Supporting Information

One-pot Synthesis of Sulfonyl 3,6-Diarylpyridazines via Tandem Condensation of α-Sulfonyl Ketones with Methyl Ketones

Meng-Yang Chang*a,b,c and Chen-Yo Ou^a

^aDepartment of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan. ^bDepartment of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan. ^cNPUST College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.

*Corresponding author, email: mychang@kmu.edu.tw

Table of Contents

1. General information, experimental procedures, characterization data for all compounds,	
gram-scale synthesis of compound 5a	S2~S17
2. ¹ H NMR and ¹³ C NMR spectra copies of compounds 2a/2a ²	S18~S19
3. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra copies of compounds 4a , 5a-5ap	S20~S112
4. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra copies of compounds 6a-6b , 7 , 8	S113~S121
5. X-ray crystal data of compounds 5a, 5x, 5an and 8	S122~S129

Experimental section

General. All reagents and solvents were obtained from commercial sources and used without further purification. Reactions were routinely carried out under an atmosphere of dry air with magnetic stirring. Products in organic solvents were dried with anhydrous magnesium sulfate before concentration in vacuo. Melting points were determined with a SMP3 melting apparatus. ¹H and ¹³C NMR spectra were recorded on a Varian INOVA spectrometer operating at 400/600 and at 100/150 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) and the coupling constants (*J*) are given in Hertz. High resolution mass spectra (HRMS) were measured with a mass spectrometer Finnigan/Thermo Quest MAT 95XL. X-ray crystal structures were obtained with an Enraf-Nonius FR-590 diffractometer (CAD4, Kappa CCD).

Phenylglyoxal (2a) and hydrate (2a'). SeO₂ (222 mg, 1.0 mmol) was added to a solution of acetophenone **1a** (60 mg, 0.5 mmol) in dioxane (10 mL) at 25 °C. The reaction mixture was stirred at reflux for 5 h. The reaction mixture was cooled to 25 °C and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = $30/1 \sim 1/1$) afforded a mixture of **2a** and **2a'** (ratio = 1:2). ¹H NMR (400 MHz, CDCl₃): δ 8.67 (s, 1/3H), 8.22-8.12 (m, 2H), 7.70-7.59 (m, 1H), 7.55-7.46 (m, 2H), 5.98 (s, 2/3H).

(*E*)-1,4-Diphenyl-2-tosylbut-2-ene-1,4-dione (4a). SeO₂ (222 mg, 1.0 mmol) was added to a solution of acetophenone 1a (60 mg, 0.5 mmol) in dioxane (10 mL) at 25 °C. The reaction mixture was stirred at reflux for 5 h and then cooled to 25 °C. The process was monitored by TLC until 1a was consumed and phenylglyoxal 2a were generated. Then, piperidine (42 mg, 0.5 mmol), HOAc (30 mg, 0.5 mmol) and α -sulfonyl arylketone 3a (137 mg, 0.5 mmol) in dioxane (10 mL) were added to the resulting reaction mixture at 25 °C. The reaction mixture was stirred at reflux for 20 h. The reaction mixture was cooled to 25 °C and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = $30/1 \sim 1/1$) afforded 4a. Yield = 90% (176 mg); White solid; mp = 139-142

°C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₃H₁₉O₄S 391.1004, found 391.1010; ¹H NMR (600 MHz, CDCl₃): δ 8.22 (s, 1H), 7.93-7.91 (m, 2H), 7.86-7.84 (m, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.64-7.61 (m, 1H), 7.55-7.52 (m, 1H), 7.50-7.47 (m, 2H), 7.41-7.38 (m, 2H), 7.33 (d, J = 7.6 Hz, 2H), 2.43 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 190.0, 186.9, 154.4, 145.9, 135.9, 135.5, 134.6, 134.5, 134.0, 131.1, 130.0 (2x), 129.20 (2x), 129.16 (2x), 129.01 (2x), 128.90 (2x), 126.6 (2x), 21.7.

A representative synthetic procedure of skeletons 5 and 6 is as follows: SeO₂ (222 mg, 1.0 mmol) was added to a solution of acetophenones **1** (0.5 mmol) in dioxane (10 mL) at 25 °C. The reaction mixture was stirred at reflux for 5 h and then cooled to 25 °C. The process was monitored by TLC until **1** was consumed and arylglyoxals **2** were generated. Then, piperidine (42 mg, 0.5 mmol), HOAc (30 mg, 0.5 mmol) and α-sulfonyl arylketones or 1,3-dicarbonyls **3** (0.5 mmol) in dioxane (10 mL) were added to the resulting reaction mixture at 25 °C. The reaction mixture was stirred at reflux for 20 h. The reaction mixture was cooled to 25 °C. Without further purification, excess N₂H_{4(aq)} solution (~80%, 0.3 mL) was added to the resulting sulfonyl butene-1,4-dione **4** at 25 °C. The reaction mixture was stirred at reflux for 20 h. The reaction mixture at 25 °C for 10 h and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = $30/1 \sim 1/1$) afforded **5** and **6**.

3,6-Diphenyl-4-tosylpyridazine (5a). Yield = 84% (162 mg); White solid; mp = 213-214 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₃H₁₉N₂O₂S 387.1167, found 387.1172; ¹H NMR (400 MHz, CDCl₃): δ 8.73 (s, 1H), 8.27-8.23 (m, 2H), 7.63-7.57 (m, 3H), 7.49-7.45 (m, 1H), 7.37-7.33 (m, 4H), 7.13 (d, *J* = 8.4 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 2.34 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.3, 156.6, 145.2, 141.4, 135.0, 134.7, 134.5, 131.0, 130.2 (2x), 129.5, 129.4 (2x), 129.3 (2x), 128.4 (2x), 127.7 (2x), 127.3 (2x), 121.6, 21.6. Single-crystal X-Ray diagram: crystal of compound **5a** was grown by slow diffusion of EtOAc into a solution of compound **5a** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group Ia, *a* = 9.3268(5) Å, *b* = 15.1541(6) Å, *c* = 14.1675(7) Å, *V* = 1899.37(17) Å³, *Z* = 4, *d*_{calcd} = 1.351 g/cm³, *F*(000) = 808.0, 2*θ* range 4.05~54.162°, R indices (all data) R1 = 0.0460, wR2 = 0.0984.

4-Methylsulfonyl-3,6-diphenylpyridazine (**5b**). Yield = 78% (121 mg); White solid; mp = 182-183 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₁₇H₁₅N₂O₂S 311.0854, found 311.0856; ¹H NMR (600 MHz, CDCl₃): δ 8.55 (s, 1H), 8.21-8.20 (m, 2H), 7.83-7.81 (m, 2H), 7.60-7.54 (m, 6H), 2.69 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 159.3, 155.5, 140.2, 134.7, 134.5, 131.0, 130.34, 130.25 (2x), 129.3 (2x), 128.5 (2x), 127.2 (2x), 121.5, 42.1.

3-(4-Fluorophenyl)-6-phenyl-4-tosylpyridazine (5c). Yield = 81% (164 mg); White solid; mp =193-194 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₃H₁₈FN₂O₂S 405.1073, found 405.1074; ¹H NMR (400 MHz, CDCl₃): δ 8.71 (s, 1H), 8.25-8.23 (m, 2H), 7.60-7.58 (m, 2H), 7.37-7.28 (m, 3H), 7.19-7.16 (m, 2H), 7.08-7.05 (m, 4H), 2.36 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 163.7 (d, *J* = 248.6 Hz), 159.3, 155.6, 145.4, 132.4 (d, *J* = 8.4 Hz, 2x), 131.1, 130.2, 129.5, 129.4 (2x), 129.3 (2x), 128.4, 128.3 (2x), 127.7, 127.3 (2x), 121.6, 114.8 (d, *J* = 21.9 Hz, 2x), 21.6; ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ -110.74~-110.81 (m, 1F).

3-(4-Methoxyphenyl)-6-phenyl-4-tosylpyridazine (5d). Yield = 76% (158 mg); White solid; mp = 164-165 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₄H₂₁N₂O₃S 417.1273, found 417.1280; ¹H NMR (400 MHz, CDCl₃): δ 8.69 (s, 1H), 8.25-8.22 (m, 2H), 7.62-7.56 (m, 3H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 8.4 Hz, 2H), 3.90 (s, 3H), 2.35 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.9, 158.8, 156.4, 145.2, 141.4, 135.1, 134.8, 131.9 (2x), 130.9, 129.32 (2x), 129.30 (2x), 128.4 (2x), 127.3 (2x), 127.0, 121.7, 113.2 (2x), 55.4, 21.6.

6-Phenyl-4-tosyl-3-(4-(trifluoromethyl)phenyl)pyridazine (5e). Yield = 78% (177 mg); White solid; mp = 177-178 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m*/*z*: $[M + H]^+$ calcd for C₂₄H₁₈F₃N₂O₂S 455.1041, found 455.1038; ¹H NMR (400 MHz, CDCI₃): δ 8.73 (s, 1H), 8.26-8.23 (m, 2H), 7.60-7.58 (m, 5H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 2.34 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCI₃): δ 159.8, 155.1, 145.6, 141.6, 138.1, 134.7, 134.4, 131.3 (q, *J* = 32.6 Hz), 131.2, 130.6 (2x), 129.5 (2x), 129.3 (2x), 128.2 (2x), 127.4 (2x), 124.6 (q, *J* = 3.8 Hz, 2x), 124.0 (q, *J* = 245.6 Hz), 121.5, 21.5;

3-(4-Nitrophenyl)-6-phenyl-4-tosylpyridazine (5f). Yield = 74% (160 mg); White solid; mp = 176-177 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₃H₁₈N₃O₄S 432.1018, found 432.1020; ¹H NMR (400 MHz, CDCl₃): δ 8.74 (s, 1H), 8.27-8.24 (m, 2H), 7.62-7.58 (m, 3H), 7.38-7.31 (m, 4H), 7.13 (d, *J* = 8.4 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 2.35 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.3, 156.6, 145.2, 141.6, 135.0, 134.6, 134.4, 131.1, 130.3 (2x), 129.6, 129.39 (2x), 129.35 (2x), 128.4 (2x), 127.7 (2x), 127.4 (2x), 121.8, 21.6.

3-([1,1'-Biphenyl]-4-yl)-6-phenyl-4-tosylpyridazine (5g). Yield = 72% (166 mg); White solid; mp > 250 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₉H₂₃N₂O₂S 463.1480, found 463.1485; ¹H NMR (400 MHz, CDCl₃): δ 8.78 (s, 1H), 8.35 (d, *J* = 8.4 Hz, 2H), 7.84 (d, *J* = 8.0 Hz, 2H), 7.71 (d, *J* = 8.4 Hz, 2H), 7.53-7.48 (m, 3H), 7.44-7.42 (m, 1H), 7.36-7.34 (m, 4H), 7.14 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.4 Hz, 2H), 2.35 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.9, 156.5, 145.2, 143.8, 141.5, 139.9, 135.0, 134.6, 133.5, 130.3 (2x), 129.5, 129.4 (2x), 129.0 (2x), 128.4 (2x), 128.1, 128.0 (2x), 127.8 (2x), 127.7 (2x), 127.2 (2x), 121.4, 21.6.

3-(3,4-Dichlorophenyl)-6-phenyl-4-tosylpyridazine (5h). Yield = 78% (177 mg); White solid; mp = 189-190 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₃H₁₇Cl₂N₂O₂S 455.0388, found 455.0387; ¹H NMR (400 MHz, CDCl₃): δ 8.70 (s, 1H), 8.25-8.22 (m, 2H), 7.62-7.58 (m, 3H), 7.49 (d, *J* = 8.4 Hz, 1H), 7.31 (dd, *J* = 2.4, 8.4 Hz, 1H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 2.0 Hz, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 2.40 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.9, 154.2, 145.9, 141.7, 134.8, 134.4, 134.3, 134.1, 132.2, 131.6, 131.3, 129.74, 129.71, 129.6 (2x), 129.4 (2x), 128.3 (2x), 127.4 (2x), 121.5, 21.7.

6-Phenyl-4-tosyl-3-(3,4,5-trimethoxyphenyl)pyridazine (5i). Yield = 76% (181 mg); White solid; mp = 194-196 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₆H₂₅N₂O₅S 477.1484, found 477.1486; ¹H NMR (400 MHz, CDCl₃): δ 8.73 (s, 1H), 8.26-8.23 (m, 2H), 7.62-7.57 (m, 3H), 7.18 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 6.52 (s, 2H), 3.93 (s, 3H), 3.76 (s, 6H), 2.35 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.4, 156.2, 152.6 (2x), 145.0, 141.7, 139.1, 135.0, 134.6, 131.1, 129.4, 129.33 (2x), 129.26 (2x), 128.4 (2x), 127.3 (2x), 121.5, 107.6 (2x), 61.0, 55.9 (2x), 21.5.

3-(Naphthalen-2-yl)-6-phenyl-4-tosylpyridazine (5j). Yield = 80% (174 mg); White solid; mp = 179-181 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₇H₂₁N₂O₂S 437.1324, found 437.1326; ¹H NMR (400 MHz, CDCl₃): δ 8.78 (s, 1H), 8.29-8.27 (m, 2H), 7.94 (d, *J* = 7.6 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.73 (s, 1H), 7.64-7.53 (m, 5H), 7.44 (d, *J* = 8.4 Hz, 1H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.77 (d, *J* = 8.0 Hz, 2H), 2.21 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.3, 156.6, 145.1, 141.8, 134.9, 134.7, 133.4, 132.3, 131.9, 131.1, 130.3, 129.3 (2x), 129.2 (2x), 128.5, 128.3 (2x), 127.7, 127.40 (2x), 127.37, 127.2, 127.0, 126.5, 121.6, 21.5.

6-Phenyl-3-(thiophen-2-yl)-4-tosylpyridazine (5k). Yield = 74% (145 mg); White solid; mp = 169-170 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₁H₁₇N₂O₂S₂ 393.0732, found 393.0729; ¹H NMR (400 MHz, CDCl₃): δ 8.65 (s, 1H), 8.23-8.21 (m, 2H), 7.97 (dd, *J* = 1.2, 4.0 Hz, 1H), 7.60-7.56 (m, 3H), 7.51 (dd, *J* = 1.2, 5.2 Hz, 1H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.16 (dd, *J* = 4.0, 5.2 Hz, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 2.35 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.4, 150.4, 145.6, 140.2, 135.7, 134.5, 133.3, 131.0, 130.5 (2x), 129.5 (2x), 129.3 (2x), 128.4 (2x), 127.5, 127.2 (2x), 122.1, 21.6.

3,6-Diphenyl-4-(phenylsulfonyl)pyridazine (5I). Yield = 78% (145 mg); White solid; mp = 159-161 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₂H₁₇N₂O₂S 373.1011, found 373.1015; ¹H NMR (400 MHz, CDCl₃): δ 8.76 (s, 1H), 8.27-8.24 (m, 2H), 7.63-7.58 (m, 3H), 7.49-7.44 (m, 2H), 7.36-7.20 (m, 8H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.3, 156.5, 141.2, 137.9, 134.7, 134.4, 133.8, 131.1, 130.2 (2x), 129.5, 129.3 (2x), 128.7 (2x), 128.3 (2x), 127.8 (2x), 127.3 (2x), 121.6.

3-(3,4-Dimethoxyphenyl)-6-phenyl-4-(phenylsulfonyl)pyridazine (5m). Yield = 78% (168 mg); White solid; mp = 176-178 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₄H₂₁N₂O₄S 433.1222, found 433.1225; ¹H NMR (400 MHz, CDCl₃): δ 8.73 (s, 1H), 8.25-8.23 (m, 2H), 7.62-7.58 (m, 3H), 7.49-7.45 (m, 1H), 7.31-7.24 (m, 4H), 7.01 (d, *J* = 8.0 Hz, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 6.81 (s, 1H), 3.96 (s, 3H), 3.76 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.0, 156.2, 150.3, 148.2, 141.4, 137.9, 134.6, 133.8, 131.0, 129.3 (2x), 128.6 (2x), 128.3 (2x), 127.3 (2x), 126.6, 123.7, 121.9, 113.1, 110.3, 56.1, 55.8.

3-(Benzo[*d***][1,3]dioxol-5-yl)-6-phenyl-4-(phenylsulfonyl)pyridazine (5n).** Yield = 76% (158 mg); White solid; mp = 163-165 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₃H₁₇N₂O₄S 417.0909, found 417.0912; ¹H NMR (400 MHz, CDCl₃): δ 8.72 (s, 1H), 8.25-8.23 (m, 2H), 7.62-7.58 (m, 3H), 7.55-7.51 (m, 1H), 7.40-7.37 (m, 2H), 7.24-7.30 (m, 2H), 6.88 (dd, *J* = 1.6, 8.0 Hz, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 6.74 (d, *J* = 1.6 Hz, 1H), 6.03 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.1, 155.9, 149.0, 147.2, 141.4, 138.1, 134.6, 134.0, 131.1, 129.3 (2x), 128.7 (2x), 128.4 (2x), 128.0, 127.3 (2x), 125.1, 121.8, 110.5, 107.8, 101.4.

3,6-Diphenyl-4-(*m***-tolylsulfonyl)pyridazine (5o).** Yield = 78% (151 mg); White solid; mp = 182-184 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₃H₁₉N₂O₂S 387.1167, found 387.1163; ¹H NMR (400 MHz, CDCl₃): δ 8.75 (s, 1H), 8.27-8.25 (m, 2H), 7.62-7.56 (m, 3H), 7.49-7.44 (m, 1H), 7.37-7.30 (m, 4H), 7.27-7.25 (m, 1H), 7.12 (t, *J* = 8.0 Hz, 1H), 7.10-7.07 (m, 1H), 6.98 (br s, 1H), 2.18 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.2, 156.5, 141.3, 139.0, 137.6, 134.7, 134.6, 134.4, 131.0, 130.2 (2x), 129.4, 129.3 (2x), 128.9, 128.6, 127.6 (2x), 127.3 (2x), 125.3, 121.5, 20.9.

4-((4-Fluorophenyl)sulfonyl)-3,6-diphenylpyridazine (5p). Yield = 79% (154 mg); White solid; mp = 198-200 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M +

H]⁺ calcd for C₂₂H₁₆FN₂O₂S 391.0917, found 391.0915; ¹H NMR (400 MHz, CDCl₃): δ 8.73 (s, 1H), 8.26-8.23 (m, 2H), 7.62-7.56 (m, 3H), 7.50-7.46 (m, 1H), 7.39-7.21 (m, 4H), 7.26-7.21 (m, 2H), 6.90-6.85 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.7 (d, J = 257.0 Hz), 159.3, 156.3, 141.0, 134.5, 134.4, 133.8 (d, J = 3.0 Hz), 131.2 (d, J = 9.8 Hz, 2x), 131.1, 130.2 (2x), 129.6, 129.3 (2x), 127.8 (2x), 127.3 (2x), 121.4, 116.0 (d, J = 22.8 Hz, 2x); ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ -110.72~-110.79 (m, 1F).

4-((4-Methoxyphenyl)sulfonyl)-3,6-diphenylpyridazine (5q). Yield = 82% (165 mg); White solid; mp = 186-187 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₃H₁₉N₂O₃S 403.1116, found 403.1118; ¹H NMR (400 MHz, CDCl₃): δ 8.17 (s, 1H), 8.25-8.23 (m, 2H), 7.61-7.56 (m, 3H), 7.49-7.44 (m, 1H), 7.39-7.35 (m, 4H), 7.15 (d, *J* = 9.2 Hz, 2H), 6.66 (d, *J* = 9.2 Hz, 2H), 3.78 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 163.8, 159.2, 156.5, 141.6, 134.7, 134.6, 130.9, 130.6 (2x), 130.2 (2x), 129.5, 129.2 (2x), 129.1, 127.7 (2x), 127.3 (2x), 121.4, 113.9 (2x), 55.6.

3,6-Diphenyl-4-((4-(trifluoromethyl)phenyl)sulfonyl)pyridazine (5r). Yield = 80% (176 mg); White solid; mp = 211-213 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₃H₁₆F₃N₂O₂S 441.0885, found 441.0891; ¹H NMR (400 MHz, CDCl₃): δ 8.76 (s, 1H), 8.27-8.25 (m, 2H), 7.61-7.59 (m, 3H), 7.47-7.44 (m, 3H), 7.37-7.25 (m, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.4, 156.1, 141.4, 140.5, 135.2 (q, *J* = 32.6 Hz), 134.4, 134.2, 131.2, 130.2 (2x), 129.7, 129.4 (2x), 128.8 (2x), 127.9 (2x), 127.3 (2x), 125.7 (q, *J* = 3.8 Hz, 2x), 125.5 (q, *J* = 272.2 Hz), 121.4; ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ -63.35 (s, 3F).

3,6-Diphenyl-4-((3-(trifluoromethyl)phenyl)sulfonyl)pyridazine (5s). Yield = 84% (185 mg); White solid; mp = 148-150 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₃H₁₆F₃N₂O₂S 441.0885, found 441.0887; ¹H NMR (400 MHz, CDCI₃): δ 8.79 (s, 1H), 8.29-8.27 (m, 2H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.65-7.60 (m, 3H), 7.49-7.28 (m, 8H); ¹³C{¹H} NMR (100 MHz, CDCI₃): δ 159.5, 156.2, 140.5, 139.3, 134.5, 134.0, 131.7, 131.3, 131.2, 130.1 (2x), 130.7 (q, *J* = 3.5 Hz), 130.10 (2x), 130.05, 129.4, 128.0 (2x), 127.4 (2x), 125.5 (q, *J* = 3.8 Hz), 122.3 (q, *J* = 270.2 Hz), 121.6; ¹⁹F{¹H} NMR (376 MHz, CDCI₃): δ -63.35 (s, 3F).

4-((4-Ethylphenyl)sulfonyl)-3,6-diphenylpyridazine (5t). Yield = 80% (160 mg); White solid; mp = 183-184 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₄H₂₁N₂O₂S 401.1324, found 401.1326; ¹H NMR (400 MHz, CDCl₃): δ 8.74 (s, 1H), 8.26-8.23 (m, 2H), 7.62-7.57 (m, 3H), 7.48-7.43 (m, 1H), 7.35-7.29 (m, 4H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.4 Hz, 2H), 2.61 (q, *J* = 7.6 Hz, 2H), 1.18 (t, *J* = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.2, 156.5, 151.2, 141.4, 134.9, 134.7, 134.5, 131.0, 130.1 (2x), 129.4, 129.3 (2x), 128.4 (2x), 128.2 (2x), 127.7 (2x), 127.3 (2x), 121.5, 28.8, 15.1.

4-((4-Isopropylphenyl)sulfonyl)-3,6-diphenylpyridazine (5u). Yield = 82% (170 mg); White solid; mp = 152-153 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₅H₂₃N₂O₂S 415.1480, found 415.1484; ¹H NMR (400 MHz, CDCI₃): δ 8.75 (s, 1H), 8.27-8.23 (m, 2H), 7.62-7.56 (m, 3H), 7.47-7.43 (m, 1H), 7.35-7.28 (m, 4H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.05 (d, *J* = 8.4 Hz, 2H), 2.90-2.83 (m, 1H), 1.19 (d, *J* = 7.2 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCI₃): δ 159.2, 156.5, 155.7, 141.4, 135.0, 134.7, 134.5, 131.0, 130.1 (2x), 129.4, 129.2 (2x), 129.4 (2x), 127.7 (2x), 127.3 (2x), 126.8 (2x), 121.4, 34.1, 23.4 (2x).

4-((4-(*t***-Butyl)phenyl)sulfonyl)-3,6-diphenylpyridazine (5v).** Yield = 80% (171 mg); White solid; mp = 151-153 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₆H₂₅N₂O₂S 429.1637, found 429.1640; ¹H NMR (400 MHz, CDCl₃): δ 8.75 (s, 1H), 8.26-8.24 (m, 2H), 7.62-7.56 (m, 3H), 7.46-7.42 (m, 1H), 7.33-7.28 (m, 4H), 7.21 (d, *J* = 8.8 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 1.26 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.2, 157.9, 156.5, 141.5, 134.7, 134.6, 134.5, 131.0, 130.1 (2x), 129.33, 129.25 (2x), 128.1 (2x), 127.7 (2x), 127.3 (2x), 125.7 (2x), 121.4, 35.1, 30.8 (3x).

4-((4-(*n***-Butyl)phenyl)sulfonyl)-3,6-diphenylpyridazine (5w).** Yield = 78% (167 mg); White solid; mp = 154-155 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₂₆H₂₅N₂O₂S 429.1637, found 429.1639; ¹H NMR (400 MHz, CDCl₃): δ 8.74 (s, 1H), 8.27-8.24 (m, 2H), 7.63-7.57 (m, 3H), 7.47-7.44 (m, 1H), 7.35-7.31 (m, 4H), 7.14 (d, *J* =

8.4 Hz, 2H), 7.01 (d, *J* = 8.4 Hz, 2H), 2.58 (t, *J* = 7.6 Hz, 2H), 1.57-1.49 (m, 2H), 1.32-1.27 (m, 2H), 0.92 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.2, 156.5, 150.0, 141.5, 135.0, 134.8, 134.6, 131.0, 130.2 (2x), 129.4, 129.3 (2x), 128.8 (2x), 128.4 (2x), 127.7 (2x), 127.3 (2x), 121.5, 35.5, 33.0, 22.0, 13.8.

4-([1,1'-Biphenyl]-4-ylsulfonyl)-3,6-diphenylpyridazine (5x). Yield = 76% (170 mg); White solid; mp = 195-197 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₈H₂₁N₂O₂S 449.1324, found 449.1326; ¹H NMR (400 MHz, CDCl₃): δ 8.79 (s, 1H), 8.29-8.27 (m, 2H), 7.64-7.58 (m, 3H), 7.52-7.40 (m, 8H), 7.37-7.29 (m, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.3, 156.4, 146.7, 141.3, 138.7, 136.2, 134.7, 134.5, 131.0, 130.2 (2x), 129.5, 129.3 (2x), 129.0 (2x), 128.80, 128.77 (2x), 127.7 (2x), 127.3 (2x), 127.24 (2x), 127.23 (2x), 121.5. Single-crystal X-Ray diagram: crystal of compound **5x** was grown by slow diffusion of EtOAc into a solution of compound **5x** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the triclinic crystal system, space group P-1, *a* = 9.3979(2) Å, *b* = 11.3031(3) Å, *c* = 12.3737(3) Å, *V* = 1097.50(5) Å³, *Z* = 2, *d*_{calcd} = 1.363 g/cm³, *F*(000) = 472.0, 2*θ* range 3.938~49.996°, R indices (all data) R1 = 0.0401, wR2 = 0.0898.

4-((3,4-Dichlorophenyl)sulfonyl)-3,6-diphenylpyridazine (5y). Yield = 75% (165 mg); White solid; mp = 163-164 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₂H₁₅Cl₂N₂O₂S 441.0231, found 441.0238; ¹H NMR (400 MHz, CDCl₃): δ 8.72 (s, 1H), 8.26-8.23 (m, 2H), 7.63-7.58 (m, 3H), 7.55-7.51 (m, 1H), 7.42-7.38 (m, 2H), 7.33-7.30 (m, 3H), 7.21 (d, *J* = 2.4 Hz, 1H), 7.07 (dd, *J* = 2.4, 8.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.4, 156.1, 140.6, 139.2, 137.5, 134.4, 133.9, 133.5, 131.2, 130.7, 130.5, 130.14 (2x), 130.09, 129.3 (2x), 127.9 (2x), 127.3 (2x), 127.0, 121.4.

4-(Naphthalen-2-ylsulfonyl)-3,6-diphenylpyridazine (5z). Yield = 76% (160 mg); White solid; mp = 202-204 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₆H₁₉N₂O₂S 423.1167, found 423.1171; ¹H NMR (400 MHz, CDCl₃): δ 8.82 (s, 1H), 8.29-8.27 (m, 2H), 7.81 (d, J = 8.8 Hz, 1H), 7.72-7.70 (m, 2H), 7.66-7.54 (m, 6H), 7.40-7.36 (m, 1H), 7.30-7.19 (m, 5H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.3, 156.6, 141.1, 135.1, 134.7, 134.32, 134.30, 131.5, 131.4, 131.0, 130.1 (2x), 129.7, 129.6, 129.5, 129.3 (2x),

3,6-Diphenyl-4-(thiophen-2-ylsulfonyl)pyridazine (5aa). Yield = 80% (151 mg); White solid; mp = 222-224 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₀H₁₅N₂O₂S₂ 379.0575, found 379.0580; ¹H NMR (400 MHz, CDCl₃): δ 8.68 (s, 1H), 8.26-8.23 (m, 2H), 7.61-7.58 (m, 4H), 7.52-7.41 (m, 5H), 6.91 (dd, *J* = 1.2, 4.0 Hz, 1H), 6.83 (dd, *J* = 4.0, 5.2 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.4, 156.3, 141.7, 138.4, 136.3, 135.8, 134.7, 134.6, 131.1, 130.3 (2x), 129.8, 129.3 (2x), 127.9 (2x), 127.5, 127.3 (2x), 121.3.

6-(2-Bromophenyl)-3-phenyl-4-tosylpyridazine (5ab). Yield = 70% (162 mg); Colorless oil; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₃H₁₈BrN₂O₂S 465.0272, found 465.0278; ¹H NMR (400 MHz, CDCl₃): δ 8.71 (s, 1H), 7.81 (dd, J = 1.6, 7.6 Hz, 1H), 7.77-7.74 (m, 2H), 7.42-7.35 (m, 6H), 7.18 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 2.34 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.5, 156.7, 145.3, 140.1, 136.5, 134.4, 133.6, 131.9, 131.5, 130.2 (2x), 129.6, 129.4 (2x), 128.5, 128.4, 128.38 (2x), 128.0, 127.7 (2x), 126.2, 21.6.

3-Phenyl-6-(*p*-tolyl)-4-tosylpyridazine (5ac). Yield = 76% (152 mg); White solid; mp = 178-179 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₂₄H₂₁N₂O₂S 401.1324, found 401.1326; ¹H NMR (400 MHz, CDCl₃): δ 8.70 (s, 1H), 8.15 (d, *J* = 8.0 Hz, 2H), 7.47-7.44 (m, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.36-7.31 (m, 4H), 7.12 (d, *J* = 8.4 Hz, 2H), 7.01 (d, *J* = 8.4 Hz, 2H), 2.46 (s, 3H), 2.33 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.2, 156.2, 145.0, 141.4, 141.3, 135.0, 134.6, 131.9, 130.2 (2x), 130.0 (2x), 129.4, 129.3 (2x), 128.3 (2x), 127.6 (2x), 127.2 (2x), 121.2, 21.5, 21.4.

6-(4-Methoxyphenyl)-3-phenyl-4-tosylpyridazine (5ad). Yield = 78% (162 mg); White solid; mp = 178-180 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₄H₂₁N₂O₃S 417.1273, found 417.1278; ¹H NMR (400 MHz, CDCl₃): δ 8.66 (s, 1H), 8.23 (d, *J* = 8.8 Hz, 2H), 7.47-7.44 (m, 1H), 7.36-7.29 (m, 4H), 7.13-7.09 (m, 4H), 7.01 (d, *J* =

8.0 Hz, 2H), 3.92 (s, 3H), 2.34 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.1, 158.8, 155.8, 145.1, 141.3, 135.1, 134.7, 130.3 (2x), 129.4, 129.3 (2x), 128.8 (2x), 128.4 (2x), 127.7 (2x), 127.1, 120.7, 114.7 (2x), 55.5, 21.6.

3-Phenyl-4-tosyl-6-(4-(trifluoromethyl)phenyl)pyridazine (5ae). Yield = 75% (170 mg); White solid; mp = 248-250 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₄H₁₈F₃N₂O₂S 455.1041, found 455.1045; ¹H NMR (400 MHz, CDCl₃): δ 8.77 (s, 1H), 8.38 (dt, *J* = 0.8, 8.8 Hz, 2H), 7.87 (dt, *J* = 0.4, 8.4 Hz, 2H), 7.52-7.47 (m, 1H), 7.39-7.32 (m, 4H), 7.13 (d, *J* = 8.4 Hz, 2H), 7.02 (dd, *J* = 0.8, 8.8 Hz, 2H), 2.35 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.9, 157.3, 145.4, 141.7, 134.8, 134.3, 132.8 (q, *J* = 32.8 Hz), 130.2 (2x), 129.7, 129.4 (2x), 128.4 (2x), 127.8 (2x), 127.7 (2x), 127.2, 127.1, 126.3 (q, *J* = 3.8 Hz, 2x), 122.5 (q, *J* = 270.6 Hz), 21.6; ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ -62.95 (s, 3F).

6-(4-Nitrophenyl)-3-phenyl-4-tosylpyridazine (5af). Yield = 75% (162 mg); White solid; mp > 250 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₃H₁₈N₃O₄S 432.1018, found 432.1021; ¹H NMR (400 MHz, CDCl₃): δ 8.81 (s, 1H), 8.46-8.41 (m, 4H), 7.51-7.47 (m, 1H), 7.38-7.31 (m, 4H), 7.12 (d, J = 8.4 Hz, 2H), 7.02 (d, J = 8.0 Hz, 2H), 2.34 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.6, 157.1, 149.3, 145.5, 141.8, 140.5, 134.6, 134.1, 130.1 (2x), 129.8, 129.4 (2x), 128.4 (2x), 128.3 (2x), 127.8 (2x), 124.4 (2x), 122.1, 21.6.

6-([1,1'-Biphenyl]-4-yl)-3-phenyl-4-tosylpyridazine (5ag). Yield = 72% (166 mg); White solid; mp = 218-220 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₉H₂₃N₂O₂S 463.1480, found 463.1486; ¹H NMR (400 MHz, CDCl₃): δ 8.78 (s, 1H), 8.35 (d, *J* = 8.4 Hz, 2H), 7.84 (d, *J* = 8.0 Hz, 2H), 7.72-7.69 (m, 2H), 7.52-7.42 (m, 5H), 7.36-7.35 (m, 3H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 2.35 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.9, 156.5, 145.1, 143.8, 141.4, 139.9, 135.0, 134.6, 130.3 (2x), 129.5, 129.4 (2x), 129.3, 128.9 (2x), 128.4 (2x), 128.0, 127.9 (2x), 127.73 (2x), 127.71 (2x), 127.1 (2x), 121.4, 21.6.

6-(3,4-Dichlorophenyl)-3-phenyl-4-tosylpyridazine (5ah). Yield = 76% (173 mg); White solid; mp = 198-200 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₃H₁₇Cl₂N₂O₂S 455.0388, found 455.0395; ¹H NMR (400 MHz, CDCl₃): δ 8.70 (s, 1H), 8.39 (d, *J* = 2.0 Hz, 1H), 8.09 (dd, *J* = 2.4, 8.4 Hz, 1H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.50-7.46 (m, 1H), 7.37-7.30 (m, 4H), 7.11 (d, *J* = 8.4 Hz, 2H), 7.01 (d, *J* = 8.4 Hz, 2H), 2.34 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.2, 157.1, 145.3, 141.6, 135.5, 134.7, 134.6, 134.2, 133.9, 131.3, 130.2 (2x), 129.7, 129.4 (2x), 129.1, 128.4 (2x), 127.8 (2x), 126.3, 121.4, 21.6.

6-(3,4-Dimethoxyphenyl)-3-phenyl-4-tosylpyridazine (5ai). Yield = 71% (158 mg); White solid; mp = 197-199 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₅H₂₃N₂O₄S 447.1379, found 447.1382; ¹H NMR (400 MHz, CDCl₃): δ 8.68 (s, 1H), 7.98 (d, *J* = 2.0 Hz, 1H), 7.73 (dd, *J* = 2.0, 8.4 Hz, 1H), 7.48-7.43 (m, 1H), 7.36-7.29 (m, 4H), 7.12 (d, *J* = 8.4 Hz, 2H), 7.05 (d, *J* = 8.4 Hz, 1H), 7.00 (d, *J* = 8.0 Hz, 2H), 4.02 (s, 3H), 3.99 (s, 3H), 2.33 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.6, 155.9, 151.7, 149.7, 145.1, 141.3, 135.0, 134.6, 130.2 (2x), 129.4, 129.3 (2x), 128.3 (2x), 127.7 (2x), 127.3, 120.9, 120.4, 111.3, 109.7, 56.1, 56.0, 21.6.

3-Phenyl-4-tosyl-6-(3,4,5-trimethoxyphenyl)pyridazine (5aj). Yield = 72% (171 mg); White solid; mp = 157-159 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₆H₂₅N₂O₅S 477.1484, found 477.1490; ¹H NMR (400 MHz, CDCl₃): δ 8.67 (s, 1H), 7.50 (s, 2H), 7.49-7.44 (m, 1H), 7.36-7.29 (m, 4H), 7.11 (d, *J* = 8.4 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 4.00 (s, 6H), 3.96 (s, 3H), 2.33 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.7, 156.3, 153.9 (2x), 145.2, 141.4, 140.8, 134.9, 134.5, 130.2 (2x), 129.9, 129.5, 129.3 (2x), 128.3 (2x), 127.7 (2x), 121.2, 104.5 (2x), 61.0, 56.4 (2x), 21.6.

6-(Naphthalen-2-yl)-3-phenyl-4-tosylpyridazine (5ak). Yield = 78% (170 mg); White solid; $mp = 183-185 \text{ }^{\circ}\text{C}$ (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: $[M + H]^+$

calcd for C₂₇H₂₁N₂O₂S 437.1324, found 437.1320; ¹H NMR (400 MHz, CDCl₃): δ 8.90 (s, 1H), 8.73 (d, *J* = 1.2 Hz, 1H), 8.41 (dd, *J* = 2.0, 8.4 Hz, 1H), 8.05 (d, *J* = 9.2 Hz, 1H), 8.03-8.01 (m, 1H), 7.95-7.92 (m, 1H), 7.62-7.57 (m, 2H), 7.50-7.46 (m, 1H), 7.3-7.35 (m, 4H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 2.34 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.2, 156.5, 145.1, 141.4, 135.0, 134.6, 134.5, 133.3, 132.0, 130.3 (2x), 129.5, 129.3 (2x), 129.2, 129.0, 128.4 (2x), 127.8, 127.71 (2x), 127.68, 127.6, 126.9, 123.9, 121.7, 21.6.

6-(Furan-2-yl)-3-phenyl-4-tosylpyridazine (5al). Yield = 76% (143 mg); White solid; mp = 174-175 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₁H₁₇N₂O₃S 377.0960, found 377.0966; ¹H NMR (400 MHz, CDCl₃): δ 8.66 (s, 1H), 7.72 (d, *J* = 1.6 Hz, 1H), 7.50 (d, *J* = 3.6 Hz, 1H), 7.48-7.44 (m, 1H), 7.36-7.28 (m, 4H), 7.13 (d, *J* = 8.4 Hz, 2H), 7.02 (d, *J* = 8.4 Hz, 2H), 6.67 (dd, *J* = 1.6, 3.6 Hz, 1H), 2.34 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.0, 152.1, 149.7, 145.6, 145.2, 141.4, 135.0, 134.6, 130.2 (2x), 129.5, 129.4 (2x), 128.4 (2x), 127.7 (2x), 119.8, 112.3, 112.2, 21.6.

3-Phenyl-6-(thiophen-2-yl)-4-tosylpyridazine (5am). Yield = 78% (153 mg); White solid; mp = 231-232 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₁H₁₇N₂O₂S₂ 393.0732, found 393.0728; ¹H NMR (400 MHz, CDCl₃): δ 8.61 (s, 1H), 7.88 (dd, J = 1.2, 4.0 Hz, 1H), 7.59 (dd, J = 1.2, 5.2 Hz, 1H), 7.47-7.43 (m, 1H), 7.35-7.28 (m, 4H), 7.24 (dd, J = 4.0, 5.2 Hz, 1H), 7.11 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 2.33 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.2, 155.1, 145.2, 141.3, 139.2, 134.8, 134.5, 130.7, 130.2 (2x), 129.5, 129.3 (2x), 128.5, 128.3 (2x), 127.9, 127.7 (2x), 120.1, 21.6.

6-(2,4-Dichloro-5-fluorophenyl)-3-phenyl-4-tosylpyridazine (**5an**). Yield = 80% (189 mg); White solid; mp = 203-204 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₃H₁₆Cl₂FN₂O₂S 473.0294, found 473.0301; ¹H NMR (400 MHz, CDCl₃): δ 8.77 (s, 1H), 7.77 (d, J = 9.2 Hz, 1H), 7.66 (d, J = 6.4 Hz, 1H), 7.52-7.48 (m, 1H), 7.41-7.36 (m, 4H), 7.16 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 2.35 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.4, 157.3, 157.2 (d, J = 249.4 Hz), 145.4, 140.5, 134.8, 134.5 (d, J = 6.8 Hz), 134.2, 132.1, 130.2 (2x), 129.8, 129.5 (2x), 128.5 (2x), 127.8 (2x), 125.8, 124.2 (d, J = 19.0 Hz), 119.6, 119.4, 21.6; ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ -115.50~-115.55 (m, 1F). Single-crystal X-Ray diagram: crystal of compound **5an** was grown by slow diffusion of EtOAc into a solution of compound **5an** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the triclinic crystal system, space group P-1, a = 9.7238(2) Å, b = 10.1366(2) Å, c = 11.2215(3) Å, V = 1033.14(4) Å³, Z = 2, $d_{calcd} = 1.522$ g/cm³, F(000) = 484.0, 2θ range 5.698~54.228°, R indices (all data) R1 = 0.0346, wR2 = 0.0803.

3,6-Di([1,1'-biphenyl]-4-yl)-4-([1,1'-biphenyl]-4-ylsulfonyl)pyridazine (5ao). Yield = 70% (210 mg); White solid; mp > 250 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₄₀H₂₉N₂O₂S 601.1950, found 601.1956; ¹H NMR (400 MHz, CDCI₃): δ 8.84 (s, 1H), 8.38 (d, *J* = 8.4 Hz, 2H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.72 (d, *J* = 7.2 Hz, 2H), 7.64-7.37 (m, 21H); ¹³C{¹H} NMR (100 MHz, CDCI₃): δ 158.9, 156.1, 146.8, 143.8, 142.4, 141.5, 140.1, 139.9, 138.6, 136.2, 133.49, 133.46, 130.7, 129.1 (2x), 128.98 (2x), 128.96 (2x), 128.9 (2x), 128.8, 128.1, 128.0 (2x), 127.9, 127.8 (2x), 127.3 (2x), 127.18 (2x), 127.15 (4x), 127.1 (2x), 126.4, 121.3.

3,6-Di(naphthalen-2-yl)-4-(naphthalen-2-ylsulfonyl)pyridazine (5ap). Yield = 70% (183 mg); White solid; mp > 250 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₄H₂₃N₂O₂S 523.1480, found 523.1488; ¹H NMR (400 MHz, CDCI₃): δ 9.03 (s, 1H), 8.79 (s, 1H), 8.46 (dd, J = 1.6, 8.4 Hz, 1H), 8.09 (d, J = 8.8 Hz, 1H), 8.07-8.05 (m, 1H), 7.97-7.94 (m, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.73 (s, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.64-7.53 (m, 6H), 7.48-7.43 (m, 3H), 7.34-7.27 (m, 3H), 6.95 (d, J = 8.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCI₃): δ 159.3, 156.5, 141.5, 134.9, 134.6, 134.0, 133.44, 133.37, 132.2, 132.0, 131.6, 131.5, 131.3, 130.3, 129.5, 129.3, 129.12 (2x), 129.08, 128.4, 127.9, 127.8, 127.7, 127.6, 127.5, 127.39, 127.37, 127.2, 127.0, 126.8, 126.5, 123.9, 121.9, 121.8.

Ethyl 3,6-diphenylpyridazine-4-carboxylate (6a). Yield = 69% (105 mg); White solid; mp = 64-66 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₉H₁₇N₂O₂ 305.1290, found 305.1296; ¹H NMR (400 MHz, CDCl₃): δ 8.19-8.16 (m, 2H), 8.14 (s, 1H), 7.71-7.68 (m, 2H), 7.57-7.45 (m, 6H), 4.24 (q, *J* = 7.2 Hz, 2H), 1.10 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.6, 157.9, 156.9, 136.4, 135.1, 130.4, 129.4, 129.1 (2x),

(3,6-Diphenylpyridazin-4-yl)(phenyl)methanone (6b). Yield = 67% (113 mg); White solid; mp = 184-186 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₃H₁₇N₂O 337.1341, found 337.1346; ¹H NMR (400 MHz, CDCl₃): δ 8.20-8.18 (m, 2H), 7.92 (s, 1H), 7.70-7.68 (m, 4H), 7.58-7.50 (m, 4H), 7.38-7.31 (m, 5H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 195.0, 157.6, 156.2, 137.2, 135.7, 135.3, 135.2, 134.3, 130.5, 129.8 (2x), 129.7, 129.24 (2x), 129.16 (2x), 128.8 (2x), 128.6 (2x), 127.1 (2x), 122.6.

3-(4-Fluorophenyl)-6-phenylpyridazine (7). NaBH₄ (10 mg, 0.3 mmol) was added to a stirred solution of **5c** (202 mg, 0.5 mmol) in a cosolvent of THF and MeOH (10 mL, v/v = 1/1) at 25 °C. The reaction mixture was stirred at reflux for 10 h, and the solvent was concentrated. The residue was diluted with water (10 mL), and the mixture was extracted with CH₂Cl₂ (3 x 30 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 10/1~2/1) afforded **7**. Yield = 83% (104 mg); White solid; mp = 240-242 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₆H₁₂FN₂ 251.0985, found 251.0991; ¹H NMR (400 MHz, CDCl₃): δ 8.19-8.15 (m, 4H), 7.97 (d, *J* = 8.8 Hz, 1H), 7.93 (d, *J* = 8.8 Hz, 1H), 7.58-7.50 (m, 3H), 7.26-7.21 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 164.3 (d, *J* = 248.7 Hz), 157.6, 156.6, 135.2, 131.6, 130.5, 129.2 (2x), 129.1 (d, *J* = 9.8 Hz, 2x), 127.1 (2x), 125.2, 124.8, 116.2 (d, *J* = 21.2 Hz, 2x); ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ -110.53 (s, 1F).

4-(4-Methoxyphenyl)-2,7-diphenylpyrazolo[1,5-*d*][1,2,4]triazine (8). Benzhydrazide (140 mg, 1.0 mmol) was added to a stirred solution of butene-1,4-dione **4a'** (133 mg, 0.5 mmol) in dioxane (10 mL) at 25 °C. The reaction mixture was stirred at reflux for 40 h and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = $30/1 \sim 1/1$) afforded **8**. Yield = 70% (132 mg); White solid; mp = 201-203 °C

(recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₄H₁₉N₄O 379.1559, found 379.1567; ¹H NMR (600 MHz, CDCl₃): δ 8.68 (d, J = 7.2 Hz, 2H), 8.23 (br s, 2H), 8.05 (br d, J = 10.2 Hz, 2H), 7.67-7.63 (m, 3H), 7.52-7.47 (m, 4H), 7.17 (br s, 2H), 3.95 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 163.0, 157.2, 151.7, 147.2, 134.4, 132.3, 131.8, 130.9, 130.7 (2x), 130.6, 130.2 (2x), 129.9, 129.1 (2x), 128.5 (2x), 128.4, 127.3 (2x), 115.0 (2x), 55.8. Single-crystal X-Ray diagram: crystal of compound **8** was grown by slow diffusion of EtOAc into a solution of compound **8** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P2₁/c, *a* = 11.1986(2) Å, *b* = 7.45530(10) Å, *c* = 21.8767(3) Å, *V* = 1824.14(5) Å³, *Z* = 4, *d*_{calcd} = 1.378 g/cm³, *F*(000) = 792.0, 2*θ* range 3.728~53.986°, R indices (all data) R1 = 0.0441, wR2 = 0.0997.

Gram-scale synthetic procedure of compound 5a is as follows: SeO₂ (2.22 g, 10.0 mmol) was added to a solution of acetophenone **1a** (600 mg, 5.0 mmol) in dioxane (50 mL) at 25 °C. The reaction mixture was stirred at reflux for 5 h and then cooled to 25 °C. The process was monitored by TLC until **1a** was consumed and phenylglyoxal **2a** were generated. Then, piperidine (420 mg, 5.0 mmol), HOAc (300 mg, 5.0 mmol) and **3a** (1.37 g, 5.0 mmol) in dioxane (50 mL) were added to the resulting reaction mixture at 25 °C. The reaction mixture was stirred at reflux for 20 h. The reaction mixture was cooled to 25 °C. Without further purification, excess N₂H_{4(aq)} solution (~80%, 30 mL) was added to the resulting sulfonyl butene-1,4-dione **4a** at 25 °C. The reaction mixture was stirred at 25 °C for 10 h and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = $30/1 \sim 2/1$) afforded **5a** (1.16 g, 60%).

Compounds 2a/2a' (¹H-NMR spectral data)

1

Compounds 2a/2a' (¹³C-NMR spectral data)

.

~

Compound 4a (¹H-NMR spectral data)

.

S20

Compound 4a (¹³C-NMR spectral data)

2

Compound 5a (¹H-NMR spectral data)

S23

Compound 5b (¹H-NMR spectral data)

10

Compound 5b (¹³C-NMR spectral data)

Compound 5c (¹H-NMR spectral data)

S26

-

Compound 5c (¹³C-NMR spectral data)

Compound 5d (¹H-NMR spectral data)

Compound 5d (¹³C-NMR spectral data)

S30

Compound 5e (¹H-NMR spectral data)

S31

2

Compound 5e (¹³C-NMR spectral data)

-20(-110 -20 -30 -50 -60 -70 -80 -90 -100 f1 (ppm) -120 -130 -140 -150 -160 -170 -180 -10 -40 -190)

Compound 5f (¹H-NMR spectral data)

Compound 5f (¹³C-NMR spectral data)

S35

1

Compound 5g (¹H-NMR spectral data)

Compound 5g (¹³C-NMR spectral data)

Compound 5h (¹H-NMR spectral data)

Compound 5h (¹³C-NMR spectral data)

Compound 5i (¹H-NMR spectral data)

S40

-

Compound 5i (¹³C-NMR spectral data)

Compound 5j (¹H-NMR spectral data)

Compound 5j (¹³C-NMR spectral data)

Compound 5k (¹H-NMR spectral data)

S44

Compound 5k (¹³C-NMR spectral data)

S45

.

Compound 5I (¹H-NMR spectral data)

S46

 $\dot{\cdot}$

Compound 5I (¹³C-NMR spectral data)

S47

Compound 5m (¹H-NMR spectral data)

Compound 5m (¹³C-NMR spectral data)

Compound 5n (¹H-NMR spectral data)

Compound 5n (¹³C-NMR spectral data)

S51

Compound 5o (¹H-NMR spectral data)

S52

Compound 5o (¹³C-NMR spectral data)

Compound 5p (¹H-NMR spectral data)

÷.

Compound 5p (¹³C-NMR spectral data)

Compound 5p (¹⁹F-NMR spectral data)

	$ \begin{array}{c} -101.721 \\ \hline -101.735 \\ \hline -101.766 \\ \hline -101.766 \\ \hline -101.766 \\ \hline -101.789 \\$	$\underbrace{\int_{-101.721}^{-101.721}$
O' Y Y Y		

-160 -130 -110 -10 -20 -30 -50 -60 -70 -80 -90 -100 f1 (ppm) -120 -140 -150 -101.7 -101.8 -101.9 -40

Compound 5q (¹H-NMR spectral data)

Compound 5q (¹³C-NMR spectral data)

.

Compound 5r (¹³C-NMR spectral data)

.

Compound 5r (¹⁹F-NMR spectral data)

-20 -140 -20 -30 -50 -60 -70 -80 -90 -100 f1 (ppm) -110 -120 -130 -150 -160 -170 -180 -10 -40 -190)

Compound 5s (¹H-NMR spectral data)

Compound 5s (¹³C-NMR spectral data)

S63

.

5s

Compound 5s (¹⁹F-NMR spectral data)

-20 -140 -20 -30 -50 -60 -70 -80 -90 -100 f1 (ppm) -110 -120 -130 -150 -160 -170 -180 -10 -40 -190)

Compound 5t (¹H-NMR spectral data)

S65

÷

Compound 5t (¹³C-NMR spectral data)

Compound 5u (¹H-NMR spectral data)

ì.

Compound 5u (¹³C-NMR spectral data)

S68

i.

Compound 5v (¹H-NMR spectral data)

Compound 5v (¹³C-NMR spectral data)

Compound 5w (¹H-NMR spectral data)

.

Compound 5w (¹³C-NMR spectral data)

Compound 5x (¹H-NMR spectral data)

Compound 5x (¹³C-NMR spectral data)

Compound 5y (¹H-NMR spectral data)

÷.

Compound 5y (¹³C-NMR spectral data)

S76

Compound 5z (¹H-NMR spectral data)

S77

Compound 5z (¹³C-NMR spectral data)

Compound 5aa (¹H-NMR spectral data)

S79

Compound 5aa (¹³C-NMR spectral data)

S80

Compound 5ab (¹H-NMR spectral data)

Compound 5ab (¹³C-NMR spectral data)

Compound 5ac (¹H-NMR spectral data)

Compound 5ac (¹³C-NMR spectral data)

Compound 5ad (¹H-NMR spectral data)

Compound 5ad (¹³C-NMR spectral data)

S86

Compound 5ae (¹H-NMR spectral data)

-

Compound 5ae (¹³C-NMR spectral data)

Compound 5ae (¹⁹F-NMR spectral data)

-20 -20 -30 -50 -70 -80 -90 -100 f1 (ppm) -110 -130 -140 -150 -160 -170 -180 -10 -40 -60 -120 -190)

Compound 5af (¹H-NMR spectral data)

Compound 5af (¹³C-NMR spectral data)

S91

Compound 5ag (¹H-NMR spectral data)

Compound 5ag (¹³C-NMR spectral data)

Compound 5ah (¹H-NMR spectral data)

Compound 5ah (¹³C-NMR spectral data)

Compound 5ai (¹H-NMR spectral data)

Compound 5ai (¹³C-NMR spectral data)

Compound 5aj (¹H-NMR spectral data)

Compound 5aj (¹³C-NMR spectral data)

Compound 5ak (¹H-NMR spectral data)

Compound 5ak (¹³C-NMR spectral data)

Compound 5al (¹H-NMR spectral data)

 \mathbf{x}

Compound 5al (¹³C-NMR spectral data)

Compound 5am (¹H-NMR spectral data)

S104

Compound 5am (¹³C-NMR spectral data)

Compound 5an (¹H-NMR spectral data)

Compound 5an (¹³C-NMR spectral data)

Compound 5ao (¹H-NMR spectral data)

Compound 5ap (¹H-NMR spectral data)

Compound 5ap (¹³C-NMR spectral data)

.

S113

1

Compound 6b (¹H-NMR spectral data)

S115

N.

.

Compound 6b (¹³C-NMR spectral data)

S116

1

Compound 7 (¹H-NMR spectral data)

-

Compound 7 (¹³C-NMR spectral data)

S118

÷.

-20 -20 -30 -50 -60 -70 -80 -90 -100 f1 (ppm) -110 -120 -130 -140 -150 -160 -170 -180 -10 -40 -190)

Compound 8 (¹H-NMR spectral data)

Compound 8 (¹³C-NMR spectral data)

S121

X-ray crystal data of compound 5a

Sample preparation : A solution of compound **5a** (30 mg) in CH₂Cl₂ (10 mL) was placed in a tube (10 mL). EtOAc (2 mL) was added slowly to the vial with a dropper. The vial was closed with little cotton and kept at room temperature for 2 days. Then, colorless prisms were observed.

Empirical formula	$C_{23}H_{18}N_2O_2S$
Formula weight	386.45
Temperature/K	130(2)
Crystal system	monoclinic
Space group	Ia
a/Å	9.3268(5)
b/Å	15.1541(6)
c/Å	14.1675(7)
α/°	90
β/°	108.462(6)
γ/°	90
Volume/Å ³	1899.37(17)
Z	4
$\rho_{calc}g/cm^3$	1.351
μ/mm^{-1}	0.192
F(000)	808.0
Crystal size/mm ³	$0.5\times0.4\times0.3$
Radiation	Mo K α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.05 to 54.162
Index ranges	$-11 \le h \le 11, -19 \le k \le 19, -17 \le l \le 18$
Reflections collected	12473
Independent reflections	3723 [$R_{int} = 0.0777, R_{sigma} = 0.0627$]
Data/restraints/parameters	3723/2/254
Goodness-of-fit on F ²	1.012
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0418, wR_2 = 0.0965$
Final R indexes [all data]	$R_1 = 0.0460, wR_2 = 0.0984$
Largest diff. peak/hole / e Å $^{\text{-3}}$	0.21/-0.36
Flack parameter	-0.06(6)

X-ray crystal data of compound 5x

Sample preparation : A solution of compound **5x** (30 mg) in CH_2Cl_2 (10 mL) was placed in a tube (10 mL). EtOAc (2 mL) was added slowly to the vial with a dropper. The vial was closed with little cotton and kept at room temperature for 2 days. Then, colorless prisms were observed.

Empirical formula	$C_{28}H_{20}N_2O_2S$
Formula weight	450.53
Temperature/K	130(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.3979(2)
b/Å	11.3031(3)
c/Å	12.3737(3)
α/°	114.887(3)
β/°	109.317(2)
γ/°	92.845(2)
Volume/Å ³	1097.50(5)
Z	2
$\rho_{calc}g/cm^3$	1.363
μ/mm^{-1}	0.177
F(000)	472.0
Crystal size/mm ³	$0.4\times0.4\times0.3$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	3.938 to 49.996
Index ranges	$-11 \le h \le 11, -13 \le k \le 13, -14 \le l \le 14$
Reflections collected	27690
Independent reflections	3861 [$R_{int} = 0.0348$, $R_{sigma} = 0.0267$]
Data/restraints/parameters	3861/0/298
Goodness-of-fit on F ²	1.081
Final R indexes [I>= 2σ (I)]	$R_1=0.0343,wR_2=0.0871$
Final R indexes [all data]	$R_1 = 0.0401, wR_2 = 0.0898$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.44

X-ray crystal data of compound 5ao

Sample preparation : A solution of compound **5ao** (30 mg) in CH₂Cl₂ (10 mL) was placed in a tube (10 mL). EtOAc (2 mL) was added slowly to the vial with a dropper. The vial was closed with little cotton and kept at room temperature for 2 days. Then, colorless prisms were observed.

Empirical formula	$C_{23}H_{15}Cl_2FN_2O_2S$
Formula weight	473.33
Temperature/K	130(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.7238(2)
b/Å	10.1366(2)
c/Å	11.2215(3)
α/°	71.447(2)
β/°	86.430(2)
$\gamma/^{\circ}$	80.166(2)
Volume/Å ³	1033.14(4)
Z	2
$\rho_{calc}g/cm^3$	1.522
μ/mm^{-1}	0.449
F(000)	484.0
Crystal size/mm ³	0.4 imes 0.4 imes 0.2
Radiation	Mo K α (λ = 0.71073)
2Θ range for data collection/°	5.698 to 54.228
Index ranges	$\textbf{-12} \leq h \leq 12, \textbf{-12} \leq k \leq 12, \textbf{-14} \leq l \leq 14$
Reflections collected	69896
Independent reflections	4400 [$R_{int} = 0.0503$, $R_{sigma} = 0.0224$]
Data/restraints/parameters	4400/0/281
Goodness-of-fit on F ²	1.060
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0303, wR_2 = 0.0783$
Final R indexes [all data]	$R_1=0.0346,wR_2=0.0803$
Largest diff. peak/hole / e Å -3	0.41/-0.47

X-ray crystal data of compound 8

Sample preparation : A solution of compound **8** (30 mg) in CH₂Cl₂ (10 mL) was placed in a tube (10 mL). EtOAc (2 mL) was added slowly to the vial with a dropper. The vial was closed with little cotton and kept at room temperature for 2 days. Then, colorless prisms were observed.

Empirical formula	$C_{24}H_{18}N_4O$
Formula weight	378.42
Temperature/K	130(2)
Crystal system	monoclinic
Space group	P21/c
a/Å	11.1986(2)
b/Å	7.45530(10)
c/Å	21.8767(3)
α/°	90
β/°	92.888(2)
γ/°	90
Volume/Å ³	1824.14(5)
Z	4
$\rho_{calc}g/cm^3$	1.378
μ/mm^{-1}	0.087
F(000)	792.0
Crystal size/mm ³	$0.4\times0.4\times0.3$
Radiation	Mo K α ($\lambda = 0.71073$)
2Θ range for data collection/°	3.728 to 53.986
Index ranges	$-14 \le h \le 14, -9 \le k \le 9, -27 \le l \le 27$
Reflections collected	33305
Independent reflections	3873 [$R_{int} = 0.0610, R_{sigma} = 0.0299$]
Data/restraints/parameters	3873/0/264
Goodness-of-fit on F^2	1.097
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0384, wR_2 = 0.0964$
Final R indexes [all data]	$R_1 = 0.0441, wR_2 = 0.0997$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.29/-0.21