Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting information

F₅PhSeSePhF₅ as a Novel and Verstile Photosensitive Reagent for the Low-Energy Green Light-Induced Seleno-Michael Addition Reaction

Haoliang Shi, Yifei Zhu, Yongqiang Zhang *

Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China

*Email: yongqiangzhang@ecust.edu.cn

Table of Contents

General Information

General information of experiments: Commercial reagents and solvents were used as received and without further purification, unless otherwise stated. Organic solution was concentrated under reduced pressure on a Büchi rotary evaporator using an isopropyl alcohol-dry ice bath. Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel plates (Qingdao Haiyang Chemical China), and the compounds were visualized with a UV lamp at 254 nm. Flash chromatography was performed on silica gel 200 - 300 mesh (purchased from Qingdao Haiyang Chemical China) with commercial solvents (purchased from Adamas-beta®). The ¹H, ¹³C, ¹⁹F and ⁷⁷Se NMR spectra were recorded on a Bruker AM 400 or 600 Spectrometer (400 and 150 MHz for ¹H, ¹³C, 564 MHz for ¹⁹F and 114 MHz for ⁷⁷Se NMR, respectively) and are internally referenced to residual solvent signals (note: CDCl₃ referenced at 7.26 and 77.16 ppm in ¹H and ¹³C NMR, respectively). Data from the ¹H NMR spectroscopy are reported as chemical shift (δ ppm) with the corresponding integration values. Multiplicities were given as s (singlet), d (doublet), t (triplet), dd (double of doublet), and m (multiplets). Coupling constants were reported in Hertz (Hz). Data for ¹³C, ¹⁹F and ⁷⁷Se NMR are reported in terms of chemical shift. High-resolution mass spectrometry (HRMS) was recorded on Waters LCT Premier XE spectrometer.

General information of photochemistry: The Green LED strip (2 meters, 24 W, Emission at 500 nm- 570 nm) was purchased from Epilight (China). LED strip wrapped on the inside of a 250 mL round bottom flask. A layer of aluminium foil was placed around the outside of the round bottom flask. 30V/5A DC Power Supply (MCH-K305D, MCH Instruments Co., Ltd) was used as power transformer. Tape the connector wires as well as the foil with duct tape to secure both in place. Schleck tube, which is made of pure borosilicate glass, was placed on top of the stirring place (the distance between the tube and the light source was about 5 cm). Position a fan about 20 cm above the reactor for cooling. Temperature should be monitored in real time using a temperature probe to determine the ambient temperature. No filter was used during the reaction in this research.

Synthesis of Selenosilane

Scheme S1. Synthesis of selenosilane

UV-Vis Absorption Spectroscopy

UV-Vis absorption spectra of **1a** and **1a'** in EtOH (3 mL) was recorded in 1 cm path quartz cuvettes using a Shimadzu UV-1800 UV/Vis spectromete.

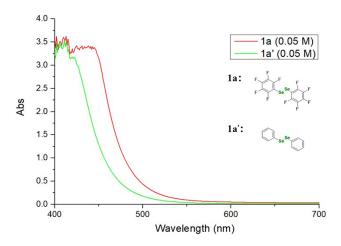


Figure S1. UV-Vis absorption spectra 1a and 1a'

UV-Vis absorption spectra of **1a**. HE and **1a** + HE in EtOH (3 mL) was recorded in 1 cm path quartz cuvettes using a Shimadzu UV-1800 UV/Vis spectromete.

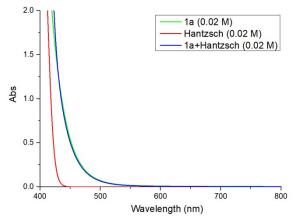


Figure S2. UV-Vis Absorption spectra of reaction components

Mechanism Study

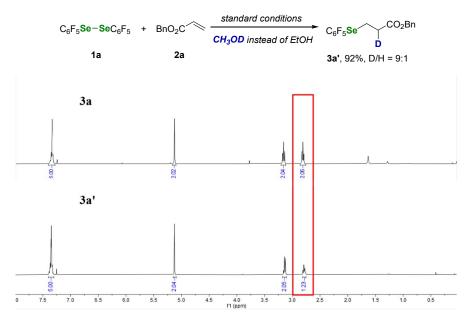
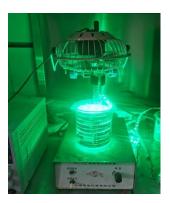


Figure S3. Deuteration experiment


Experiment Procedures and Product Characterization

Synthesis of 1a [1]

To a solution of pentafluorobenzene (1.2 mL, 10 mmol, 1.0 eq) in 50 mL of THF was slowly added 10 mmol of n-BuLi (2.5 M in hexanes, 4 mL, 10 mmol, 1.0 eq) at –78 °C during a period of 1 h under nitrogen protection. Then the resulting solution was stirred for an additional hour at the same temperature. A slight excess of selenium (0.87 g, 11 mmol, 1.1 eq) was added in one portion and the mixture was allowed to warm to 0 °C in 2 h. After that, it was stirred at room temperature under air for 4 h and filtered through diatomaceous earth. The filtrate was diluted with water and extracted with DCM three times. The combined organic phase was dried over Na₂SO₄. Filtered and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (PE) to give 1a as an orange solid (2.02 g, 40% yield). ¹³C NMR (150 MHz, CDCl₃) δ: 148.2-148.0 (m), 146.6-146.4 (m), 143.9-143.7 (m), 142.2-142.0 (m), 138.3-138.0 (m), 136.6-136.3 (m), 103.1 (t, J = 25.5 Hz). ¹⁹F NMR (564 MHz, CDCl₃) δ -125.0 – -125.1 (m, 2F), -148.5 – -148.6 (m, 1F), -159.2 – -159.3 (m, 2F). ⁷⁷Se NMR (114 MHz, CDCl₃) δ: 374.0. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₂F₁₀Se₂ 493.8171, Found 493.8170.

General procedure A

A 4 mL vial equipped with a magnetic stirring bar was dried in oven. After cooling the vial to room temperature, F_5 PhSeSePh F_5 **1a** (0.08 mmol, 0.8 eq), alkene (0.1 mmol, 1 eq), HE (0.15 mmol, 1.5 eq) and EtOH (1 mL) were added to the vial and bubbled with nitrogen for 15 minutes. Add a fan to maintain the temperature at 30 °C. Photoirradiation was carried out with stirring for 15 minutes. After the reaction, the solution diluted with water and extracted with EtOAc three times. The combined organic layers were washed with brine and dried over Na_2SO_4 . Filtered and concentrated under vacuum. The residue was purified by flash columnchromatography on silica gel to give the desired product.

General procedure B

A 4 mL vial equipped with a magnetic stirring bar was dried in oven. After cooling the vial to room temperature, F₅PhSeSePhF₅ **1a** (0.08 mmol, 0.8 eq), alkene (0.1 mmol, 1 eq), HE (0.15 mmol, 1.5 eq) and EtOH (1 mL) were added to the vial and bubbled with nitrogen for 15 minutes. Photoirradiation was carried out with stirring for 1 hours at 50 °C. After that, the solution was diluted with water and extracted with EtOAc three times. The combined organic layers were washed with brine and dried over Na₂SO₄. Filtered and concentrated under vacuum. The residue was purified by flash columnchromatography on silica gel to give the desired product.

General procedure C

A 4 mL vial equipped with a magnetic stirring bar was dried in oven. After cooling the vial to room temperature, F₅PhSeSePhF₅ **1a** (0.08 mmol, 0.8 eq), alkyne (0.1 mmol, 1 eq), HE (0.15 mmol, 1.5 eq) and EtOH (1 mL, 0.1 M) were added to the vial and bubbled with nitrogen for 15 minutes. Add a fan to maintain the temperature at room temperature. Photoirradiation was carried out with stirring for 30 minutes. After that, the solution was diluted with water and extracted with EtOAc three times. The combined organic layers were washed with brine and dried over Na₂SO₄. Filterted and concentrated under vacuum. The residue was purified by flash columnchromatography on silica gel to give the desired product.

General procedure D

A 4 mL vial equipped with a magnetic stirring bar was dried in oven. After cooling the vial to room temperature, F₅PhSeSePhF₅ **1a** (0.08 mmol, 0.8 eq), electrophilic reagent (0.1 mmol, 1 eq), HE (0.15 mmol, 1.5 eq) and EtOH or MeCN (1 mL) were added to the vial and bubbled with nitrogen for 15 minutes. Add a fan to maintain the temperature at room temperature. Photoirradiation was carried out with stirring for 1 hour. After that, the solution was diluted with water and extracted with EtOAc three times. The combined organic layers were washed with brine and dried over Na₂SO₄. Filtered and concentrated under vacuum. The residue was purified by flash columnchromatography on silica gel to give the desired product.

General procedure E

EtO₂C
$$\searrow$$
 F + R-X $\xrightarrow{NaBH_4$. EtOH \longrightarrow Tt, 2 h EtO₂C \searrow Se-R 3d 16 17

A 4 mL vial equipped with a magnetic stirring bar was dried in oven. After cooling the vial to room temperature, ethyl 3-((perfluorophenyl)selenyl) propanoate **3d** (0.1 mmol, 1 eq), NaBH₄ (0.25 mmol, 2.5 eq) and EtOH (1 mL) were added to the vial under nitrogen protection. To this solution was added alkyl halide or aryl halide (0.15 mmol, 1.5 eq). The resulting solution was stirred at room temperature for 2 hours. After that, the solution was diluted and extracted with EtOAc three times. The combined organic layers were washed with brine and dried over Na₂SO₄. Filterted and concentrated under vacuum. The residue was purified by flash columnchromatography on silica gel to give the desired

product.

General procedure F

EtO₂C
$$\searrow$$
 F $+$ R-X $\xrightarrow{NaBH_4, THF}$ EtO₂C \searrow Se-F 3d 16 17

A 4 mL vial equipped with a magnetic stirring bar was dried in oven. After cooling the vial to room temperature, ethyl 3-((perfluorophenyl)selenyl) propanoate **3d** (0.1 mmol, 1 eq), NaBH₄ (0.25 mmol, 2.5 eq) and THF (1 mL) were added to the vial under nitrogen protection. To this solution was added alkyl halide or aryl halide (0.15 mmol, 1.5 eq). The solution was stirred at 70°C for 12 hours. After that, the solution was diluted with water and extracted with EtOAc three times. The combined organic layers were washed with brine and dried over Na₂SO₄. Filterted and concentrated under vacuum. The residue was purified by flash columnchromatography on silica gel to give desired product.

Synthesis of 1b [2]

Pentafluorobenzenethiol (600 mg, 3.0 mmol, 1.0 eq) was added to a solution of sodium perborate monohydrate (NaBO₃·4H₂O, 923 mg, 6.0 mmol, 2.0 eq) in a solvent mixture of acetic acid (AcOH, 7.5 mL) and water (3.0 mL) at room temperature. The reaction mixture was stirred for 2 hours. After that, the mixture was concentrated under reduced pressure and poured into saturated aqueous NaHCO₃ solution (10 mL). The resulting heterogeneous mixture was extracted with EtOAc (3 × 15 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with pentane, to afford 595 mg of the title compound as a pale-yellow solid (yield: >99%).

Synthesis of 4g and 4h [3]

To the solution of phenol structure (5.0 mmol, 1.0 equiv.) in CH_2Cl_2 (10.0 mL, 0.5 M) was added propiolic acid (5.1 mmol, 1.02 equiv.) and DCC (5.1 mmol, 1.02 equiv.), DMAP (2 mmol, 0.4 equiv.) at -50 °C. The mixture was warmed up to 0 °C and stirred at 0 °C for 2 hours. Then the reaction mixture was filtered and the filtrate was concentrated under vacuum to give the crude product. It was purified

by flash column chromatography on silica gel to give the product.

Synthesis of 4g: According to the general procedure, crude product was purified by flash column chromatography on silica gel (PE/EA = 10 : 1) to give the product **4g** as a yellow solid (193 mg, 12% yield). ¹**H NMR** (400 MHz, CDCl₃) δ : 7.30 (d, J = 8.5 Hz, 1H), 6.91 (dd, J = 8.5, 2.6 Hz, 1H), 6.86 (d, J = 2.6 Hz, 1H), 3.07 (s, 1H), 2.91 (dd, J = 9.0, 4.3 Hz, 2H), 2.50 (dd, J = 18.8, 8.7 Hz, 1H), 2.41 – 2.37 (m, 1H), 2.31 – 2.25 (m, 1H), 2.14 – 1.98 (m, 4H), 1.62 – 1.47 (m, 6H), 0.90 (s, 3H). The spectroscopic data is in agreement with that previously reported.^[3]

Synthesis of 4h: According to the general procedure, crude product was purified by flash column chromatography on silica gel (PE/EA = 50 : 1) to give the product **4h** as a colorless oil (1.06 g, 44% yield). ¹**H NMR** (400 MHz, CDCl₃) δ : 3.05 (s, 1H), 2.62 (t, J = 6.8 Hz, 2H), 2.13 (s, 3H), 2.09 (s, 3H), 2.04 (s, 3H), 1.87 – 1.76 (m, 2H), 1.61 – 1.54 (m, 3H), 1.46 – 1.27 (m, 15H), 1.20 – 1.09 (m, 6H), 0.91 – 0.87 (m, 12H). The spectroscopic data is in agreement with that previously reported. ^[3]

Synthesis of 15a

A 4 mL vial equipped with a magnetic stirring bar was dried in oven. After cooling the vial to room temperature, F₅PhSSPhF₅ **1b** (32 mg, 0.08 mmol, 0.8 eq), alkene (15 mg, 0.1 mmol, 1.0 eq), HE (38 mg, 0.15 mmol, 1.5 eq) and EtOH (1 mL) were added to the vial and bubbled with nitrogen for 15 minutes. Add a fan to maintain the temperature at room temperature. Photoirradiation was carried out with stirring for 12 hours. After that, the solution was diluted with water and extracted with EtOAc three times. The combined organic layers were washed with brine and dried over Na₂SO₄. Filtered and concentrated under vacuum. The residue was purified by flash columnchromatography on silica gel to give the desired product as colorless oil (yield: 49%).

Product Characterization

Benzyl 3-((perfluorophenyl)selenyl) propanoate (3a)

According to the general procedure A, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (37 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ : 7.37 - 7.33 (m, 5H), 5.13 (s, 2H), 3.14 (t, J = 7.1 Hz, 2H), 2.79 (t, J = 7.0 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ : 171.5, 148.2-148.0 (m), 146.6-146.4 (m), 142.6-142.4 (m), 140.9-140.7 (m), 138.5-138.3 (m), 136.9-136.6 (m), 135.6, 128.8, 128.6, 128.5, 102.0 (t, J = 25.6 Hz), 67.0, 35.7, 22.6. ¹⁹F NMR (564 MHz, CDCl₃) δ : -126.3 - -126.4 (m, 2F), -152.0 - -152.1 (m, 1F), -160.2 - -160.3 (m, 2F). ⁷⁷Se NMR (114 MHz, CDCl₃) δ : 186.3. HRMS (EI-TOF) m/z: [M]⁺ Calcd for $C_{16}H_{11}F_{5}O_{2}Se$ 409.9844, Found 409.9845.

tert-Butyl 3-((perfluorophenyl) selenyl) propanoate (3b)

$$^{t}BuO_{2}C$$
 Se F F

According to the general procedure A, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (35 mg, 95% yield). ¹**H NMR** (400 MHz, CDCl₃) δ: 3.08 (t, J = 7.0 Hz, 2H), 2.64 (t, J = 7.0 Hz, 2H), 1.45 (s, 9H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 170.9, 148.2-148.1 (m), 146.6-146.5 (m), 142.5-142.3 (m), 140.8-140.6 (m), 138.5-138.3 (m), 136.9-136.6 (m), 102.2 (t, J = 25.4 Hz), 81.6, 36.7, 28.2, 23.1. ¹⁹**F NMR** (564 MHz, CDCl₃) δ: 126.3 – 126.4 (m, 2F), -152.5 – -152.6 (m, 1F), -160.5 – -160.6 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ: 184.2. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₃H₁₃F₅O₂Se 376.0001, Found 376.0003.

(1R)-1,7,7-Trimethylbicyclo [2.2.1] heptan-2-yl-3-((perfluorophenyl)selenyl) propanoate (3c)

According to the general procedure A, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (40 mg, 88% yield). ¹**H NMR** (400 MHz, CDCl₃) δ : 4.70 – 4.67 (m, 1H), 3.12 (t, J = 7.1 Hz, 2H), 2.71 (t, J = 7.3 Hz, 2H), 1.84 – 1.65 (m, 4H), 1.59 – 1.52 (m, 1H), 1.17 – 1.04 (m, 2H), 0.95 (s, 3H), 0.83 (s, 6H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 171.0, 148.2-148.0 (m), 146.6-146.4 (m), 142.6-142.4 (m), 140.9-140.7 (m), 138.6-138.3 (m), 136.9-136.6 (m), 102.0 (t, J = 25.0 Hz), 82.0, 48.9, 47.0, 45.1, 38.8, 36.0, 33.8, 27.1, 22.8, 20.2, 20.0, 11.6. ¹⁹**F NMR** (564 MHz, CDCl₃) δ : -126.4 – -126.5 (m, 2F), -152.3 – -152.4 (m, 1F), -160.3 – -160.4 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ : 187.3. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₉H₂₁F₅O₂Se 456.0627, Found 456.0629.

Ethyl 3-((perfluorophenyl)selanyl) propanoate (3d)

$$EtO_2C$$
 Se F F F

According to the general procedure A, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (31 mg, 90% yield). ¹**H NMR** (400 MHz, CDCl₃) δ: 4.15 (q, J = 7.2 Hz, 2H), 3.12 (t, J = 7.1 Hz, 2H), 2.73 (t, J = 7.0 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 171.7, 148.2-148.1 (m), 146.6-146.5 (m), 142.6-142.5 (m), 140.9-140.7 (m), 138.6-138.3 (m), 136.9-136.6 (m), 102.0 (t, J = 25.7 Hz), 61.1, 35.7, 22.7, 14.3. ¹⁹**F NMR** (564 MHz, CDCl₃) δ: -126.3 – -126.4 (m, 2F), -152.2 – -152.3 (m, 1F), -160.3 – -160.4 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ: 185.6. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₁H₉F₅O₂Se 347.9688, Found 347.9689.

Methyl 3-((perfluorophenyl)selenyl) propanoate (3e)

$$MeO_2C$$
 Se

According to the general procedure A, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (31 mg, 92% yield). ¹**H NMR** (400 MHz, CDCl₃) δ: 3.69 (s, 3H), 3.12 (t, J = 7.1 Hz, 2H), 2.75 (t, J = 7.0 Hz, 2H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 172.1, 148.2-148.0 (m), 146.6-146.5 (m), 142.6-142.4 (m), 140.9-140.7 (m), 138.6-138.3 (m), 136.9-136.6 (m), 102.1-101.7 (m), 52.1, 35.5, 22.7. ¹⁹**F NMR** (564 MHz, CDCl₃) δ: -126.3 – 126.4 (m, 2F), -152.1 – -152.2 (m, 1F), -160.3 – -160.4 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ: 186.2. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₀H₇F₅O₂Se 333.9531, Found 333.9532.

N, N-Dimethyl-3-((perfluorophenyl) selenyl) propanamide (3f)

According to the general procedure A, crude product was purified by flash column chromatography on silica gel (PE/EA = 10: 1) to give the product as white solid (32 mg, 94% yield). ¹H NMR (400 MHz, CDCl₃) δ : 3.12 (t, J = 6.6 Hz, 2H), 2.98 (s, 3H), 2.95 (s, 3H), 2.83 (t, J = 6.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ : 171.0, 148.0-147.8 (m), 146.3-146.2 (m), 142.2-142.0 (m), 140.5-140.3 (m), 138.5-138.2 (m), 136.8-136.5 (m), 103.9 (t, J = 26.8 Hz), 37.0, 35.5, 34.7, 24.3. ¹⁹F NMR (564 MHz, CDCl₃) δ : -126.6 – -126.7 (m, 2F), -153.2 – -153.3 (m, 1F), -160.7 – -160.9 (m, 2F). ⁷⁷Se NMR (114 MHz, CDCl₃) δ : 190.6. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₁H₁₀F₅NOSe 346.9848, Found 346.9850.

3-((Perfluorophenyl) selenyl) propanamide (3g)

$$H_2N$$
 Se F F

According to the general procedure A, crude product was purified by flash column chromatography on silica gel (PE/EA = 1 : 1) to give the product as white solid (27 mg, 86% yield). ¹H NMR (400 MHz, DMSO-d₆) δ: 7.38 (s, 1H), 6.94 (s, 1H), 3.06 (t, J = 6.8 Hz, 2H), 2.53 (t, J = 6.8 Hz, 2H). ¹³C NMR (150 MHz, DMSO-d₆) δ: 172.9, 148.0-147.9 (m), 146.4-146.3 (m), 142.0-141.8 (m), 140.3-140.1 (m), 138.3-138.1 (m), 136.6-136.4 (m), 103.3 (t, J = 26.6 Hz), 55.3, 36.3, 24.5. ¹⁹F NMR (564 MHz, DMSO-d₆) δ: -127.0 – -127.1 (m, 2F), -154.0 – -154.1 (m, 1F), -161.3 – -161.4 (m, 2F). ⁷⁷Se NMR (114 MHz, DMSO-d₆) δ: 184.0. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₉H₆F₅NOSe 318.9535, Found 318.9537.

1-Morpholino-3-((perfluorophenyl)selenyl) propan-1-one (3h)

According to the general procedure A, crude product was purified by flash column chromatography on silica gel (PE/EA = 10 : 1) to give the product as white solid (33 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃) δ : 3.70 – 3.69 (m, 2H), 3.69 – 3.68 (m, 2H), 3.64 – 3.61 (m, 2H), 3.45 – 3.42 (m, 2H), 3.15 (t, J = 6.6 Hz, 2H), 2.84 (t, J = 6.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ : 169.6, 148.0-147.8 (m), 146.4-146.2 (m), 142.3-142.1 (m), 140.6-140.4 (m), 138.5-138.3 (m), 136.8-136.6 (m), 103.6 (t, J = 25.3 Hz), 66.9, 66.5, 45.8, 42.2, 34.4, 23.9. ¹⁹F NMR (564 MHz, CDCl₃) δ : -126.5 – -126.6 (m,

2F), -152.9 – -153.0 (m, 1F), -160.5 – -160.6 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ: 189.9. HRMS (EI-TOF) m/z: [M]⁺ Calcd for $C_{13}H_{12}F_5NO_2Se$ 388.9953, Found 388.9955.

1-((Perfluorophenyl)selenyl) pentan-3-one (3i)

According to the general procedure A, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (24 mg, 72% yield). ¹**H NMR** (400 MHz, CDCl₃) δ: 3.07 (t, J = 6.7 Hz, 2H), 2.89 (t, J = 6.7 Hz, 2H), 2.43 (q, J = 7.3 Hz, 2H), 1.06 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 209.2, 148.1-148.0 (m), 146.5-146.4 (m), 142.5-142.3 (m), 140.8-140.6 (m), 138.5-138.3 (m), 136.9-136.6 (m), 102.7 (t, J = 25.4 Hz), 43.1, 36.2, 22.0, 7.7. ¹⁹**F NMR** (564 MHz, CDCl₃) δ: -126.5 – -126.6 (m, 2F), -152.5 – -152.6 (m, 1F), -160.4 – -160.5 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ: 187.2. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₁H₉F₅Ose 331.9739, Found 331.9740.

3-((Perfluorophenyl)selenyl) propanoic acid (3j)

$$HO_2C$$
 Se F F

According to the general procedure A, crude product was purified by flash column chromatography on silica gel (PE/EA = 5 : 1) to give the product as colorless oil (27 mg, 85% yield). ¹**H NMR** (400 MHz, CDCl₃) δ: 10.60 (s, 1H), 3.12 (t, J = 6.9 Hz, 2H), 2.83 (t, J = 6.9 Hz, 2H). ¹³**C NMR** (150 MHz, DMSO-d6) δ: 173.5, 148.1-148.0 (m), 146.5-146.4 (m), 142.0-141.9 (m), 140.5-140.3 (m), 138.3-138.1 (m), 136.7-136.4 (m), 102.6 (t, J = 26.1 Hz), 35.8, 23.9. ¹⁹**F NMR** (564 MHz, DMSO-d6) δ: 127.0 – -127.1 (m, 2F), -153.6 – -153.7 (m, 1F), -161.3 – -161.4 (m, 2F). ⁷⁷**Se NMR** (114 MHz, DMSO-d6) δ: 183.4. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₉H₅F₅O₂Se 319.9375, Found 319.9379.

(Perfluorophenyl)(2-(phenylsulfonyl) ethyl) selane (3k)

According to the general procedure A, crude product was purified by flash column chromatography on silica gel (PE/EA = 5 : 1) to give the product as colorless oil (31 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ : 7.90-7.88 (m, 2H), 7.73 – 7.69 (m, 1H), 7.62 – 7.58 (m, 2H), 3.41 – 3.37 (m, 2H), 3.13 – 3.09 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ : 148.2-148.1 (m), 146.5-146.4 (m), 143.1-142.9 (m), 141.4-141.2 (m), 138.6-138.4 (m), 138.3, 136.9-136.7 (m), 134.4, 129.7, 128.3, 100.6 (t, J = 25.0 Hz), 57.4, 18.9. ¹⁹F NMR (564 MHz, CDCl₃) δ : -126.0 – -126.1 (m, 2F), -150.5 – -150.6 (m, 1F), -159.3 – -159.4 (m, 2F). ⁷⁷Se NMR (114 MHz, CDCl₃) δ : 190.7. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₄H₉F₅O₂SSe 415.9409, Found 415.9413.

2-((Perfluorophenyl)selenyl) ethane-1-sulfonyl fluoride (31)

$$FO_2S$$
 Se F F

According to the general procedure A, crude product was purified by flash column chromatography on silica gel (PE/EA = 5 : 1) to give the product as colorless oil (26 mg, 72% yield). ¹**H NMR** (400 MHz, CDCl₃) δ : 3.72 – 3.67 (m, 2H), 3.31 – 3.27 (m, 2H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 148.3-148.1 (m), 146.6-146.5 (m), 143.5-143.3 (m), 141.7-141.6 (m), 138.8-138.6 (m), 137.1-136.9 (m), 99.9 (t, J = 25.7 Hz), 52.2, 18.6. ¹⁹**F NMR** (564 MHz, CDCl₃) δ : 53.7 (1F), -125.9 – -126.0 (m, 2F), -149.5 – -149.6 (m, 1F), -158.8 – -158.9 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ : 193.4. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₈H₄F₆O₂SSe 357.9001, Found 357.9003.

4-(2-((Perfluorophenyl)selenyl) ethyl) pyridine (3m)

According to the general procedure A, crude product was purified by flash column chromatography on silica gel (PE/EA = 2 : 1) to give the product as white solid (31 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ : 8.52 (d, J = 5.1 Hz, 2H), 7.11 (d, J = 5.0 Hz, 2H), 3.20 (t, J = 7.6 Hz, 2H), 2.98 (t, J = 7.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ : 149.8, 148.6, 148.0-147.9 (m), 146.3-146.2 (m), 142.4-142.2 (m), 140.6-140.5 (m), 138.4-138.2 (m), 136.7-136.5 (m), 123.9, 101.5 (t, J = 25.9 Hz), 36.2, 27.6. ¹⁹F NMR (564 MHz, CDCl₃) δ : 53.7 (1F), -126.5 - -126.6 (m, 2F), -152.0 - -152.1 (m, 1F), -160.1 - -160.2 (m, 2F). ⁷⁷Se NMR (114 MHz, CDCl₃) δ : 180.9. HRMS (EI-TOF) m/z: [M]⁺ Calcd for $C_{13}H_8F_5NSe$ 352.9742, Found 352.9742.

4-(2-((Perfluorophenyl)selenyl) ethyl) pyrimidine (3n)

According to the general procedure A, crude product was purified by flash column chromatography on silica gel (PE/EA = 2 : 1) to give the product as colorless oil (30 mg, 85% yield). ¹**H NMR** (400 MHz, CDCl₃) δ: 8.48 – 8.44 (m, 3H), 3.36 (t, J = 7.0 Hz, 2H), 3.23 (t, J = 7.1 Hz, 2H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 154.9, 148.0-147.9 (m), 146.3-146.2 (m), 144.8, 144.1, 142.9, 142.3-142.2 (m), 140.6-140.5 (m), 138.3-138.1 (m), 136.6, 102.1 (t, J = 24.9 Hz), 36.0, 26.6. ¹⁹**F NMR** (564 MHz, CDCl₃) δ: -126.3 – -126.4 (m, 2F), -152.3 – -152.4 (m, 1F), -160.2 – -160.4 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ: 178.4. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₂H₇F₅N₂Se 353.9695, Found 353.9698.

Methyl 3-((perfluorophenyl)selenyl) butanoate (30)

$$\mathsf{MeO_2C} \searrow \mathsf{Se} \overset{\mathsf{F}}{\searrow} \mathsf{F}$$

According to the general procedure B, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (16 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃) δ : 3.79 – 3.74 (m, 1H), 3.68 (s, 3H), 2.74 – 2.63 (m, 2H), 1.46 (d, J = 6.9 Hz, 3H). ¹³C NMR

(150 MHz, CDCl₃) δ : 171.5, 148.5-148.4 (m), 146.9-146.8 (m), 142.8-142.7 (m), 141.2-141.0 (m), 138.5-138.3 (m), 136.8-136.7 (m), 101.3 (t, J = 26.0 Hz), 52.0, 42.9, 35.4, 22.2. ¹⁹**F NMR** (564 MHz, CDCl₃) δ : -124.9 – -125.0 (m, 2F), -151.2 – -151.3 (m, 1F), -160.0 – -160.2 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ : 270.2. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₁H₉F₅O₂Se 347.9688, Found 347.9687.

Isopropyl 3-((perfluorophenyl)selenyl) butanoate (3p)

According to the general procedure B, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (20 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ : 5.03 – 4.97 (m, 1H), 3.17 (dd, J = 12.3, 8.1 Hz, 1H), 2.96 (dd, J = 12.3, 5.8 Hz, 1H), 2.69 – 2.60 (m, 1H), 1.26 – 1.22 (m, 9H). ¹³C NMR (150 MHz, CDCl₃) δ : 174.0, 148.1-147.9 (m), 146.4-146.3 (m), 142.3-142.2 (m), 140.7-140.6 (m), 138.4-138.2 (m), 136.7-136.5 (m), 102.3 (t, J = 24.6 Hz), 68.5, 41.0, 31.2, 21.7, 21.6, 17.7. ¹⁹F NMR (564 MHz, CDCl₃) δ : -126.4 – -126.5 (m, 2F), -152.5 – -152.6 (m, 1F), -160.4 – -160.6 (m, 2F). ⁷⁷Se NMR (114 MHz, CDCl₃) δ : 160.3. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₃H₁₃F₅O₂Se 376.0001, Found 376.0003.

Benzyl 2-methyl-3-((perfluorophenyl) selenyl) propanoate (3q)

$$\mathsf{BnO}_2\mathsf{C} \underbrace{\hspace{1cm}}_{\mathsf{Se}} \underbrace{\hspace{1cm}}_{\mathsf{F}} \mathsf{F}$$

According to the general procedure B, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (22 mg, 52% yield). ¹**H NMR** (400 MHz, CDCl₃) δ: 7.39 – 7.31 (m, 5H), 5.16 – 5.08 (m, 2H), 3.21 (dd, J = 12.4, 7.8 Hz, 1H), 3.00 (dd, J = 12.4, 6.0 Hz, 1H), 2.79 – 2.74 (m, 1H), 1.30 (d, J = 7.0 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 174.4, 148.1-148.0 (m), 146.5-146.4 (m), 142.5-142.3 (m), 140.8-140.7 (m), 138.5-138.3 (m), 136.8-136.6 (m), 135.7, 102.3 (t, J = 26.1 Hz), 66.9, 41.0, 31.2, 17.7. ¹⁹**F NMR** (564 MHz, CDCl₃) δ: -126.4 – 126.5 (m, 2F), -152.3 – -152.4 (m, 1F), -160.3 – -160.4 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ: 160.3. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₇H₁₃F₅O₂Se 424.0001, Found 424.0000.

Methyl-2-(bis(tert-butoxycarbonyl) amino)-3-((perfluorophenyl)selenyl) propanoate (3r)

According to the general procedure B, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as white solid (24 mg, 44% yield). ¹**H NMR** (400 MHz, CDCl₃) δ : 5.14 – 5.11 (m, 1H), 3.75 – 3.70 (m, 4H), 3.37 (dd, J = 13.1, 8.8 Hz, 1H), 1.47 (s, 18H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 170.1, 151.9, 148.1-148.0 (m), 146.5-146.4 (m), 142.4-142.3 (m), 140.8-140.6 (m), 138.5-138.3 (m), 136.8-136.7 (m), 102.3 (t, J = 25.3 Hz), 83.9, 58.9, 52.8, 28.0. ¹⁹**F NMR** (564 MHz, CDCl₃) δ : -126.2 – -126.3 (m, 2F), -152.8 – -152.9 (m, 1F), -160.5 – -160.7 (m, 2F). ⁷⁷Se **NMR** (114 MHz, CDCl₃) δ : 160.1. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₂₀H₂₄F₅O₆Se 549.0689, Found 549.0692.

Methyl (Z)-3-((perfluorophenyl) selenyl) acrylate (5a)

$$\mathsf{MeO_2C} \overset{\mathsf{F}}{\searrow} \overset{\mathsf{F}}{\Longrightarrow} \overset{\mathsf{F}}{\searrow} \overset{\mathsf{F}} \overset{\mathsf{F}}{\searrow} \overset{$$

According to the general procedure C, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (31 mg, 94% yield). ¹**H NMR** (400 MHz, CDCl₃) δ: 7.52 (d, J = 9.1 Hz, 1H), 6.48 (d, J = 9.0 Hz, 1H), 3.83 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 168.5, 147.7-147.6 (m), 146.3, 146.0-145.9 (m), 143.1-143.0 (m), 141.4-141.2 (m), 138.7-138.4 (m), 137.0-136.8 (m), 117.9, 104.9 (t, J = 25.7 Hz), 52.3. ¹⁹**F NMR** (564 MHz, CDCl₃) δ: -127.0 – 127.1 (m, 2F), -151.1 – -151.2 (m, 1F), -159.7 – -159.8 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ: 357.6. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₀H₅F₅O₂Se 331.9375, Found 331.9376.

(Z)-2-(2-((Perfluorophenyl)selenyl) vinyl) pyridine (5b)

According to the general procedure C, crude product was purified by flash column chromatography on silica gel (PE/EA = 5 : 1) to give the product as colorless oil (30 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃) δ : 8.72 – 8.71 (m, 1H), 7.72 – 7.68 (m, 1H), 7.28 (d, J = 7.9 Hz, 1H), 7.18 – 7.15 (m, 1H), 7.07 – 7.02 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ : 155.5, 147.7-147.6 (m), 147.3, 146.1-146.0 (m), 142.5-142.3 (m), 140.7-140.6 (m), 138.5-138.3 (m), 136.8-136.6 (m), 136.7, 130.8, 125.3, 123.6, 121.2, 108.7 (t, J = 26.6 Hz). ¹⁹F NMR (564 MHz, CDCl₃) δ : -127.6 – -127.7 (m, 2F), -153.0 – -153.1 (m, 1F), -160.4 – -160.5 (m, 2F). ⁷⁷Se NMR (114 MHz, CDCl₃) δ : 336.7. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₂H₆F₅NSe 350.9586, Found 350.9566.

3-((Perfluorophenyl)selenyl) acrylic acid (5c)

$$HO_2C$$
 Se F F

According to the general procedure C, crude product was purified by flash column chromatography on silica gel (DCM/MeOH = 20 : 1) to give the product as white solid (23 mg, 72% yield). ¹**H NMR** (400 MHz, DMSO-d6) δ: 7.98 (d, J = 15.5 Hz, 0.14H), 7.85 (d, J = 8.7 Hz, 1H), 6.53 (d, J = 8.8 Hz, 1H), 5.76 (d, J = 15.5 Hz, 0.14H), 3.51 (s, 1H). ¹³C NMR (150 MHz, DMSO-d6) δ: 169.3, 165.1, 147.2-147.1 (m), 146.3, 145.6-145.5 (m), 142.0-141.9 (m), 140.4, 140.3-140.2 (m), 137.9-137.6 (m), 136.2-136.0 (m), 121.8, 118.9, 105.2 (t, J = 26.8 Hz). ¹⁹F NMR (564 MHz, DMSO-d6) δ: -127.6 - -127.7 (m, 2F), -152.9 - -153.0 (m, 1F), -161.0 - -161.1 (m, 2F). ⁷⁷Se NMR (114 MHz, DMSO-d6) δ: 348.3. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₉H₃F₅O₂Se 317.9218, Found 317.9221.

Ethyl -3-(4-methoxyphenyl)-3-((perfluorophenyl) selenyl) acrylate (5d)

According to the general procedure C, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as white solid (36 mg, 80% yield). ¹**H NMR** (400 MHz, CDCl₃) δ : 6.99 (d, J = 8.7 Hz, 2H), 6.66 (d, J = 8.7 Hz, 2H), 6.37 (s, 1H), 4.30 (q, J = 7.1 Hz, 2H), 3.73 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 167.5, 160.1, 158.8, 147.6-147.5 (m), 146.0-145.9 (m), 143.0-142.9 (m), 141.2-141.1 (m), 138.0-137.7 (m), 136.3-136.1 (m), 131.2, 129.2, 118.1, 113.3, 104.2 (t, J = 27.2 Hz), 61.2, 55.4, 14.5. ¹⁹**F NMR** (564 MHz, CDCl₃) δ : -124.6 – -124.7 (m, 2F), -150.7 – -150.8 (m, 1F), -160.7 – -160.8 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ : 399.7. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₈H₁₃F₅O₃Se 451.9950, Found 451.9952.

N-Methyl-3-((perfluorophenyl)selenyl)-N,3-diphenylacrylamide (5e)

According to the general procedure C, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as white solid (28 mg, 58% yield). ¹**H NMR** (400 MHz, CDCl₃) δ: 7.41 (t, J = 7.6 Hz, 2H), 7.32 (d, J = 7.4 Hz, 1H), 7.27 – 7.25 (m, 2H), 7.06 – 7.04 (m, 3H), 6.92 – 6.90 (m, 2H), 6.26 (s, 1H), 3.44 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 166.9, 156.2, 147.7-147.5 (m), 146.1-145.9 (m), 143.3, 142.6-142.5 (m), 140.9-140.8 (m), 139.3, 137.8-137.5 (m), 136.1-135.8 (m), 130.0, 128.5, 128.1, 127.7, 127.6, 127.3, 118.3, 105.4 (t, J = 27.7 Hz), 37.6. ¹⁹**F NMR** (564 MHz, CDCl₃) δ: -124.4 – -124.5 (m, 2F), -151.6 – -151.7 (m, 1F), -161.3 – -161.4 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ: 403.4. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₂₂H₁₄F₅NOSe 483.0161, Found 483.0158.

4-((Perfluorophenyl)selenyl)-4-phenylbut-3-en-2-one (5f)

According to the general procedure C, crude product was purified by flash column chromatography on silica gel (PE) to give the product as white solid (35 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃) δ : 7.16 – 7.11 (m, 3H), 7.04 – 7.00 (m, 2H), 6.91 (s, 1H), 2.38 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 197.3, 161.0, 147.6-147.4 (m), 146.0-145.9 (m), 142.9-142.7 (m), 141.2-141.0 (m), 138.8, 137.8-137.6 (m), 136.2-135.9 (m), 129.0, 127.9, 127.6, 125.2, 104.6 (t, J = 26.7 Hz), 29.9. ¹⁹F NMR (564 MHz, CDCl₃) δ : -124.5 – -124.6 (m, 2F), -150.9 – -151.0 (m, 1F), -160.9 – -161.0 (m, 2F). ⁷⁷Se NMR (114 MHz, CDCl₃) δ : 457.2. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₆H₉F₅Ose 391.9739, Found 391.9741.

(13S)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-

yl (Z)-3-((perfluorophenyl)selenyl)acrylate (5g)

According to the general procedure C, crude product was purified by flash column chromatography on silica gel (PE/EA = 10 : 1) to give the product as white solid (40 mg, 70% yield). It is noted that alkyne substrate **4g** was prepared according to a known procedure.^[3] ¹**H NMR** (400 MHz, CDCl₃) δ: 7.72 (d, J = 9.0 Hz, 1H), 7.32 (d, J = 8.5 Hz, 1H), 6.94 (d, J = 8.5 Hz, 1H), 6.91 (s, 1H), 6.70 (d, J = 9.1 Hz, 1H), 2.94 – 2.92 (m, 2H), 2.51 (dd, J = 18.8, 8.6 Hz, 1H), 2.44 – 2.40 (m, 1H), 2.34 – 2.27 (m, 1H), 2.17 – 2.01 (m, 4H), 1.66 – 1.44 (m, 7H), 0.92 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 220.9, 166.9, 148.9, 148.3, 147.7-147.6 (m), 146.1-146.0 (m), 143.1-143.0 (m), 141.4-141.3 (m), 138.7-138.6 (m), 138.3, 138.0, 137.0-136.8 (m), 126.7, 121.5, 118.7, 117.5, 104.8 (t, J = 25.5 Hz), 50.5, 48.1, 44.3, 38.1, 36.0, 31.7, 29.6, 26.4, 25.9, 21.7, 13.9. ¹⁹**F NMR** (564 MHz, CDCl₃) δ: -126.8 – -126.9 (m, 2F), -150.6 – -150.7 (m, 1F), -159.4 – -159.5 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ: 366.6. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₂₇H₂₃F₅O₃Se 570.0733, Found 570.0728.

2,5,7,8-Tetramethyl-2-((4,8,12-trimethyltridecyl)chroman-6-yl(Z)-3-((perfluorophenyl)selenyl)acrylate (5h)

According to the general procedure C, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (60 mg, 82% yield). It is noted that alkyne substrate **4h** was prepared according to a known procedure.^[3] ¹**H NMR** (400 MHz, CDCl₃) δ: 7.73 (d, J = 9.1 Hz, 1H), 6.79 (d, J = 9.1 Hz, 1H), 2.63 (t, J = 6.9 Hz, 2H), 2.13 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 1.85 – 1.77 (m, 2H), 1.61 – 1.54 (m, 3H), 1.47 – 1.37 (m, 5H), 1.32 – 1.27 (m, 10H), 1.18 – 1.07 (m, 6H), 0.89 – 0.86 (m, 12H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 166.9, 149.8, 148.6, 147.7-147.6 (m), 146.0-145.9 (m), 143.0-142.9 (m), 141.3-141.2 (m), 140.4, 138.7-137.5 (m), 137.0-136.9 (m), 126.7, 125.0, 123.4, 117.6, 117.3, 105.0 (t, J = 25.8 Hz), 75.3, 40.2, 39.5, 37.6, 37.4, 32.9, 32.8, 31.2, 28.1, 25.0, 24.6, 24.1, 22.9, 22.8, 21.2, 20.8, 19.9, 19.8, 13.2, 12.3, 12.0. ¹⁹**F NMR** (564 MHz, CDCl₃) δ: -126.9 – -127.0 (m, 2F), -150.9 – -151.0 (m, 1F), -159.5 – -159.6 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ: 367.3. HRMS (EI-TOF) m/z: [M]⁺ Calcd for $C_{38}H_{51}F_5O_3$ Se 730.2924, Found 730.2926.

(2,2-Diphenylvinyl)(perfluorophenyl)selane (7a)

¹**H NMR** (400 MHz, CDCl₃) δ: 7.47 - 7.39 (m, 3H), 7.33 - 7.30 (m, 2H), 7.29 - 7.26 (m, 3H), 7.21 - 7.16 (m, 2H), 6.86 (s, 1H). HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₂₀H₁₁F₅Se 426.0, Found 426.0.

(1-(4-Methoxyphenyl)ethene-1,2-diyl)bis((perfluorophenyl)selane) (9a)

¹**H NMR** (400 MHz, CDCl₃) δ: 7.25 (d, J = 8.7 Hz, 2H), 6.80 (s, 1H), 6.75 (d, J = 8.8 Hz, 2H), 3.73 (s, 3H). HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₂₀H₁₁F₅Se 625.9, Found 625.9.

Benzyl 3-((perfluorophenyl) selenyl) propanoate (10a)

According to the general procedure D, crude product was purified by flash column chromatography on silica gel (100% PE) to give the product as colorless oil (24 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ: 7.92 (d, J = 7.8 Hz, 2H), 7.69 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.7 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ: 187.8, 148.1-148.0 (m), 146.5-146.3 (m), 143.8-143.6, 142.1-141.8 (m), 138.7-138.5 (m), 137.1, 137.0-136.8 (m), 134.9, 129.5, 127.9, 100.0 (t, J = 26.6 Hz). ¹⁹F NMR (564 MHz, CDCl₃) δ: -125.2 – -125.3 (m, 2F), -149.6 – -149.7 (m, 1F), -160.0 – -160.1 (m, 2F). ⁷⁷Se NMR (114 MHz, CDCl₃) δ: 506.6. HRMS (EI-TOF) m/z: [M- C₆F₅Se]⁺ Calcd for C₇H₅O 105.0340; Found 105.0343, [M- C₇H₅O]⁺ Calcd for C₆F₅Se 246.9085; Found 246.9090.

Benzyl 3-((perfluorophenyl) selenyl) propanoate (11a)

According to the general procedure D, crude product was purified by flash column chromatography on silica gel (PE/EA = 10 : 1) to give the product as colorless oil (27 mg, 95% yield). ¹**H NMR** (400 MHz, CDCl₃) δ: 3.78 (t, J = 6.0 Hz, 2H), 3.10 (t, J = 6.1 Hz, 2H), 2.18 (s, 1H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 148.4-148.3 (m), 146.8-146.7 (m), 142.7-142.6 (m), 141.0-140.8 (m), 138.6-138.3 (m), 136.9-136.7 (m), 101.2 (t, J = 26.2 Hz), 61.6, 32.2. ¹⁹**F NMR** (564 MHz, CDCl₃) δ: -126.3 – -126.4 (m, 2F), -151.9 – -152.0 (m, 1F), -160.1 – -160.2 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ: 119.2. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₈H₅F₅Ose 291.9426, Found 291.9427.

Benzyl 3-((perfluorophenyl) selenyl) propanoate (12a)

According to the general procedure D, crude product was purified by flash column chromatography on silica gel (100% PE) to give the product as colorless oil (32 mg, 94% yield). ¹**H NMR** (400 MHz, CDCl₃) δ : 7.19 – 7.11 (m, 5H), 4.08 (s, 2H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 148.2-148.0 (m), 146.5-146.4 (m), 142.5-142.3 (m), 140.8-140.6 (m), 138.4-138.2 (m), 137.1, 136.7-136.5 (m), 128.9, 128.8, 127.8, 102.2 (t, J = 25.5 Hz), 32.0. ¹⁹**F NMR** (564 MHz, CDCl₃) δ : -126.3 – -126.4 (m, 2F), -152.2 –

-152.3 (m, 1F), -160.7 - -160.8 (m, 2F). ⁷⁷Se NMR (114 MHz, CDCl₃) δ : 243.6. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₃H₇F₅Se 337.9633, Found 337.9637.

Benzyl 3-((perfluorophenyl) selenyl) propanoate (13a)

According to the general procedure D, crude product was purified by flash column chromatography on silica gel (PE/EA = 10 : 1) to give the product as colorless oil (29 mg, 90% yield). ¹**H NMR** (400 MHz, CDCl₃) δ : 8.37 (d, J = 4.1 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.14 – 7.06 (m, 1H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 153.6, 150.7, 148.3-148.2 (m), 146.7-146.6 (m), 143.4-143.3 (m), 141.7-141.6 (m), 138.8-138.5 (m), 137.2, 137.1-136.8 (m), 124.4, 121.8, 101.5 (t, J = 25.4 Hz). ¹⁹**F NMR** (564 MHz, CDCl₃) δ : -124.8 – -124.9 (m, 2F), -150.5 – -150.6 (m, 1F), -160.0 – -160.1 (m, 2F). ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ : 315.3. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₁H₄F₅NSe 324.9429; Found 324.9425.

Benzyl 3-((perfluorophenyl) selenyl) propanoate (14a)

According to the general procedure D, crude product was purified by flash column chromatography on silica gel (100% PE) to give the product as colorless oil (20 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ: 2.74 (t, J = 7.3 Hz, 2H), 1.82 – 1.73 (m, 2H), 1.02 (t, J = 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ: 194.5, 147.6-147.5 (m), 146.2-145.9 (m), 143.5-143.4 (m), 141.9-141.8 (m), 138.7-138.5 (m), 137.0-136.8 (m), 100.4 (t, J = 26.0 Hz), 49.2, 19.0, 13.4. ¹⁹F NMR (564 MHz, CDCl₃) δ: -125.6 – -125.7 (m, 2F), -150.1 – -150.2 (m, 1F), -160.1 – -160.2 (m, 2F). ⁷⁷Se NMR (114 MHz, CDCl₃) δ: 521.8. HRMS (EI-TOF) m/z: [M-C₆F₅Se]⁺ Calcd for C₄H₇O 71.0497; Found 71.0496, [M-C₄H₇O]⁺ Calcd for C₆F₅Se 246.9085; Found 246.9091.

Benzyl 3-((perfluorophenyl)thio)propanoate (15a)

Crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (18 mg, 49% yield). ¹**H NMR** (400 MHz, CDCl₃) δ : 7.39 - 7.32 (m, 5H), 5.12 (s, 2H), 3.14 (t, J = 7.2 Hz, 2H), 2.65 (t, J = 7.2 Hz, 2H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 170.9, 148.7-148.6 (m), 147.0-146.9 (m), 142.7-142.5 (m), 140.9-140.8 (m), 138.8-138.6 (m), 137.1-136.9 (m), 135.6, 128.8, 128.6, 128.5, 108.5 (t, J = 22.5 Hz), 67.0, 35.1, 30.0. ¹⁹**F NMR** (564 MHz, CDCl₃) δ : -136.7 - -136.8 (m, 2F), -156.6 - -156.7 (m, 1F), -165.4 - -165.5 (m, 2F). HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₆H₁₁F₅O₂S 362.0400, Found 362.0403.

Ethyl 3-(benzylselenyl) propanoate (17a)

According to the general procedure E, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (25 mg, 92% yield). ¹**H NMR** (400 MHz, CDCl₃) δ : 7.66 – 7.14 (m, 5H), 4.14 (q, J = 7.1 Hz, 2H), 3.81 (s, 2H), 2.71 (t, J = 7.1 Hz, 2H), 2.63 (t, J = 6.9 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 172.2, 139.1, 128.8, 128.5, 126.8, 60.6, 35.5, 27.3, 17.6, 14.2. ⁷⁷Se NMR (114 MHz, CDCl₃) δ : 270.8. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₂H₁₆O₂Se 272.0316; Found 272.0317.

Ethyl 3-(methylselenyl) propanoate (17b)

According to the general procedure E, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (10 mg, 50% yield). ¹**H NMR** (400 MHz, CDCl₃) δ: 4.14 (q, J = 7.1 Hz, 2H), 2.78 – 2.72 (m, 2H), 2.72 – 2.66 (m, 2H), 2.03 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 172.4, 60.8, 35.5, 19.1, 14.3, 4.4. ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ: 98.1. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₆H₁₂O₂Se 196.0003, Found 195.9999.

Ethyl 3-(ethylselenyl) propanoate (17c)

$$EtO_2C$$
 Se_ CH_3

According to the general procedure E, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (16 mg, 75% yield). ¹**H NMR** (400 MHz, CDCl₃) δ : 4.14 (q, J = 7.1 Hz, 2H), 2.79 – 2.76 (m, 2H), 2.71 – 2.67 (m, 2H), 2.59 (q, J = 7.5 Hz, 2H), 1.39 (t, J = 7.5 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 172.5, 60.7, 35.9, 17.6, 17.1, 15.8, 14.3. ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ : 213.1. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₇H₁₄O₂Se 210.0159, Found 210.0161.

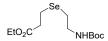
Ethyl 3-(isopropylselenyl) propanoate (17d)

According to the general procedure E, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (18 mg, 82% yield). ¹**H NMR** (400 MHz, CDCl₃) δ: 4.15 (q, J = 7.1 Hz, 2H), 3.28 – 3.06 (m, 1H), 2.81 – 2.78 (m, 2H), 2.72 – 2.68 (m, 2H), 1.41 (d, J = 6.8 Hz, 6H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ: 172.6, 60.8, 36.1, 29.4, 24.6, 16.7, 14.3. ⁷⁷Se NMR (114 MHz, CDCl₃) δ: 307.3. HRMS (EI-TOF) m/z: [M]⁺ Calcd for $C_8H_{16}O_2Se$ 224.0316, Found 224.0316.

Ethyl 3-(isopropylselenyl) propanoate (17e)

According to the general procedure E, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (20 mg, 88% yield). ¹H NMR (400 MHz,

CDCl₃) δ : 5.86 – 5.76 (m, 1H), 5.09 – 5.01 (m, 2H), 4.15 (q, J = 7.1 Hz, 2H), 2.79 (t, J = 6.7 Hz, 2H), 2.70 (t, J = 6.8 Hz, 2H), 2.64 (t, J = 7.5 Hz, 2H), 2.45 – 2.39 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (150 MHz, CDCl₃) δ : 172.4, 137.4, 116.0, 60.8, 35.9, 34.8, 23.3, 17.7, 14.3. ⁷⁷Se **NMR** (114 MHz, CDCl₃) δ : 184.7. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₉H₁₆O₂Se 236.0316, Found 236.0319.


Ethyl 3-(cyclopentylselenyl) propanoate (17f)

According to the general procedure E, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (20 mg, 80% yield). ¹**H NMR** (400 MHz, CDCl₃) δ: 4.15 (q, J = 7.1 Hz, 2H), 3.30 – 3.23 (m, 1H), 2.81 – 2.78 (m, 2H), 2.73 – 2.69 (m, 2H), 2.09 – 2.00 (m, 2H), 1.76 – 1.69 (m, 2H), 1.65 – 1.54 (m, 4H), 1.26 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 172.5, 60.6, 37.8, 36.0, 34.4, 24.9, 17.5, 14.2. ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ: 266.8. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₀H₁₈O₂Se 250.0472, Found 250.0473.

Ethyl 3-(((tetrahydrofuran-2-yl) methyl) selenyl) propanoate (17g)

According to the general procedure E, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (19 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ : 4.14 (q, J = 7.1 Hz, 2H), 4.09 – 4.02 (m, 1H), 3.92 – 3.86 (m, 1H), 3.78 – 3.72 (m, 1H), 2.84 – 2.81 (m, 2H), 2.78 – 2.67 (m, 4H), 2.09 – 2.01 (m, 1H), 1.96 – 1.84 (m, 2H), 1.64 – 1.55 (m, 1H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 172.4, 79.2, 68.4, 60.8, 36.0, 31.8, 29.5, 26.1, 18.5, 14.3. ⁷⁷Se NMR (114 MHz, CDCl₃) δ : 154.9. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₀H₁₈O₃Se 266.0421, Found 266.0422.

Ethyl 3-((2-((tert-butoxycarbonyl) amino) ethyl) selenyl) propanoate (17h)

According to the general procedure E, crude product was purified by flash column chromatography on silica gel (PE/EA = 10 : 1) to give the product as colorless oil (24 mg, 75% yield). ¹**H NMR** (400 MHz, CDCl₃) δ: 4.95 (s, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.39 – 3.34 (m, 2H), 2.80 – 2.77 (m, 2H), 2.72 – 2.67 (m, 4H), 1.43 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ: 172.3, 155.9, 79.6, 60.9, 40.6, 35.8, 28.5, 24.6, 17.7, 14.3. ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ: 152.9. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₂H₂₃NO₄Se 325.0792, Found 325.0794.

Ethyl 3-(cycloheptylselenyl) propanoate (17i)

According to the general procedure F, crude product was purified by flash column chromatography on silica gel (PE/EA = 20 : 1) to give the product as colorless oil (18 mg, 65% yield). ¹**H NMR** (400 MHz, CDCl₃) δ : 4.15 (q, J = 7.1 Hz, 2H), 3.10 (s, 1H), 2.78 – 2.76 (m, 2H), 2.70 (t, J = 6.6 Hz, 2H), 2.09 –

2.03 (m, 2H), 1.72 - 1.65 (m, 4H), 1.58 - 1.53 (m, 4H), 1.50 - 1.43 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 172.6, 60.8, 40.9, 36.1, 28.2, 26.8, 17.4, 14.3. ⁷⁷Se NMR (114 MHz, CDCl₃) δ : 293.4. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₂H₂₂O₂Se 278.0785, Found 278.0787.

Methyl 2-((3-ethoxy-3-oxopropyl) selenyl)-2-methylpropanoate (17j)

According to the general procedure F, crude product was purified by flash column chromatography on silica gel (PE/EA = 10 : 1) to give the product as colorless oil (18 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ : 4.14 (q, J = 7.1 Hz, 2H), 3.72 (s, 3H), 2.93 (t, J = 7.3 Hz, 2H), 2.68 (t, J = 7.3 Hz, 2H), 1.61 (s, 6H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 175.5, 172.2, 60.7, 52.4, 40.7, 35.3, 26.1, 18.2, 14.2. ⁷⁷Se NMR (114 MHz, CDCl₃) δ : 441.8. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₀H₁₈O₄Se 282.0370, Found 282.0373.

tert-Butyl 4-((3-ethoxy-3-oxopropyl) selanyl) piperidine-1-carboxylate (17k)

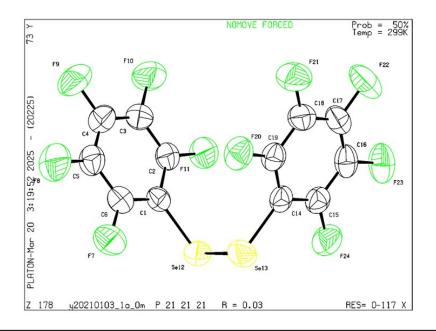
According to the general procedure F, crude product was purified by flash column chromatography on silica gel (PE/EA = 5: 1) to give the product as colorless oil (25 mg, 70% yield). ¹**H NMR** (400 MHz, CDCl₃) δ : 4.15 (q, J = 7.1 Hz, 2H), 3.90 (s, 2H), 3.06 – 3.01 (m, 1H), 2.97 – 2.90 (m, 2H), 2.81 – 2.79 (m, 2H), 2.70 (t, J = 7.2 Hz, 2H), 1.99 – 1.94 (m, 2H), 1.65 – 1.61 (m, 2H), 1.45 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ : 172.4, 154.9, 79.7, 60.9, 36.1, 36.0, 33.5, 28.6, 16.5, 14.3. ⁷⁷**Se NMR** (114 MHz, CDCl₃) δ : 273.4. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₅H₂₇NO₄Se 365.1105, Found 365.1107.

tert-Butyl 4-((3-ethoxy-3-oxopropyl) selanyl) piperidine-1-carboxylate (171)

According to the general procedure F, crude product was purified by flash column chromatography on silica gel (PE/EA = 5 : 1) to give the product as colorless oil (11 mg, 44% yield). ¹H NMR (400 MHz, CDCl₃) δ : 7.91 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.6 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.49 – 7.45 (m, 1H), 7.38 (d, J = 8.6 Hz, 1H), 5.39 (s, 1H), 3.78 – 3.75 (m, 2H), 3.54 – 3.51 (m, 2H), 2.10 – 2.05 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ : 158.1, 148.7, 135.6, 130.4, 128.0, 127.1, 126.6, 126.1, 123.7, 59.4, 33.5, 22.9. ⁷⁷Se NMR (114 MHz, CDCl₃) δ : 347.2. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₂H₁₃NOSe 267.0162, Found 267.0163.

Ethyl 3-(pyridin-2-ylselanyl) propanoate (17m)

According to the general procedure F, crude product was purified by flash column chromatography on silica gel (PE/EA = 5 : 1) to give the product as colorless oil (19 mg, 74% yield). ¹**H NMR** (400 MHz, CDCl₃) δ : 8.44 (d, J = 3.9 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.03 – 7.00 (m, 1H),


4.16 (q, J = 7.1 Hz, 2H), 3.39 (t, J = 7.1 Hz, 2H), 2.88 (t, J = 7.1 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (150 MHz, CDCl₃) δ : 172.5, 154.8, 150.1, 135.9, 125.5, 120.3, 60.7, 35.5, 19.5, 14.2. ⁷⁷Se **NMR** (114 MHz, CDCl₃) δ : 355.7. HRMS (EI-TOF) m/z: [M]⁺ Calcd for C₁₀H₁₃NO₂Se 259.0112, Found 259.0113.

Scale-up experiment

A 25 ml Schlenk tube equipped with a magnetic stirring bar was dried in oven. After cooling the tube to room temperature, the tube was charged with F₅PhSeSePhF₅ **1a** (0.8 mmol, 0.8 eq), HE (1.5 mmol, 1.5 eq) and EtOH (10.0 mL). Then the resulting solution was degassed for 20 min by bubbling N₂. After that, **2a** (1.0 mmol, 1.0 equiv.) were added via a syringe. Add a fan to maintain the temperature at room temperature. The reaction mixture was then irradiated with 24 W green LEDs for 1 hours. The solvent was removed on a rotary evaporator under reduced pressure and the crude product was purified by flash silica-gel column chromatography to give the desired product **3a** as colorless oil (370mg, 90% yield).

Single crystal X-ray diffraction data for 1a

Preparation of the single crystals of 1a: 100 mg of pure 1a was dissolved in petroleum ether (0.5 mL) at room temperature. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing the slow solvent evaporation at 0 °C. After about three days, several small crystals were observed at the bottom of the bottle. The crystals were collected and subjected to the single crystal X-ray diffraction analysis for the determination of the structure of 1a. The data set was collected by a Bruker proton III ((Bruker, Germany) 298.0 K equipped with Cu radiation source ($K\alpha = 1.54178 \text{ Å}$). Applied with multi-scanabsorption correction, the structure solution was solved and refinement was processed by diamondprogram package.

Bond precision: C-C = 0.0073 Å Wavelength=1.54178

Cell: a=5.7599(3) b=9.4957(5) c=25.7505(13)

alpha=90 beta=90 gamma=90

Temperature: 299 K

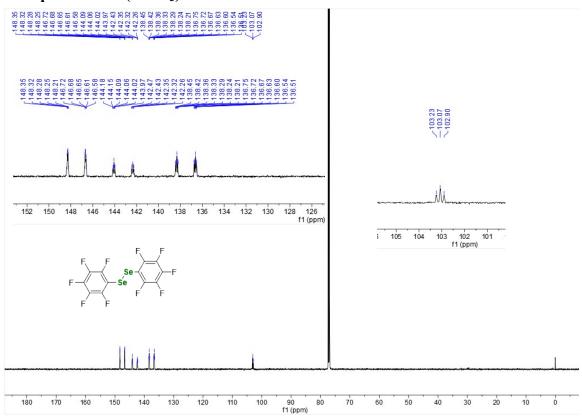
•	2 // 11	
	Calculated	Reported
Volume	1408.41(13)	1408.41(13)
Space group	P 21 21 21	P 21 21 21
Hall group	P 2ac 2ab	P 2ac 2ab
Moiety formula	C12 F10 Se2	C12 F10 Se2
Sum formula	C12 F10 Se2	C12 F10 Se2
Mr	492.04	492.04
Dx,g cm-3	2.320	2.321
Z	4	4
Mu (mm-1)	7.685	7.685
F000	920.0	920.0
F000'	917.34	
h,k,lmax	6,11,31	6,11,30
Nref	2565[1523]	2553
Tmin,Tmax	0.238,0.541	0.276,0.753
Tmin'	0.148	

Correction method= # Reported T Limits: Tmin=0.276 Tmax=0.753

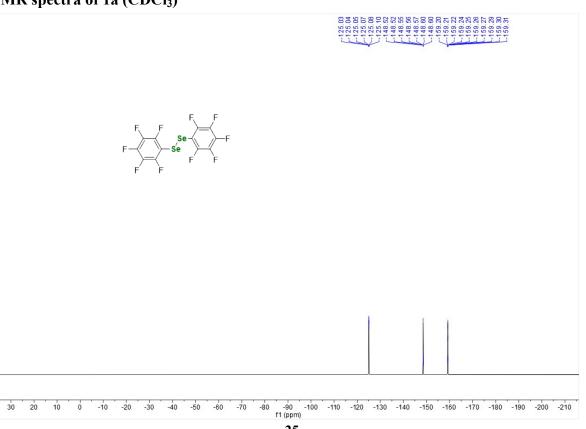
AbsCorr = MULTI-SCAN

Data completeness= 1.68/1.00 Theta(max)= 68.204

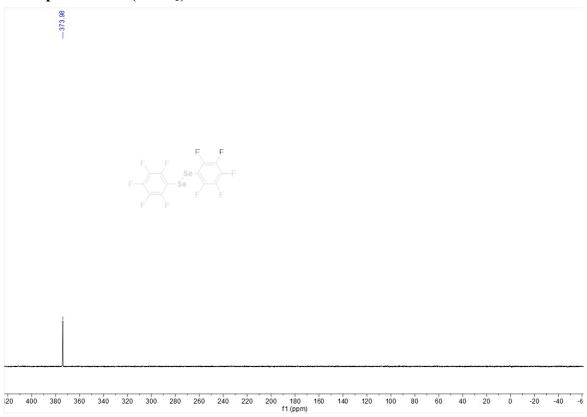
R(reflections)= 0.0288(2514) wR2(reflections)=0.0695(2553)

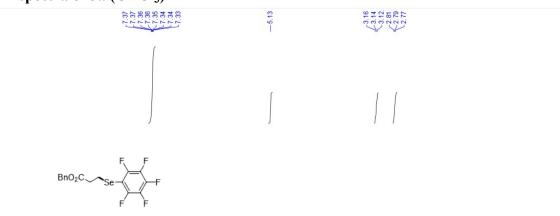

S = 1.116 Npar= 218

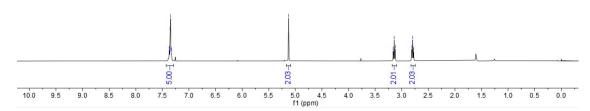
References:


- 1. Thomas, M. K.; Burkhard, K.; Peter, M.; Holger, P.; Oliver, P. R.; Alexander, S. *Phosphorus Sulfur.* **2001**, *172*, 119-128.
- 2. Boris, A. V. D. W.; Tobias, R. J. Am. Chem. Soc. 2025, 147, 4736-4742.
- 3. Wang, L.; Jeremy, M. L.; Sean, M. R.; Stacy, C. F.; David, A. N. Science. 2018, 362, 225-229.

Spectral Data for Products


¹³C NMR spectra of 1a (CDCl₃)

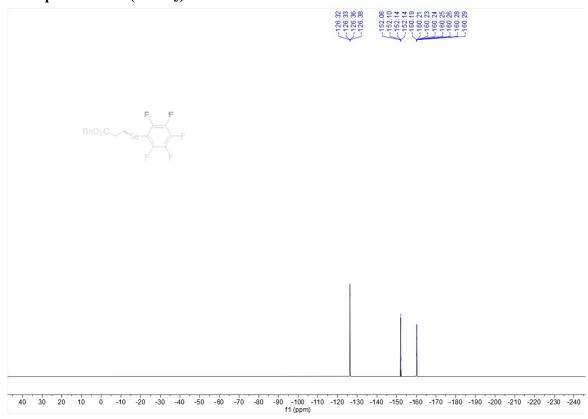

¹⁹F NMR spectra of 1a (CDCl₃)

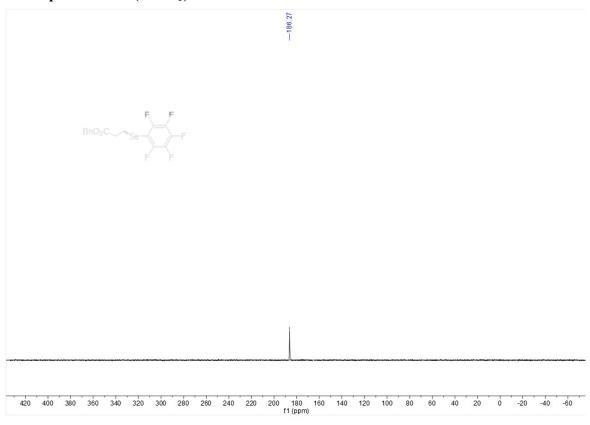


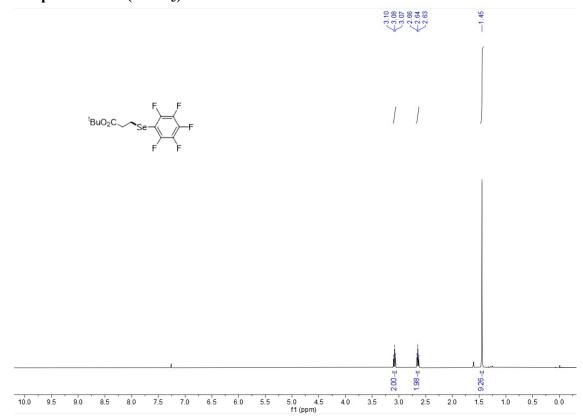
⁷⁷Se NMR spectra of 1a (CDCl₃)

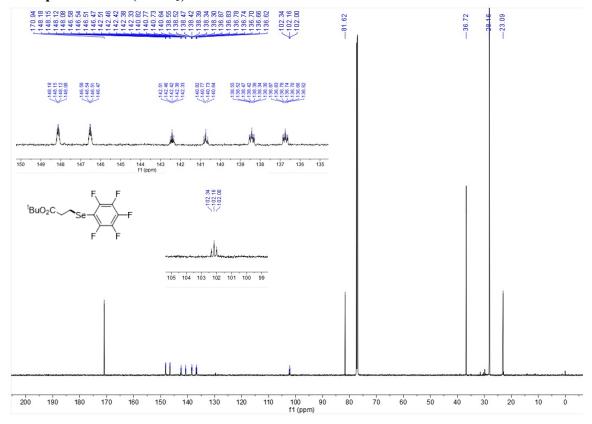


¹H NMR spectra of 3a (CDCl₃)



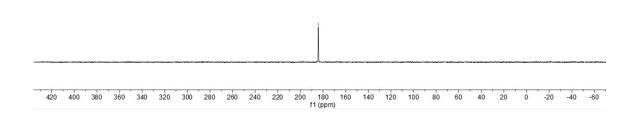

¹³C NMR spectra of 3a (CDCl₃)

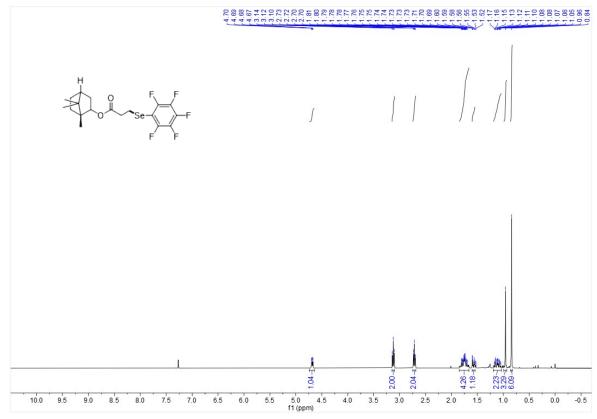

¹⁹F NMR spectra of 3a (CDCl₃)


⁷⁷Se NMR spectra of 3a (CDCl₃)

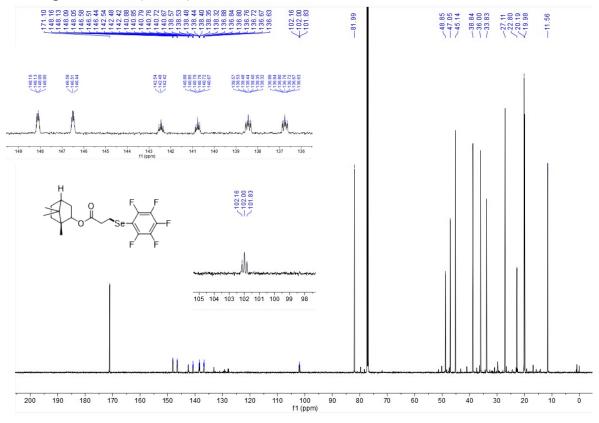
¹H NMR spectra of 3b (CDCl₃)

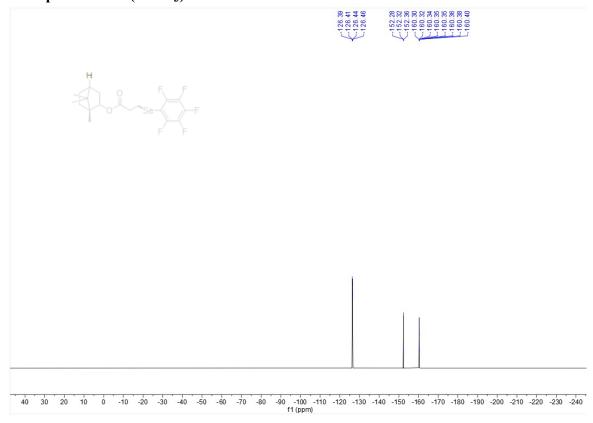
¹³C NMR spectra of 3b (CDCl₃)

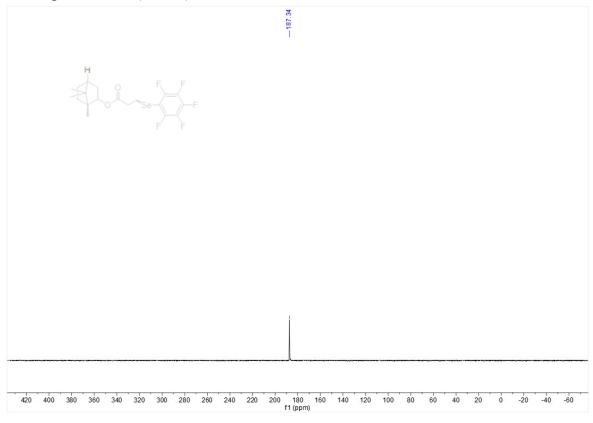

¹⁹F NMR spectra of 3b (CDCl₃)

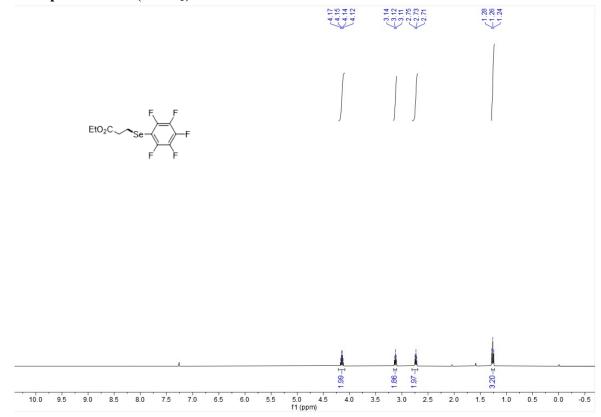

⁷⁷Se NMR spectra of 3b (CDCl₃)

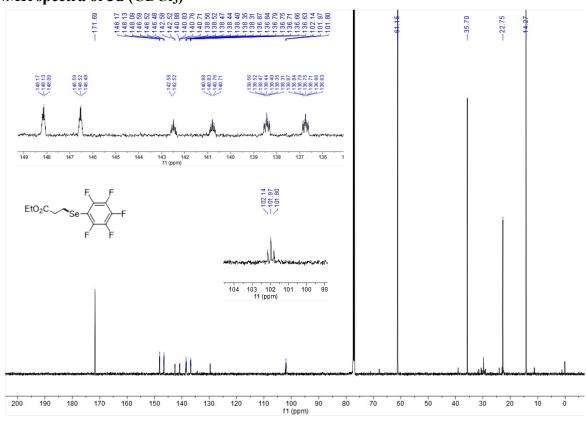
-184.21

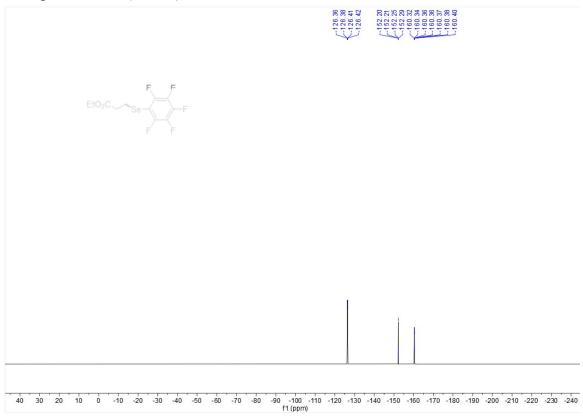


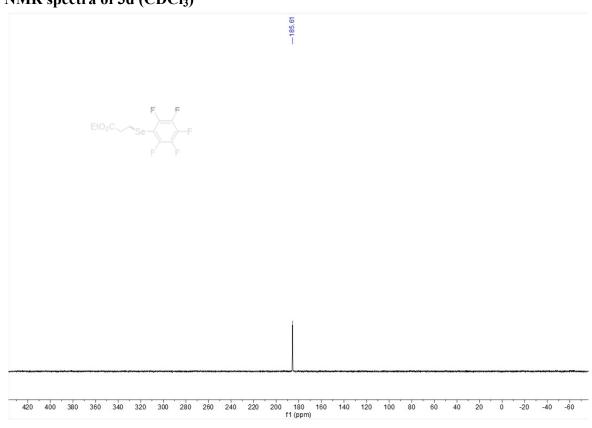

¹H NMR spectra of 3c (CDCl₃)

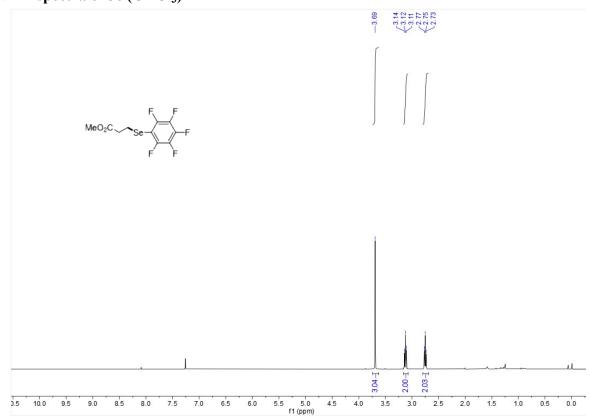

¹³C NMR spectra of 3c (CDCl₃)

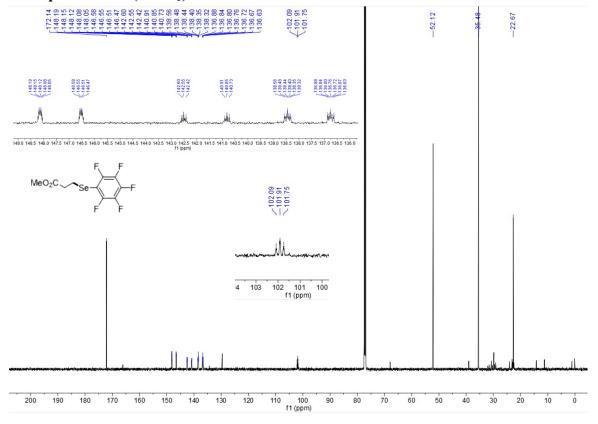

¹⁹F NMR spectra of 3c (CDCl₃)

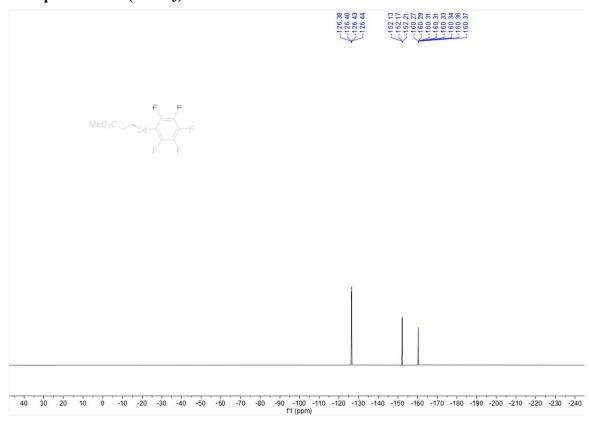

⁷⁷Se NMR spectra of 3c (CDCl₃)

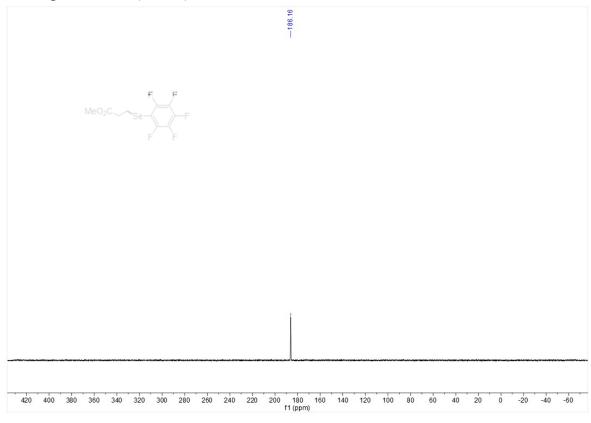

¹H NMR spectra of 3d (CDCl₃)

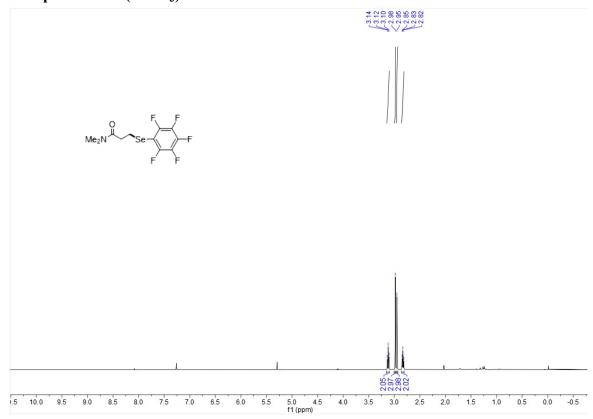

¹³C NMR spectra of 3d (CDCl₃)

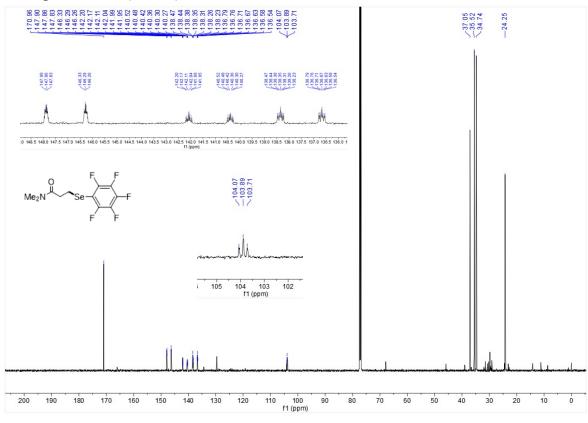

¹⁹F NMR spectra of 3d (CDCl₃)

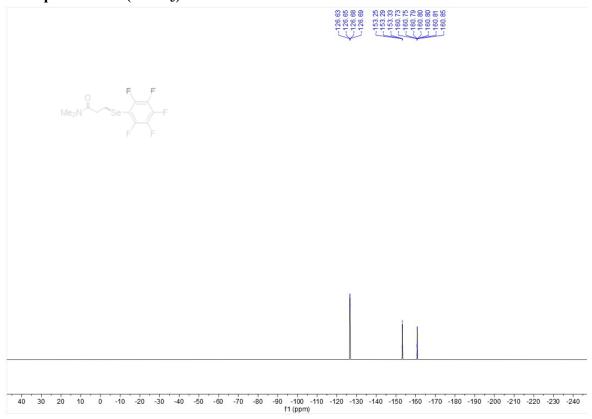

⁷⁷Se NMR spectra of 3d (CDCl₃)

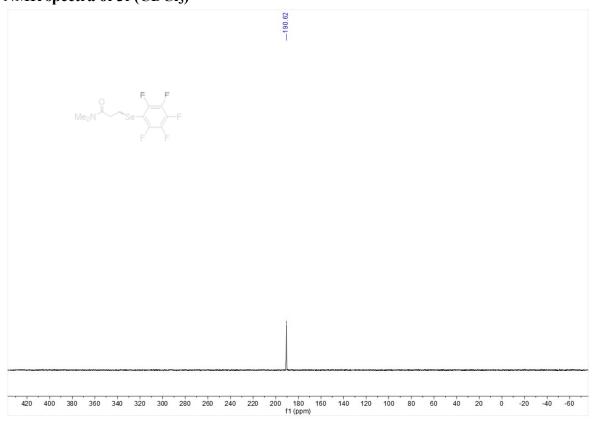

¹H NMR spectra of 3e (CDCl₃)

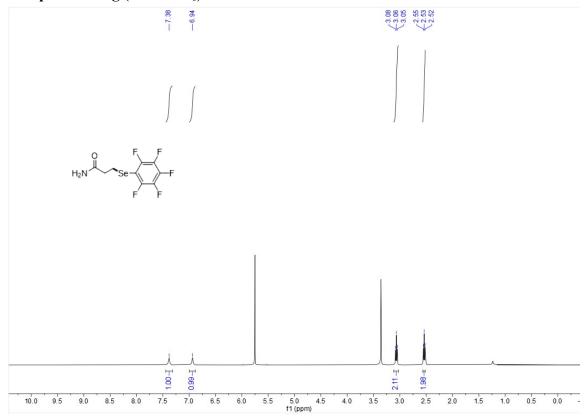

¹³C NMR spectra of 3e (CDCl₃)

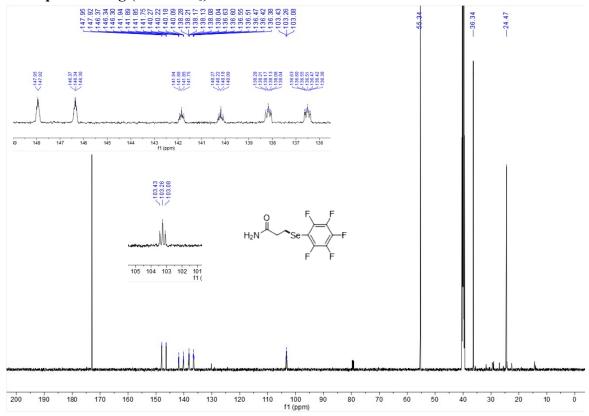

¹⁹F NMR spectra of 3e (CDCl₃)

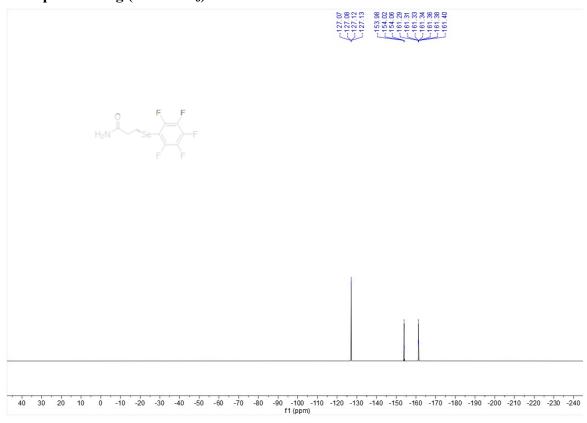

⁷⁷Se NMR spectra of 3e (CDCl₃)

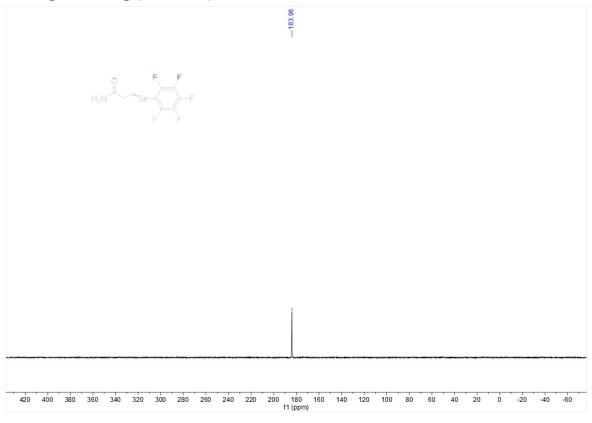

¹H NMR spectra of 3f (CDCl₃)

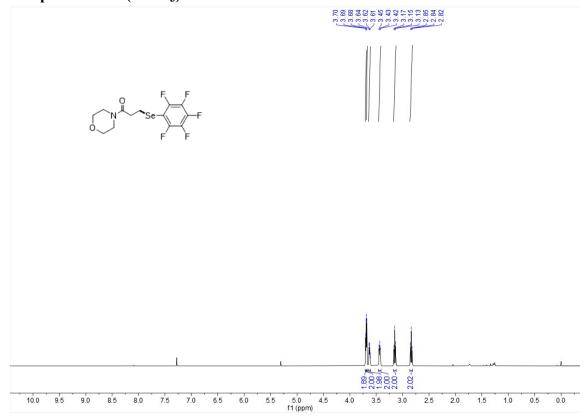

¹³C NMR spectra of 3f (CDCl₃)

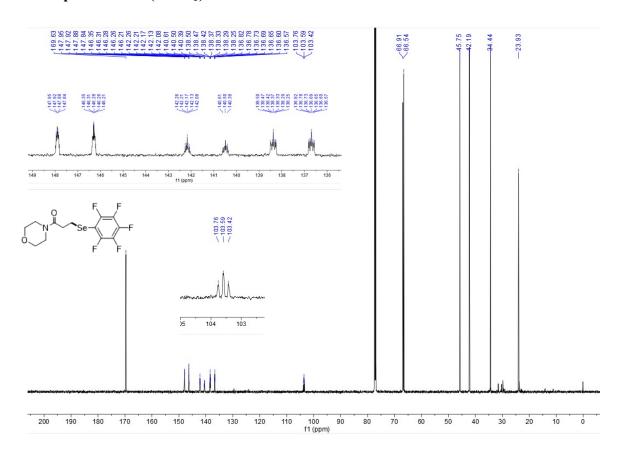

¹⁹F NMR spectra of 3f (CDCl₃)

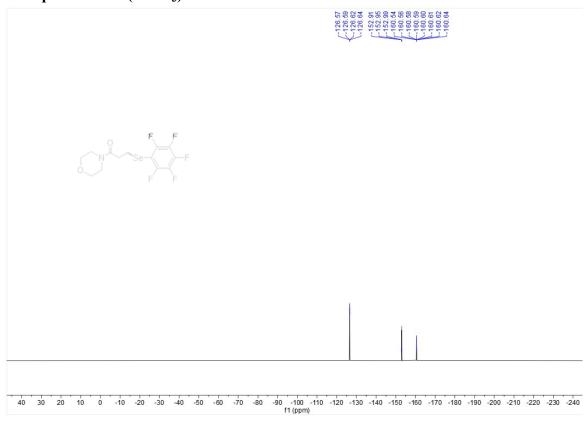

⁷⁷Se NMR spectra of 3f (CDCl₃)

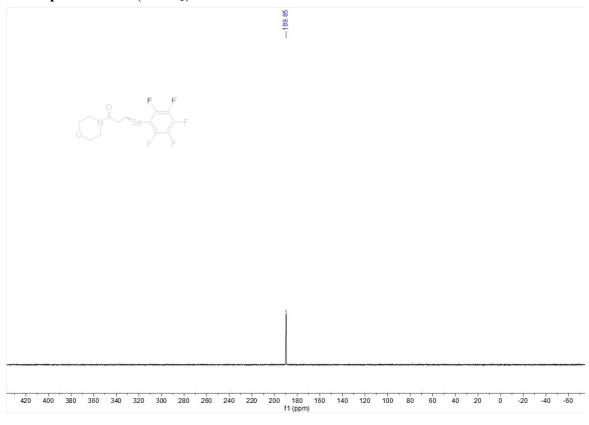

¹H NMR spectra of 3g (DMSO-d₆)

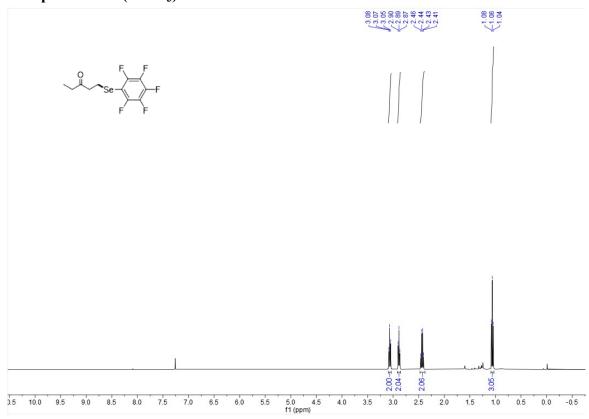

^{13}C NMR spectra of 3g (DMSO-d₆)

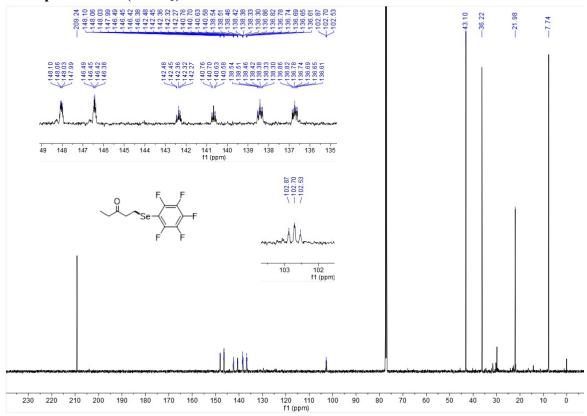

¹⁹F NMR spectra of 3g (DMSO-d₆)

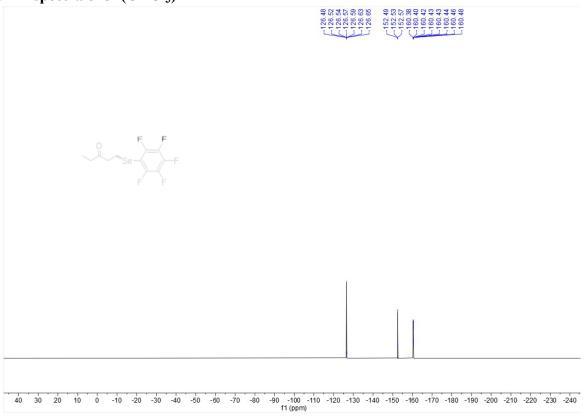

77 Se NMR spectra of 3g (DMSO-d₆)

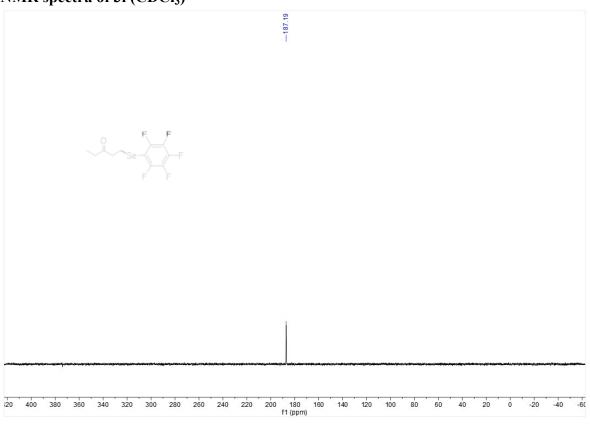

¹H NMR spectra of 3h (CDCl₃)

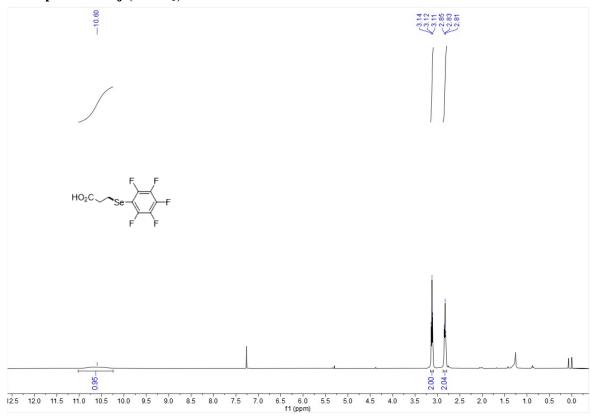

¹³C NMR spectra of 3h (CDCl₃)

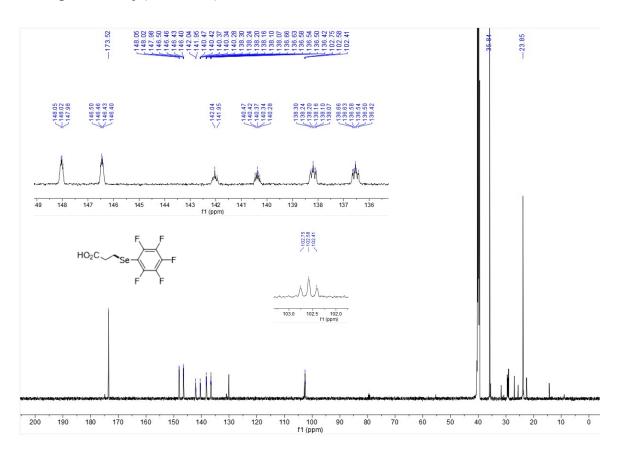

¹⁹F NMR spectra of 3h (CDCl₃)

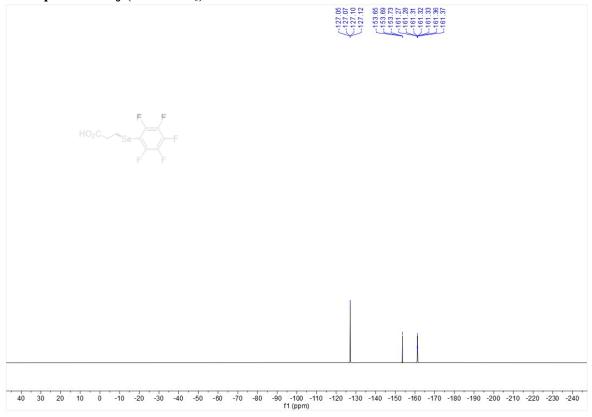

⁷⁷Se NMR spectra of 3h (CDCl₃)

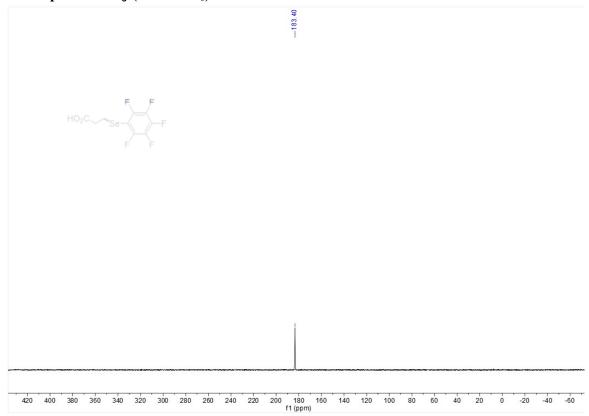

¹H NMR spectra of 3i (CDCl₃)

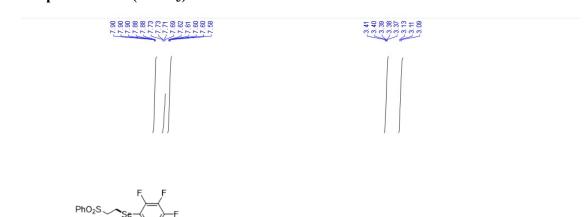

¹³C NMR spectra of 3i (CDCl₃)

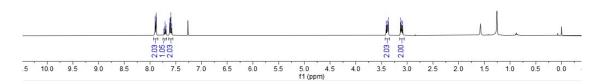

¹⁹F NMR spectra of 3i (CDCl₃)


⁷⁷Se NMR spectra of 3i (CDCl₃)

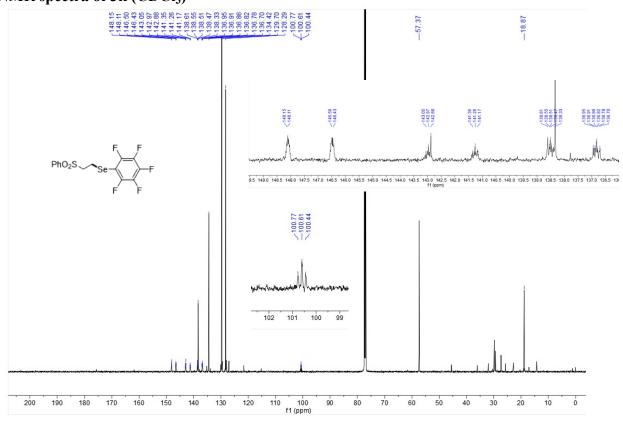

¹H NMR spectra of 3j (CDCl₃)


¹³C NMR spectra of 3j (DMSO-d₆)

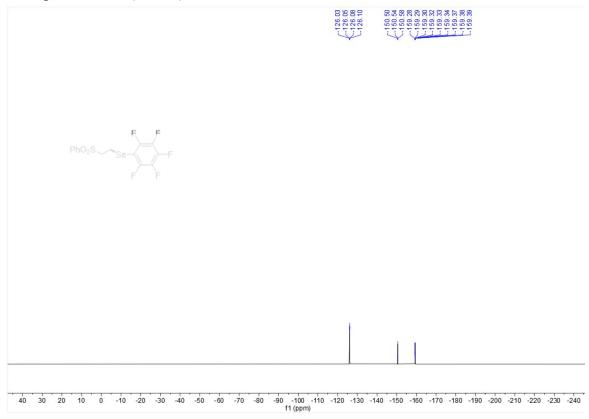

¹⁹F NMR spectra of 3j (DMSO-d₆)

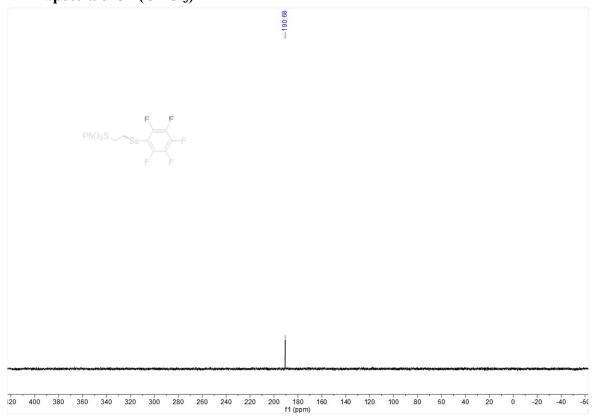


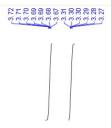
77 Se NMR spectra of 3j (DMSO-d₆)

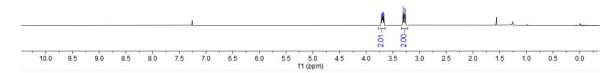


¹H NMR spectra of 3k (CDCl₃)

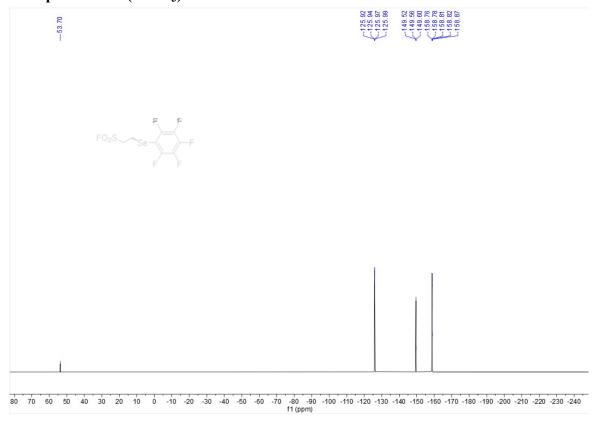


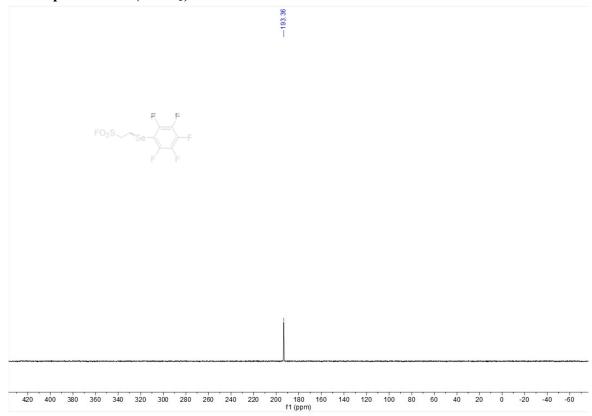

¹³C NMR spectra of 3k (CDCl₃)

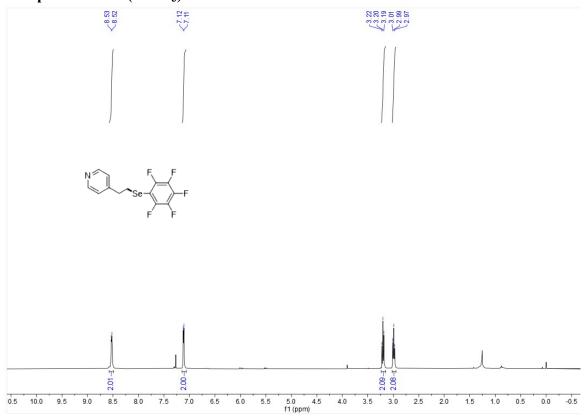


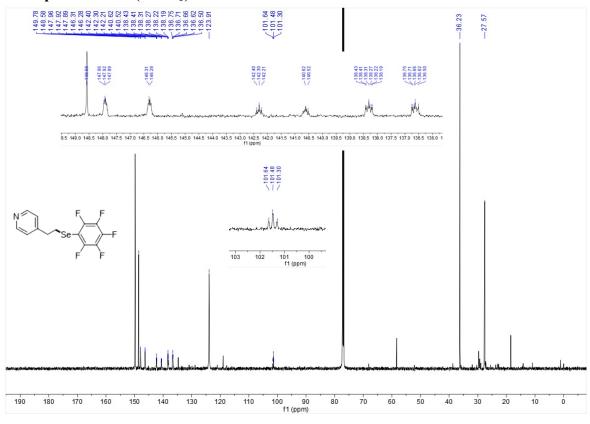

¹⁹F NMR spectra of 3k (CDCl₃)

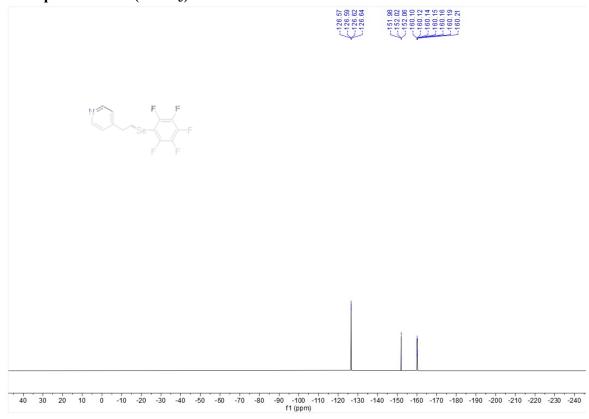

⁷⁷Se NMR spectra of 3k (CDCl₃)

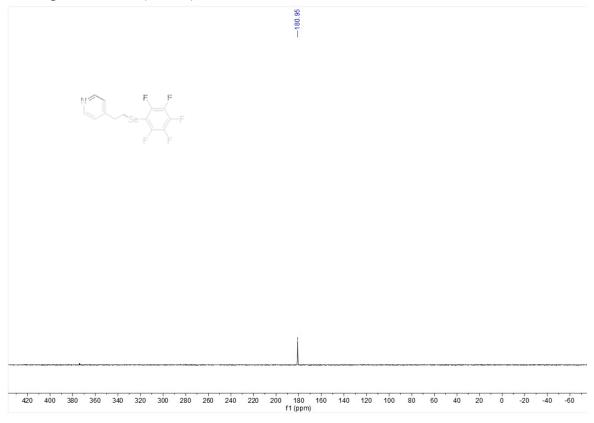



¹³C NMR spectra of 3l (CDCl₃)

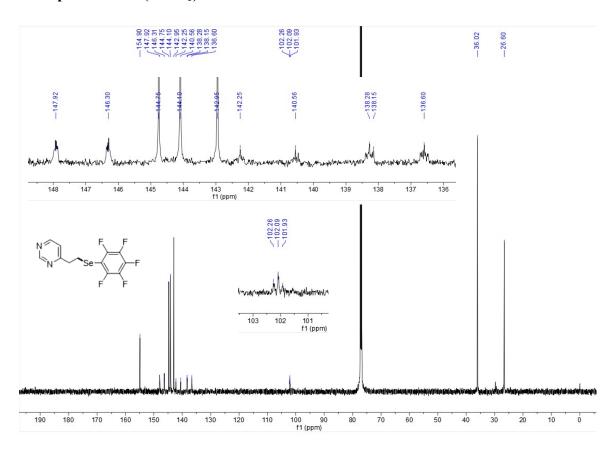

¹⁹F NMR spectra of 3l (CDCl₃)

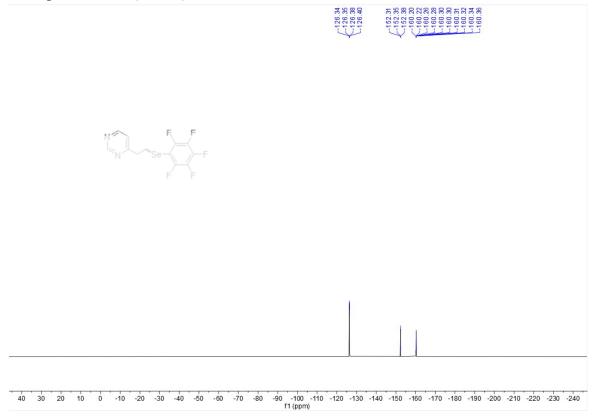

⁷⁷Se NMR spectra of 3l (CDCl₃)


¹H NMR spectra of 3m (CDCl₃)

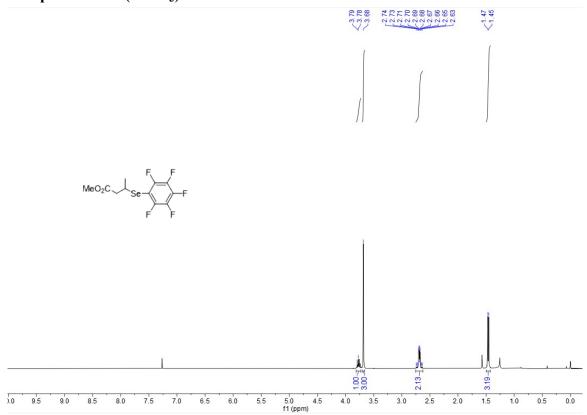

¹³C NMR spectra of 3m (CDCl₃)

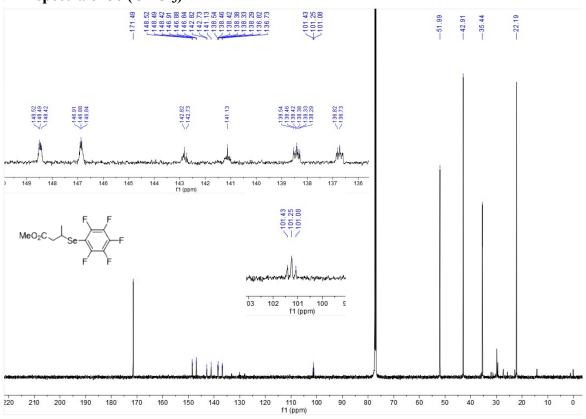

¹⁹F NMR spectra of 3m (CDCl₃)

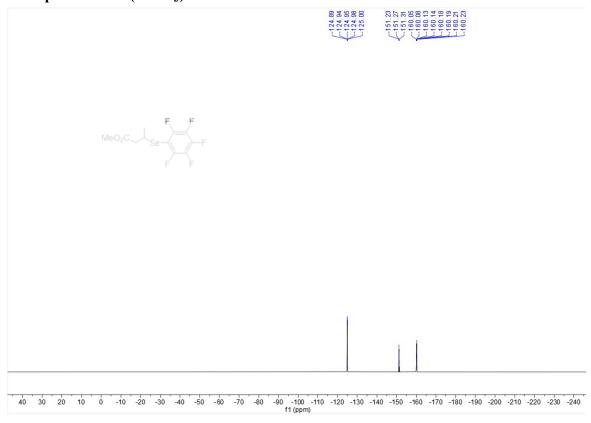

⁷⁷Se NMR spectra of 3m (CDCl₃)

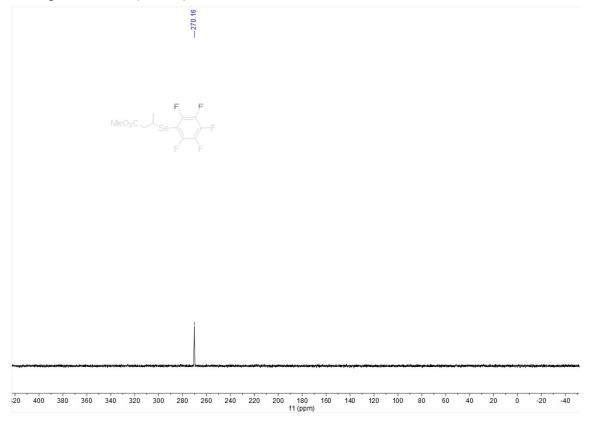

¹H NMR spectra of 3n (CDCl₃)

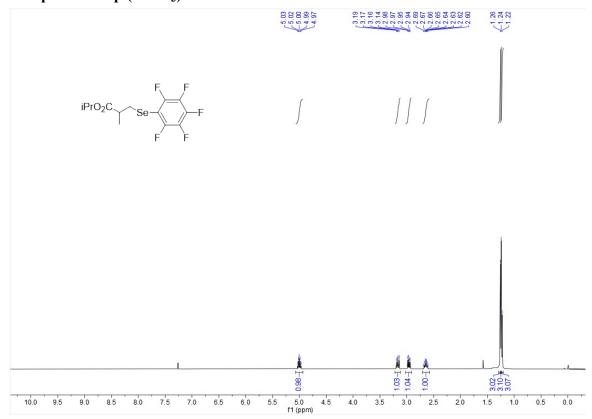
¹³C NMR spectra of 3n (CDCl₃)

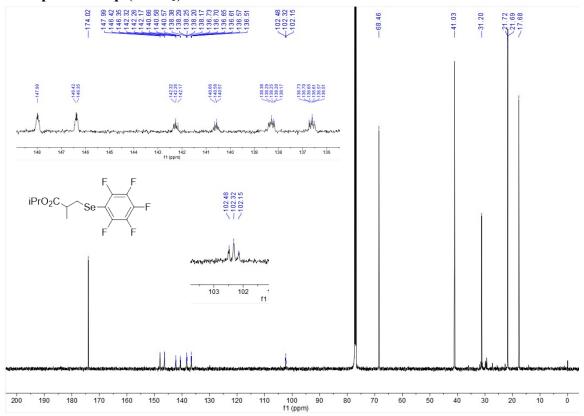

¹⁹F NMR spectra of 3n (CDCl₃)

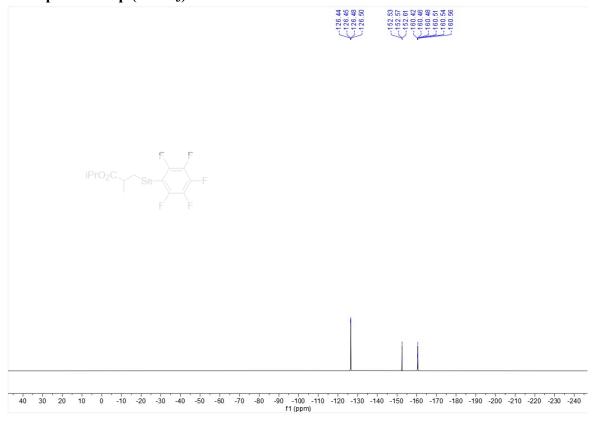

⁷⁷Se NMR spectra of 3n (CDCl₃)

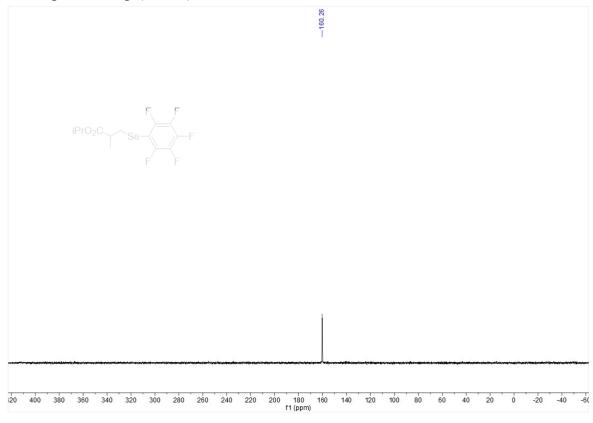

¹H NMR spectra of 30 (CDCl₃)

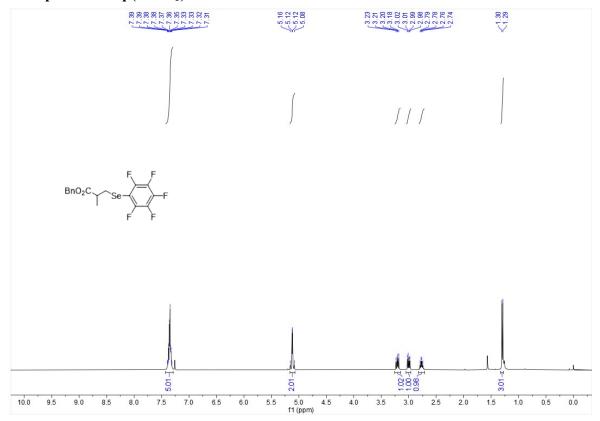

¹³C NMR spectra of 30 (CDCl₃)

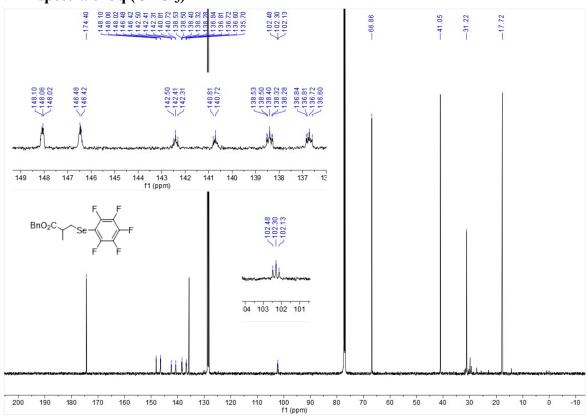

¹⁹F NMR spectra of 30 (CDCl₃)

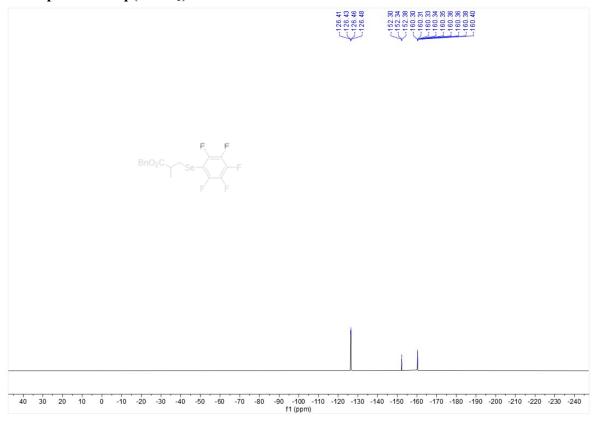

⁷⁷Se NMR spectra of 30 (CDCl₃)

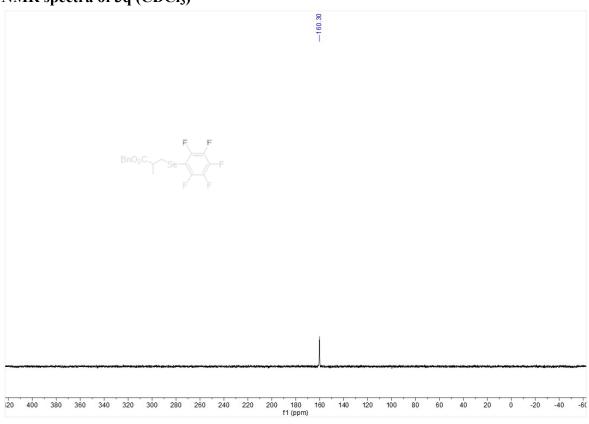

¹H NMR spectra of 3p (CDCl₃)

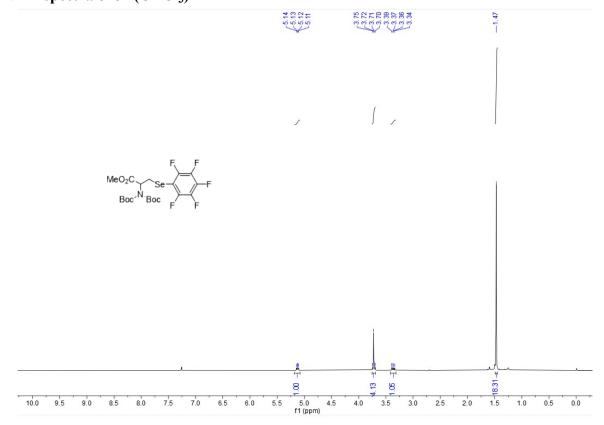

¹³C NMR spectra of 3p (CDCl₃)

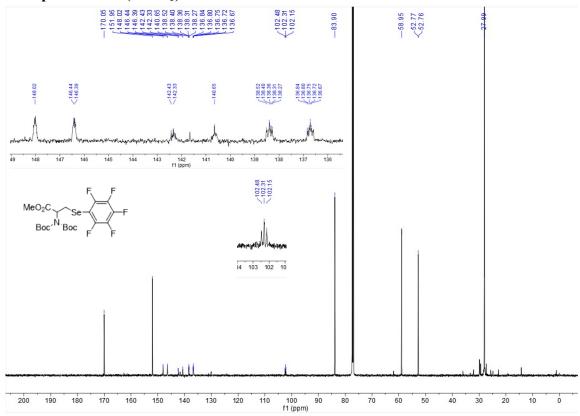

¹⁹F NMR spectra of 3p (CDCl₃)

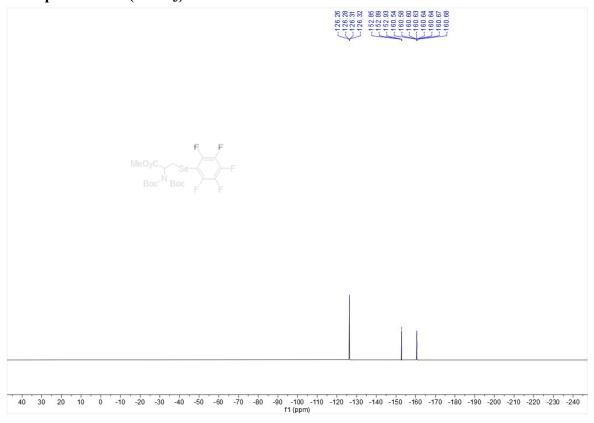

⁷⁷Se NMR spectra of 3p (CDCl₃)

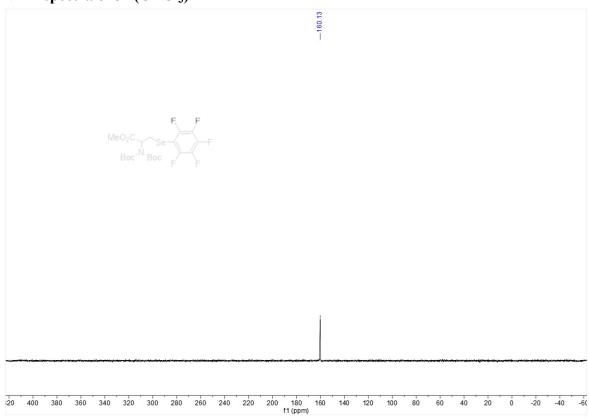

¹H NMR spectra of 3q (CDCl₃)

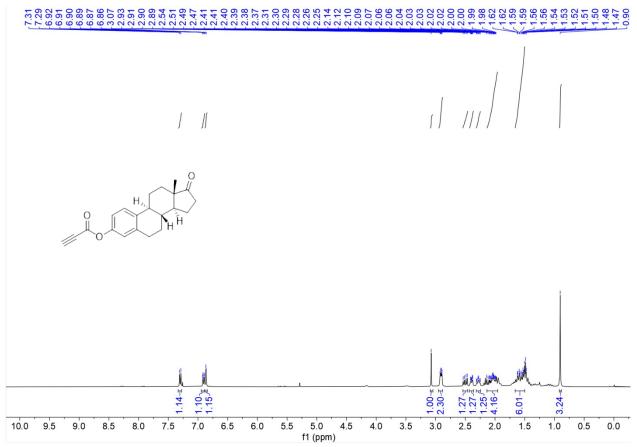

¹³C NMR spectra of 3q (CDCl₃)

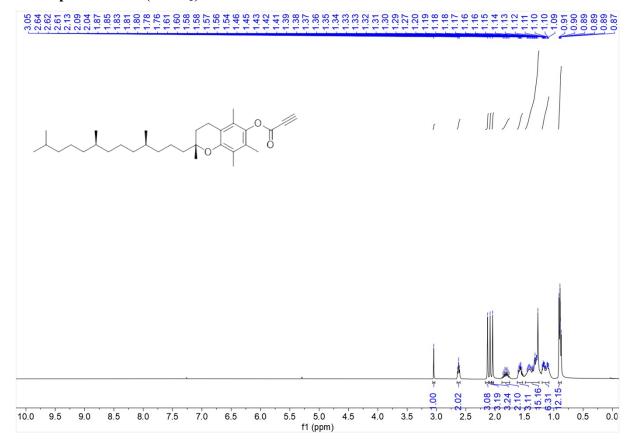

¹⁹F NMR spectra of 3q (CDCl₃)

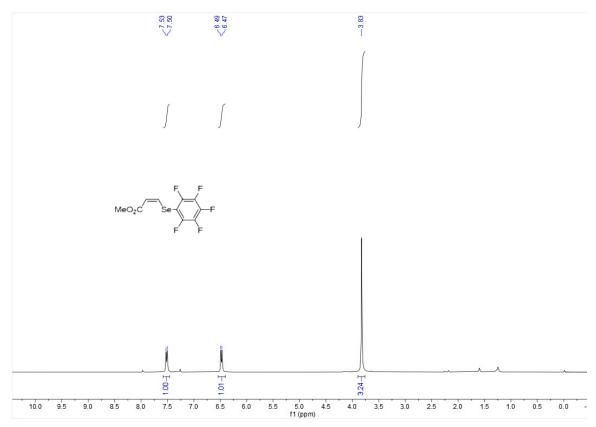

⁷⁷Se NMR spectra of 3q (CDCl₃)

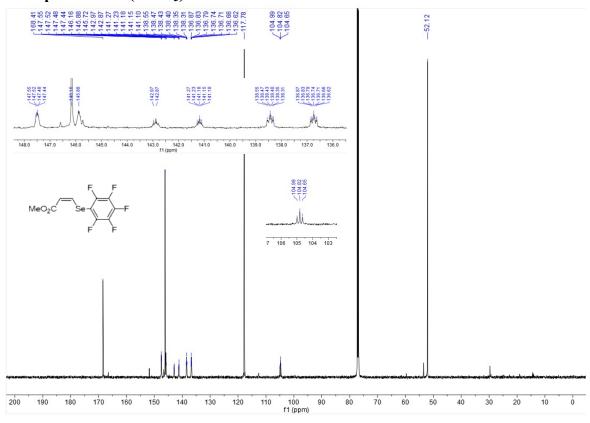

¹H NMR spectra of 3r (CDCl₃)


¹³C NMR spectra of 3r (CDCl₃)

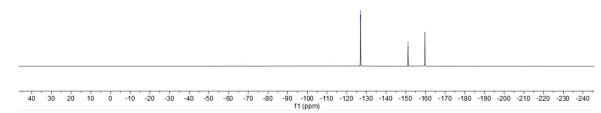

¹⁹F NMR spectra of 3r (CDCl₃)

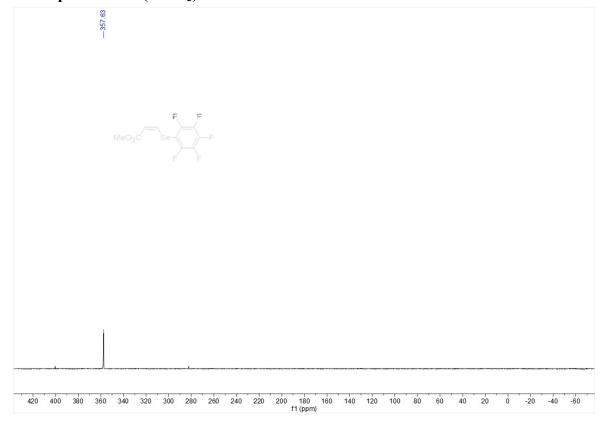

⁷⁷Se NMR spectra of 3r (CDCl₃)

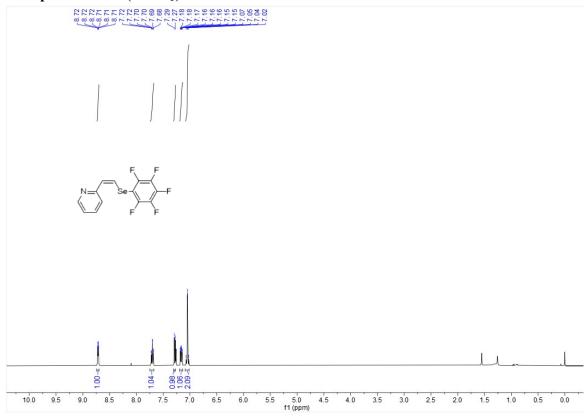

¹H NMR spectra of 4g (CDCl₃)

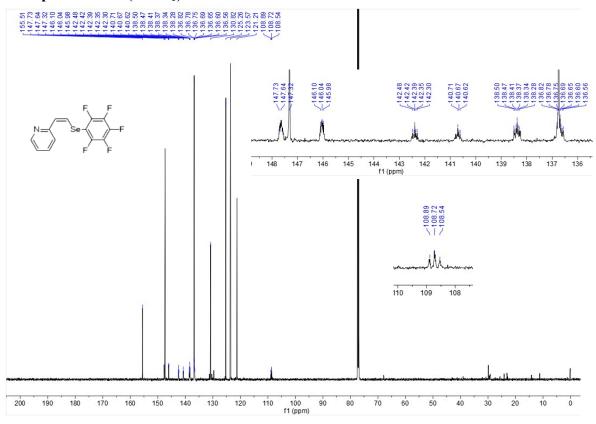

¹H NMR spectra of 4h (CDCl₃)

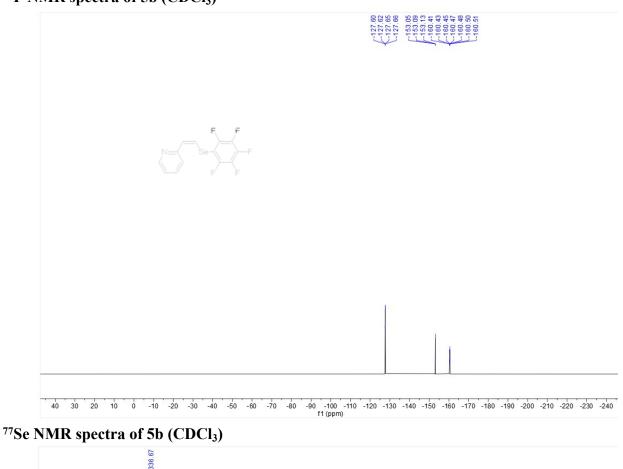
¹H NMR spectra of 5a (CDCl₃)

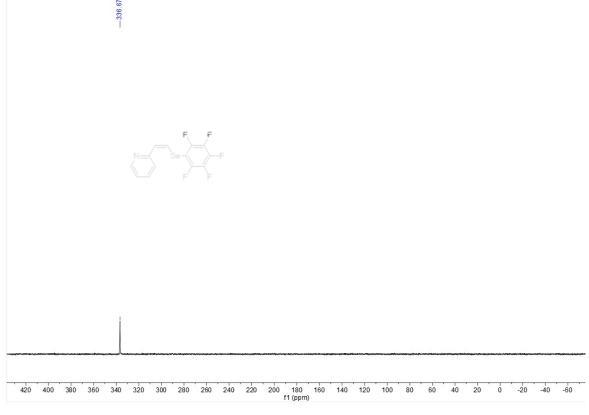

¹³C NMR spectra of 5a (CDCl₃)


¹⁹F NMR spectra of 5a (CDCl₃)

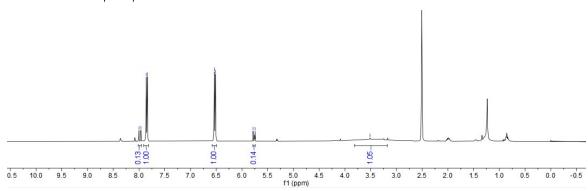


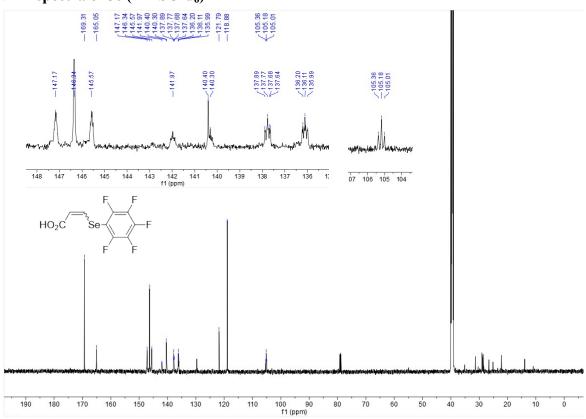

⁷⁷Se NMR spectra of 5a (CDCl₃)


¹H NMR spectra of 5b (CDCl₃)

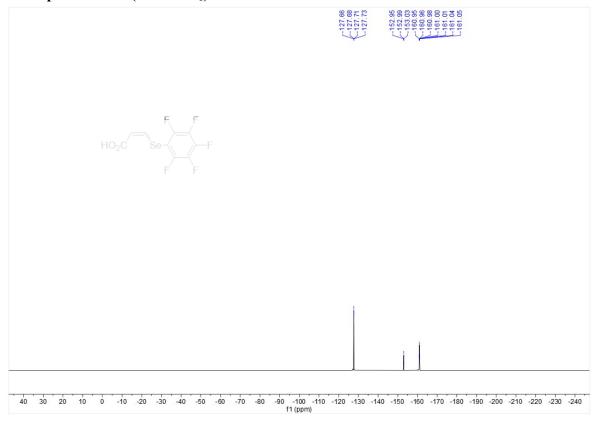

¹³C NMR spectra of 5b (CDCl₃)

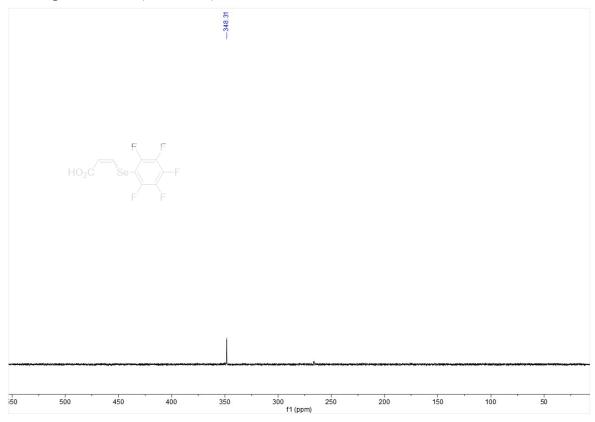
¹⁹F NMR spectra of 5b (CDCl₃)

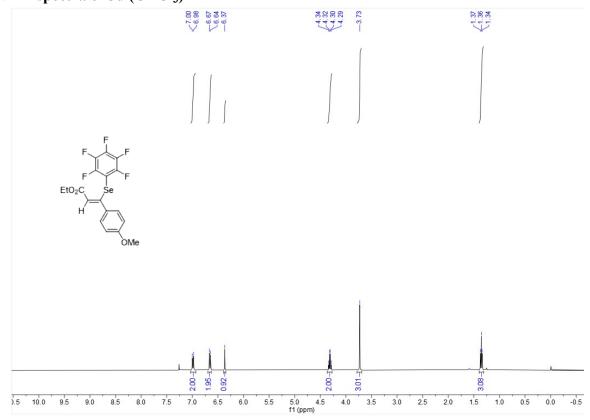


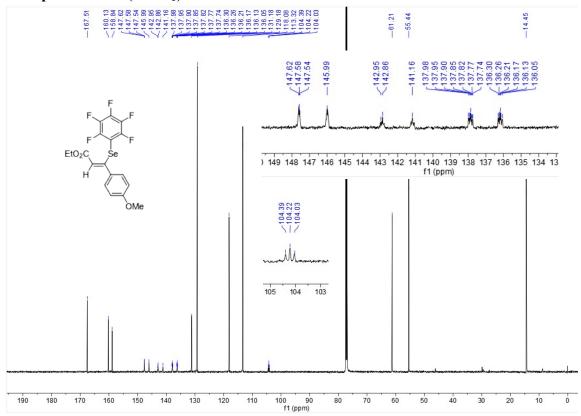


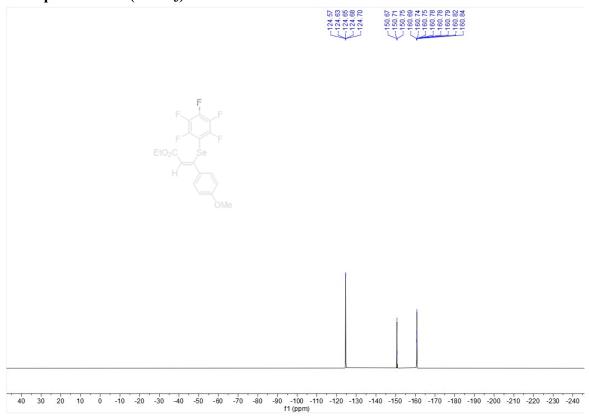
¹H NMR spectra of 5c (DMSO-d₆)

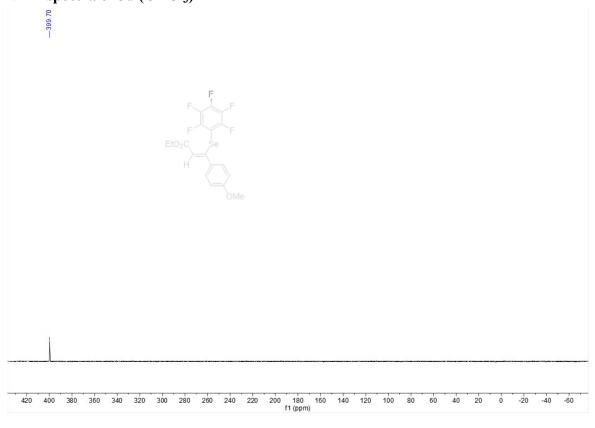


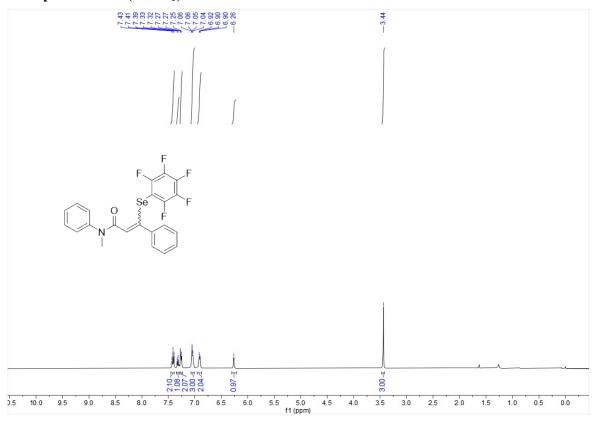

¹³C NMR spectra of 5c (DMSO-d₆)

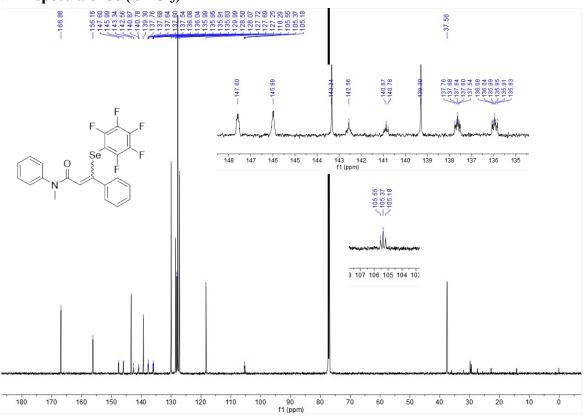

¹⁹F NMR spectra of 5c (DMSO-d₆)

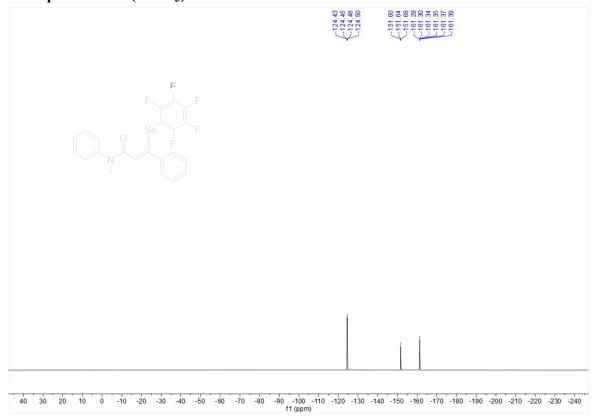

⁷⁷Se NMR spectra of 5b (DMSO-d₆)

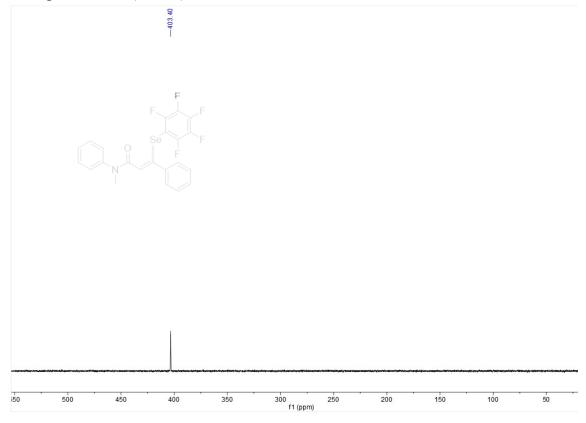

¹H NMR spectra of 5d (CDCl₃)

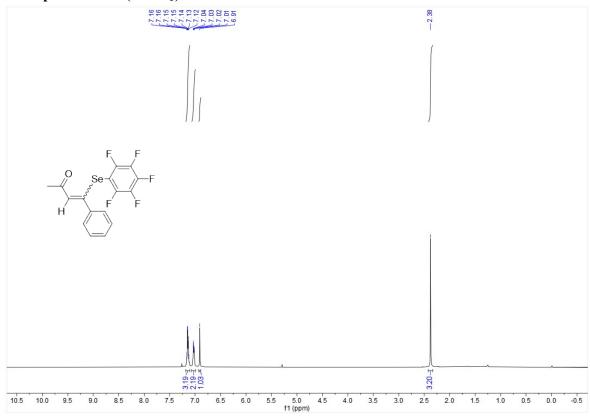

^{13}C NMR spectra of 5d (CDCl₃)

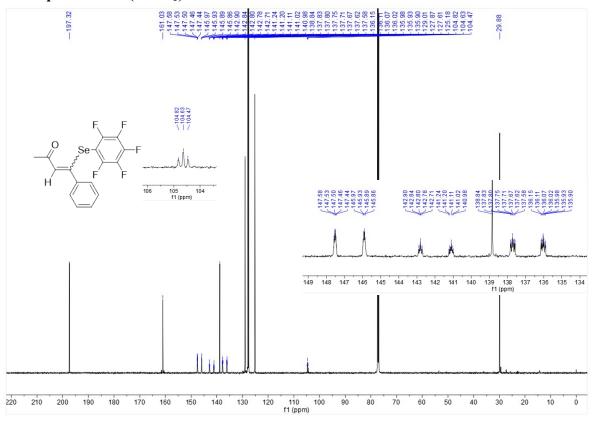

¹⁹F NMR spectra of 5d (CDCl₃)

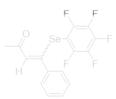

⁷⁷Se NMR spectra of 5d (CDCl₃)

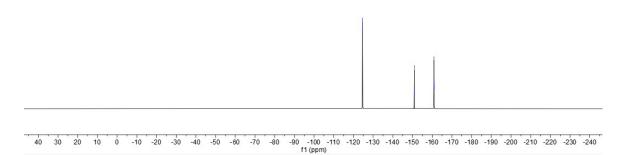

¹H NMR spectra of 5e (CDCl₃)


¹³C NMR spectra of 5e (CDCl₃)

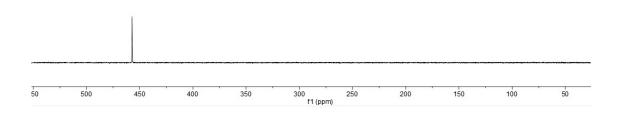

¹⁹F NMR spectra of 5e (CDCl₃)

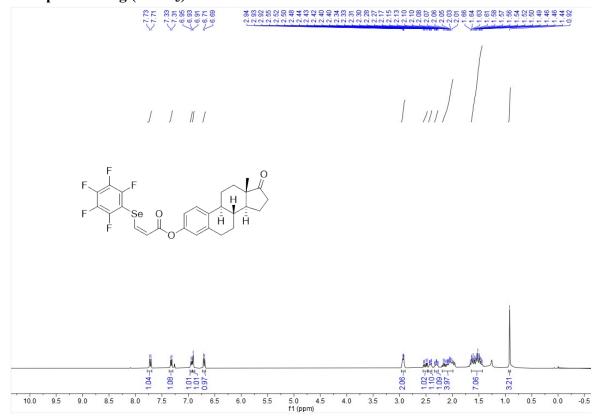

⁷⁷Se NMR spectra of 5e (CDCl₃)


¹H NMR spectra of 5f (CDCl₃)

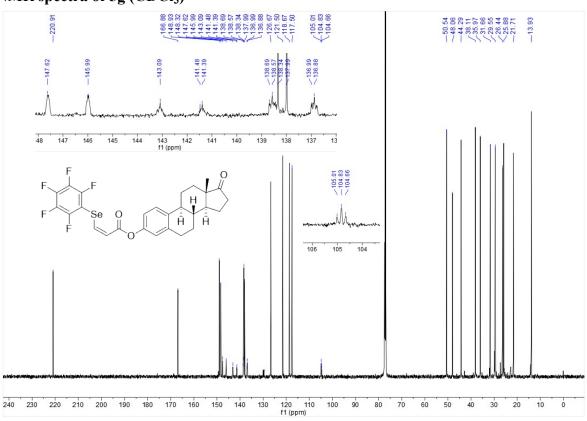


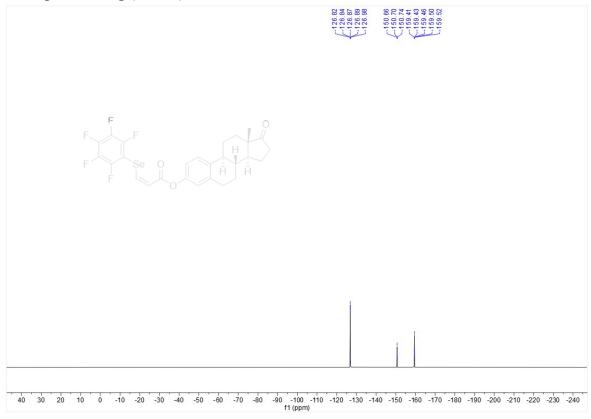
¹³C NMR spectra of 5f (CDCl₃)

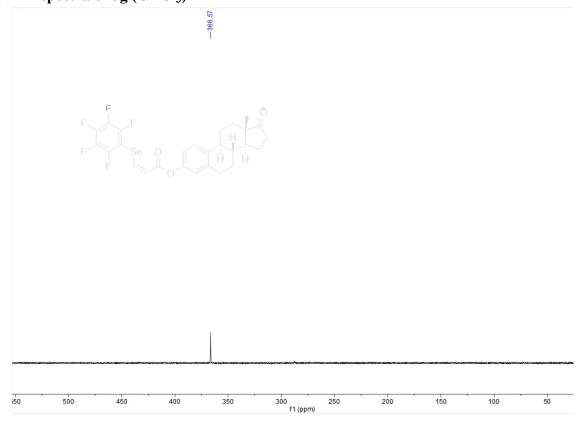


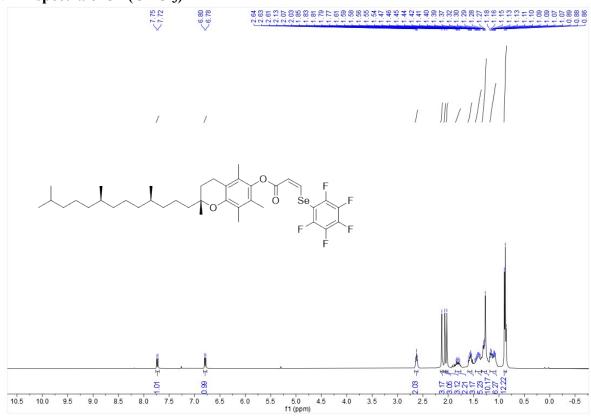


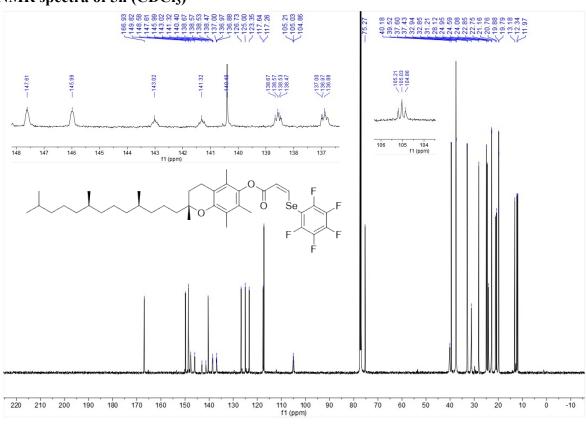
⁷⁷Se NMR spectra of 5f (CDCl₃)

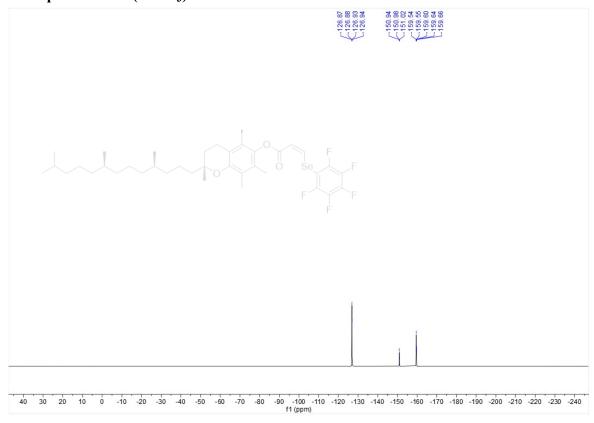



¹H NMR spectra of 5g (CDCl₃)

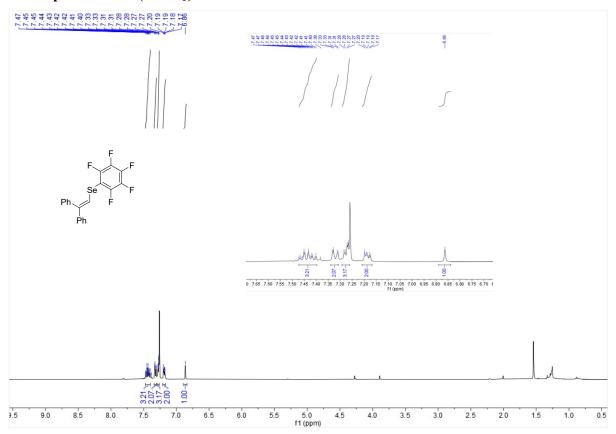

¹³C NMR spectra of 5g (CDCl₃)

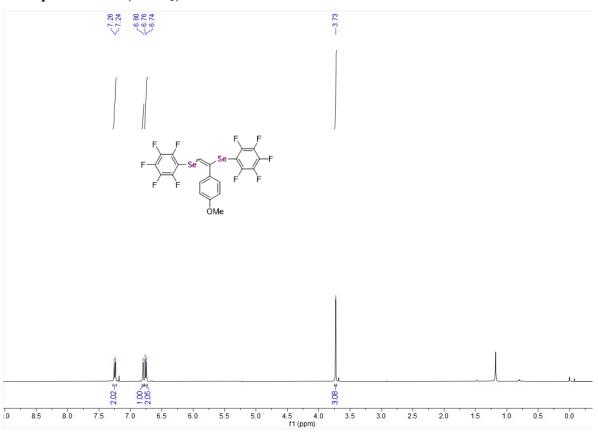

¹⁹F NMR spectra of 5g (CDCl₃)

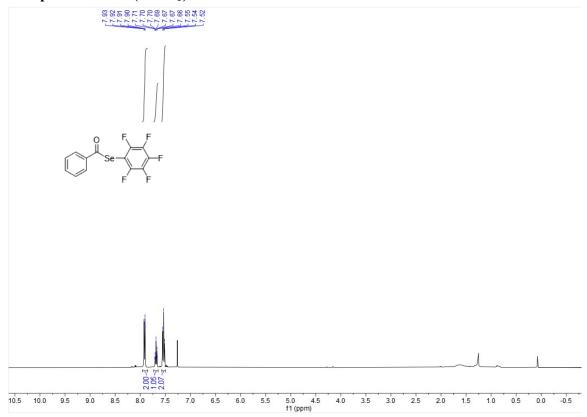

⁷⁷Se NMR spectra of 5g (CDCl₃)

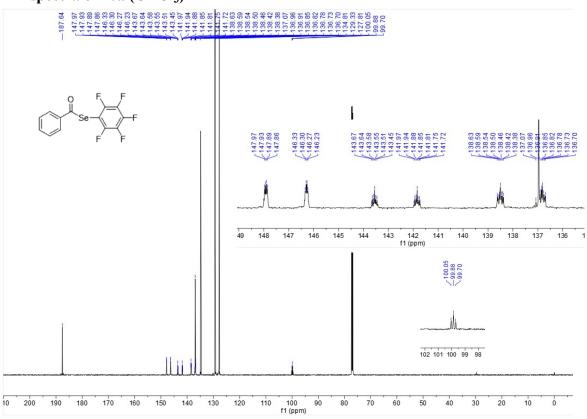

¹H NMR spectra of 5h (CDCl₃)

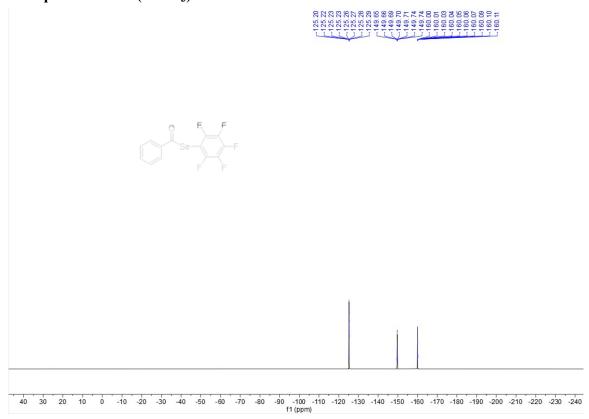
¹³C NMR spectra of 5h (CDCl₃)

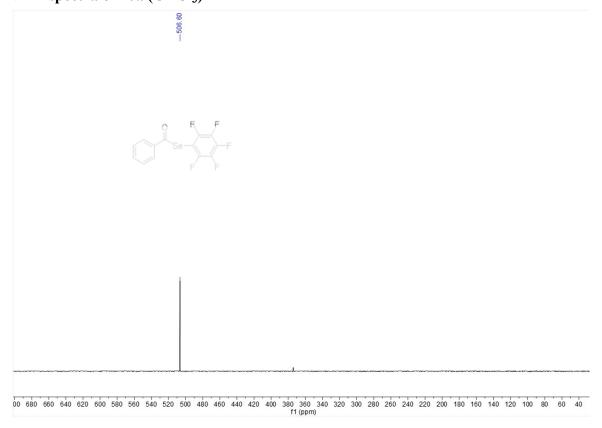

¹⁹F NMR spectra of 5h (CDCl₃)

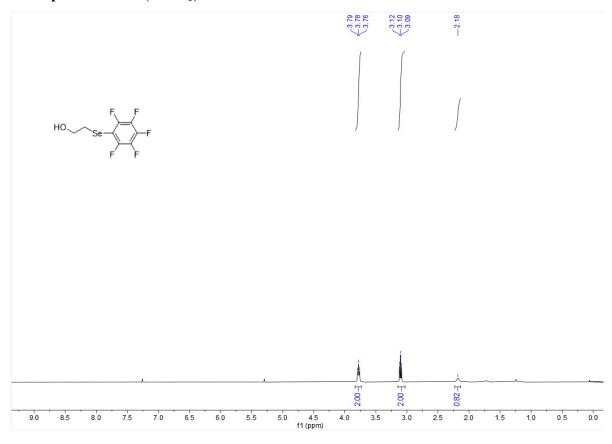

⁷⁷Se NMR spectra of 5h (CDCl₃)

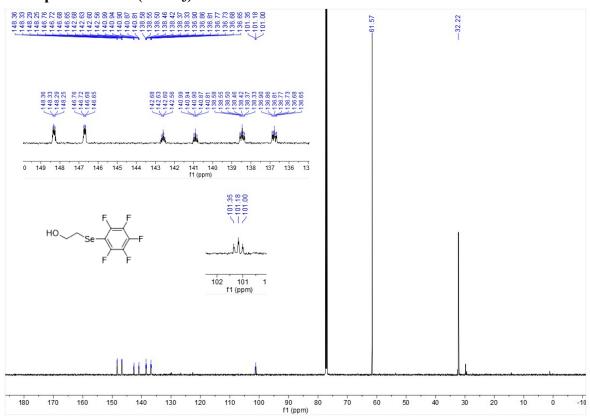

¹H NMR spectra of 7a (CDCl₃)

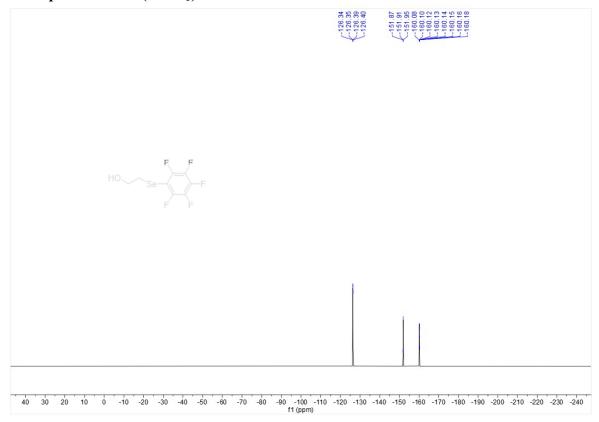

¹H NMR spectra of 9a (CDCl₃)

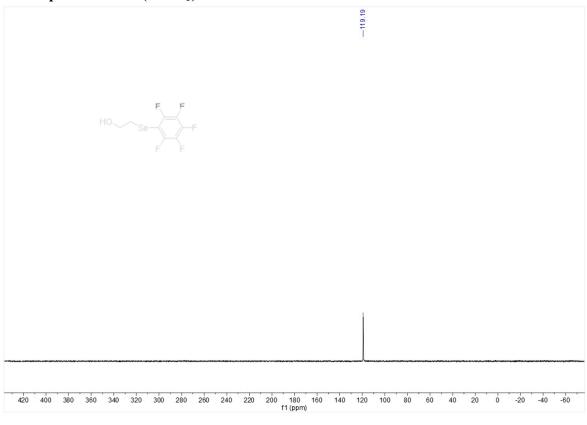

¹H NMR spectra of 10a (CDCl₃)

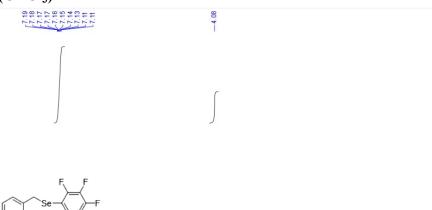

¹³C NMR spectra of 10a (CDCl₃)

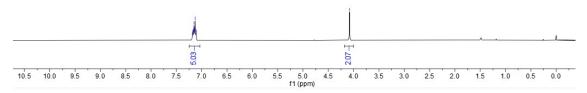

¹⁹F NMR spectra of 10a (CDCl₃)


⁷⁷Se NMR spectra of 10a (CDCl₃)

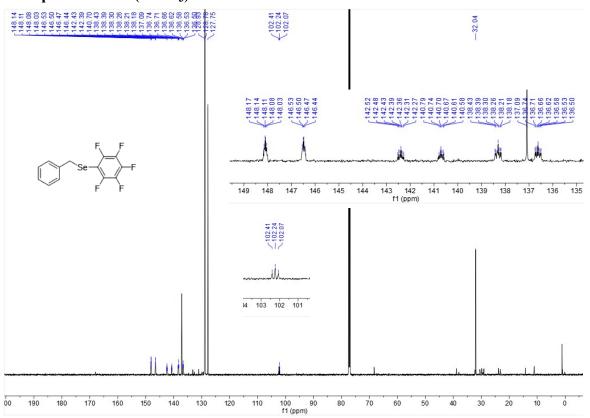

¹H NMR spectra of 11a (CDCl₃)


¹³C NMR spectra of 11a (CDCl₃)

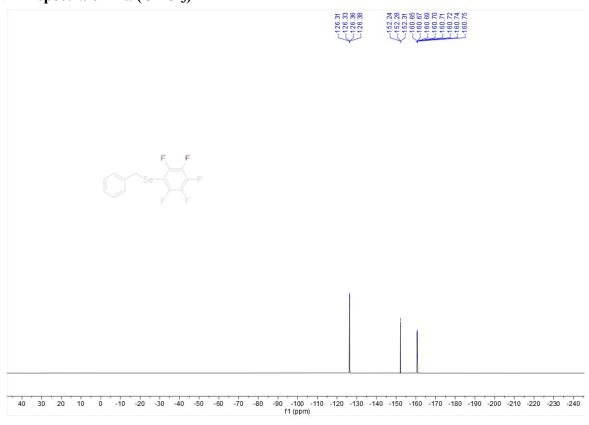

¹⁹F NMR spectra of 11a (CDCl₃)

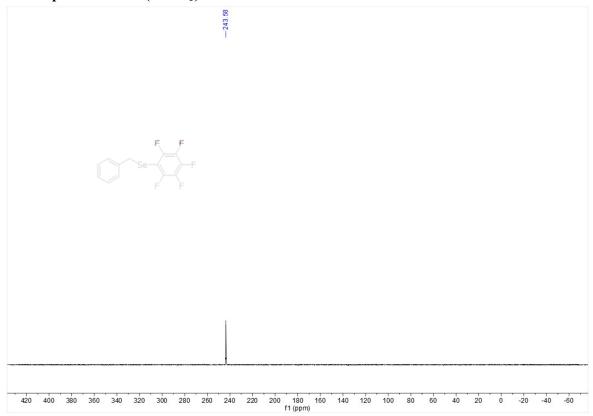


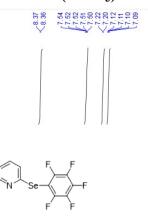
⁷⁷Se NMR spectra of 11a (CDCl₃)

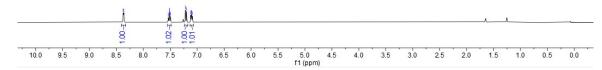


¹H NMR spectra of 12a (CDCl₃)

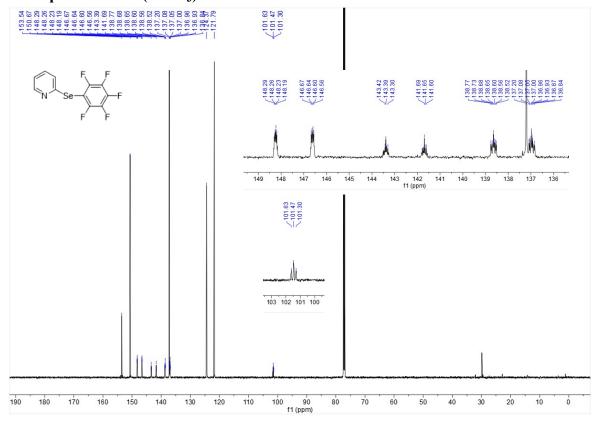



¹³C NMR spectra of 12a (CDCl₃)

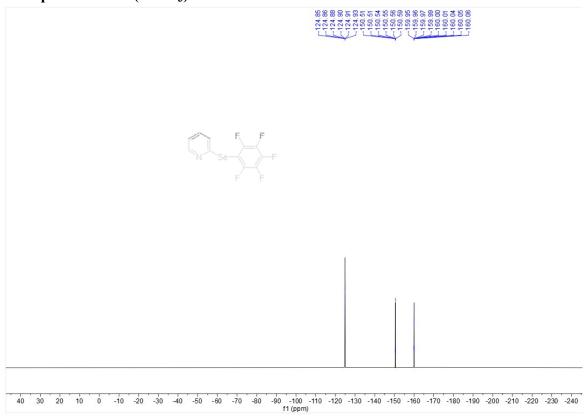

¹⁹F NMR spectra of 12a (CDCl₃)

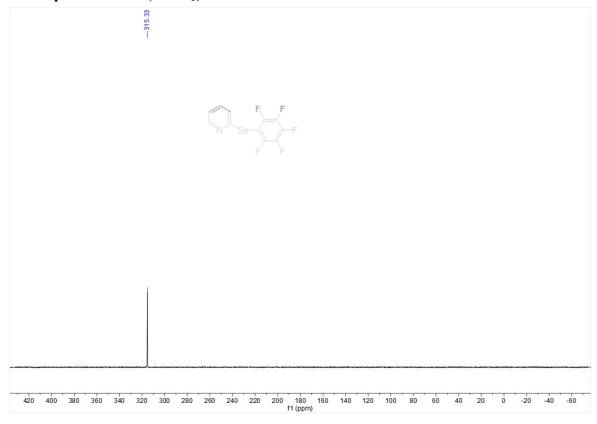


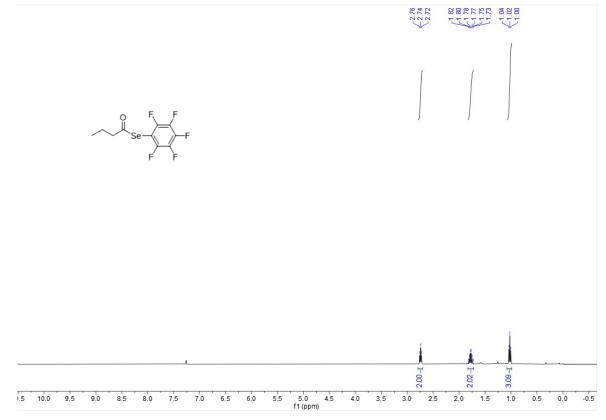
⁷⁷Se NMR spectra of 12a (CDCl₃)

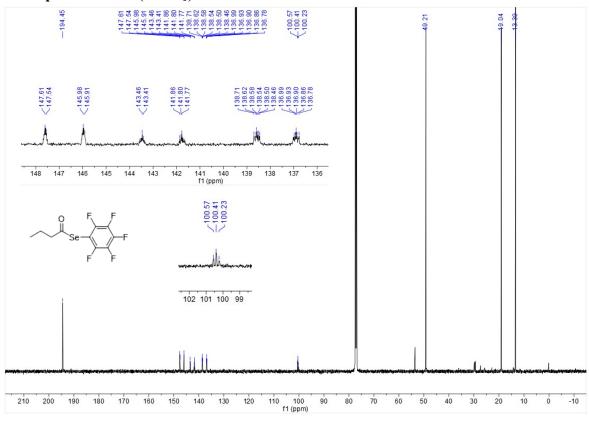


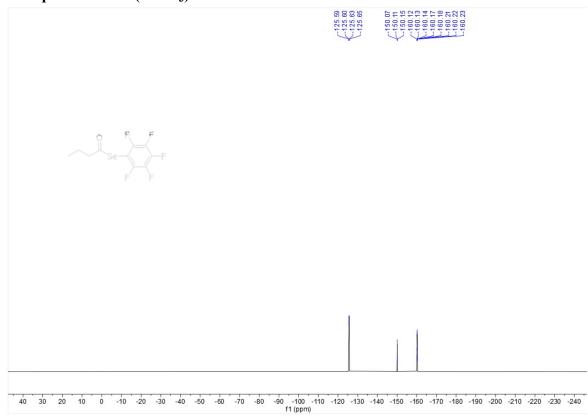
¹H NMR spectra of 13a (CDCl₃)

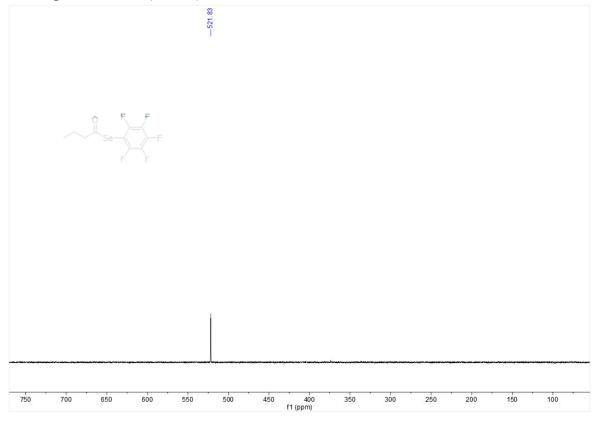


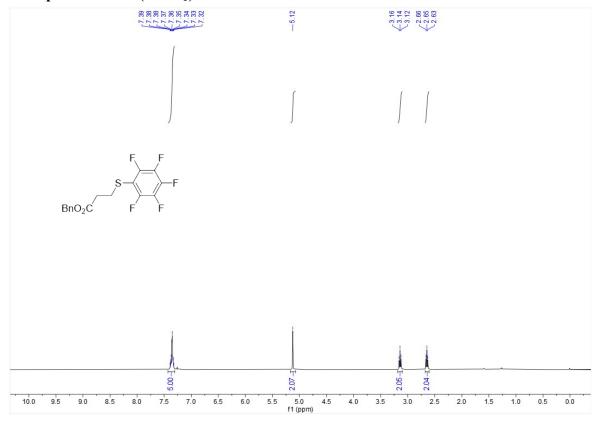

¹³C NMR spectra of 13a (CDCl₃)

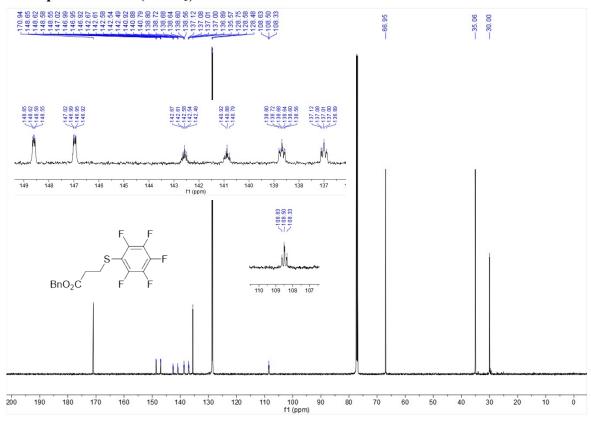

¹⁹F NMR spectra of 13a (CDCl₃)

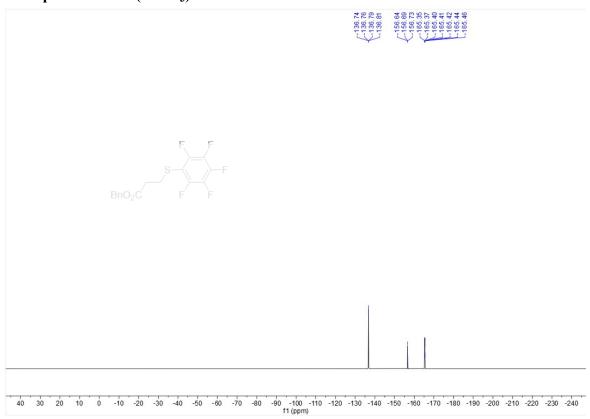

⁷⁷Se NMR spectra of 13a (CDCl₃)

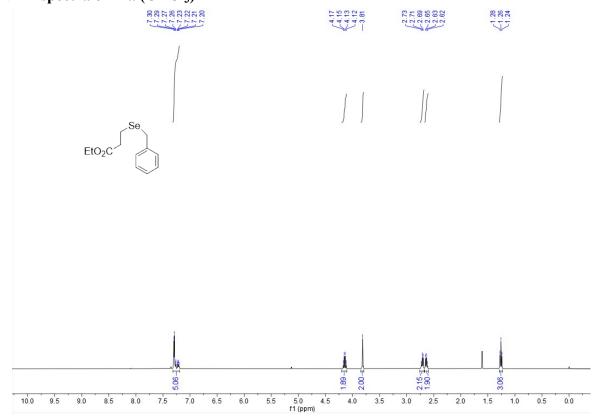

¹H NMR spectra of 14a (CDCl₃)

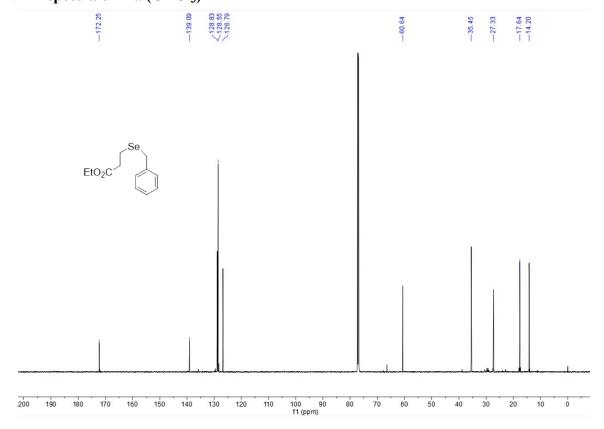

¹³C NMR spectra of 14a (CDCl₃)

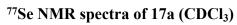

¹⁹F NMR spectra of 14a (CDCl₃)


$^{77}Se\ NMR\ spectra\ of\ 14a\ (CDCl_3)$

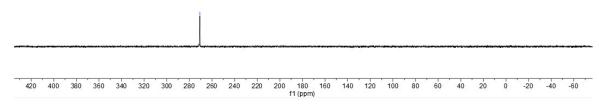

¹H NMR spectra of 15a (CDCl₃)

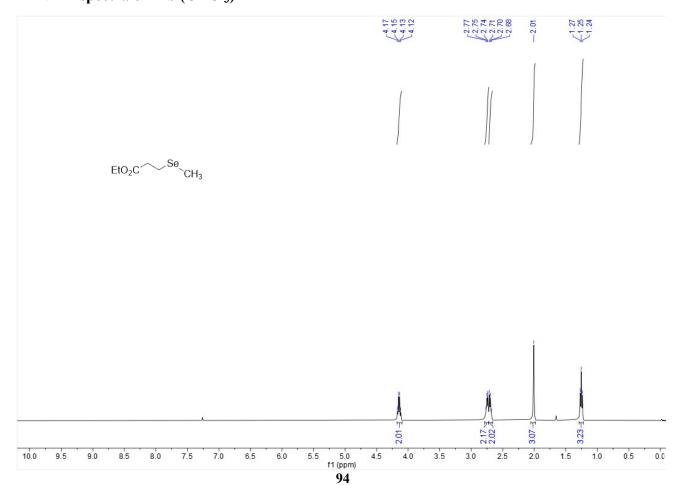

¹³C NMR spectra of 15a (CDCl₃)

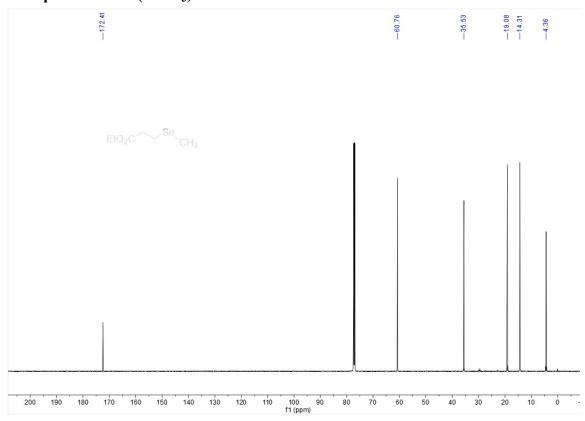

¹⁹F NMR spectra of 15a (CDCl₃)

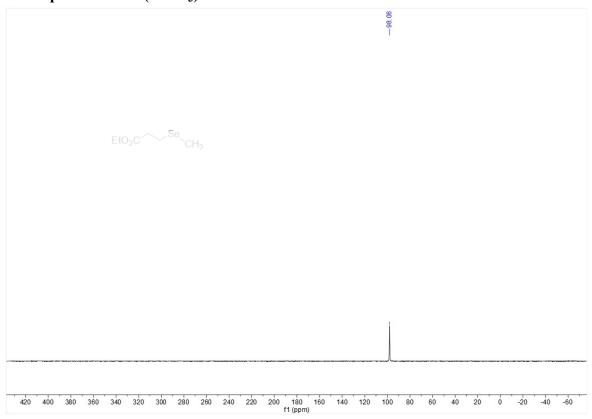


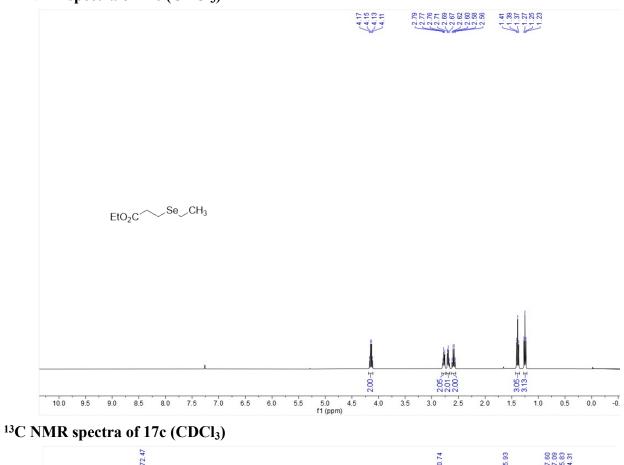
¹H NMR spectra of 17a (CDCl₃)

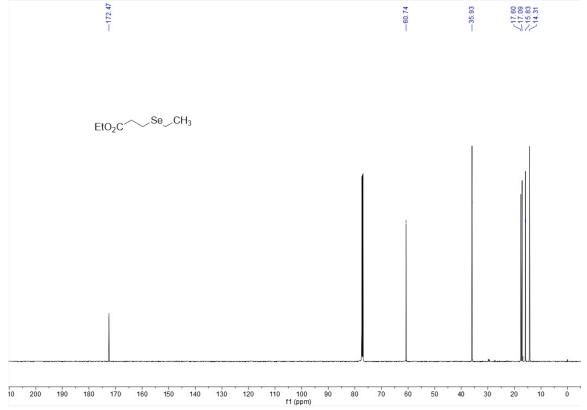

¹³C NMR spectra of 17a (CDCl₃)



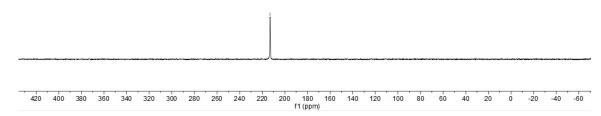


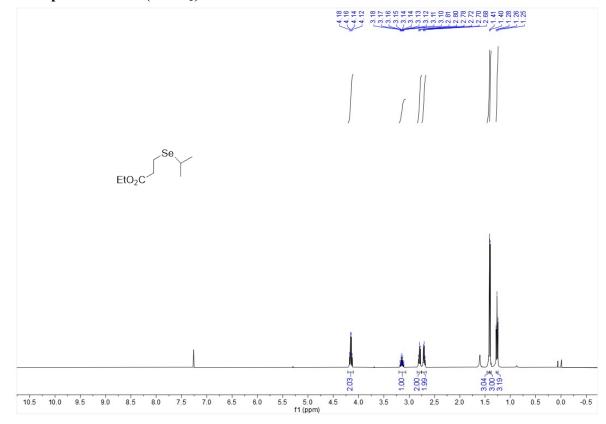

¹H NMR spectra of 17b (CDCl₃)


¹³C NMR spectra of 17b (CDCl₃)

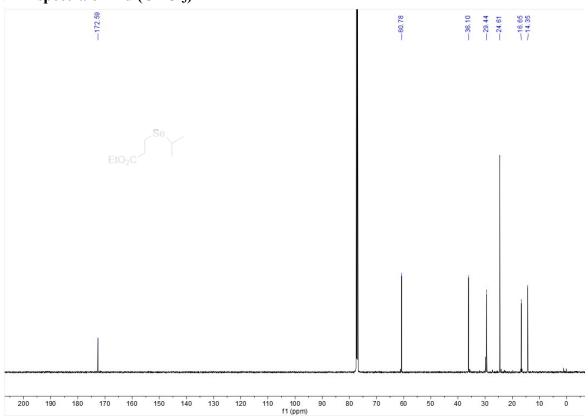


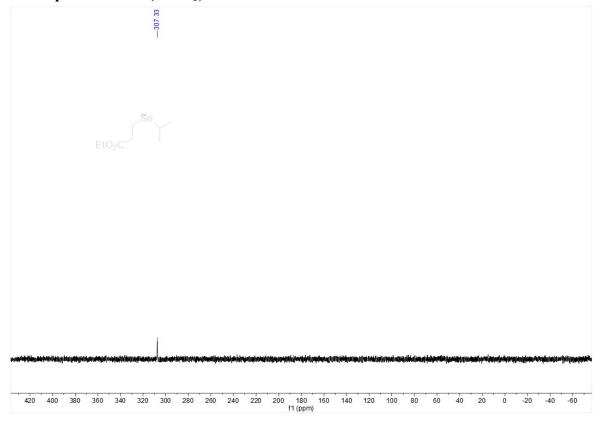
⁷⁷Se NMR spectra of 17b (CDCl₃)


¹H NMR spectra of 17c (CDCl₃)

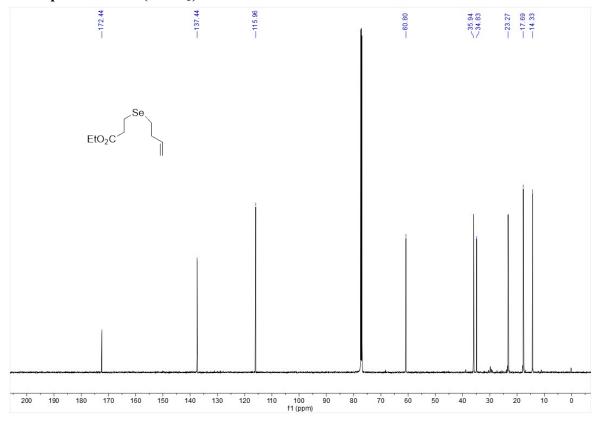


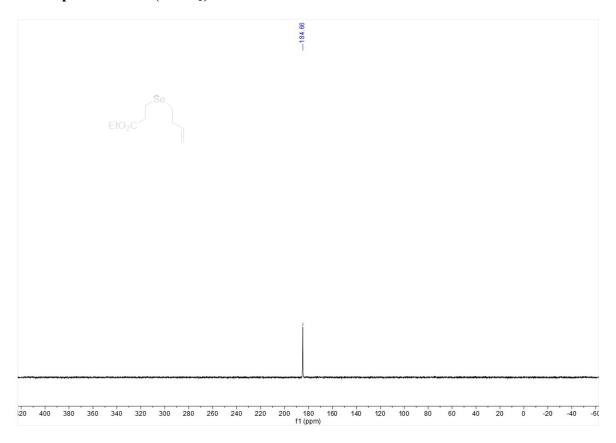
-213.09

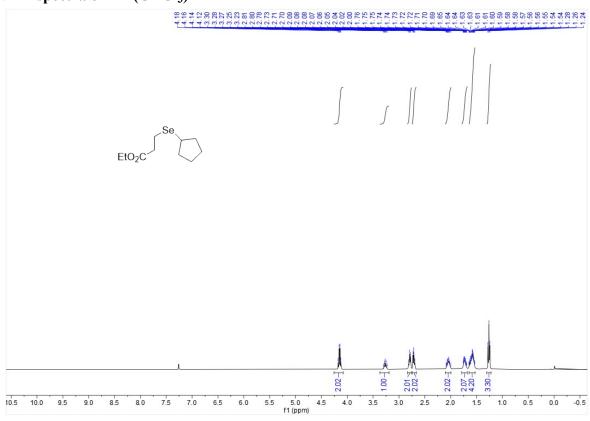

EtO₂C Se_CH₃

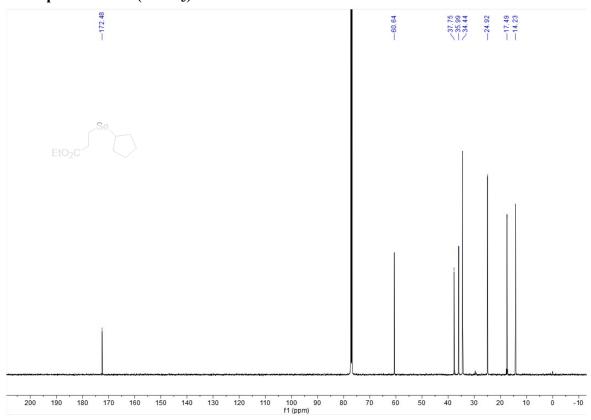

¹H NMR spectra of 17d (CDCl₃)

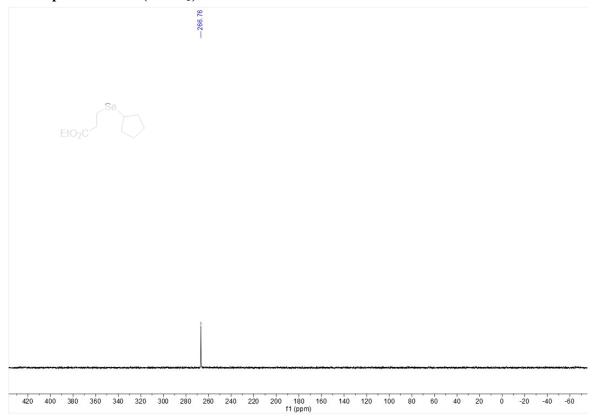

¹³C NMR spectra of 17d (CDCl₃)

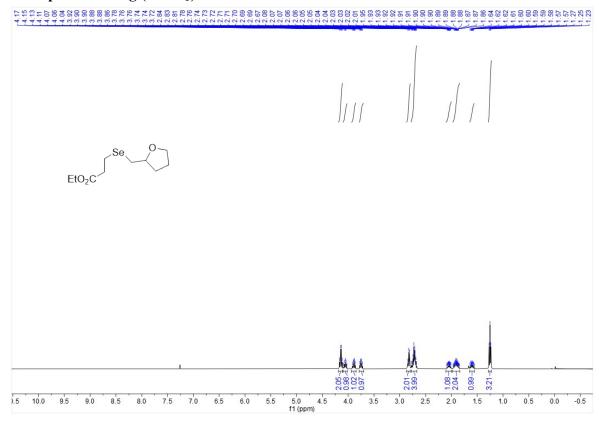

⁷⁷Se NMR spectra of 17d (CDCl₃)

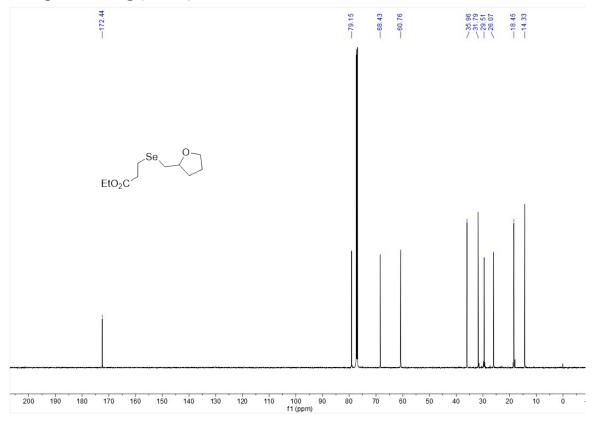

¹H NMR spectra of 17e (CDCl₃)

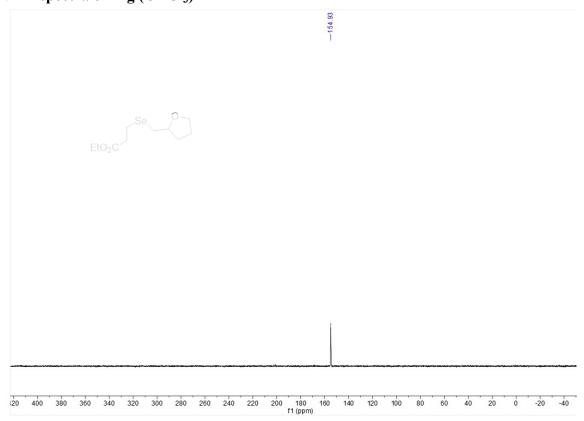

¹³C NMR spectra of 17e (CDCl₃)

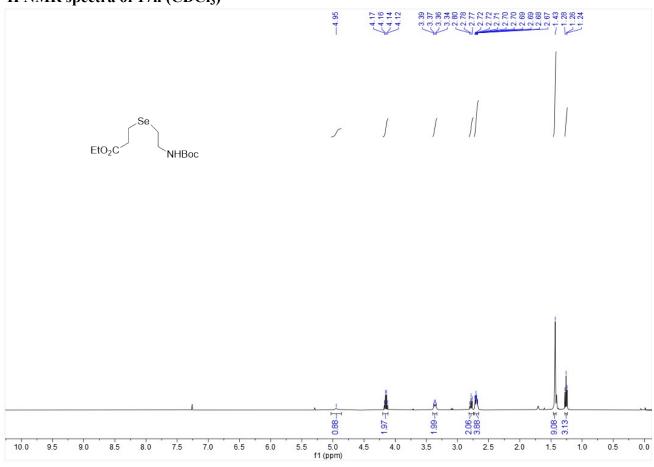

⁷⁷Se NMR spectra of 17e (CDCl₃)

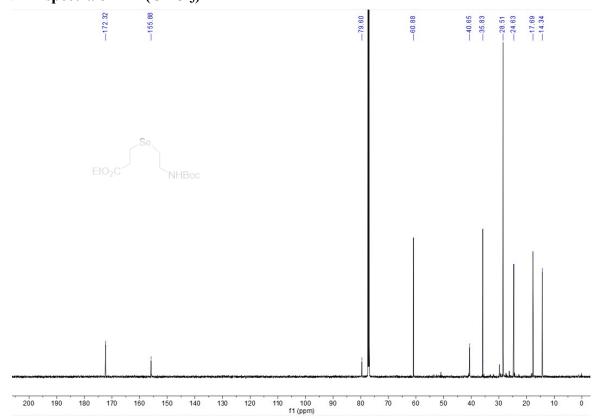

¹H NMR spectra of 17f (CDCl₃)

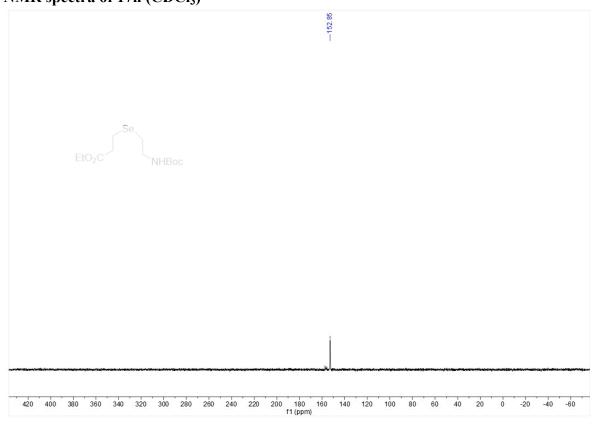

¹³C NMR spectra of 17f (CDCl₃)

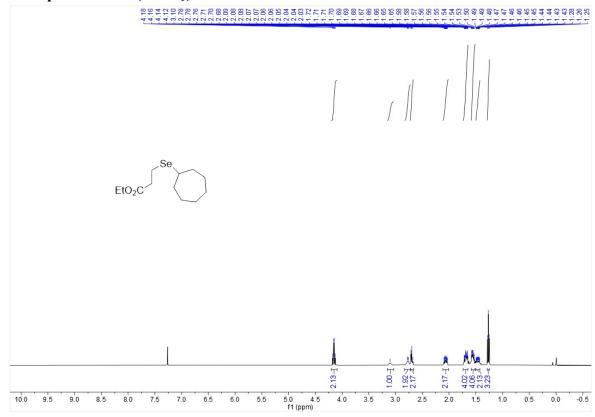

⁷⁷Se NMR spectra of 17f (CDCl₃)

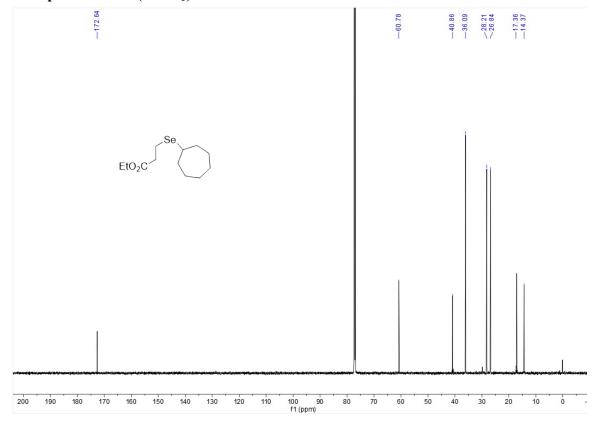

¹H NMR spectra of 17g (CDCl₃)

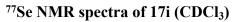

¹³C NMR spectra of 17g (CDCl₃)

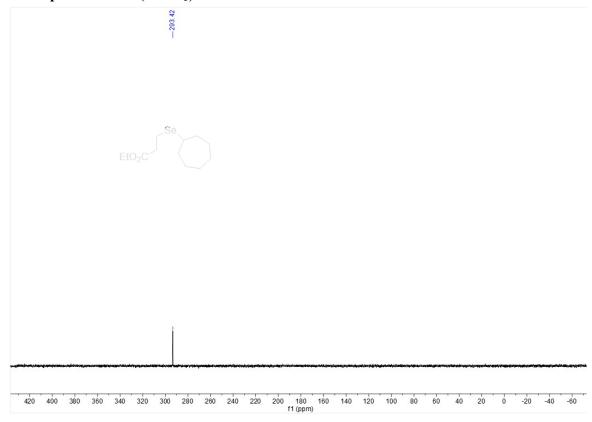

⁷⁷Se NMR spectra of 17g (CDCl₃)


¹H NMR spectra of 17h (CDCl₃)

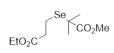

¹³C NMR spectra of 17h (CDCl₃)

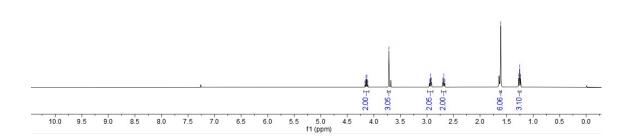

⁷⁷Se NMR spectra of 17h (CDCl₃)

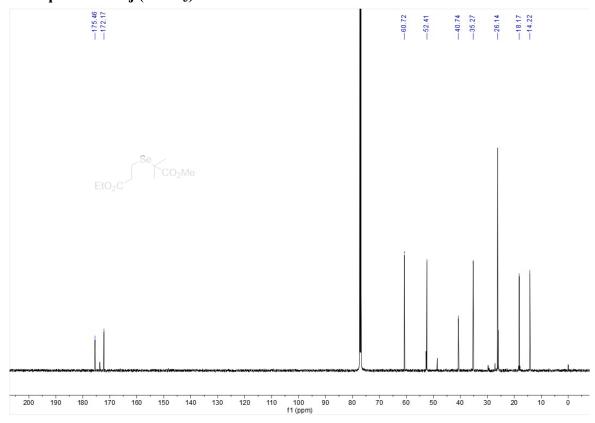


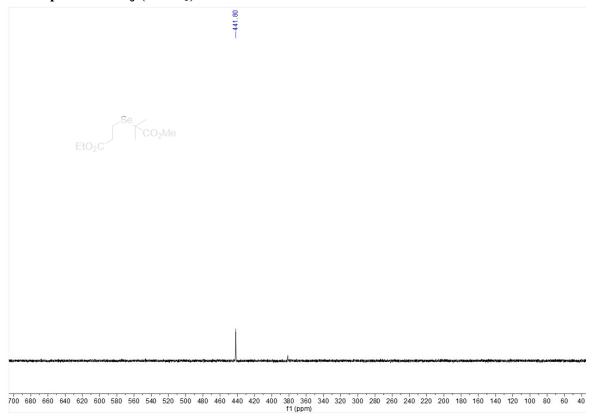

¹H NMR spectra of 17i (CDCl₃)

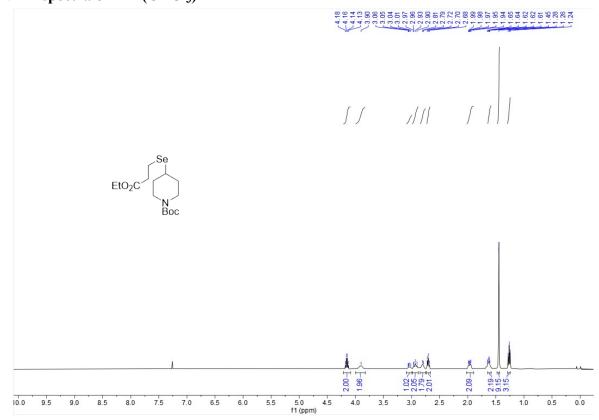

¹³C NMR spectra of 17i (CDCl₃)

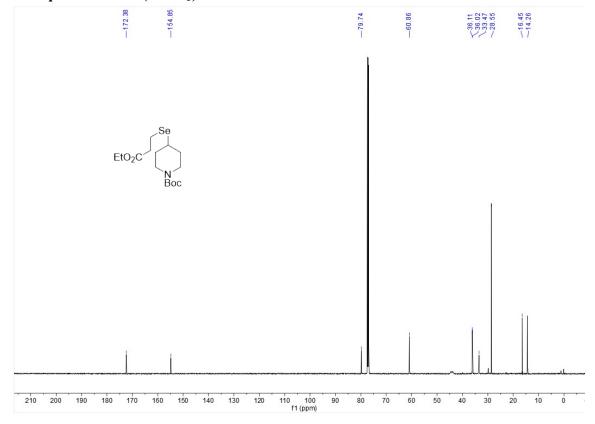


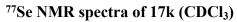


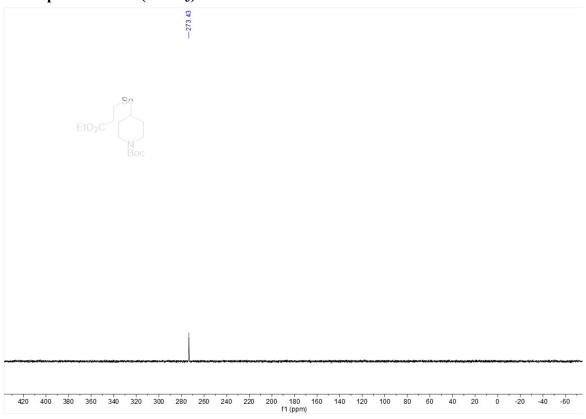

¹H NMR spectra of 17j (CDCl₃)

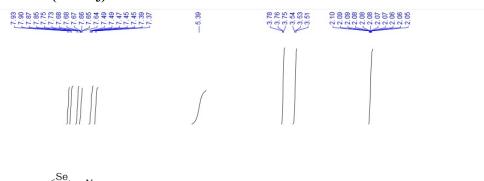


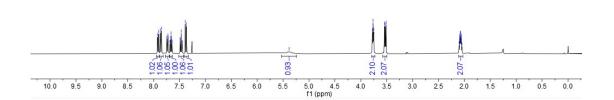

¹³C NMR spectra of 17j (CDCl₃)

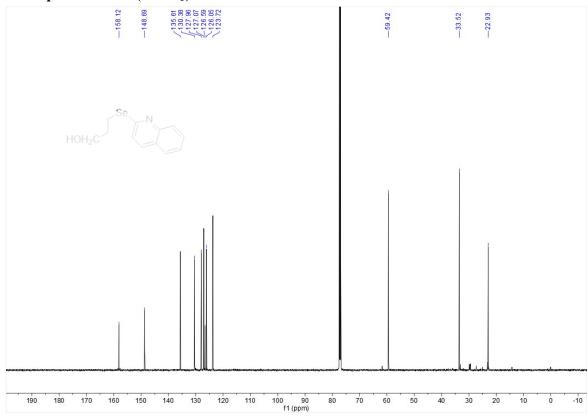

⁷⁷Se NMR spectra of 17j (CDCl₃)



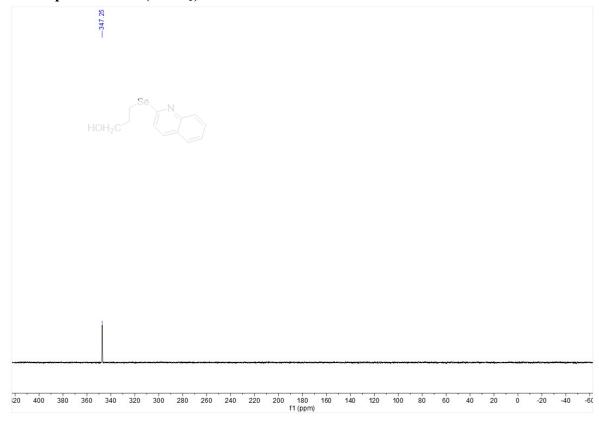

¹H NMR spectra of 17k (CDCl₃)

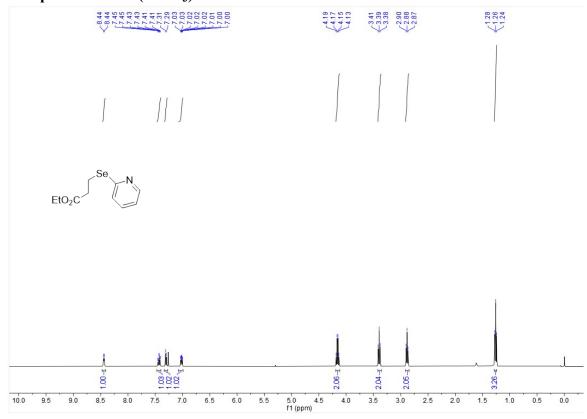

¹³C NMR spectra of 17k (CDCl₃)

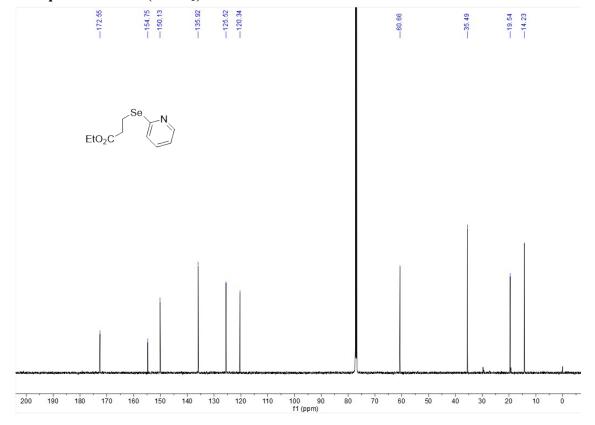




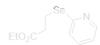
¹H NMR spectra of 17l (CDCl₃)

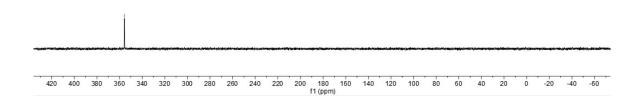



¹³C NMR spectra of 17l (CDCl₃)


⁷⁷Se NMR spectra of 17l (CDCl₃)

¹H NMR spectra of 17m (CDCl₃)




¹³C NMR spectra of 17m (CDCl₃)

⁷⁷Se NMR spectra of 17m (CDCl₃)

