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1. General experimental information

All bromoaryl triflate and aryl boronic acids were purchased from Aldrich
Chemical. Aryl amines, glyoxal, acenaphthenequinone, and palladium (II) chloride
were also commercially obtained from Aldrich Chemical. Inorganic bases were
purchased from Darui Chemical Reagent Factory. Isopropyl alcohol and other solvents
were obtained from Guangzhou Chemical Reagent Factory and used directly.
Complexes C1-C2 were prepared following the procedures described below. C3-C10
were synthesized according to the previous literature.!-2

The NMR data of the compounds were acquired on a Varian Mercury-Plus 400
MHz spectrometer at room temperature, unless stated otherwise. The decoupled
nucleus was used, with CDCl; as the solvent and TMS as the reference standard.
Jvalues are given in Hz. GC yields for optimization studies were obtained using a
Shimadzu GC-2010 Plus instrument.

All Suzuki coupling reactions were carried out using a parallel reaction apparatus
(WP-RH-1020, WATTECS) under air conditions. The subsequent work-up and
purification procedures were performed using reagent-grade solvents obtained from
Guangzhou Chemical Reagent Factory. Purification was achieved through standard

column chromatography techniques employing silica gel.

2. Synthesis procedure for the catalysts

The synthetic routes for complexes C1 and C2, depicted in Scheme 1, were
modified based on previous methods.!-> These complexes were obtained in good to high
yields and isolated as air-stable yellow solids. Their chemical structures were confirmed

using 'H and '3C NMR spectroscopy.
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Scheme 1. The synthetic procedure of the investigated Pd-diimine complexes C1-C2.

Procedure for the Synthesis of a-Diimine Compounds L1-L2. Under N, atmosphere,
4-(diphenylmethyl)-2,6-diethylaniline (20 mmol, 6.30 g), 40% glyoxal solution (10
mmol, 1.44 g), anhydrous ethanol (30 mL) and acetic acid (3 mL) were transferred into
a flask and the resulting mixture was allowed to stir at room temperature under air for
24 hours. Upon reaction completion, collect the yellow precipitate by suction filtration.
Dry the solid, then recrystallize from dichloromethane/anhydrous ethanol to obtain the

titled compound L1 as a yellow solid in 85% yield (8.5 mmol, 5.5 g).

L1: '"H NMR (400 MHz, CDCls) ¢ 8.05 (s, 2H), 7.25 -7.18 (m, 10H), 7.07 (d, J=7.5
Hz, 10H), 6.77 (s, 4H), 5.43 (s, 2H), 2.37 (q, J= 7.5 Hz, 8H), 1.00 (t, /= 7.5 Hz, 12H).
IBCNMR (101 MHz, CDCl;) 6 163.26, 147.51, 144.23, 140.32, 132.38, 129.48, 128.29,
127.68, 126.24, 56.58, 22.71, 14.47.

4-(diphenylmethyl)-2,6-diethylaniline (22 mmol, 6.90 g), acenaphthenequinone (10
mmol, 1.82 g), anhydrous zinc chloride (23 mmol, 3.20 g) and acetic acid (25 mL) were
combined in a flask under N, atmosphere and the mixture was allowed to heat at 140

°C for 5 h. After completion of the reaction, cool the mixture to room temperature, and
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collect the reddish-orange solid via filtration using a Biichner funnel. The obtained solid
was washed by acetic acid, dried by oven and redissolved in CH,Cl,. Potassium oxalate
(4.60 g, 25 mmol) in 150 mL H,0 was added into the CH,Cl, solution, and the resulting
mixture was allowed to stir at RT for 24 h. Upon completion of the stirring, the reaction
mixture was filtered to remove white solid and the filtrate was stewed and layered. The
organic layer was then dried over anhydrous sodium sulfate, filtered, concentrated
under vacuum and recrystallized from CH,Cl,/ethanol. The titled compound L2 was
obtained as orange/reddish solids 6.99 g (9.0 mmol, 90% yield). The NMR data for 1.2

are consistent with those previously reported in the literature.?

Procedures for the Synthesis of Pd-Diimine Compounds C1-C2. Under nitrogen
atmosphere, a mixture of L1 (0.5 mmol, 0.326 g), PdCl (0.55 mmol, 0.0975 g), and 10
mL of methanol was heated slowly to 60°C and stirred at 60°C for 24 h. After
completion, the solution was cooled to room temperature. Purify the crude product by
dry-column flash chromatography using dichloromethane as the eluent. Concentrate the
collected fractions under reduced pressure, then recrystallize from dichloromethane/n-

hexane to afford the desired complex C1.

C1 was obtained as bright-yellow solids in 70% yield (0.29 g). 'H NMR (400 MHz,
CDCl5) 0 8.31 (s, 2H), 7.24 (dd, J=9.5, 5.3 Hz, 8H), 7.17 (d, J = 7.3 Hz, 4H), 7.06 (d,
J=17.3Hz, 8H), 6.71 (s, 4H), 5.44 (s, 2H), 2.50-2.48 (m, 8H), 0.96 (t, /= 7.5 Hz, 12H).

BCNMR (101 MHz, CDCl;) 6 170.03, 142.91, 142.59, 141.82, 134.35, 128.42, 127.32,
125.86, 125.37, 55.55, 23.83, 12.93.

C2 was synthesized according to the same procedure and obtained as yellow-orange
solids in 80% yield (0.38 g). 'H NMR (400 MHz, CDCls) ¢ 8.15 (d, J = 8.3 Hz, 2H),

7.48 (t, J = 7.8 Hz, 2H), 7.35 (t, J = 7.5 Hz, 8H), 7.28-7.24 (m, 4H), 7.20 (d, J = 7.2

Hz, 8H), 7.03 (s, 4H), 6.55 (d, J= 7.2 Hz, 2H), 5.63 (s, 2H), 2.94-2.85 (m, 4H), 2.75-

2.63 (m, 4H), 1.17 (t, J="7.5 Hz, 12H). 3C NMR (100 MHz, CDCl;) § 175.69, 144.49,
143.62, 140.88, 135.02, 132.65, 129.54, 129.32, 127.86, 126.56, 125.43, 124.86, 56.78,
24.94,13.91.
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3. General procedure for Pd-diimine catalyzed Suzuki reactions
General procedure for Pd-diimine catalyzed Suzuki reactions of

bromoaryl triflates. Under an air atmosphere, bromoaryl triflate (0.25 mmol),

arylboronic acid (0.26 mmol), base (0.5 mmol), palladium a-diimine complex (0.25
mol%), and solvent (1 mL) were sequentially added into a parallel reaction tube. The
resulting mixture was allowed to stir at 80 °C for 4 h. After completion, the reaction
mixture was cooled to room temperature and followed by extraction with ethyl acetate
three times (3 x 10 mL). The organic layers were combined and dried with anhydrous
sodium sulfate, filtered, and subsequently analyzed by gas chromatography (GC) to
determine the GC yield. The solvent was removed by rotary evaporation under reduced
pressure. The residue was purified by thin-layer chromatography (TLC) or silica-gel
column chromatography to afford the products. The isolated yields of coupled products

were calculated based on the feedings of the bromophenyl triflates.

General procedure for Pd-NHC catalyzed Suzuki reactions of aryl

triflates. Under an air atmosphere, aryl triflate (0.25 mmol), arylboronic acid (0.26

mmol), potassium carbonate (0.5 mmol), Pd-NHC complex (0.000625 mmol, 0.25
mol%), and MeOH (1 mL) were sequentially added into a parallel reaction tube. The
resulting mixture was allowed to stir at 80°C for 4 h. After completion, the reaction
mixture was cooled to room temperature and followed by extraction with ethyl acetate
three times (3 x 10 mL). The organic layers were combined and dried with anhydrous
sodium sulfate, filtered, and concentrated. The resulting residue was then purified by
thin-layer chromatography on silica-gel using petroleum ether/ethyl acetate to afford
the corresponding products. The isolated yields of coupled products were calculated

based on the feedings of the aryl triflates.

Reaction procedure for Pd-diimine catalyzed Competitive Suzuki

reactions. Under an air atmosphere, bromobenzene (0.50 mmol, 0.079 g), phenyl
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triflate (0.50 mmol, 0.11 g), p-tolylboronic acid (0.52 mmol, 0.07 g), potassium
carbonate (0.5 mmol, 0.14 g), complex C3 (0.25 mol%, 0.0014 g), and ‘PrOH/H,0
(19:1, 1 mL) were sequentially added into a parallel reaction tube. The mixture was
stirred at 80 °C for 4 h. After cooling to ambient temperature, 1,3,5-trimethoxybenzene
(84 mg, 0.50 mmol) was added as an internal standard to the mixture and stirred for 30
min. The mixture was then concentrated under reduced pressure. 'H and F NMR

spectroscopy was performed on the residue.

4. Characterization data of the Coupled products

4'-methyl-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3a) 'H NMR (400 MHz,
CDCly) 0 7.62 (d, J = 8.8 Hz, 2H), 7.45 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.8 Hz, 2H),
7.28 (s, 2H), 2.40 (s, 3H). 3C NMR (100 MHz, CDCl;) ¢ 148.74, 141.65, 138.02,
136.41, 129.73, 128.66, 127.03, 121.59, 118.80 (q, /= 319.0 Hz), 21.15. 9F NMR (376
MHz, CDCly) 0 -72.77.

3'-methyl-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3b) 'H NMR (400 MHz
CDCl;) 6 7.57 (d, J= 6.0 Hz, 2H), 7.31 (m, 5H), 7.19 (m, 1H), 2.40 (s, 3H). 3C NMR
(100 MHz, CDCls) 6 149.54, 142.47, 139.91, 139.31, 129.50, 128.61, 124.94, 124.26,
122.20, 119.47 (q, J = 319.0 Hz), 22.1. '’F NMR (376 MHz, CDCl3) ¢ -72.77.
2'-methyl-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3¢) 'H NMR (400 MHz,

CDCl3) 6 7.42 (d, J = 8.7 Hz, 2H), 7.35-7.33 (m, 2H), 7.30 (d, J= 3.6 Hz, 2H), 7.28 (s,

1H), 7.22 (d, J = 7.2 Hz, 1H), 2.28 (s, 3H). *C NMR (100 MHz, CDCl;) ¢ 148.52,
142.39, 139.93, 135.25,131.01, 130.55, 129.67, 127.99, 126.01, 121.03, 118.80 (q, J =
319.0 Hz), 20.40. 'F NMR (376 MHz, CDCl3) 3 -72.82.

4'-ethyl-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3d) 'H NMR (400 MHz,

CDCl3) 6 7.67-7.62 (m, 2H), 7.49 (d, J = 8.1 Hz, 2H), 7.35-7.33 (m, 4H), 2.72 (q, J =

7.6 Hz, 2H), 1.30 (t, J = 7.6 Hz, 3H). 3C NMR (100 MHz, CDCl;) ¢ 148.76, 144.37,
141.69, 136.67, 128.69, 128.56, 127.14, 121.60, 118.83 (q,/=319.0 Hz), 28.55, 15.56.
9F NMR (376 MHz, CDCls) 0 -72.78.

2'-ethyl-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3¢) 'H NMR (400 MHz,
CDCly) 0 7.37 (d, J = 8.8 Hz, 2H), 7.35-7.27 (m, 4H), 7.25-7.20 (m, 1H), 7.15 (d, J =
7.0 Hz, 1H), 2.56 (q, J = 7.6 Hz, 2H), 1.09 (t, J = 7.5 Hz, 3H). 3C NMR (100 MHz,
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CDCly) 0 149.22, 143.09, 142.15, 140.26, 131.67, 130.48, 129.45, 128.86, 126.45,
121.61, 119.48 (q, J = 321.2 Hz), 26.72, 16.19. °F NMR (376 MHz, CDCl;) ¢ -72.82.
HRMS (ESI) m/z: [M+Na]* calcd. for C;sH3F3Na0O3S, 353.0435; found, 353.0425.

4'-(tert-butyl)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3f) 'H NMR (400 MHz,

CDCl3) § 7.67-7.62 (m, 2H), 7.50 (s, 4H), 7.34 (d, J = 8.7 Hz, 2H), 1.37 (s, 9H). 3C

NMR (100 MHz, CDCl3) 6 151.24, 148.77, 141.57, 136.39, 128.70, 126.87, 125.99,
121.59, 118.80 (q, J = 319.0 Hz), 34.64, 31.33. '°F NMR (376 MHz, CDCl;) 6 -72.78.
4'-methoxy-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3g) 'H NMR (400 MHz,
CDCly) 6 7.59 (d, J = 8.5 Hz, 2H), 7.49 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H),
6.99 (d, J= 8.4 Hz, 2H), 3.86 (s, 3H). 3C NMR (100 MHz, CDCl3) ¢ 159.71, 148.50,
141.32, 131.76, 128.37, 128.29, 121.60, 118.79 (q, J = 319.0 Hz), 114.43, 55.40. '°F
NMR (376 MHz, CDCly) 0 -72.77.

3'-methoxy-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3h) 'H NMR (400 MHz,

CDCl3) 6 7.61 (d, J = 8.8 Hz, 2H), 7.38-7.29 (m, 3H), 7.11 (d, J= 7.3 Hz, 1H), 7.08-

7.04 (m, 1H), 6.92 (d, J = 8.2 Hz, 1H), 3.84 (s, 3H). 3C NMR (100 MHz, CDCl;) 6
160.72, 149.64, 142.18, 141.37, 130.68, 129.55, 122.24, 120.26, 119.45 (q, J = 322.2

Hz), 113.95, 113.68, 55.91. oF NMR (376 MHz, CDCl;) 6 -72.76.
2'-methoxy-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3i) 'H NMR (400 MHz,

CDCls) 8 7.60 (d, J = 8.8 Hz, 2H), 7.39-7.33 (m, 1H), 7.30 (d, J = 8.7 Hz, 3H), 7.07-

6.98 (m, 2H), 3.82 (s, 3H). *C NMR (100 MHz, CDCl3) ¢ 156.31, 148.49, 138.97,
131.35, 130.76, 129.46, 128.61, 120.99, 120.81, 118.80 (q, J = 319.0 Hz), 111.28,
55.53. F NMR (376 MHz, CDCl3) ¢ -72.83.

4'-(methylthio)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3j) 'H NMR (400
MHz, CDCl;) 6 7.62 (d, J = 8.8 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.33 (d, /= 8.5 Hz,
4H), 2.52 (d, J= 3.5 Hz, 3H). 3C NMR (100 MHz, CDCls) ¢ 148.82, 141.03, 138.90,
135.87, 128.54, 127.50, 126.78, 121.72, 118.79 (q, /= 319.0 Hz), 15.64. 1°F NMR (376
MHz, CDCl3) 6 -72.75. HRMS (ESI) m/z: [M+H]" calcd. for C;4H,F505S,, 349.0180;
found, 349.0183.

4'-ethoxy-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3k) 'H NMR (400 MHz,
CDCl5) 0 7.59 (d, J = 8.7 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 7.31 (d, J = 8.7 Hz, 2H),
6.98 (d, J = 8.7 Hz, 2H), 4.08 (d, J = 7.0 Hz, 2H), 1.45 (t, J = 7.0 Hz, 3H). 3*C NMR
(100 MHz, CDCl;) ¢ 159.10, 148.47, 141.36, 131.56, 128.33, 128.25, 121.58, 118.80
(g, J/=319.0 Hz), 114.95, 63.59, 14.85. '°F NMR (376 MHz, CDCls) ¢ -72.77.
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4'-phenoxy-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (31) '"H NMR (400 MHz,
CDCl;) 6 7.62 (d, J = 8.7 Hz, 2H), 7.52 (d, J = 8.6 Hz, 2H), 7.39 (t, J = 7.9 Hz, 2H),
7.34 (d, J = 8.7 Hz, 2H), 7.16 (t, J = 7.4 Hz, 1H), 7.09 (dd, J = 8.0, 6.4 Hz, 4H). 13C
NMR (100 MHz, CDCl;) ¢ 157.67, 156.77, 148.76, 141.06, 134.14, 129.92, 128.60,
128.56, 123.75, 121.69, 119.30, 119.02, 118.82 (q, J=319.0 Hz). '°F NMR (376 MHz,
CDCly) 0 -72.75. HRMS (ESI) m/z: [M+H]*calcd. for C19H;4F504S, 395.0565; found,
395.0556.

4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3m) '"H NMR (400
MHz, CDCl;3) 6 7.73 (d, J= 8.3 Hz, 2H), 7.66 (d, J = 8.8 Hz, 4H), 7.39 (dd, /= 6.7, 4.8
Hz, 2H). 13C NMR (400 MHz, CDCl) ¢ 149.50, 142.78, 140.23, 129.83, 129.16,
127.57, 126.01, 124.10 (q, J = 270.0 Hz), 121.98, 118.78 (q, J = 319.0 Hz). °F NMR
(376 MHz, CDCl;) ¢ -62.55, -72.73.

4'-fluoro-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3n) 'H NMR (400 MHz,

CDCl) 6 7.59 (d, J = 8.7 Hz, 2H), 7.55-7.48 (m, 2H), 7.34 (d, J = 8.7 Hz, 2H), 7.15 (t,

J = 8.6 Hz, 2H). 3C NMR (100 MHz, CDCls) ¢ 162.86 (d, J = 247.8 Hz), 148.92,
140.73, 128.83, 128.79, 121.75, 118.79 (q, J = 319.0 Hz), 116.08, 115.87. 'F NMR
(376 MHz, CDCl;) 6 -72.76, -114.34.

3',5'-bis(trifluoromethyl)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (30) '"H NMR
(400 MHz, CDCls) 6 7.99 (s, 2H), 7.92 (s, 1H), 7.69 (d, J = 8.8 Hz, 2H), 7.44 (d, J =
8.7 Hz, 2H). 3C NMR (100 MHz, CDCl;) 0 150.66, 142.13, 139.39, 133.19 (q, /= 34.0

Hz), 129.94, 128.06, 123.92 (q, J = 272.0 Hz), 123.02, 122.48, 119.50(q, J = 322.2

Hz). ""F NMR (376 MHz, CDCls) 6 -62.91, -72.73.

4'-chloro-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3p) 'H NMR (400 MHz,
CDCl;) 0 7.61 (d, J = 8.7 Hz, 2H), 7.49 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H),
7.35(d,J=8.7 Hz, 2H). BC NMR (100 MHz, CDCl3) 6 149.10, 140.48, 137.73, 134.34,
129.21, 128.79, 128.46, 121.83, 118.78 (q, J = 319.0 Hz). '°F NMR (376 MHz, CDCl;)
0-72.74.

methyl 4'-(((trifluoromethyl)sulfonyl)oxy)-[1,1'-biphenyl]-4-carboxylate (3q) '"H NMR
(400 MHz, CDCl;) 0 8.13 (d, J= 8.4 Hz, 2H), 7.68 (d, /= 8.8 Hz, 2H), 7.63 (d, /= 8.4
Hz, 2H), 7.38 (d, J= 8.7 Hz, 2H), 3.95 (s, 3H). 3C NMR (100 MHz, CDCl;) J 166.78,
149.45, 143.59, 140.50, 130.31, 129.70, 129.13, 127.19, 121.89, 118.78 (q, J = 319.0
Hz), 52.30. '°F NMR (376 MHz, CDCls) ¢ -72.73.

[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3r) 'H NMR (400 MHz, CDCls) 6 7.65

(d, J=8.7 Hz, 2H), 7.56 (d, J = 7.5 Hz, 2H), 7.47 (t, J = 7.5 Hz, 2H), 7.40 (d, J= 7.3
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Hz, 1H), 7.35 (d, J = 8.7 Hz, 2H). *C NMR (100 MHz, CDCl;) J 148.95, 141.72,
139.31, 129.02, 128.91, 128.09, 127.22, 121.66, 118.80 (q, J = 319.0 Hz). '°F NMR
(376 MHz, CDCls) 0 -72.76.

4-(benzofuran-2-yl)phenyl trifluoromethanesulfonate (3s) 'H NMR (400 MHz, CDCl;)
07.88 (d,J=28.9 Hz, 2H), 7.58 (d, /= 8.6 Hz, 1H), 7.51 (d, /= 9.0 Hz, 1H), 7.31 (m,

3H), 7.27-7.21 (m, 1H), 7.02 (s, 1H). 3C NMR (100 MHz, CDCl;) § 155.73, 154.44,
149.84, 131.48, 129.52, 127.21, 125.66, 123.94, 122.52, 121.92, 119.44(q, J = 322.0

Hz), 111.97, 103.44. 9F NMR (376 MHz, CDCl5) 6 -72.70. HRMS (ESI) m/z: [M+H]"

caled. for Cy5H;oF3048S, 343.0252; found, 343.0260.

4-(thiophen-3-yl)phenyl trifluoromethanesulfonate (3t) "H NMR (400 MHz, CDCls) ¢
7.65 (d, J= 8.8 Hz, 2H), 7.48 (dd, /=2.9, 1.3 Hz, 1H), 7.42 (dd, J = 5.0, 3.0 Hz, 1H),
7.36 (dd, J=5.0, 1.2 Hz, 1H), 7.30 (d, /= 8.8 Hz, 2H). '*C NMR (100 MHz, CDCl;) ¢
148.53, 140.39, 136.30, 128.10, 126.92, 126.14, 121.74, 121.52, 118.78 (q, J = 319.0
Hz). F NMR (376 MHz, CDCl3) § -72.74. HRMS (ESI) m/z: [M+H]* calcd. for
C11HgF3058S,, 308.9867; found, 308.9857.

4-(naphthalen-1-yl)phenyl trifluoromethanesulfonate (3u) 'H NMR (400 MHz, CDCls)

§7.92-7.84 (m, 2H), 7.77 (d, J = 8.0 Hz, 1H), 7.54-7.48 (m, 3H), 7.48-7.40 (m, 2H),

7.39-7.32 (m, 3H). 3C NMR (100 MHz, CDCl;) ¢ 149.53, 141.88, 138.76, 134.46,

132.47,131.94,129.11 (d, J=4.0 Hz), 128.55, 127.80, 127.16, 126.74, 126.48, 126.03
(d,J=7.0 Hz), 121.90, 119.53 (q, J = 322.2 Hz). "F NMR (376 MHz, CDCl3) § -72.75.
4'-methoxy-[1,1'-biphenyl]-3-yl trifluoromethanesulfonate (3v) 'H NMR (400 MHz,

CDCly) 6 7.57 (d, J = 7.9 Hz, 1H), 7.54-7.46 (m, 3H), 7.47-7.42 (m, 1H), 7.20 (dd, J

=8.1, 1.7 Hz, 1H), 7.00 (d, J= 8.8 Hz, 2H), 3.86 (s, 3H). *C NMR (100 MHz, CDCl;)
0159.94, 150.07, 143.59, 131.46, 130.46, 128.29, 126.58, 119.45, 119.15, 118.80 (q, J
=319.0 Hz), 114.49, 55.41. 9F NMR (376 MHz, CDCl;) ¢ -72.82.
4'-methyl-[1,1'-biphenyl]-3-yl trifluoromethanesulfonate (3w) 'H NMR (400 MHz,
CDCl3) 6 7.60 (d, J="7.8 Hz, 1H), 7.49 (m, 4H), 7.28 (d, /= 7.9 Hz, 2H), 7.23 (dd, J =
8.1, 2.0 Hz, 1H), 2.42 (s, 3H). 3C NMR (100 MHz, CDCl;) 6 150.05, 143.93, 138.37,
136.15, 130.46, 129.80, 127.02, 126.86, 119.75, 119.52, 118.80 (q, J = 319.0 Hz),
21.17.F NMR (376 MHz, CDCl3) ¢ -72.80.

2'-methyl-[1,1'-biphenyl]-3-yl trifluoromethanesulfonate (3x) 'H NMR (400 MHz,
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CDCl3) 6 7.49 (t, J= 8.0 Hz, 1H), 7.35 (d, J= 7.6 Hz, 1H), 7.31-7.23 (m, 5H), 7.20 (d,

J=17.2Hz, 1H), 2.26 (s, 3H). 3C NMR (100 MHz, CDCls) 6 149.36, 144.55, 139.67,
135.27,130.64, 129.93, 129.61, 129.27, 128.18, 126.08, 122.14, 119.64, 118.81 (q, J =
319.0 Hz), 20.29. 'F NMR (376 MHz, CDCl3) ¢ -72.80.

[1,1'-biphenyl]-3-yl trifluoromethanesulfonate (3y) '"H NMR (400 MHz, CDCls) 0 7.61

(d, J= 7.8 Hz, 1H), 7.59-7.55 (m, 2H), 7.53 (d, J = 8.1 Hz, 1H), 7.48 (t, J = 7.9 Hz,

3H), 7.41 (t, J= 7.2 Hz, 1H), 7.26 (d, J = 4.2 Hz, 1H). *C NMR (100 MHz, CDCl;) ¢
150.03, 143.99, 139.03, 130.53, 129.09, 128.38, 127.20, 127.10, 120.00, 119.85,
118.80 (q, J=319.0 Hz). '’F NMR (376 MHz, CDCl;) ¢ -72.78.

4'-methoxy-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate (3z) 'H NMR (400 MHz,

CDCl3) 6 7.46-7.41 (m, 2H), 7.42-7.35 (m, 4H), 6.99 (d, J = 8.7 Hz, 2H), 3.86 (s, 3H).

BCNMR (100 MHz, CDCl;) 6 159.67, 146.94, 135.26, 131.94, 130.59, 128.54, 127.92,
122.09, 119.97, 118.38 (q, J = 318.0 Hz), 113.98, 55.32. %F NMR (376 MHz, CDCl;)
0 -74.04.

2'-methoxy-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate (4a) 'H NMR (400 MHz,

CDCl3) 6 7.47-7.38 (m, 4H), 7.34 (ddd, J=7.8, 4.8, 2.6 Hz, 1H), 7.24 (dd, J=17.5, 1.6

Hz, 1H), 7.07-6.97 (m, 2H), 3.79 (s, 3H). *C NMR (100 MHz, CDCly) 6 157.27,

148.45, 133.17, 131.98, 130.80, 130.11, 129.67, 128.77, 125.28, 121.83, 121.22,
119.04 (q, J=318.0 Hz), 111.46, 56.05. '°"F NMR (376 MHz, CDCl3) 6 -74.61.
4'-methoxy-5-methyl-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate (4b) 'H NMR
(400 MHz, CDCly) 6 7.38 (d, J = 8.8 Hz, 2H), 7.24 (t, J = 6.5 Hz, 2H), 7.16 (dd, J =
8.4, 1.6 Hz, 1H), 6.97 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H), 2.40 (s, 3H). 13C NMR (100
MHz, CDCl;) ¢ 159.61, 144.90, 138.55, 134.84, 132.40, 130.53, 129.01, 128.12,
121.76, 118.40 (q, J=318.0 Hz), 113.94, 55.30, 20.94. '°F NMR (376 MHz, CDCl;) &
-72.82.

3-(4'-methyl-[1,1'-biphenyl]-4-yl)thiophene (5a) 'H NMR (400 MHz, CDCl;) J 7.65

(q, J = 8.4 Hz, 4H), 7.52 (d, J = 8.1 Hz, 2H), 7.49-7.46 (m, 1H), 7.44-7.37 (m, 2H),

7.24 (s, 2H), 2.39 (s, 3H). 3C NMR (100 MHz, CDCls) ¢ 142.64, 140.52, 138.46,
137.82, 135.21, 130.22, 127.97, 127.47, 126.97, 126.95, 120.86, 100.66, 21.81. HRMS
(ESI) m/z: [M+H]" calcd. for C;7H;5S, 251.0894; found, 251.0889.

2-(4'-methyl-[1,1'-biphenyl]-4-yl)benzofuran (5b) 'H NMR (400 MHz, CDCl;)  7.84
(d, J=8.8 Hz, 2H), 7.61 (d, J= 7.6 Hz, 2H), 7.53 (m, 1H), 7.48 (m, 3H), 7.18 (m, 4H),

S10



6.98 (s, 1H), 2.34 (s, 3H). 3*C NMR (100 MHz, CDCl3) ¢ 156.45, 155.59, 141.85,
138.20, 138.14, 130.28, 129.97, 129.77, 127.91, 127.49, 125.99, 124.93, 123.63,
121.55,111.85, 101.96, 21.84.

4-fluoro-4"-methyl-1,1":4",1"-terphenyl (5¢) 'H NMR (400 MHz, CDCl;) ¢ 7.53 (m,
8H), 7.20 (m, 2H), 7.06 (m, 2H), 2.33 (s, 3H). *C NMR (100 MHz, CDCl;) ¢ 162.50
(d, J = 244.0 Hz), 140.09, 138.86, 137.71, 137.26, 136.91, 129.60, 128.54, 127.38,
127.35, 115.81, 115.60, 21.18. HRMS (ESI) m/z: [M+H]" calcd. for CoH;cF>,
263.1236; found, 263.1238.

5. NMR spectrums of the catalysts and reaction products
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of competitive Suzuki reaction (upper)
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