 27960900 1 37424300
\sim	1.17201300	5.27700700 1.37424300

С	-0.39360600	2.98063400 -0.48291100
С	1.96886000	3.45185900 -0.59921500
Ν	-1.45444100	2.01087000 -0.38048700
С	-0.70089200	4.33012900 -0.69446400
С	1.67955100	4.79716600 -0.80259400
Н	3.00418000	3.12516100 -0.58648000
C	0.35930600	5 22836400 -0 84399600
н	2 48845800	5 50850900 -0 93830000
н	0.14157000	6 27908400 -1 01514400
n C	1 40422800	0.27908400 -1.01314400
C	0.94140200	0.85599700 1.80981100
C	0.84140300	-0.12038300 2.38483000
C	2.19263100	1.8650/200 2.45362500
C	0.88895200	-0.07226800 3.97542400
H	0.2/415200	-0.9153/200 2.09602800
С	2.24753400	1.91712000 3.84297100
Н	2.68795500	2.63851400 1.87359400
С	1.59493500	0.94909300 4.60625900
Н	0.36884500	-0.82220400 4.56408500
Н	2.79260700	2.71972000 4.33043700
Н	1.63110200	0.99684100 5.69042300
С	3.03843500	0.59548300 -0.67998100
С	3.16569400	0.53521600 -2.07413000
С	4.17814600	0.51390400 0.11965200
С	4.42176500	0.42490400 -2.65951700
Н	2.27953900	0.58762300 -2.70457700
С	5.43631100	0.39926700 -0.47098500
Н	4.09580800	0.52393500 1.20169700
С	5.56155200	0.36181000 -1.85605800
Н	4.51331900	0.39006600 -3.74113900
Н	6.31814100	0.33156400 0.15894200
Н	6.54345200	0.27680900 -2.31209000
С	2.65477600	-2.73171400 -0.12598500
С	2.69734100	-2.75786600 1.27380700
С	3.85555300	-2.81340400 -0.83905300
С	3.91020200	-2.86979900 1.94241600
Η	1.78086700	-2.67584700 1.85009500
С	5.06946400	-2.94120900 -0.17131900
Н	3.83986600	-2.77826700 -1.92539400
С	5.10036300	-2.96835500 1.22058600
Н	3.92741800	-2.88268600 3.02816400
Н	5.99162100	-3.01081000 -0.74004700
Н	6.04729500	-3.06369500 1.74353600
С	-2.12493100	4.80857100 -0.79978900
Н	-2.59559900	4.87469800 0.18757400
Н	-2.16517700	5.80414000 -1.24942000
Н	-2.73390700	4.13228400 -1.40717100
С	-1.89866400	1.51683200 0.95040200
С	-3.36745400	1.13464600 0.93502800
Ċ	-3.75407100	-0.13903400 1.35047200
C	-4.34959100	2.05501500 0.56638300
Ċ	-5.10109800	-0.48400500 1.41476900
H	-2,99655600	-0.87640900 1.60846800
C	-5.69770400	1.70891400 0.61501700
Ĥ	-4.06420100	3.04984800 0.23770100
C	-6.07712000	0.43875200 1.04537300

Η	-5.38538000	-1.47914400	1.74161900
Н	-6.45217800	2.43397300	0.32385800
Н	-7.12838100	0.16996300	1.09083500
С	-1.60010600	1.17242100 -	-1.44361100
0	-1.95405800	-0.01485200	-1.28198200
С	-1.60180600	2.52865300	2.05520000
Н	-1.92257300	2.09394400	3.00571700
Н	-0.53603000	2.76010400	2.13178300
Н	-2.15822800	3.45902000	1.91013300
Н	-1.32992500	0.60265700	1.16737500
Н	-1.20699600	1.29311000	-4.86657700
Н	-1.56748800	-0.15369200 -	3.75206800

4f-Olefin-M

at wb97xd/6-31+G* & SDD (for Pd) Energy = -2568.991937 A.U. Thermal correction to Gibbs Free Energy = 0.746691 A.U. Sum of electronic and thermal Free Energies = -2568.245246 A.U.

at wb97xd/def2-TZVPP/smd(MeCN) Energy = -2569.86149121 A.U.

С	2.25689100	2.53602600	-0.70128300
С	3.06154600	1.38358100	-0.67788700
Н	1.70268900	2.75556400	-1.61435700
Η	3.83662600	1.29640600	0.07861900
С	2.73629900	0.27543100	-1.48232200
Η	2.10880300	0.46815800	-2.35519900
С	2.48108700	3.67752100	0.19902000
С	2.93307200	3.50561700	1.51557100
С	2.24192000	4.97176900	-0.27256400
С	3.15705000	4.60568100	2.33158600
Η	3.08680800	2.50312700	1.90901000
С	2.47647000	6.07425100	0.54311900
Η	1.86330700	5.11417000	-1.28121900
С	2.93420900	5.89444700	1.84423200
Н	3.50264100	4.46188300	3.35049500
Η	2.29065600	7.07316900	0.16186000
Н	3.11206600	6.75383900	2,48289400

Ο	-2.06361300	0.85750800 -1.35364600
С	-4.87105700	-0.77973900 -0.49510500
С	-5.10266400	0.55675700 -0.84368300
С	-5.96043200	-1.55134400 -0.08386300
С	-6.37473900	1.10976700 -0.74385800
Η	-4.28223600	1.16544800 -1.20626200
С	-7.23686700	-1.00048900 0.01010900
Η	-5.82963700	-2.59564000 0.17881000
С	-7.44805800	0.33547300 -0.31049300
Η	-6.52884600	2.14959800 -1.01655600
Η	-8.06591700	-1.62181000 0.33537800
Η	-8.44138600	0.76698700 -0.23518900
С	-3.40898400	-2.86734900 -0.35449400
Η	-2.39734000	-3.24567500 -0.48686800
Η	-3.75001400	-3.15110400 0.64559000
Н	-4.04941400	-3.36177700 -1.08965500
Η	-0.06692200	2.89809000 1.51977900
С	-0.79990200	3.60268400 -0.35515200
С	-0.91868600	3.45445600 -1.74452400
С	-0.87416800	4.89276400 0.19079100
С	-1.11719900	4.56703500 -2.55232400
Η	-0.86768300	2.46614400 -2.18027900
С	-1.10795900	6.00015700 -0.61590200
Η	-0.74419200	5.03082800 1.26083300
С	-1.22322200	5.84022100 -1.99295500
Η	-1.20139600	4.43786900 - 3.62686600
Н	-1.17906800	6.98681000 -0.16951700
Η	-1.39027600	6.70283500 -2.63051400

4f-Olefin-W

at wb97xd/6-31+G* & SDD (for Pd) Energy = -2568.993711 A.U. Thermal correction to Gibbs Free Energy = 0.745982 A.U. Sum of electronic and thermal Free Energies = -2568.247729 A.U. at wb97xd/def2-TZVPP/smd(MeCN) Energy =

Pd	1.03175500 0.72129100	-0.08864400
Р	0.49758300 -1.57452400	0.37990600
С	-1.00072700 1.22538900	0.75422700
С	-0.80775600 -1.84178400	1.65998800
Н	-0.91557300 0.81710800	1.75668800
С	-0.55266400 2.52364300	0.61853600
С	-2.08047800 -1.22966000	1.54851100
С	-0.49023500 -2.53845000	2.82544500
Ν	-2.48375500 -0.64426000	0.30028800
С	-2.95914800 -1.21473400	2.63942600
С	-1.40030200 -2.60782800	3.87642700
Н	0.47181300 -3.02736900	2.92570600
С	-2.60167000 -1.92609500	3.79130800
Н	-1.14979600 -3.16760400	4.77171500
Н	-3.28690800 -1.93101100	4.63446300
С	0.02084100 -2.60531700	-1.03865800
Ċ	-0.31656700 -1.97120300	-2.23692100
Č	-0.10739000 -3.99625200	-0.93511000
C	-0 75129900 -2 71944400	-3 32788400
н	-0 27246900 -0 88778000	-2 30814500
C	-0 51826600 -4 74322800	-2 03301700
н	0.08077500 -4 49470800	0.01131200
C	-0.83863900 -4.10525200	-3 23049600
н	-1 02620200 -2 21783200	-4 25026100
Н	-0.61002100 -5.82129300	-1 94819600
н	-1 17259800 -4 68906300	-4 08244500
C	2 00483800 -2 26719400	1 14606100
c	2 57744400 -1 50336100	2 17492800
C	2.57744400 1.50550100	0.76792200
C	3 71759200 -1 94448600	2 83324400
н	2 11457100 -0 56490700	2.03324400
$\hat{\mathbf{C}}$	3 76127400 -3 90147800	1 43102700
н	2 23590500 -4 04057600	-0.06357200
C	4 30838700 -3 15302900	2 46606900
н	4 14298300 -1 34953000	3 63545800
н	4 22981200 -4 83066900	1 12272400
н	5 19747400 -3 50264000	2 081/0000
C	3 51/15/00 0 06038800	1 55066000
C	4 65089800 -1 20277100	-0.77406800
C	3 13701500 -1 93367500	-2 50335400
C	5 30581800 2 3608500	0.04386200
ч	4 96919800 -0 48037100	-0.03002200
II C	4.90919800 -0.48037100	2 65942000
ч	2 26109200 1 76437700	2.03942000
II C	5 00056700 3 31/30700	1 88470700
с u	6 27062800 2 52220200	-1.884/0/00
п	2 56501800 - 2.32339300	2 20660100
П	5.50710600 4.21775000	-3.39000100
П	3.39/19000 -4.21//3000	-2.01307200
U U	-4.24929100 -0.43/13000 5 10111800 1 06866000	2.03312400
H	-3.10111800 -1.06866900	2.30/08300
п	-4.45/51000-0.03081900	3.03330600
Н	-4.22904400 0.38738400	1.919/2000
C	-5.45815000 -1.36273700	-0.58/24300
H	-3.08031300 -1.16319000	-1.39388800
U	-1.88939200 0.48389300	-0.190/1000

-2569.86194255 A.U.

С	3.58250800 0.60479900 -0.80064000	
С	3.15745400 1.20775700 0.37947900	
Н	3.37688100 1.12851500 -1.73632700	
Н	3.45283900 0.78114000 1.33445000)
С	2.19037600 2.25279400 0.34849200	
Н	2.19758300 2.90719600 -0.52339700	
С	4.55245500 -0.48708500 -0.90680200	
С	5.21620300 -1.02372100 0.20560300	
С	4.85048700 -0.99218700 -2.18139100	
С	6.15848500 - 2.03070700 0.04235500	
Н	5.00679100 -0.65981500 1.20613700	
С	5.78375300 -2.00994200 -2.34265800	
Н	4.35021400 -0.57557900 -3.05346600	
С	6.44303300 -2.52818900 -1.22876000	
Н	6.66746000 -2.43421700 0.91188800	
Н	6.00680500 -2.38862100 -3.33543500	
Н	7.18082800 -3.31534400 -1.35157200	
Pd	1.23521900 0.48433200 -0.44360600	
Р	-0.92111600 1.51433900 -0.55059400	
C	0.23387000 -1.39990600 -1.16635900	
Ċ	-1.95699400 0.81834100 -1.91130100	
Н	-0.02677000 -1.16548800 -2.19570500	
C	1.53961400 -1.79780300 -0.95405900	
C	-2.32827000 -0.54527800 -1.91040000	
C	-2 26596100 1 60475300 -3 02336800	
N	-2 15739300 -1 34218900 -0 72690800	
C	-2 90152000 -1 12794600 -3 05018100	
C	-2 90641500 1 04817300 -4 12634900	
н	-2 01583100 2 65933400 -3 03628100	
C	-3 19422800 -0 30831500 -4 14519000	
н	-3 15921800 1 67386900 -4 97675300	
н	-3 65579100 -0 74906000 -5 02454200	
C	-1 94895000 1 42017200 0 94386400	
c	-1.41919600 0.86749500 2.11012000	
c	-3.28222500 1.85067200 0.92528100	
C	-2 20714400 0 75346500 3 25271500	
н	-2.20714400 0.75540500 $5.25271500-0.40057600$ 0.49673300 2.11911400	
Γ	4 06785300 1 73745600 2 06625500	
с ц	3 71098600 2 26070600 0 01302400	
n C	-3.5292/100 + 1.18865600 + 3.23172800	
с ц	1 70070600 0 20052700 4 15142000	
н ц	5 10204700 2 06766800 2 04484100	
н ц	4 14613800 1 00424300 4 12047600	
n C	-4.14013800 1.09424300 4.12047000	
C	0.11064600 3.64036600 2.00072200	
C	1 42782500 4 20785200 0 28106000	
C	-1.43/83300 4.29/83200 -0.28100900	
С	0.51100500 4.97285000 -2.54755200	
п	1.24540800 = 5.62504000 = 0.62008400	
U U	-1.24343600 3.05304000 -0.02908400 2.00650100 4.05718500 0.54507700	
П	-2.09039100 4.03/18300 0.3439//00	
U U	-0.5/438800 5.9/5/3900 -1.65930600	
H	0.99532800 5.23024300 -3.15220300	
Н	-1.//441600 6.41050400 -0.08319000	

Η	-0.22509300 7.01767700 -1.92567100
С	1.68434500 2.88492100 1.58433700
С	1.61449700 2.19515900 2.80343100
С	1.26706700 4.21965800 1.54171900
С	1.13613700 2.82339200 3.94575000
Н	1.91615500 1.15161700 2.86116100
С	0.78382600 4.84907300 2.68537100
Н	1.32374600 4.76981200 0.60577000
С	0.71476700 4.15276900 3.88926400
Н	1.08524400 2.27547400 4.88196000
Н	0.46469000 5.88579500 2.63441100
Н	0.33806300 4.64225300 4.78221700
С	-3.16053700 -2.60879900 -3.13786200
Н	-3.60629400 -2.86310200 -4.10299200
Н	-2.22260700 -3.16792400 -3.04358300
Н	-3.82609700 -2.97205200 -2.35118400
С	-3.30345200 -1.55503800 0.20011100
Н	-3.05924100 -0.99685200 1.11044500
С	-0.91028800 -1.63361200 -0.22478300
0	-0.75751000 -2.05985500 0.90937600
С	-3.49009100 -3.00939600 0.62164700
С	-4.29827000 -3.25229100 1.73654500
С	-2.92230400 -4.09861400 -0.03530300
С	-4.55601100 -4.54990600 2.16716000
Η	-4.72485800 -2.41390000 2.28442700
С	-3.17548500 -5.40096800 0.39231400
Н	-2.25288200 -3.94013300 -0.87351900
С	-3.99836400 -5.63349400 1.49034700
Η	-5.18755100 - 4.71466600 3.03543100
Η	-2.71787800 -6.23539900 -0.13159600
Н	-4.19500400 -6.64813100 1.82344600
С	-4.61318000 -0.99005700 -0.35926200
Н	-4.51404000 0.05356600 -0.66579800
Н	-4.98822800 -1.56960400 -1.20650600
Н	-5.36848/00-1.03559600 0.42918100
H	2.15519200 -1.79218000 -1.85387400
C	2.18/42000 -2.50410100 0.1/51/900
C	2.04083000 -2.13498300 1.52249700
C	3.04023400 - 3.36104900 - 0.164 / 7000
с u	2.75042700 - 2.83448900 - 2.50490700 1 28068200 - 1 24624000 - 1 80181100
II C	2 70383200 / 28404600 0 82160400
н	3 1870/600 -3 820/1100 -1 210/6300
C	3 55866000 -3 92807300 - 2 15933300
н	2 61621600 -2 57565600 - 3 54772700
Н	4.34780600 -5.11206900 0 54132800
Н	4.08303400 -4.48261100 2.93194600
-	

4f-O-M

at wb97xd/6-31+G* & SDD (for Pd) Energy = -2568.987908 A.U. Thermal correction to Gibbs Free Energy = 0.742683 A.U.

Sum of electronic and thermal Free Energies = -2568.245225 A.U.

at wb97xd/def2-TZVPP/smd(MeCN) Energy = -2569.8559255 A.U.

С	1.47403800 -0.55809500 -2.15334100
С	-0.42223900 -2.42558900 -0.31258100
Н	0.53288400 -0.38266900 -2.66925600
С	2.53181400 -0.98883400 -2.84959600
С	0.96716200 -2.36347400 -0.08414200
С	-0.97134500 -3.62827400 -0.76256600
Ν	1.53550000 -1.08287300 0.25240400
С	1.78702100 -3.48744400 -0.21885800
С	-0.16344000 -4.74865300 -0.93418100
Н	-2.03099700 -3.69580200 -0.98945500
С	1.19270800 -4.67934200 -0.64588800
Н	-0.59851800 -5.67793900 -1.28920300
Н	1.81616500 -5.56108900 -0.77019700
С	1.45987500 -0.14231600 -0.72178700
0	1.31536900 1.07037800 -0.45442000
С	1.62019400 -0.63286200 1.67539400
Η	0.81336200 0.10206700 1.81803900
Η	2.36602700 -1.22690600 -3.89937000
С	3.90849600 -1.17031100 -2.36273600
С	4.68269500 -2.21150800 -2.89263500
С	4.47527700 -0.32547200 -1.39913100
С	5.97503200 -2.43845300 -2.43201400
Η	4.26011700 -2.85620200 -3.65992000
С	5.77314400 -0.54660100 -0.94770300
Н	3.91871100 0.52574000 -1.01633600
С	6.52103600 -1.60856700 -1.45236400
Н	6.56073100 -3.25539600 -2.84317500

Η	6.19801400 0.11895300 -0.20317100
Η	7.53426200 -1.77750200 -1.09966800
С	-2.10134700 -1.45577900 1.79604400
С	-1.99542700 -0.50952400 2.81937200
С	-2.56541900 -2.74035300 2.10809000
Ċ	-2.35135600 -0.83151700 4.12739700
н	-1 60776800 0 48097600 2 59961500
C	-2 92663700 -3 06191800 -3 41212800
с u	2.64210200 2.40800500 1.22522500
п	-2.04210300 -3.49899300 1.53522300
	-2.81980000 -2.10814300 4.42480300
Н	-2.25488300 -0.08/33600 4.91235500
Н	-3.28621200 -4.06080100 3.63980800
Н	-3.0956/100 -2.363/9900 5.44341800
С	-2.97680300 -1.32945800 -1.00033500
С	-2.75168700 -1.25150600 -2.38103600
С	-4.25751500 -1.61977300 -0.52997500
С	-3.78523800 -1.49386000 -3.27755200
Η	-1.75864700 -1.02074300 -2.76001200
С	-5.29376000 -1.85807100 -1.43191400
Н	-4.45876700 -1.65727100 0.53565500
С	-5.05978000 -1.80448800 -2.80206300
Н	-3.59694400 -1.44424400 -4.34593400
Н	-6.28767000 -2.08102100 -1.05615900
Н	-5.86860200 -1.99700700 -3.50065500
С	3.26061700 - 3.45551400 0.08707600
Н	3.65257000 -2.43818900 0.11554700
Н	3.45547500 - 3.92970800 1.05738200
Н	3.82621200 -4.01075000 -0.66622400
С	1.36848100 -1.78590300 2.64430300
Н	2.10438700 - 2.58697900 2.54046100
Н	1.43775000 -1.39470800 3.66298800
Н	0.37464800 -2.21987100 2.51486500
С	2.93634700 0.08448300 1.94960400
С	2.98859700 1.48067000 1.92135700
С	4.10150800 -0.62067900 2.26266400
С	4.17638800 2.15767900 2.18382700
Н	2.09619500 2.04265300 1.66520200
С	5.28909100 0.05259700 2.53729900
Н	4.09485200 -1.70522900 2.30305400
С	5.33230800 1.44457000 2.49460700
Н	4 19599800 3 24310800 2 14417900
Н	6 18252200 -0 51383700 2 78393000
н	6 25906000 1 96956300 2 70731400
р	-1 55802700 -1 01294100 0 10202900
Pd	-0.83995900 1.27729000 0.04946500
C	-2 66564300 2 28500500 0 53997600
C	-1.79739000 -3.21465200 -0.10829300
й	-2 61815900 2 27158000 1 63071300
C	-3 97920000 1 88361500 0 00115200
C	-0.54594300 - 3.4429200 - 0.47377200
ч	-2 01511500 -2 56708800 -1 11254700
C	-2.01511500 5.50770000 -1.11554700
C	-5.00400500 + 56160500 + 0.0000400
с ц	-3.00403300 1.30100300 0.83808400
п	-0.4/453000 $5.52/11000$ $1.55/90800$ 0.58515700 4.14508400 0.14622800
U	0.20212/00 4.14270400 -0.14022800

С	-5.52252200	1.55098300 -1.83487900
Н	-3.45335200	2.04695200 -2.08975300
С	-6.28257700	1.25983900 0.43615000
Н	-4.80384500	1.56802800 1.96724000
С	0.75580200	4.20922900 -1.53561200
С	1.54577400	4.73716700 0.68370000
С	-6.54641600	1.26504400 -0.93077400
Н	-5.71815800	1.53078300 -2.90255400
Н	-7.07257000	1.02977000 1.14485600
С	1.85032400	4.86866300 -2.07963900
Н	0.04823700	3.71339000 -2.19479800
С	2.64088300	5.39983000 0.13899500
Н	1.42816900	4.68636800 1.76418300
Н	-7.54403200	1.03728400 -1.29437000
С	2.79451700	5.46706000 -1.24415000
Н	1.97621800	4.90736000 -3.15730700
Н	3.37270000	5.86486400 0.79279600
Н	3.65093600	5.97922500 -1.67211100

4f-O-W

at wb97xd/6-31+G* & SDD (for Pd) Energy = -2568.9906730000002 A.U. Thermal correction to Gibbs Free Energy = 0.743561 A.U. Sum of electronic and thermal Free Energies = -2568.247112 A.U. at wb97xd/def2-TZVPP/smd(MeCN) Energy = -2569.85745278 A.U. C 1.47911800 -1.12910400 -2.08884400 C -0.38417400 -2.45391800 0.19410000 H 0.52254500 -1.13723900 -2.60712000 C 2.53798000 -1.71279200 -2.66077200 C 1.00574000 -2.31162400 0.39012000

С	-0.92342700 -3.73956300	0.12587200
Ν	1.55902700 -0.98017800	0.36385200
С	1.83827700 -3.41993200	0.56750800

Н	-1.98515100 -3.87942400 -0.05270200
С	1.25500900 -4.69064000 0.51165900
Н	-0.53072400 -5.85065200 0.22279600
Н	1.88979300 -5.56416100 0.63658500
С	1.48035000 -0.33631600 -0.82348000
0	1.35158700 0.90826200 -0.88610300
С	1.67003200 -0.15815300 1.61067000
Н	0.88100000 0.60339600 1.54643400
Н	2.36302400 -2.23840900 -3.59845600
С	3.92460100 -1.72882600 -2.16852800
С	4.71470400 -2.86040800 -2.41298600
С	4.48350600 -0.64826400 -1.47321200
С	6.01609400 -2.93384800 -1.92848300
Н	4.29770600 -3.69398500 -2.97349500
С	5.79039300 -0.71815300 -0.99968500
Н	3.91262600 0.26324700 -1.31908900
С	6.55495000 -1.86316300 -1.21454800
Н	6.61413600 -3.82091200 -2.11549700
Н	6.20816400 0.12845700 -0.46454500
Н	7.57482800 -1.91446900 -0.84472700
С	-1.93745300 -0.78660900 1.92161300
С	-1.80601000 0.47278300 2.51244500
С	-2.30792000 -1.87664500 2.71922900
С	-2.04752500 0.64786000 3.87281700
Н	-1.49032600 1.32033000 1.90786000
С	-2.55764100 -1.70211600 4.07659400
Н	-2.38732100 -2.87003000 2.28643500
С	-2.42654700 -0.43960800 4.65580400
Н	-1.93130000 1.63022600 4.32105300
Н	-2.84437100 -2.55415700 4.68543100
Н	-2.61178600 -0.30752300 5.71754000
С	-3.01116000 -1.66144700 -0.66898000
С	-2.91910100 -1.91468300 -2.04394300
С	-4.21394400 -1.90581200 -0.00645200
С	-4.00480000 -2.43509800 -2.73855000
Н	-1.98938100 -1.71626000 -2.57378500
С	-5.30297500 -2.42469100 -0.70629900
Н	-4.31880400 -1.68063000 1.04975300
С	-5.19984200 -2.69679200 -2.06657300
Н	-3.91955500 -2.63864600 -3.80191500
Н	-6.23632100 -2.60717000 -0.18233100
Н	-6.04890800 -3.10479800 -2.60683100
С	3.31688300 - 3.29241700 0.81944400
Н	3.70141300 -2.31258700 0.53441600
Н	3.53614600 - 3.45505500 1.88232500
Н	3.87130400 - 4.04663000 0.25405200
С	1.41341300 -0.99774200 2.85961500
Н	2.13937300 -1.80602000 2.97672100
Н	1.49558000 -0.34250600 3.73101900
Н	0.41478800 -1.43789700 2.85962600
C	3.00431400 0.57752600 1.67473400
Č	3.08399300 1.91885500 1.28880200
č	4.15707400 -0.04731200 2 16003800
č	4.28862500 2.61318600 1 37446500
Ĥ	2.20212300 2.42369700 0.90583400

С	5.36051500	0.64599300 2.25308200
Н	4.12798900 -	-1.08314600 2.48136800
С	5.43162400	1.97967100 1.85668200
Η	4.32685700	3.65369100 1.06670200
Н	6.24267700	0.14188600 2.63732200
Н	6.36927000	2.52313100 1.93061000
Р	-1.52514600	-0.98897700 0.14955100
Pd	-0.86994900	1.12191100 -0.77372600
С	-2.77257000	1.90644900 -1.44523700
С	-1.96287300	2.99198000 -1.02352500
Н	-2.67017400	1.59139000 -2.48683600
С	-4.07691300	1.57014800 -0.84137300
С	-0.69056500	3.13911000 -1.60144600
Н	-2.23396300	3.54012700 -0.12459100
С	-4.35449500	1.78022400 0.51537900
С	-5.07830600	1.03868600 -1.66091000
Н	-0.56581500	2.82435400 -2.63957300
С	0.39206000	3.98229800 -1.06915700
С	-5.60632400	1.47623600 1.03613800
Н	-3.58550700	2.16794300 1.17663200
С	-6.33693500	0.74783400 -1.14396600
Н	-4.87218500	0.85449300 -2.71223000
С	0.33216700	4.58355800 0.19674900
С	1.54938800	4.14799300 -1.84001000
С	-6.60422000	0.96525800 0.20525500
Н	-5.80475400	1.63963400 2.09125100
Н	-7.10569700	0.34337700 -1.79523000
С	1.39187400	5.35167100 0.66423400
Н	-0.54157500	4.45540000 0.82970800
С	2.61184700	4.91337200 -1.37111700
Н	1.61897500	3.66502100 -2.81104200
Н	-7.58490400	0.73525600 0.61103200
С	2.53271500	5.52252900 -0.12065100
Н	1.32985800	5.81724500 1.64317700
Н	3.50098500	5.03393900 -1.98237300
Н	3.35712300	6.12817600 0.24440000