Supplementary Information

Amides as key intermediates for the synthesis of 2,4-disubstituted quinazolines via acceptorless dehydrogenative coupling of alcohols

Yongfei Zhang,^{a,b,c} Xing Liu,^a Haiyang Jin,^a Yingying Qiu,^a Qing Yan,^a Yonghai Hui,*a Zhifeng Ma^d and Weiwei Jin*^c

- ^a College of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, China.
- ^{b.}GuangDong Engineering Technology Research Center of Protection and utilization of blue carbon resources, Zhanjiang, 524048, China
- ^c College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
- ^d School of Chemistry&Environment, Yunnan Minzu University, Kunming, 650500, China.

hyhai97@126.com (Yonghai Hui, Corresponding Author) wwjin0722@cjlu.edu.cn (Weiwei Jin, Corresponding Author)

Table of contents

1. Experimental	S2
2. Supplementary characterization data of the catalyst	S4
3. Reaction time versus yield curve	S5
4. The NMR data	S5
5. The NMR spectra	S11

1. Experimental

General remarks

o-Aminobenzhydrol and its derivatives were obtained from Energy Chemical. o-Aminobenzophenone, benzyl alcohol and its derivatives and all the other chemicals were purchased from Adama-beta. All chemicals were used as received without further purification.

The reaction was monitored by thin layer chromatography (TLC) and NMR. 2,4-Disubstituted quinazolines were characterized by 1 H NMR and 13 C NMR spectra using an INOVA-400 spectrometer. The mass analysis was carried out using an LCMS-8045. The FT-IR spectrum was obtained on a Bruker Equinox 55 FT-IR spectrophotometer using KBr pellets. Powder X-ray diffraction (XRD) patterns were recorded at a scan rate of 6° ·min $^{-1}$ on an ESCALAB 250Xi X-ray diffractometer with 2θ ranging from 5° to 80° with Cu K α radiation ($\lambda = 0.154056$ nm). The chemical states of the elements were investigated by X-ray photoelectron spectroscopy (XPS, Shimadzu AXIS Supra+). Scanning electron microscopy (SEM) was performed on a LEO1430VP instrument. The N_2 isotherms were performed with a NOVA 4000e surface area analyzer. The specific surface areas of materials were evaluated with the BET method.

Computational Methods

All density functional theory (DFT) calculations were performed to understand the nucleophilicity of the organic molecules, B3LYP-D3 method combined with a Def2-SVP basis set for all atoms were used to fully optimize all structures in the gas-phase. Then, vibrational frequency calculations on these optimized geometries were carried out at the same level of theory to confirm no imaginary frequency for all local minima. All DFT calculations were carried out by Gaussian16 program.

Synthesis of MUV-10(Mn)

MUV-10(Mn) was synthesized based on a modified procedure 1 . Benzene-1,3,5-tricarboxylic acid (BTC, 595 μ mol), MnCl₂·4H₂O (120~360 μ mol), DMF (12 mL) and AcOH (3.5 mL) in a 25 ml Schott bottle. Then, Ti(OiPr)₄ (120 μ mol) were added to the clear solution. The bottle was sealed and hold at 120 °C for 48 h. After cooling

to room temperature, the product was recovered by centrifugation and washed several times with DMF, water and MeOH.

These samples, synthesized based on the molar ratios of MnCl₂·4H₂O and Ti(OiPr)₄ of 1:1, 2:1, and 3:1, were designated as MUV-10(Mn)-1, MUV-10(Mn)-2, and MUV-10(Mn)-3, respectively.

HOOC COOH
$$\frac{\text{DMF/AcOH}}{\text{H}_{2}\text{O}}$$
 $\frac{\text{DMF}}{\text{H}_{2}\text{O}}$ $\frac{\text{DMF}}{\text{H}_{2}\text{O}}$ $\frac{\text{DMF}}{\text{H}_{2}\text{O}}$ $\frac{\text{MeOH}}{\text{dry}}$ $\frac{\text{Mn}}{\text{O}}$ $\frac{\text{Mn}}{\text{O}}$ $\frac{\text{Mn}}{\text{O}}$ $\frac{\text{Mn}}{\text{O}}$ $\frac{\text{COOH}}{\text{COOH}}$ $\frac{\text{COOH}}{\text{COOH}}$

Scheme S1. Preparation of MUV-10(Mn).

General procedure for the acceptorless single dehydrogenation coupling reaction

General procedure for the synthesis of 2,4-diphenylquinazoline (5a). The reaction was carried out in a glass tube. In a typical procedure, 3 mg MUV-10(Mn)-1, 0.1 mmol 'BuOK, 0.1 mmol *o*-aminobenzophenone and 0.3 mmol NH₄OAc and 0.3 mL benzyl alcohol were added into the tube and stirred at 130 °C for 16 h. After the reaction, the catalyst was separated from the reaction mixture via centrifugation, and the residue was purified by chromatography to afford the product 5a and confirmed by NMR.

General procedure for the acceptorless double dehydrogenation coupling reaction

General procedure for the synthesis of 2,4-disubstituted quinazolines (with 5a as an example). The reaction was carried out in a glass tube. In a typical procedure, 3 mg MUV-10(Mn)-1, 0.1 mmol 'BuOK and 0.1 mmol o-aminobenzhydrol were added into the tube and stirred at 80 °C for 12 h. Then, 0.1 mmol 'BuOK, 0.3 mmol NH₄OAc and 0.3 mL benzyl alcohol were added into the tube and stirred at 130 °C for another 16 h. After the reaction, the catalyst was separated from the reaction mixture via centrifugation, and the product was separated and purified by chromatography.

2. Supplementary characterization data of the catalyst

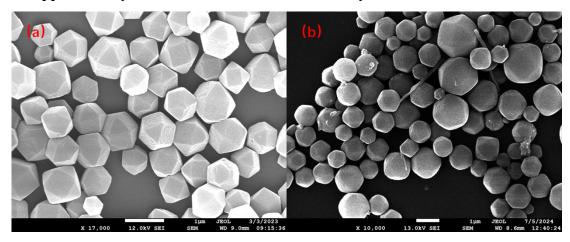


Fig. S1 Scanning electron micrograph of (a) MUV-10(Mn)-2 and (b) MUV-10(Mn)-3.

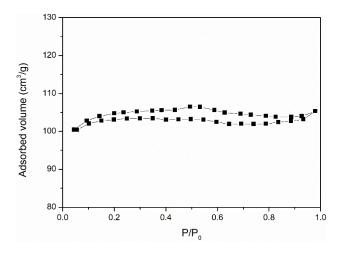


Fig. S2 Nitrogen sorption and desorption isotherms of MUV-10(Mn)-1.

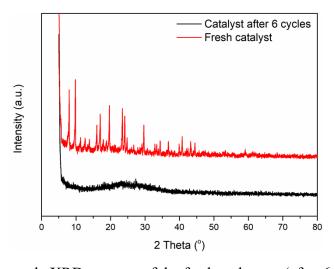


Fig. S3. The wide-angle XRD patterns of the fresh and spent (after 6 cycles) catalysts.

3. Reaction time versus yield curve

Fig. S4 A representative time course of the acceptorless single dehydrogenative coupling reaction, monitored by ¹H NMR. Reaction conditions: **2a** (0.1 mmol), **3a** (0.3 mL), **4a** (0.3 mmol), ⁴BuOK (0.1 mmol) and MUV-10(Mn)-1 (3 mg) at 130 °C for the parallel experiments with different reaction times.

4. The NMR data

2,4-Diphenylquinazoline (5a). ¹H NMR (400 MHz, DMSO-d₆): δ 8.62-8.59 (m, 2H), 8.14 (d, J = 8.3 Hz, 1H), 8.09 (d, J = 9.0 Hz, 1H), 8.05-8.01 (m, 1H), 7.90-7.87 (m, 2H), 7.72-7.64 (m, 4H), 7.59-7.55 (m, 3H). ¹³C NMR (100 MHz, DMSO-d₆): δ 168.1, 159.0, 151.2, 137.5, 137.0, 134.5, 130.9, 130.2, 130.0, 128.8, 128.7, 128.7, 128.2, 128.0, 126.9, 121.1. Analysis calc. for $C_{20}H_{14}N_2$ (282.12): C, 85.08; H, 5.00; N, 9.92. Found: C, 85.10; H, 4.99; N, 9.91.

2-(4-Fluorophenyl)-4-phenylquinazoline (5b). ¹H NMR (400 MHz, CDCl₃): δ 8.74-8.68 (m, 2H), 8.14 (t, J = 8.6Hz, 2H), 7.92-7.86 (m, 3H), 7.62-7.54 (m, 4H), 7.23-7.17 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 168.5, 164.7 (d, ${}^{1}J_{C-F} = 248$ Hz, 1C), 159.3, 151.8, 137.5, 134.3 (d, ${}^{4}J_{C-F} = 3.0$ Hz, 1C), 133.7, 130.8 (d, ${}^{3}J_{C-F} = 9$ Hz, 2C), 130.2, 130.0, 129.0, 128.6, 127.1, 121.6, 115.5 (d, ${}^{2}J_{C-F} = 21.0$ Hz, 2C). Analysis calc. for C₂₀H₁₃FN₂ (300.11): C, 79.98; H, 4.36; N, 9.33. Found: C, 79.96; H, 4.37; N, 9.34. **2-(4-Chlorophenyl)-4-phenylquinazoline (5c).** ¹H NMR (400 MHz, CDCl₃): δ 8.66 (d, J = 6.7 Hz, 2H), 8.17(d, J = 8.4 Hz, 1H), 8.14 (dd, $J_I = 8.4$ Hz, $J_Z = 1.4$ Hz, 1H), 7.93-7.87 (m, 3H), 7.62-7.55 (m, 4H), 7.49 (d, J = 8.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 168.6, 159.2, 151.7, 137.5, 136.8, 136.5, 133.8, 130.2, 130.1, 130.1, 129.0,

128.8, 128.6, 127.3, 127.1, 121.7. Analysis calc. for $C_{20}H_{13}ClN_2$ (316.08): C, 75.83; H, 4.14; N, 8.84. Found: C, 75.81; H, 4.15; Cl, 11.21; N, 8.85.

2-(4-Bromophenyl)-4-phenylquinazoline (5d). ¹H NMR (400 MHz, CDCl₃): δ 8.58 (dt, J_I =8.7 Hz, J_2 = 2.4 Hz, 2H), 8.15 (t, J= 8.4 Hz, 2H), 7.93-7.87 (m, 3H), 7.66 (dt, J_I = 8.5 Hz, J_2 = 2.6 Hz, 2H), 7.63-7.56 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 168.5, 159.3, 151.8, 137.5, 137.1, 133.8, 131.7, 130.3, 130.2, 130.1, 129.1, 128.6, 127.3, 127.1, 125.3, 121.7. Analysis calc. for C₂₀H₁₃BrN₂ (360.03): C, 66.50; H, 3.63; N, 7.75. Found: C, 66.52; H, 3.64; N, 7.77.

2-(4-Nitrophenyl)-4-phenylquinazoline (5e). ¹H NMR (400 MHz, CDCl₃): δ 8.89 (d, J = 8.4 Hz, 2H), 8.37 (d, J = 8.4 Hz, 2H), 8.19 (t, J = 8.8 Hz, 2H), 7.96 (t, J = 6.8 Hz, 1H), 7.91-7.88 (m, 2H), 7.66-7.62 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 168.8, 158.0, 151.8, 149.2, 144.0, 137.2, 134.1, 130.3, 130.2, 129.5, 129.4, 128.7, 128.1, 127.2, 123.7, 122.0. Analysis calc. for C₂₀H₁₃N₃O₂ (327.10): C, 73.38; H, 4.00; N, 12.84. Found: C, 73.40; H, 4.00; N, 12.82.

2-(3-Chlorophenyl)-4-phenylquinazoline (5f). ¹H NMR (400 MHz, CDCl₃): δ 8.71-8.70 (m, 1H), 8.62-8.59 (m, 1H), 8.20 (d, J = 8.3 Hz, 1H), 8.15 (d, J = 8.3 Hz, 1H), 7.94-7.88 (m, 3H), 7.63-7.57 (m, 4H), 7.49-7.44 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 168.7, 158.8, 151.7, 139.9, 137.4, 134.7, 133.9, 130.6, 130.2, 130.1, 129.8, 129.0, 128.7, 128.6, 127.5, 127.1, 126.8, 121.8. Analysis calc. for C₂₀H₁₃ClN₂ (316.08): C, 75.83; H, 4.14; N, 8.84. Found: C, 75.86; H, 4.13; Cl, 11.20; N, 8.82.

2-(3-Bromophenyl)-4-phenylquinazoline (5g). ¹H NMR (400 MHz, CDCl₃): δ 8.86 (t, J = 1.7 Hz, 1H), 8.66 (dt, J_I = 7.9 Hz, J_2 = 1.4 Hz, 1H), 8.22 (d, J = 8.2 Hz, 1H), 8.16 (dd, J_I = 8.4 Hz, J_2 = 1.7 Hz, 1H), 7.95-7.88 (m, 3H), 7.65-7.59 (m, 5H), 7.41 (t, J = 7.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 168.7, 158.7, 151.5, 140.0, 137.3, 133.9, 133.5, 131.7, 130.2, 130.2, 130.1, 129.0, 128.6, 127.5, 127.3, 127.1, 122.9, 121.8. Analysis calc. for C₂₀H₁₃BrN₂ (360.03): C, 66.50; H, 3.63; N, 7.75. Found: C, 66.48; H, 3.64; N, 7.76.

2-(2-Chlorophenyl)-4-phenylquinazoline (5h). ¹H NMR (400 MHz, CDCl₃): δ 8.22 (dd, $J_I = 8.1$ Hz, $J_2 = 3.3$ Hz, 2H), 7.97-7.87 (m, 4H), 7.67-7.63 (m, 1H), 7.62-7.52 (m, 3H), 7.44-7.37 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 168.4, 161.3, 151.5, 138.4,

137.2, 133.9, 133.1, 131.9, 130.6, 130.3, 130.3, 130.1, 129.1, 128.7, 127.9, 127.1, 126.9, 121.4. Analysis calc. for $C_{20}H_{13}CIN_2$ (316.08): C, 75.83; H, 4.14; N, 8.84. Found: C, 75.80; H, 4.15; N, 8.86.

2-(2-Nitrophenyl)-4-phenylquinazoline (5i). ¹H NMR (400 MHz, CDCl₃): δ 8.23-8.16 (m, 3H), 7.97-7.89 (m, 2H), 7.83-7.80 (m, 2H), 7.72 (td, $J_I = 7.3$ Hz, $J_2 = 1.2$ Hz, 1H), 7.67-7.57 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 168.5, 158.9, 151.6, 150.1, 136.9, 134.1, 133.9, 132.3, 131.8, 130.3, 130.1, 129.1, 128.7, 128.1, 127.2, 124.2, 121.6. Analysis calc. for C₂₀H₁₃N₃O₂ (327.10): C, 73.38; H, 4.00; N, 12.84. Found: C, 73.35; H, 4.01; N, 12.86.

4-Phenyl-2-(p-tolyl)quinazoline (5j). ¹H NMR (400 MHz, DMSO-d₆): δ 8.51 (d, J = 8.3 Hz, 2H), 8.13 (d, J = 8.0 Hz, 1H), 8.09 (dd, J_I = 8.4 Hz, J_2 = 0.8 Hz, 1H), 8.05-8.01 (m, 1H), 7.90-7.88 (m, 2H), 7.72-7.65 (m, 4H), 7.39 (d, J = 8.0 Hz, 2H), 2.41 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆): δ 168.5, 159.6, 151.7, 141.2, 137.5, 135.3, 134.9, 130.6, 130.5, 129.8, 129.1, 129.1, 128.6, 128.2, 127.3, 121.5, 21.6. Analysis calc. for $C_{21}H_{16}N_2$ (296.13): C, 85.11; H, 5.44; N, 9.45. Found: C, 85.09; H, 5.45; N, 9.46.

4-Phenyl-2-(m-tolyl)quinazoline (5k). ¹H NMR (400 MHz, CDCl₃): δ 8.50 (d, J = 8.9 Hz, 2H), 8.18 (d, J = 8.4 Hz, 1H), 8.13 (dd, J_I = 8.4 Hz, J_2 = 1.7 Hz, 1H), 7.91-7.87 (m, 3H), 7.62-7.58 (m, 3H), 7.57-7.53 (m, 1H), 7.43 (td, J_I =7.3 Hz, J_2 =0.7 Hz, 1H), 7.32 (d, J = 7.4 Hz, 1H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 168.4, 160.4, 151.9, 138.2, 138.0, 137.7, 133.6, 131.4, 130.2, 130.0, 129.2, 129.1, 128.6, 128.5, 127.1, 127.0, 126.0, 121.7, 21.6. Analysis calc. for $C_{21}H_{16}N_2$ (296.13): C, 85.11; H, 5.44; N, 9.45. Found: C, 85.08; H, 5.46; N, 9.46.

4-Phenyl-2-(o-tolyl)quinazoline (5l). ¹H NMR (400 MHz, CDCl₃): δ 8.19-8.16 (m, 2H), 7.99-7.97 (m, 1H), 7.94-7.90 (m, 1H), 7.88-7.85 (m, 2H), 7.63-7.56 (m, 4H), 7.37-7.33 (m, 3H), 2.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 168.1, 163.4, 151.6, 138.8, 137.5, 137.4, 133.7, 131.3, 130.7, 130.2, 129.9, 129.3, 129.1, 128.6, 127.3, 127.0, 126.0, 121.0, 21.3. Analysis calc. for C₂₁H₁₆N₂ (296.13): C, 85.11; H, 5.44; N, 9.45. Found: C, 85.09; H, 5.45; N, 9.46.

2-(4-Methoxyphenyl)-4-phenylquinazoline (5m). ¹H NMR (400 MHz, CDCl₃): δ 8.66-8.64 (m, 2H), 8.13 (d, J = 8.4 Hz, 1H), 8.10 (dd, J_I = 9.0 Hz, J_2 = 2.1 Hz, 1H), 7.89-7.84 (m, 3H), 7.61-7.58 (m, 3H), 7.53-7.49 (m, 1H), 7.06-7.02 (m, 2H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 168.3, 161.8, 160.0, 151.9, 137.8, 133.6, 130.8, 130.4, 130.2, 129.9, 128.9, 128.5, 127.1, 126.6, 121.4, 113.9, 55.4. Analysis calc. for $C_{21}H_{16}N_2O$ (312.13): C, 80.75; H, 5.16; N, 8.97. Found: C, 80.78; H, 5.16; N, 8.94.

2-(Naphthalen-2-yl)-4-phenylquinazoline (5n). ¹H NMR (400 MHz, CDCl₃): δ 9.25 (s, 1H), 8.82 (dd, J_I = 8.6 Hz, J_2 = 1.7 Hz, 1H), 8.23 (d, J = 8.3 Hz, 1H), 8.16 (dd, J_I = 8.3 Hz, J_2 = 2.0 Hz, 1H), 8.06-8.04 (m, 1H), 7.99 (d, J = 8.8 Hz, 1H), 7.96-7.89 (m, 4H), 7.67-7.50 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 168.5, 160.2, 151.9, 137.7, 135.5, 134.7, 133.7, 133.4, 130.2, 130.0, 129.3, 129.1, 129.0, 128.6, 128.2, 127.7, 127.1, 127.0, 126.1, 125.6, 121.8. Analysis calc. for C₂₄H₁₆N₂ (332.13): C, 86.72; H, 4.85; N, 8.43. Found: C, 86.70; H, 4.86; N, 8.44.

4-Phenyl-2-(pyridin-4-yl)quinazoline (50). ¹H NMR (400 MHz, CDCl₃): δ 8.81 (dd, $J_I = 4.4$ Hz, $J_2 = 1.6$ Hz, 2H), 8.54 (dd, $J_I = 4.4$ Hz, $J_2 = 1.6$ Hz, 2H), 8.22-8.17 (m, 2H), 7.97-7.93 (m, 1H), 7.91-7.88 (m, 2H), 7.66-7.61 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 168.8, 158.1, 151.8, 150.4, 145.6, 137.2, 134.0, 130.2, 130.2, 129.4, 128.7, 128.1, 127.1, 122.4, 122.3. Analysis calc. for C₁₉H₁₃N₃ (283.11): C, 80.54; H, 4.62; N, 14.83. Found: C, 80.56; H, 4.61; N, 14.82.

2-(Naphthalen-1-yl)-4-phenylquinazoline (5p). ¹H NMR (400 MHz, CDCl₃): δ 8.77 (d, J = 8.7 Hz, 1H), 8.27-8.21 (m, 3H), 8.00-7.90 (m, 5H), 7.67-7.51 (m, 7H). ¹³C NMR (100 MHz, CDCl₃): δ 168.6, 162.7, 151.6, 137.4, 136.4, 134.2, 133.9, 131.3, 130.3, 130.2, 130.0, 129.7, 129.1, 128.6, 128.5, 127.6, 127.1, 126.8, 126.0, 125.8, 125.3, 121.3. Analysis calc. for C₂₄H₁₆N₂ (332.13): C, 86.72; H, 4.85; N, 8.43. Found: C, 86.69; H, 4.87; N, 8.44.

6-Chloro-2,4-diphenylquinazoline (5q). ¹H NMR (400 MHz, CDCl₃): δ 8.69-8.66 (m, 2H), 8.12 (d, J = 6.4 Hz, 1H), 8.10 (s, 1H), 7.88-7.86 (m, 2H), 7.83 (dd, J_I = 9.2 Hz, J_2 = 7.2 Hz, 1H), 7.64-7.62 (m, 3H), 7.54-7.52 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.6, 160.5, 150.5, 137.8, 137.1, 134.5, 132.6, 130.9, 130.8, 130.2, 130.1,

128.8, 128.7, 128.6, 125.8, 122.2. Analysis calc. for C₂₀H₁₃ClN₂ (316.08): C, 75.83; H, 4.14; N, 8.84. Found: C, 75.81; H, 4.15; N, 8.85.

2-(4-Bromophenyl)-6-chloro-4-phenylquinazoline (5r). ¹H NMR (400 MHz, CDCl₃): δ 8.56 (d, J = 8.4 Hz, 2H), 8.10-8.08 (m, 2H), 7.87-7.82 (m, 3H), 7.66-7.62 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 158.5, 149.4, 135.9, 135.7, 133.7, 131.9, 130.7, 129.8, 129.3, 129.2, 129.0, 127.8, 124.8, 124.6, 121.2. Analysis calc. for $C_{20}H_{12}BrClN_2$ (393.99): C, 60.71; H, 3.06; N, 7.08. Found: C, 60.73; H, 3.05; N, 7.07. **6-Chloro-4-phenyl-2-(p-tolyl)quinazoline** (5s). ¹H NMR (400 MHz, CDCl₃): δ 8.57 (d, J = 8.0 Hz, 2H), 8.10-8.08 (m, 2H), 7.88-7.85 (m, 2H), 7.81 (dd, J_I = 9.2 Hz, J_Z =6.8 Hz, 1H), 7.63-7.61 (m, 3H), 7.33 (d, J = 8.0 Hz, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.5, 160.6, 150.5, 141.1, 137.2, 135.0, 134.4, 132.3, 130.8, 130.2, 130.1, 129.4, 128.7, 128.7, 125.8, 122.1, 21.6. Analysis calc. for $C_{21}H_{15}ClN_2$ (330.09): C, 76.25; H, 4.57; N, 8.47. Found: C, 76.22; H, 4.58; N, 8.49.

4-Methyl-2-phenylquinazoline (5t). ¹H NMR (400 MHz, CDCl₃): δ 8.63-8.60 (m, 2H), 8.12-8.08 (m, 2H), 7.90-7.85 (m, 1H), 7.62-7.58 (m, 1H), 7.56-7.50 (m, 3H), 3.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 160.2, 133.6, 130.4, 129.2, 128.6, 128.6, 128.3, 126.9, 125.0, 123.0, 29.7. Analysis calc. for C₁₅H₁₂N₂ (220.10): C, 81.79; H, 5.49; N, 12.72. Found: C, 81.76; H, 5.50; N, 12.74.

4-(4-fluorophenyl)-2-phenylquinazoline (5u). ¹H NMR (400 MHz, CDCl₃): δ 8.69-8.67 (m, 2H), 8.17 (d, J = 8.0 Hz, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.92-7.88 (m, 3H), 7.58-7.50 (m, 4H), 7.31-7.27 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 164.0 (d, ${}^{1}J_{C-F}$ =249 Hz, 1C), 160.2, 152.0, 138.0, 133.8 (d, ${}^{4}J_{C-F}$ =3 Hz, 1C), 133.7, 132.2 (d, ${}^{3}J_{C-F}$ =8 Hz, 2C), 130.6, 129.3, 128.7, 128.6, 128.3, 127.2, 126.7, 121.6, 115.7 (d, ${}^{2}J_{C-F}$ =21 Hz, 2C). Analysis calc. for C₂₀H₁₃FN₂ (300.11): C, 79.98; H, 4.36; N, 9.33. Found: C, 79.96; H, 4.37; N, 9.34.

4-(4-chlorophenyl)-2-phenylquinazoline (5v). ¹H NMR (400 MHz, CDCl₃): δ 8.69-8.67 (m, 2H), 8.19 (d, J = 8.0 Hz, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.93-7.89 (m, 1H), 7.85 (d, J = 8.0 Hz, 2H), 7.60-7.51 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 160.2, 151.9., 137.9, 136.4, 136.1, 133.8, 131.5, 130.7, 129.2, 128.9, 128.7, 128.6,

128.3, 127.3, 126.6, 121.5. Analysis calc. for C₂₀H₁₃ClN₂ (316.08): C, 75.83; H, 4.14; N, 8.84. Found: C, 75.82; H, 4.13; N, 8.86.

4-(4-bromophenyl)-2-phenylquinazoline (5w). ¹H NMR (400 MHz, CDCl₃): δ 8.69-8.66 (m, 2H), 8.18 (d, J = 8.0 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.92-7.88 (m, 1H), 7.79-7.73 (m, 4H), 7.58-7.51 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 160.2, 152.0, 137.9, 136.5, 133.8, 131.8, 131.8, 130.7, 129.3, 128.7, 128.6, 127.3, 126.6, 124.7, 121.5. Analysis calc. for C₂₀H₁₃BrN₂ (360.03): C, 66.50; H, 3.63; N, 7.75. Found: C, 66.47; H, 3.64; N, 7.77.

N-(2-Bsenzoylphenyl)benzamide (IV). ¹H NMR (400 MHz, CDCl₃): δ 11.98 (s, 1H), 8.90 (d, J = 8, 1H), 8.09-8.06 (m, 2H), 7.74-7.72 (m, 2H), 7.68-7.59 (m, 3H), 7.56-7.49 (m, 5H), 7.16-7.12 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 199.4, 164.9, 140.1, 137.8, 133.7, 133.5, 133.1, 131.4, 131.0, 128.8, 127.8, 127.3, 126.4, 122.1, 121.2, 120.4. Analysis calc. for $C_{20}H_{15}NO_2$ (301.11): C, 79.72; H, 5.02; N, 4.65. Found: C, 79.69; H, 5.03; N, 4.67. MS: m/z 301.95 [M+H]⁺

References

J. Castells-Gil, N. M. Padial, N. Almora-Barrios, J. Albero, A. R. RuizSalvador,
J. González-Platas, H. García and C. Martí-Gastaldo, *Angew. Chem. Int. Ed.*,
2018, 57, 8453-8457.

5. The NMR spectra

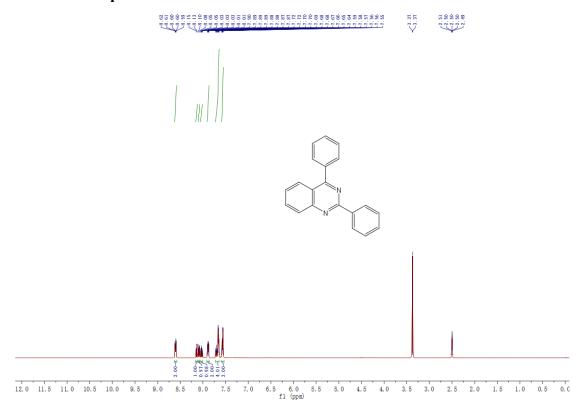


Fig. S5 ¹H NMR spectrum of 5a

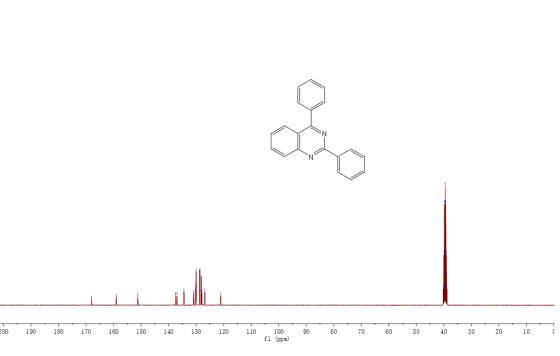
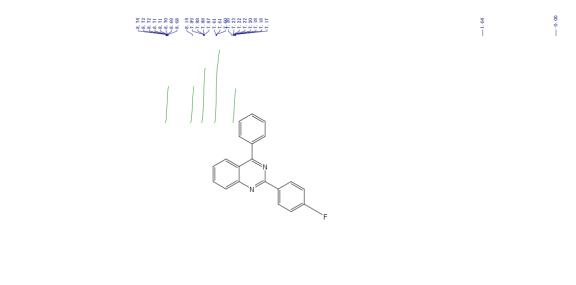



Fig. S6 13 C NMR spectrum of 5a

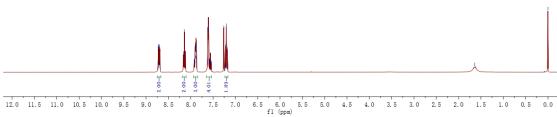


Fig. S7 ¹H NMR spectrum of 5b

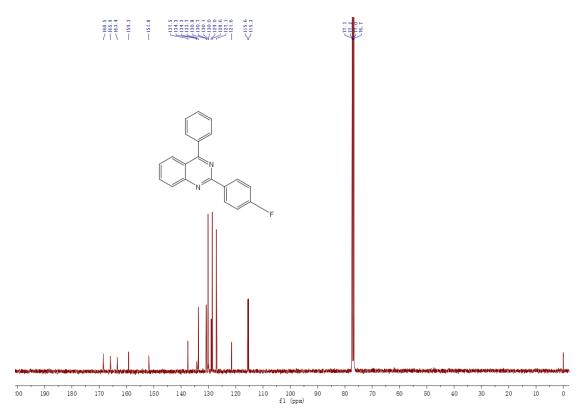
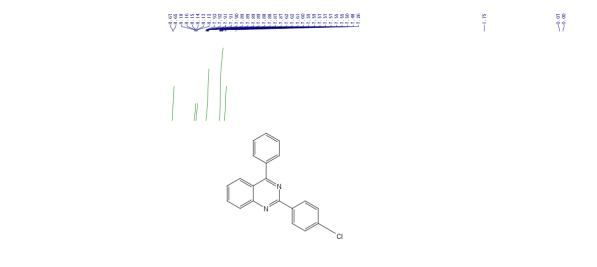



Fig. S8 13 C NMR spectrum of 5b

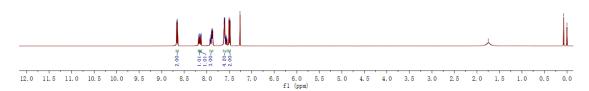


Fig. S9 ¹H NMR spectrum of 5c

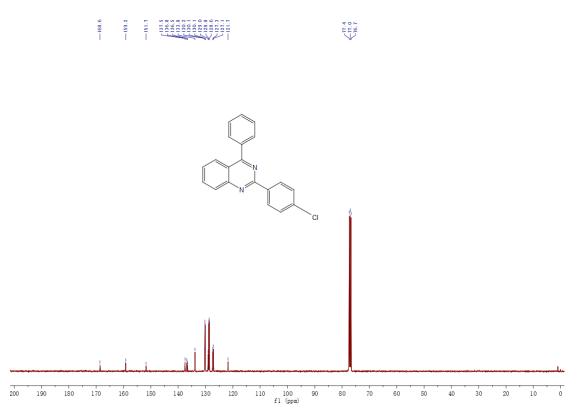


Fig. S10 13 C NMR spectrum of 5c

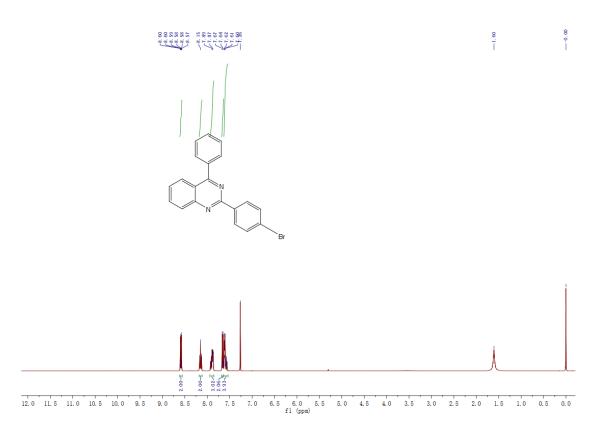


Fig. S11 ¹H NMR spectrum of 5d

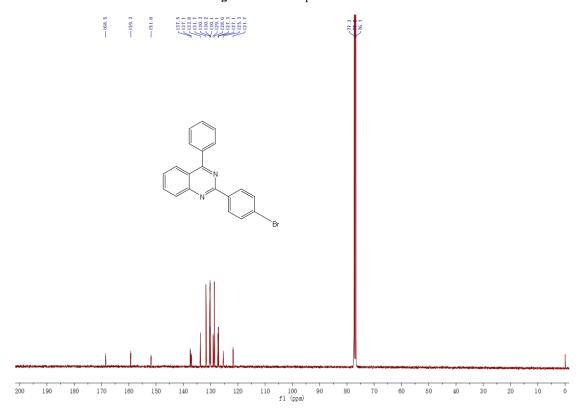
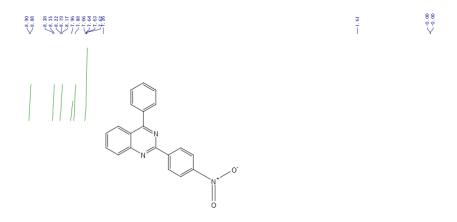



Fig. S12 13 C NMR spectrum of 5d

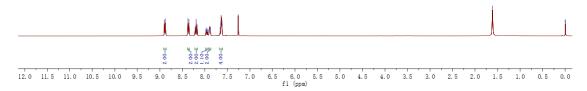


Fig. S13 ¹H NMR spectrum of 5e

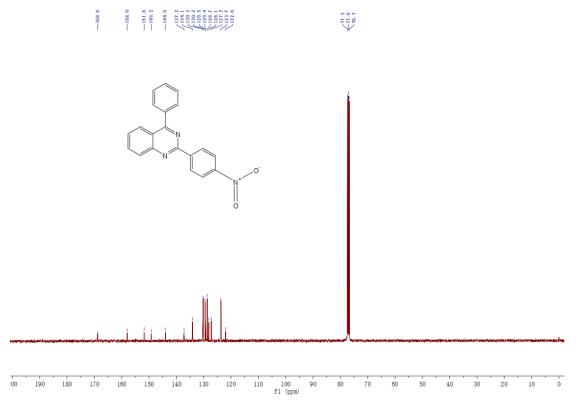
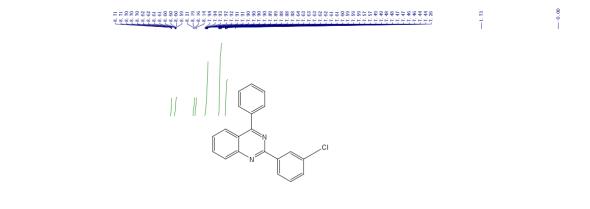



Fig. S14 ¹³C NMR spectrum of 5e

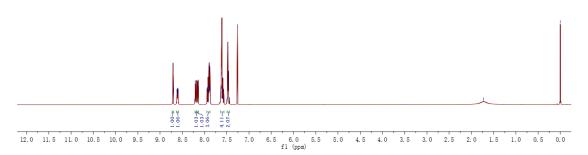


Fig. S15 1 H NMR spectrum of 5f

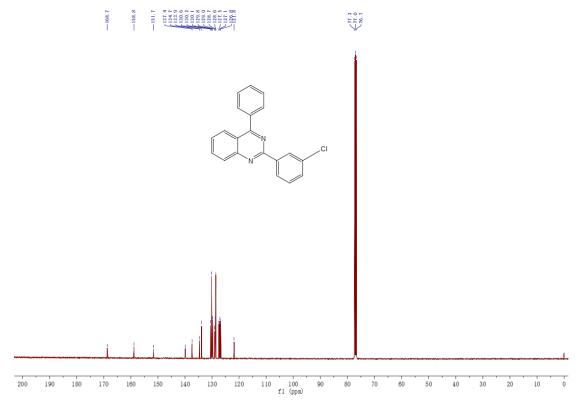
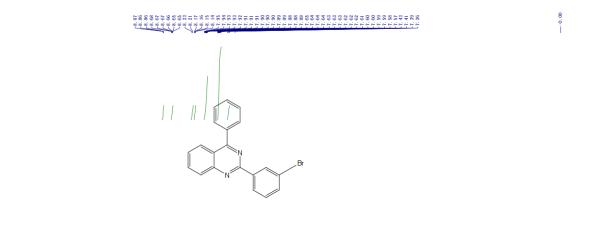



Fig. S16 13 C NMR spectrum of 5f

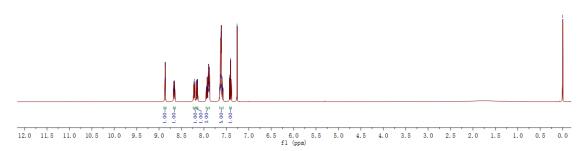


Fig. S17 ¹H NMR spectrum of 5g

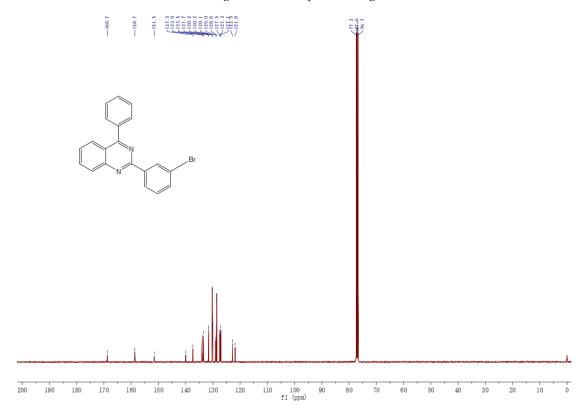
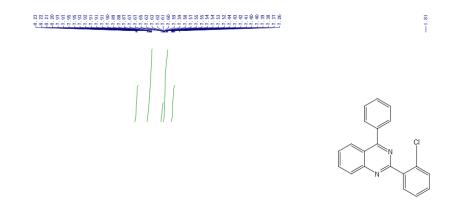



Fig. S18 ¹³C NMR spectrum of 5g

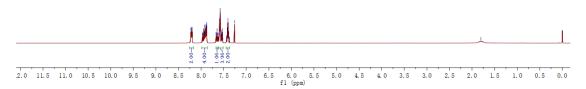


Fig. S19 ¹H NMR spectrum of 5h

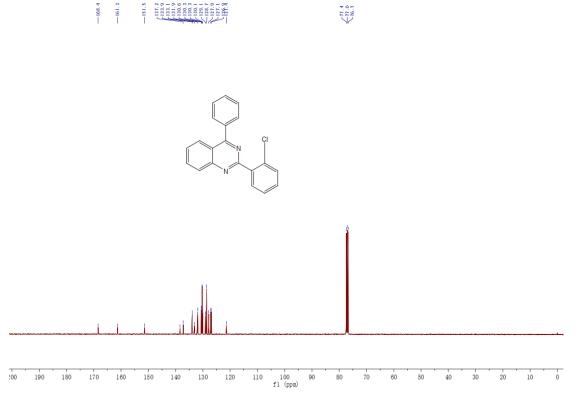
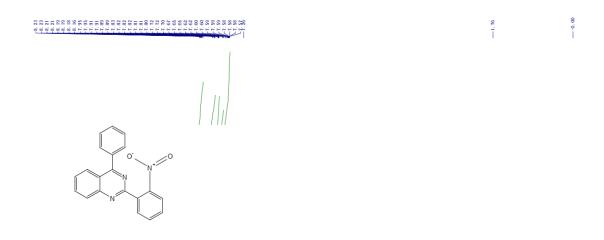



Fig. S20 ¹³C NMR spectrum of 5h

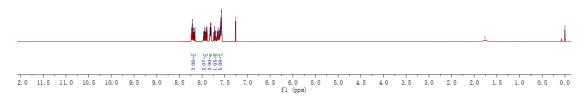


Fig. S21 ¹H NMR spectrum of 5i

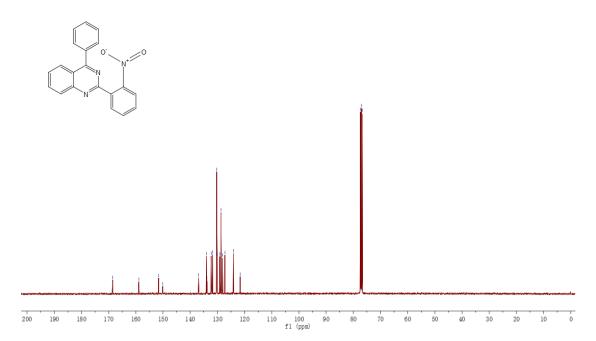


Fig. S22 13 C NMR spectrum of 5i

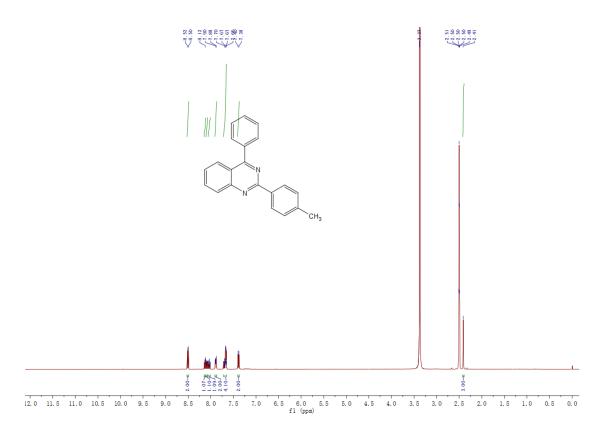


Fig. S23 ¹H NMR spectrum of 5j

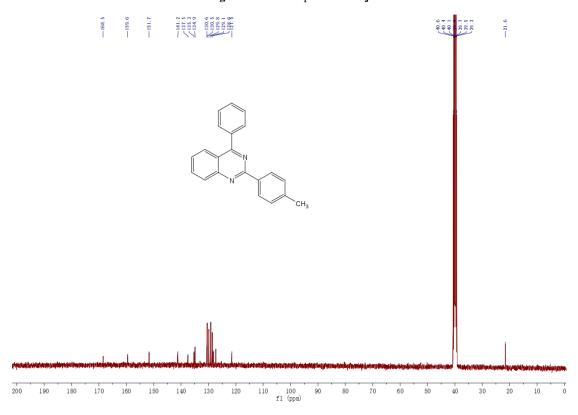


Fig. S24 13 C NMR spectrum of 5j

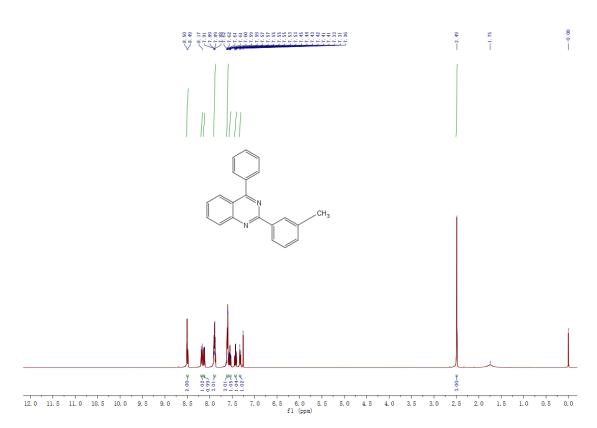


Fig. S25 ¹H NMR spectrum of 5k

₹71.4 ₹71.0 76.7

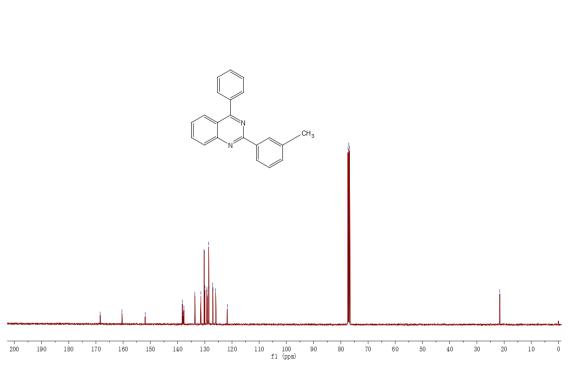
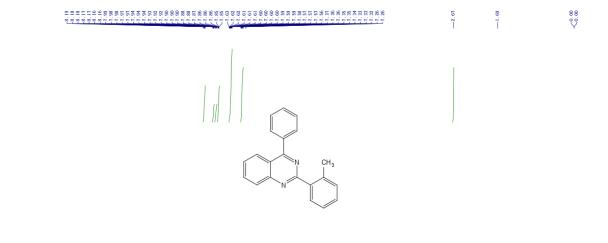



Fig. S26 13 C NMR spectrum of 5k

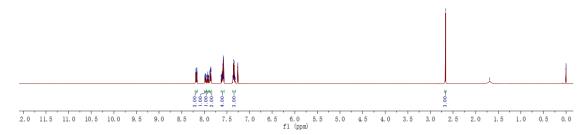
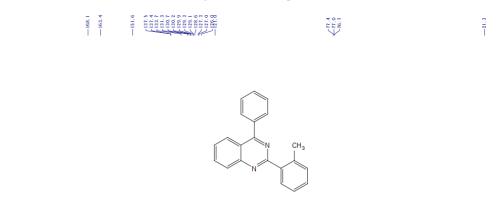



Fig. S27 ¹H NMR spectrum of 5l

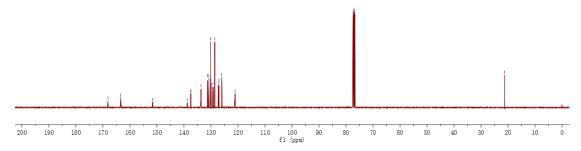


Fig. S28 13 C NMR spectrum of 5l

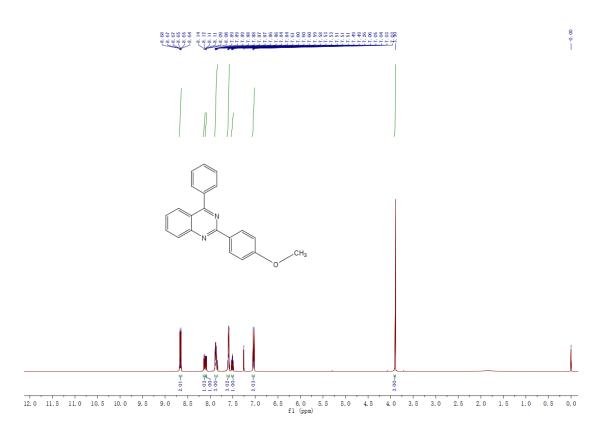


Fig. S29 ¹H NMR spectrum of 5m

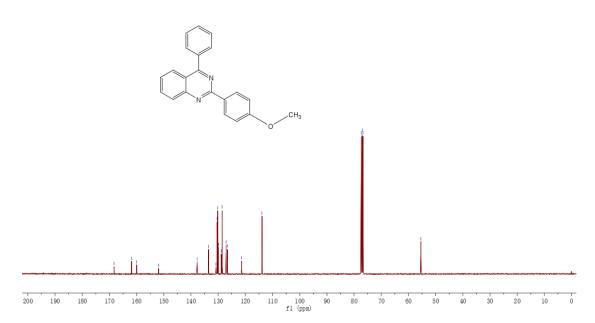


Fig. S30 13 C NMR spectrum of 5m

Fig. S31 ¹H NMR spectrum of 5n

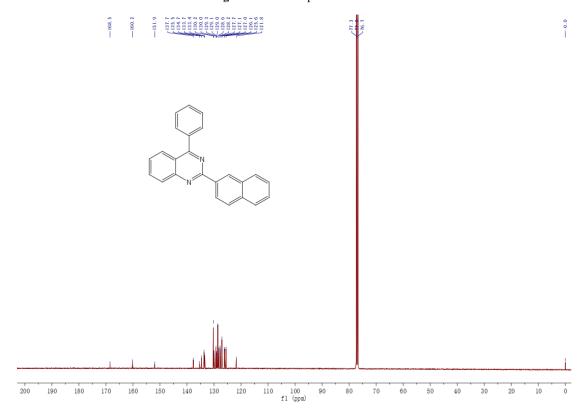


Fig. S32 ¹³C NMR spectrum of 5n

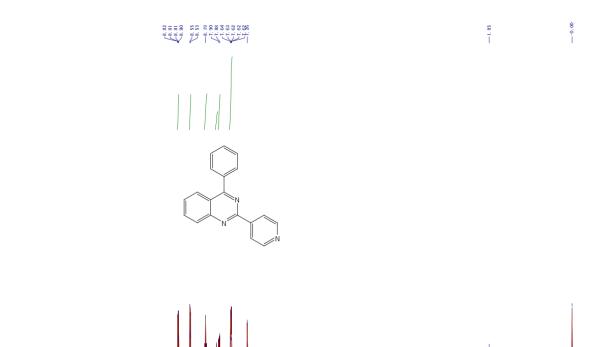


Fig. S33 1 H NMR spectrum of 50

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0

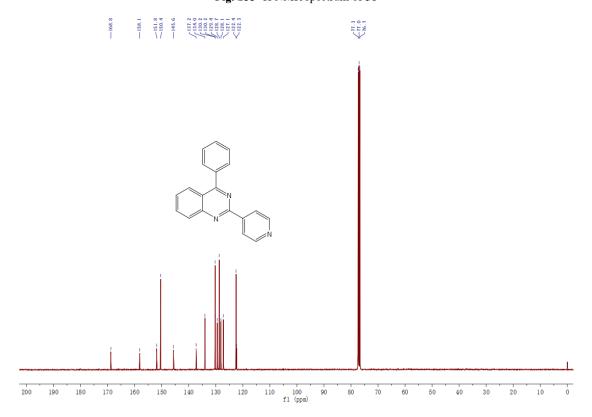
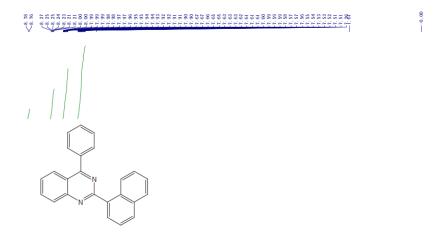



Fig. S34 ¹³C NMR spectrum of 50

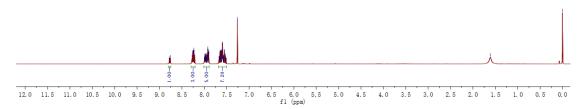


Fig. S35 ¹H NMR spectrum of 5p

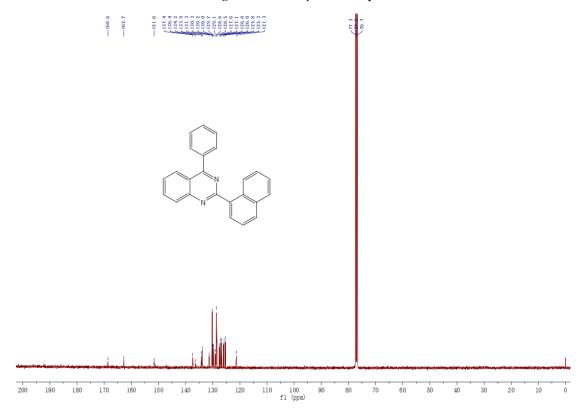


Fig. S36 13 C NMR spectrum of 5p

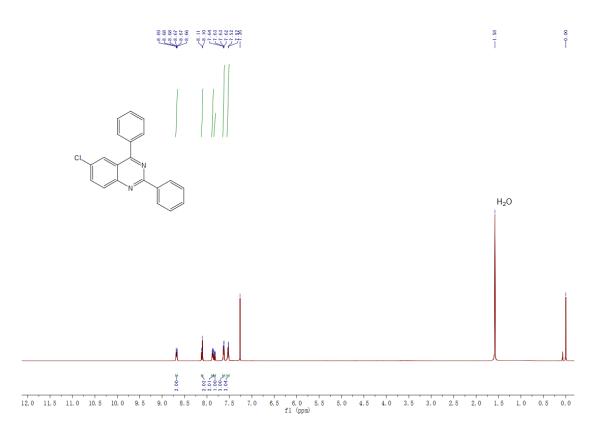


Fig. S37 ¹H NMR spectrum of 5q

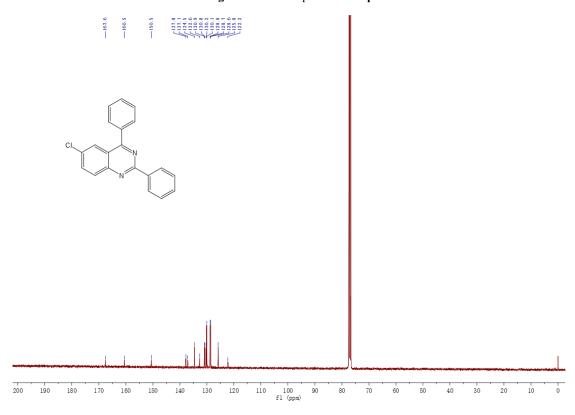
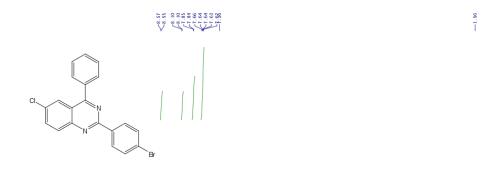



Fig. S38 ¹³C NMR spectrum of 5q

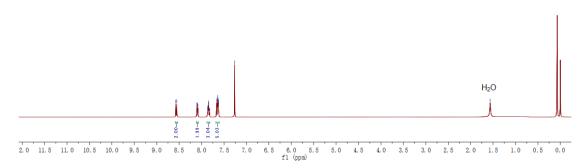


Fig. S39 ¹H NMR spectrum of 5r

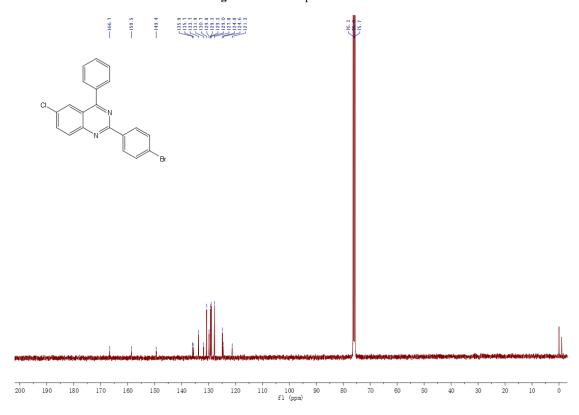


Fig. S40 ¹³C NMR spectrum of 5r

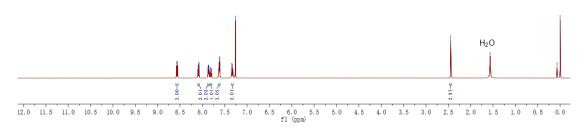


Fig. S41 ¹H NMR spectrum of 5s

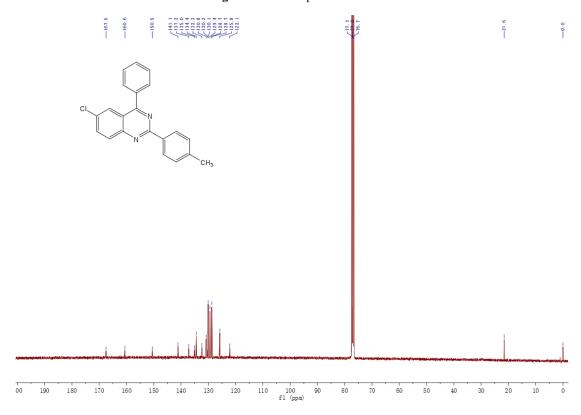


Fig. S42 ¹³C NMR spectrum of 5s

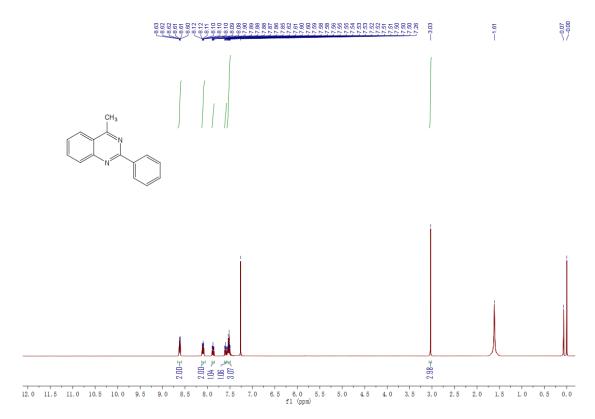


Fig. S43 1 H NMR spectrum of 5t

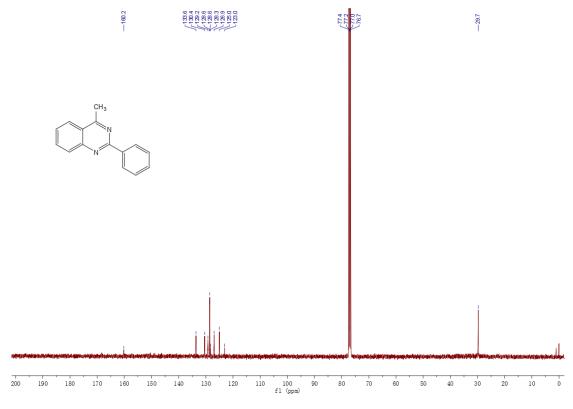
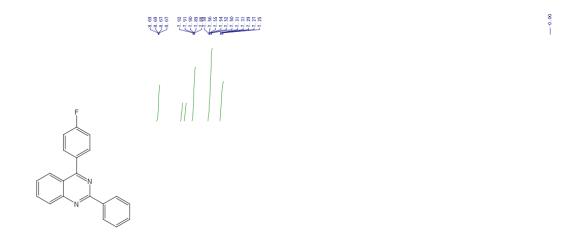



Fig. S44 ¹³C NMR spectrum of 5t

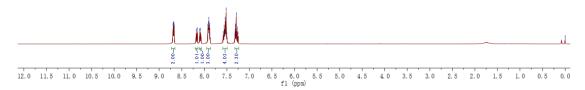


Fig. S45 ¹H NMR spectrum of 5u

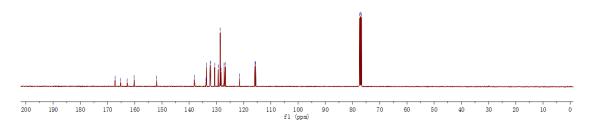
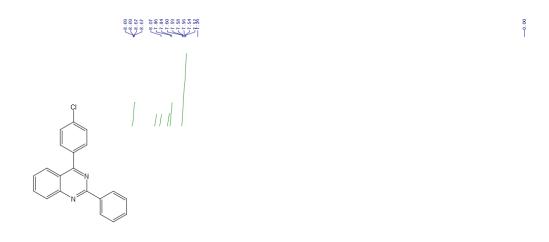



Fig. S46 ¹³C NMR spectrum of 5u

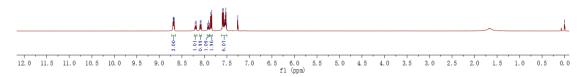


Fig. S47 ¹H NMR spectrum of 5v

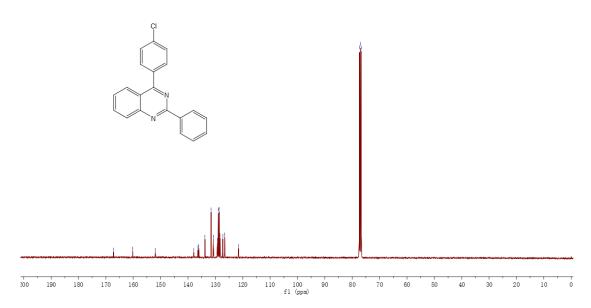
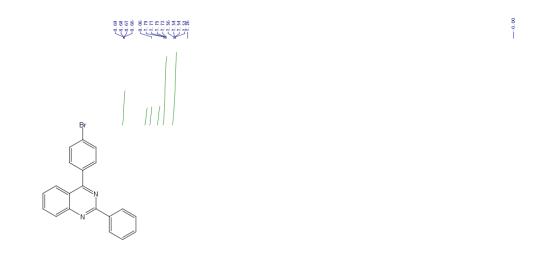



Fig. S48 ¹³C NMR spectrum of 5v

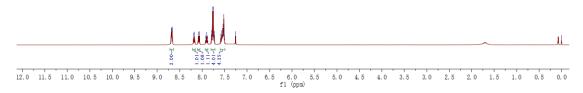


Fig. S49 ¹H NMR spectrum of 5w

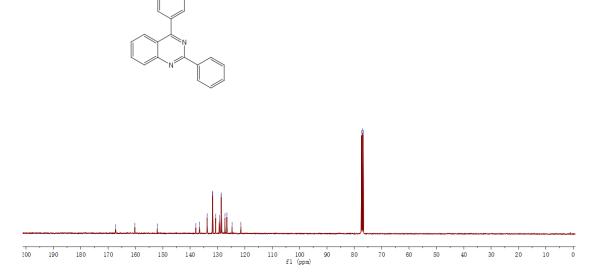
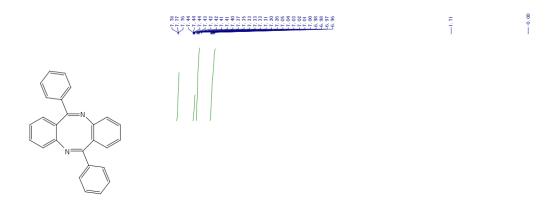



Fig. S50 ¹³C NMR spectrum of 5w

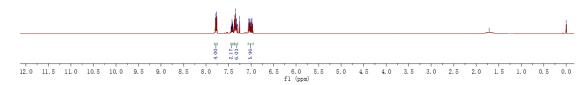


Fig. S51 1 H NMR spectrum of compound 6

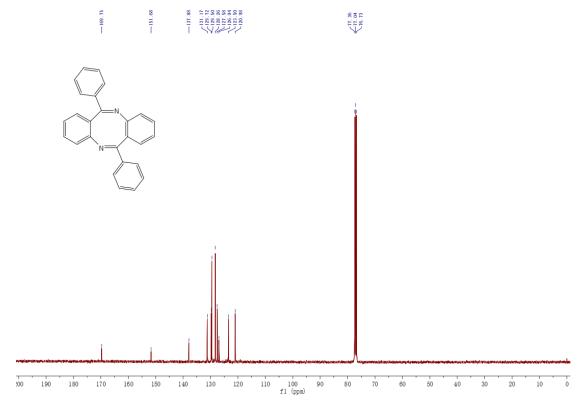


Fig. S52 13 C NMR spectrum of compound 6

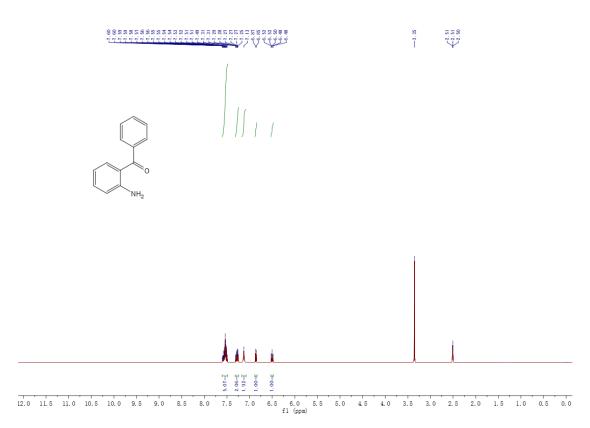


Fig. S53 ¹H NMR spectrum of 2a

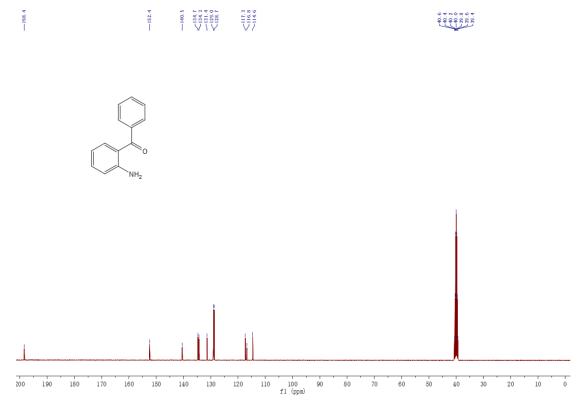


Fig. S54 ¹³C NMR spectrum of 2a

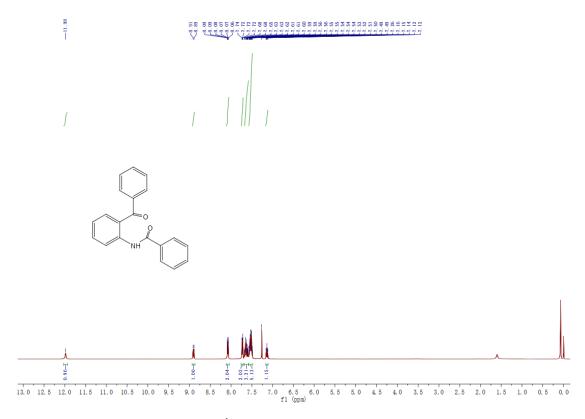


Fig. S55 ¹H NMR spectrum of intermediate IV

76.3 76.0

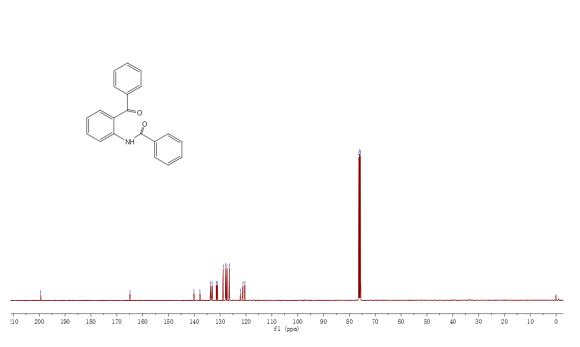


Fig. S56 13 C NMR spectrum of intermediate IV