Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Iron Catalysis Enables Mild C-Se Bond Formation via Decarboxylative Selenylation

Xixi Hu, $^{a+}$ Wenhao Li, $^{a+}$ Xin Huang, c Qingkun Ma, c Hui Liu, a Yu-Zhao Wang, b,* and Lizhi Zhang a,*

- a. School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China.
 - E-mail: lizhizhangsdut@foxmail.com; zhanglizhi@sdut.edu.cn
- b. School of Pharmaceutical Sciences & Institute of Materia Medica, School of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- c. Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong, 250014, P. R. China.
- + These authors contributed equally to this work.

Contents

1 General Information.	
2 The Synthesis of Starting Materials	2
3 General procedure.	
4 Modification of the Typical Reaction Conditions	
5 Mechanistic Studies	6
6 Physical data for the products	10
7 References	23
9 Copies of the NMR spectra	25

1 General Information.

 1 H, 13 C, and 19 F NMR spectra were recorded in CDCl₃ on 400 MHz spectrometers. The chemical shifts of 1 H NMR spectra in CDCl₃ were determined based on the chemical shift of CDCl₃ (δ = 7.26 ppm). The chemical shifts in 13 C NMR spectra were determined based on the chemical shift of CDCl₃ (δ = 77.0 ppm). Multiplicities are given as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), td (triplet of doublet) or m (multiplet). Deuterated solvents were purchased from Cambridge Isotope Laboratories. HRMS spectra were measured using a Q-TOF instrument equipped with an ESI source. Unless otherwise noted, the chemicals are either commercially available or known compounds that can be prepared following reported procedures. All the solvents are anhydrous or analytical grade, and were used without further purification. Analytical TLC was performed with silica gel GF254 plates, and 200-300 mesh silica gel was employed for column chromatography.

The LED light (30 W, emitting area: 30×30 mm) was assembled using the 390-395 nm chips purchased from GuangHong Chips. The peak intensity of the LED light corresponds to a wavelength of 390-395 nm. The material used for the reaction vessel is standard borosilicate glass. The distance from the light source to the reaction vessel is 5 centimeters (**Figure S1**).

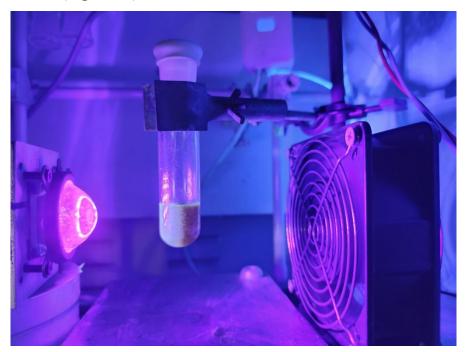


Figure S1. The setting-up reactions.

2 The Synthesis of Starting Materials.

1. Preparation of aryl selenosulfonates (1a-1e).[1]

R1 + Se
$$\frac{\text{Cul (10 mol\%)}}{\text{K}_3\text{PO}_4 (3 \text{ equiv.})}$$
 Se $-\text{Se}$ $-$

MeCN, rt

1a-1e

Step 1: Iodobenzene (10 mmol, 1.12 mL), cuprous iodide (10 mol %, 0.18 g), potassium phosphate (3.0 equiv., 6.368 g), and selenium powder (30 mmol, 2.37 g) were weighed in a dry Schlenk reaction tube under argon atmosphere, pumped for three gas changes, and then dimethylsulfoxide (10 mL) was added and the mixture was stirred at 90 °C for 18 hours. At the end of the reaction, the reaction was quenched by slowly adding 30 mL of water dropwise and extracted with ethyl acetate (3×10 mL), the organic phases were combined and washed with saturated brine, partitioned and the organic layer was dried with anhydrous sodium sulfate. The organic layer was dried with anhydrous sodium sulfate. After filtration to remove the desiccant, the organic solvent was removed by spinning under reduced pressure, and the product was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1:100).

Step 2: Sodium benzenesulfinate (8 mmol, 1.31 g) and diphenyl diselenide (2 mmol, 0.63 g) were dissolved in acetonitrile (30 mL) in a dry Schlenk reaction tube, and N-bromosuccinimide (NBS, 0.71 g) was added at 25 °C, followed by stirring at the same temperature for 15 hours. Upon completion of the reaction, the mixture was carefully quenched by dropwise addition of saturated ammonium chloride solution (30 mL). The aqueous layer was then extracted with ethyl acetate (3 × 50 mL), and the combined organic phases were washed with saturated brine. After phase separation, the organic layer was dried over anhydrous sodium sulfate. Following filtration to remove the drying agent, the solvent was evaporated under reduced pressure. The crude product (aryl selenosulfonates **1a-1e**) was purified by silica gel column chromatography using a gradient elution of ethyl acetate/petroleum ether (1:10 to 1:5, v/v).

2. Preparation of alkyl selenosulfonates (1f-1g). [1]

A 50.0 mL round-bottomed flask was charged with the alkyl diselenide (1.0 equiv.) and sodium benzenesulfinate (4.0 equiv.), followed by the addition of acetonitrile (MeCN, 20.0 mL) to dissolve the solids. The flask was then cooled in an ice bath, and N-bromosuccinimide (NBS, 2.0 equiv.) was added portion wise. The reaction progress was monitored by TLC. After completion, the mixture was filtered to remove insoluble solids, and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography to afford the desired alkyl selenosulfonates (1f–1g).

3 General procedure.

General procedure A:

A reaction tube equipped with a magnetic stir bar was charged with 1 (0.5 mmol, 1.0 equiv.), alkyl carboxylic acid 2 (0.75 mmol, 1.5 equiv.), FeCl₃·6H₂O (5 mol%), Na₂CO₃ (0.5 mmol, 1.0 equiv.), and solvent. Under stirring, L₁ (10 mol%) was added via syringe. The reaction mixture was irradiated with a 395 nm LED lamp at room temperature for 12 h. Upon completion, the mixture was filtered through a pad of Celite and washed with ethyl acetate (3×5 mL). The combined filtrates were concentrated in vacuo, and the crude residue was purified by flash column chromatography (petroleum ether/ethyl acetate gradient) to afford the desired product 3.

General procedure B:

A reaction tube equipped with a magnetic stir bar was charged with 1 (0.75 mmol, 1.5 equiv), alkyl carboxylic acid 2 (0.5 mmol, 1 equiv.), FeCl₃·6H₂O (5 mol%), Na₂CO₃ (0.5 mmol, 1.0 equiv.), and solvent. Under stirring, L₁ (10 mol%) was added via syringe. The reaction mixture was irradiated with a 395 nm LED lamp at room temperature for 12 h. Upon completion, the mixture was filtered through a pad of Celite and washed with ethyl acetate (3×5 mL). The combined filtrates were concentrated in vacuo, and the crude residue was purified by flash column chromatography (petroleum ether/ethyl acetate gradient) to afford the desired product 3.

General procedure for scaled up:

A 100 mL round flask equipped with a magnetic stir bar was charged with 1 (7.5 mmol, 1.5 equiv), alkyl carboxylic acid 2a (5 mmol, 1 equiv.), FeCl₃·6H₂O (5 mol%), Na₂CO₃ (5 mmol, 1.0 equiv.), and DCE (50 mL). Under stirring, L₁ (10 mol%) was added via syringe. The reaction mixture was exposed to the reaction for 12 hours at room temperature, with two 395 nm LED lamps shining on both the left and right sides at a 5 cm distance. A fan was used to cool the reaction flask from above. Upon completion,

the mixture was filtered through a pad of Celite and washed with ethyl acetate (3×20 mL). The combined filtrates were concentrated in vacuo, and the crude residue was purified by flash column chromatography (petroleum ether/ethyl acetate gradient) to afford the desired product **3aa**.

4 Modification of the Typical Reaction Conditions.

Table S1. Optimization of the Reaction Conditions ^a

Ts − S∉ 1a	ePh + B	z OH		CI_3 · $6H_2O$ (5 mol ^o L_1 (10 mol ^o) a_2CO_3 (1.0 equivous) 395 nm LEDs DCE, rt, 12h	Bz Bz	SePh
0.5 mm	nol	0.75 mmol		DOL, 11, 1211		
Entry	Catalyst	Solvent	Time	Base	Ligand	Yield
	(5 mol%)	(5 mL)	(h)	(1.0 equiv.)	(10 mol%)	(%) ^b
1	$Fe(NO_3)_3 \cdot 9H_2O$	DCE	12	Na_2CO_3	L_1	69
2	Fe(acac) ₃	DCE	12	Na_2CO_3	L_1	67
3	Fe(OTf) ₃	DCE	12	Na_2CO_3	L_1	Trace
4	FeCl ₃ ·6H ₂ O	DCE	12	Na_2CO_3	L_1	81
5	Fe(NO ₃) ₃ ·9H ₂ O	DCE	6	Na ₂ CO ₃	L_1	61
6	FeCl ₃ ·6H ₂ O	DCE (3 mL)	12	Na ₂ CO ₃	L_1	59
7	FeCl ₃ ·6H ₂ O	DCE (2 mL)	12	Na ₂ CO ₃	L_1	30
8	FeCl ₃ ·6H ₂ O	MeCN	12	Na ₂ CO ₃	L_1	51
9	FeCl ₃ ·6H ₂ O	THF	12	Na ₂ CO ₃	L_1	15
10	FeCl ₃ ·6H ₂ O	Acetone	12	Na_2CO_3	L_1	27
11	FeCl ₃ ·6H ₂ O	$MeNO_2$	12	Na_2CO_3	L_1	33
12	FeCl ₃ ·6H ₂ O	DCE	12	Na ₂ CO ₃	L_1	26
				(0.2 equiv.)		
13	FeCl ₃ ·6H ₂ O	DCE	12	Na_2CO_3	L_1	16
				(0.5 equiv.)		
14	FeCl ₃ ·6H ₂ O	DCE	12	Na_2CO_3	L_1	64
				(2.0 equiv.)		
15	FeCl ₃ ·6H ₂ O	DCE	12	Cs_2CO_3	L_1	26
16	FeCl ₃ ·6H ₂ O	DCE	12	NaOAc	L_1	61
17	FeCl ₃ ·6H ₂ O	DCE	12	DABCO	L_1	64
18	FeCl ₃ ·6H ₂ O	DCE	12	t-BuOK	L_1	59
19	FeCl ₃ ·6H ₂ O	DCE	12	K_2CO_3	L_1	59
20	FeCl ₃ ·6H ₂ O	DCE	12	K_3PO_4	L_1	Trace
21	FeCl ₃ ·6H ₂ O	DCE	12	Na_2CO_3	L_2	39
22	FeCl ₃ ·6H ₂ O	DCE	12	Na_2CO_3	L_3	79

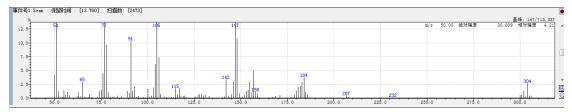
23 FeCl₃·6H₂O DCE 12 Na₂CO₃ L₄ 80
24 - DCE 12 Na₂CO₃ L₁ nd
$$\downarrow$$
 NH₂ \downarrow NH₂

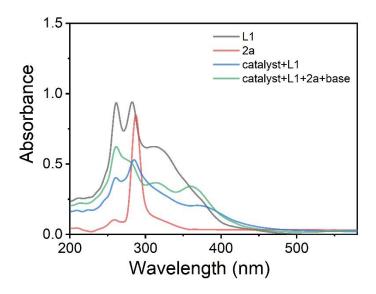
5 Mechanistic Studies.

5.1 Trapping experiment with TEMPO.

A reaction tube equipped with a magnetic stir bar was charged with **1a** (0.5 mmol, 1.0 equiv.), **2a** (0.75 mmol, 1.5 equiv.), FeCl₃·6H₂O (5 mol%), Na₂CO₃ (0.5 mmol, 1.0 equiv.), and DCE (5 mL). Under stirring, **L**₁ (10 mol%) was added via syringe. Then TEMPO (3 equiv., 1.5 mmol) was added. The reaction mixture was irradiated with a 395 nm LED lamp at room temperature for 12 h. Upon completion, the mixture was filtered through a pad of Celite and washed with ethyl acetate (3×5 mL). The combined filtrates were concentrated in vacuo, and the crude residue was detected by GC-MS. The TEMPO-trapped product 4 was detected by GC-MS, and the spectrum is shown below (**Figure S2**). MS(EI): m/z(%) 304(2.67), 303(0.28), 184(3.81), 181(2.04), 157(5.02), 156(1.08), 147(100.00), 105(88.18), 91(10.42), 77(60.25), 51(14.55).

^a Reaction conditions: **1a** (0.5 mmol), **2a** (0.75 mmol, 1.5 equiv.), FeCl₃·6H₂O (0.025 mmol, 5 mol%), L₁ (0.05 mmol, 10 mol%), Na₂CO₃ (0.5 mmol, 1.0 equiv.), DCE (5 mL), 395 nm LEDs, rt, 12 h. ^b Isolated yield.




Figure S2. GC-MS of product 4.

5.2 Radical clock experiment.

A reaction tube equipped with a magnetic stir bar was charged with **1a** (0.5 mmol, 1.0 equiv.), **2y** (0.75 mmol, 1.5 equiv.), FeCl₃·6H₂O (5 mol%), Na₂CO₃ (0.5 mmol, 1.0 equiv.), and solvent. Under stirring, **L**₁ (10 mol%) was added via syringe. The reaction mixture was irradiated with a 395 nm LED lamp at room temperature for 12 h. Upon completion, the mixture was filtered through a pad of Celite and washed with ethyl acetate (3×5 mL). The combined filtrates were concentrated in vacuo, and the crude residue was purified by flash column chromatography (petroleum ether/ethyl acetate gradient) to afford the desired product **3ya** with 70% isolated yield.

5.3 Absorption measurements.

The UV-Vis absorption measurements were carried out on Beijing PuSai TU1901 UV-Vis spectrophotometer (200 nm - 900 nm).

Fig S3. UV-Vis absorption spectra

A: The UV-Vis absorption of L1 and 2a were measured in a DCE solution $(4.0*10^{-5} \text{ M})$.

B: The catalyst (0.1 mmol) and ligand L1 (0.1 mmol) were dissolved in DCE (10 mL), and stirred at room temperature for 2 hours. Then, 100 μ L of the solution was taken with a micro-syringe, diluted that with DCE to 2 mL, and proceed the measurement. C: The catalyst (0.1 mmol), ligand L1 (0.1 mmol) and carboxylic acid (2a, 0.1 mmol) were dissolved in DCE (10 mL), then Na₂CO₃ (0.1 mmol) was added to this solution, the mixture was stirred at room temperature for 2 hours, then 100 μ L of the solution was taken with a micro-syringe, diluted with DCE to 2 mL, and proceed the measurement.

5.4 Determination of quantum yield.

The quantum yield measurement was performed according to the procedures described by Yoon, ^[2] Ritter, ^[3] Aleman ^[4] and Glorious. ^[5]

(1) Solution Preparation

Potassium ferrioxalate solution (0.012 M): 59.0 mg of $K_3[Fe(C_2O_4)] \cdot 3H_2O$ and 28 μ L of H_2SO_4 were added into a 10 mL brown volumetric flask and filled to the mark with ultra-pure water.

1,10-Phenanthroline solution (0.01 M): 29.0 mg of 1,10-phenantroline monohydrate was added into a 10 mL brown volumetric flask and filled to the mark with ultra-pure water.

NaOAc and HOAc buffer solution: 1.235 g of NaOAc and 250 μL of H₂SO₄ were added into a 25 mL volumetric flask and filled to the mark with ultra-pure water.

All solutions were prepared and stored in the dark.

(2) Determination of the Light Intensity at 395 nm

2.0 mL of 0.012 M Potassium ferrioxalate solution was added into the reaction vial, and irradiated with 30 W 395 nm LEDs for 90 seconds. After that, 0.1 mL of this solution was taken as an aliquot. To each aliquot, 2.0 mL of the buffer solution and 0.5 mL of the 1,10-phenanthroline solution were added with a syringe, and the mixture was stirred in the dark for 1 h. The mixture was then diluted in a 10 mL brown volumetric flask with ultra-pure water. The absorbance of the resulting solution in a quartz cuvette (1×1 cm) was measured with a UV-Vis spectrometer (scanned from 200 nm - 800 nm). A non-irradiated sample was also prepared in the same manner, and the absorbance was

measured. The amount of ferrous ion formed was calculated as following:

mol of Fe²⁺ =
$$\frac{V1 \times V3 \times \Delta A}{V2 \times I \times \epsilon}$$
 = $\frac{0.002L^*0.002L^*0.045}{3^*10^{-6}L^*1 \text{ cm}^* 11100L/\text{mol/cm}}$ = 5.41^*10^{-6} mo

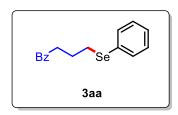
where V1 is the irradiated volume (0.002 L), V2 is the irradiated volume (3*10⁻⁶ L), V3 is the irradiated volume (0.002 L), ΔA is the difference in absorbance at 395 nm between the irradiated and non-irradiated samples, 1 is the path length (1.00 cm), and ϵ is the molar absorptivity at 510 nm (11,100 L/mol·cm).

photon flux =
$$\frac{\text{mol of Fe}^{2+}}{\Phi \times t \times f}$$
 = $\frac{5.41 \times 10^{-6} \text{ mol}}{1.12 \times 90 \times f}$ = 3.38×10^{-7} einstein/s

where Φ is the quantum yield for the ferrioxalate actinometer (approximated as 1.12, which was reported for a 0.01 M solution at $\lambda = 458$ nm), t is the time (90.0 s), and f is the fraction of light absorbed at 395 nm. The fraction of light absorbed was determined by the equation below.

$$f = 1-10^{-A} = 1-10^{-0.075} = 0.1586$$

(3) Determination of Quantum Yield

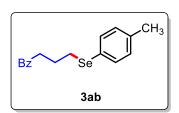

A reaction tube equipped with a magnetic stir bar was charged with 1 (0.5 mmol, 1.0 equiv.), alkyl carboxylic acid 2 (0.75 mmol, 1.5 equiv.), FeCl₃·6H₂O (5 mol%), Na₂CO₃ (0.5 mmol, 1.0 equiv.), and DCE (5 mL). Under stirring, L₁ (10 mol%) was added via syringe. The mixture was irradiated with a 395 nm LED lamp at room temperature and stirred for 1800 second. Upon completion, the mixture was filtered through a pad of Celite and washed with ethyl acetate (3×5 mL). The combined filtrates were concentrated in vacuo. The yield of the product 3aa was determined to be 31% (corresponding to $1.594*10^{-4}$ mol) by 1H NMR based on a TCE (tetrachloroethane) internal standard. A $5×10^{-3}$ M solution of {[Fe(L)]} in DCE was prepared, and the absorbance of the solution at 395 nm was measured. The fraction of light absorbed at 395 nm was calculated as described above (f=0.33).

The quantum yield was calculated as follows:

$$\Phi = \frac{\text{mol of 3aa}}{\text{photon flux x t x f}} = \frac{1.594*10^{-4}}{3.38*10^{-7}*1800*0.33} = 0.797$$

6 Physical data for the products.

1. 1-phenyl-4-(phenylselanyl)butan-1-one^[6]


A light yellow oil, 122.8 mg, 81%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 50:1-20:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.94 – 7.90 (m, 2H), 7.54 (td, J = 5.7, 2.7 Hz, 1H), 7.50 (dt, J = 7.5, 1.3 Hz, 2H), 7.43 (dd, J = 8.4, 7.0 Hz, 2H), 7.22 (ddt, J = 6.9, 5.0, 1.8 Hz, 3H), 3.10 (t, J = 7.1 Hz, 2H), 3.01 (t, J = 7.1 Hz, 2H), 2.14 (p, J = 7.1 Hz, 2H).

¹³C NMR (**101 MHz, Chloroform-***d*): δ 199.19, 136.73, 132.91, 132.45, 129.92, 128.97, 128.45, 127.88, 126.72, 37.92, 27.28, 24.35.

MS(EI): m/z(%) 304(15.71), 302(8.81), 184(30.0), 171(4.32), 159(6.36), 148(99.84), 146(19.50), 131(2.11), 128(3.03), 77(99.93), 51(93.28).

2. 1-phenyl-4-(p-tolylselanyl)butan-1-one

A light yellow oil, 106.3 mg, 67%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 50:1-20:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.96 – 7.87 (m, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.42 (dd, *J* = 15.0, 7.6 Hz, 4H), 7.05 (d, *J* = 7.7 Hz, 2H), 3.10 (t, *J* = 7.1 Hz, 2H), 2.97 (t, *J* = 7.0 Hz, 2H), 2.29 (s, 3H), 2.11 (p, *J* = 7.1 Hz, 2H).

¹³C NMR (**101 MHz, Chloroform-***d*): δ 199.30, 136.85, 136.73, 133.09, 132.93, 129.82, 128.46, 127.92, 125.89, 37.90, 27.68, 24.35, 20.99.

HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_{17}H_{19}OSe$: 319.0523, found: 319.2996.

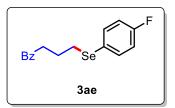
3. 4-((4-methoxyphenyl)selanyl)-1-phenylbutan-1-one

A light yellow oil, 100.0 mg, 60%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 50:1-20:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.96 – 7.89 (m, 2H), 7.58 – 7.52 (m, 1H), 7.49 – 7.46 (m, 2H), 7.46 – 7.41 (m, 2H), 6.85 – 6.74 (m, 2H), 3.78 (s, 3H), 3.11 (t, *J* = 7.1 Hz, 2H), 2.93 (t, *J* = 7.0 Hz, 2H), 2.10 (p, *J* = 7.1 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 199.43, 159.24, 136.80, 135.57, 133.00, 128.52, 127.98, 119.53, 114.75, 55.21, 37.94, 28.50, 24.39.

HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_{17}H_{19}O_2Se$: 335.0388, found: 333.0392.


4. 4-((4-ethoxyphenyl)selanyl)-1-phenylbutan-1-one

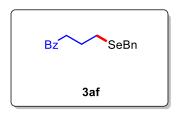
A light yellow oil, 78.1 mg, 45%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 50:1-20:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.95 – 7.90 (m, 2H), 7.59 – 7.52 (m, 1H), 7.47 (s, 2H), 7.45 – 7.43 (m, 2H), 6.82 – 6.76 (m, 2H), 4.00 (q, J = 7.0 Hz, 2H), 3.11 (t, J = 7.1 Hz, 2H), 2.92 (t, J = 7.0 Hz, 2H), 2.09 (p, J = 7.1 Hz, 2H), 1.40 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 199.48, 158.63, 136.83, 135.60, 133.01, 128.54, 128.00, 119.33, 115.29, 63.42, 37.96, 28.53, 24.40, 14.77.

HRMS-ESI (m/z) [M + H]⁺ calcd for $C_{18}H_{21}O_2Se$: 349.0544, found: 349.0555.

5. 4-((4-fluorophenyl)selanyl)-1-phenylbutan-1-one^[6]

A colorless oil, 83.5 mg, 52%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 50:1-20:1).

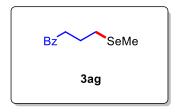

¹H NMR (400 MHz, Chloroform-*d*): δ 7.96 – 7.89 (m, 2H), 7.60 – 7.53 (m, 1H), 7.51 – 7.43 (m, 4H), 6.95 (t, J = 8.7 Hz, 2H), 3.12 (t, J = 7.0 Hz, 2H), 2.97 (t, J = 7.1 Hz, 2H), 2.11 (p, J = 7.0 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 199.24, 163.51, 161.06, 136.75, 135.24 (d, *J* = 7.8 Hz), 133.08, 128.57, 127.96, 124.13 (d, *J* = 3.5 Hz), 116.33, 116.12, 37.88, 28.23, 24.32.

¹⁹**F NMR (377 MHz, Chloroform-***d*): δ -114.81 (m, J = 28.3 Hz).

MS(EI): m/z(%) 322(3.40), 202(5.24), 175(8.03), 155(1.14), 147(99.75), 122(6.00), 105(100.00), 95(5.01), 83(8.45), 77(76.57), 51(16.14).

6. 4-(benzylselanyl)-1-phenylbutan-1-one^[6]

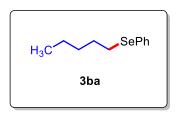

A white solid, 103.1 mg, 65%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 50:1-20:1), M.P.: 68.6.0-68.9 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.97 – 7.89 (m, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.33 – 7.23 (m, 4H), 7.19 (tt, J = 5.6, 3.2 Hz, 1H), 3.78 (s, 2H), 3.05 (t, J = 7.1 Hz, 2H), 2.59 (t, J = 7.0 Hz, 2H), 2.06 (p, J = 7.1 Hz, 2H).

¹³C NMR (**101 MHz, Chloroform-***d*): δ 199.41, 139.31, 136.80, 132.99, 128.77, 128.52, 128.44, 127.99, 126.62, 38.16, 26.89, 24.29, 23.50.

MS(EI): m/z(%) 318(20.72), 227(12.31), 198(11.17), 171(5.67), 147(99.81), 117(25.10), 105(99.82), 91(99.89), 77(100.00), 65(67.99), 51(51.79).

7. 4-(methylselanyl)-1-phenylbutan-1-one^[6]

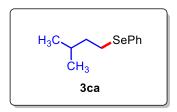

A colorless oil, 98.9 mg, 82%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 50:1-20:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 8.02 – 7.92 (m, 2H), 7.59 – 7.50 (m, 1H), 7.45 (dd, J = 8.4, 6.9 Hz, 2H), 3.11 (t, J = 7.1 Hz, 2H), 2.63 (t, J = 7.1 Hz, 2H), 2.10 (p, J = 7.2 Hz, 2H), 1.98 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 199.42, 136.80, 132.95, 128.50, 127.92, 38.00, 24.84, 24.01, 3.86.

MS(EI): m/z(%) 242(27.43), 240(12.58), 147(99.86), 133(6.83), 120(96.09), 106(99.85), 93(18.67), 77(100.00), 65(8.19), 55(13.38), 51(97.98).

8. pentyl(phenyl)selane^[7]


A light yellow oil, 51.1 mg, 49%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.48 (dd, J = 7.7, 1.8 Hz, 2H), 7.27 – 7.21 (m, 3H), 2.91 (t, J = 7.5 Hz, 2H), 1.71 (p, J = 7.4 Hz, 2H), 1.41 – 1.34 (m, 2H), 1.32 – 1.25 (m, 2H), 0.88 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 132.29, 130.66, 128.95, 126.54, 31.99, 29.81, 27.87, 22.15, 13.96.

MS(EI): m/z(%) 228(83.70), 224(16.08), 171(4.14), 158(100.00), 115(3.87), 105(3.80), 91(32.47), 78(80.69), 71(11.97), 65(9.64), 51(30.16).

9. isopentyl(phenyl)selane

A light yellow oil, 73.8 mg, 65%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.51 – 7.44 (m, 2H), 7.24 (q, J = 7.7, 7.0 Hz, 3H), 2.98 – 2.87 (m, 2H), 1.68 (dp, J = 13.0, 6.6 Hz, 1H), 1.62 – 1.55 (m, 2H), 0.90 (d, J = 6.5 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 132.23, 130.63, 128.95, 126.54, 39.07, 28.36, 25.83, 22.15.

HRMS-ESI (m/z) [M + H]⁺ calcd for $C_{11}H_{17}Se$: 229.0344, found: 229.0336. **10. 4-(phenylselanyl)butan-2-one**^[8]

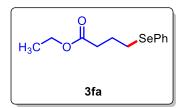
A light yellow oil, 42.0 mg, 37%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 50:1-20:1).

¹**H NMR (400 MHz, Chloroform-***d*): δ 7.52 – 7.45 (m, 2H), 7.26 (dd, J = 5.2, 2.1 Hz, 3H), 3.06 (t, J = 7.2 Hz, 2H), 2.85 (t, J = 7.2 Hz, 2H), 2.13 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 207.10, 132.80, 129.61, 129.10, 127.08, 44.05, 29.99, 20.41.

MS(EI): m/z(%) 228(99.45), 183(32.91), 155(63.44), 117(11.64), 105(17.19), 91(24.79), 77(90.65), 71(65.98), 65(13.80), 63(4.89), 51(60.53).

11. 6-(phenylselanyl)hexan-2-one

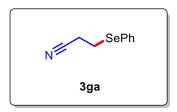

A light yellow oil, 104.6 mg, 82%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 50:1-20:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.48 (dd, J = 7.3, 2.1 Hz, 2H), 7.24 (q, J = 6.1, 5.6 Hz, 3H), 2.95 – 2.83 (m, 2H), 2.46 – 2.36 (m, 2H), 2.11 (s, 3H), 1.69 (p, J = 3.5 Hz, 4H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 208.52, 132.42, 130.18, 128.95, 126.68, 42.92, 29.80, 29.49, 27.35, 23.75.

HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_{12}H_{17}OSe$: 257.0439, found: 257.0442.

12. ethyl 4-(phenylselanyl)butanoate^[9]

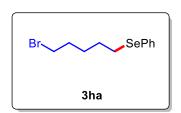

A light yellow oil, 118.0 mg, 87%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 50:1-20:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.48 (dd, J = 7.5, 2.0 Hz, 2H), 7.27 – 7.20 (m, 3H), 4.10 (q, J = 7.2 Hz, 2H), 2.93 (t, J = 7.2 Hz, 2H), 2.43 (t, J = 7.2 Hz, 2H), 2.00 (q, J = 7.3 Hz, 2H), 1.23 (td, J = 7.2, 1.2 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 172.75, 132.49, 129.77, 128.94, 126.75, 60.25, 33.81, 26.83, 25.19, 14.10.

MS(EI): m/z(%) 272(45.68), 227(37.94), 181(8.71), 157(58.11), 115(100.00), 91(58.65), 87(99.97), 77(79.49), 69(22.91, 65(18.15), 51(59.83).

13. 3-(phenylselanyl)propanenitrile^[8]

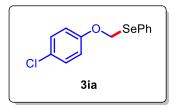

A light yellow oil, 67.2 mg, 64%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 20:1-2:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.59 – 7.53 (m, 2H), 7.32 (dd, J = 5.4, 1.8 Hz, 3H), 3.04 (t, J = 7.4 Hz, 2H), 2.67 (t, J = 7.4 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 134.12, 129.45, 128.20, 127.43, 118.59, 21.70, 18.93.

MS(EI): m/z(%) 211(89.24), 207(16.93), 169(49.26), 157(82.09), 130(7.10), 117(15.32), 103(6.33), 91(100.00), 77(98.75), 65(18.10), 51(82.22).

14. (5-bromopentyl)(phenyl)selane

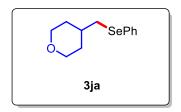

A light yellow oil, 133.2 mg, 87%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.41 (dd, J = 7.4, 2.1 Hz, 2H), 7.22 – 7.13 (m, 3H), 3.30 (t, J = 6.8 Hz, 2H), 2.83 (t, J = 7.3 Hz, 2H), 1.77 (p, J = 7.0 Hz, 2H), 1.64 (p, J = 7.4 Hz, 2H), 1.47 (dd, J = 10.6, 4.9 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 132.49, 130.20, 128.98, 126.72, 33.51, 32.12, 29.21, 28.24, 27.46.

HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_{11}H_{16}BrSe$: 306.9516, found: 306.9551.

15. ((4-chlorophenoxy)methyl)(phenyl)selane

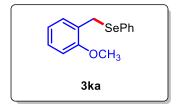

A light yellow oil, 119.1 mg, 80%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.47 (dd, J = 6.5, 3.0 Hz, 2H), 7.17 (dd, J = 5.0, 2.0 Hz, 3H), 7.15 – 7.09 (m, 2H), 6.76 – 6.69 (m, 2H), 5.51 (s, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 155.16, 133.30, 129.66, 129.34, 129.14, 127.64, 126.93, 117.21, 67.95.

HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_{13}H_{12}ClOSe$: 298.9580, found: 298.9545.

16. 4-((phenylselanyl)methyl)tetrahydro-2H-pyran

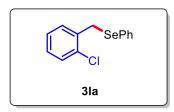

A light yellow oil, 114.9 mg, 90%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 50:1-20:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.53 – 7.45 (m, 2H), 7.30 – 7.19 (m, 3H), 4.00 – 3.90 (m, 2H), 3.32 (td, J = 11.8, 1.9 Hz, 2H), 2.84 (d, J = 6.5 Hz, 2H), 1.78 (dd, J = 3.6, 2.0 Hz, 1H), 1.77 – 1.67 (m, 2H), 1.38 – 1.26 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 132.29, 130.54, 128.98, 126.65, 67.72, 35.60, 34.98, 33.20.

HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_{12}H_{17}OSe$: 257.0439, found: 257.0440.

17. (2-methoxybenzyl)(phenyl)selane^[10]

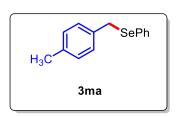

A colorless oil, 106.7 mg, 77%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.47 – 7.35 (m, 2H), 7.15 (td, J = 4.1, 1.8 Hz, 3H), 7.10 (td, J = 7.8, 1.7 Hz, 1H), 6.95 (dd, J = 7.4, 1.7 Hz, 1H), 6.81 – 6.68 (m, 2H), 4.04 (s, 2H), 3.71 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 157.04, 133.70, 130.95, 130.07, 128.75, 128.23, 127.27, 127.04, 120.22, 110.48, 55.33, 26.87.

MS(EI): m/z(%) 278(16.18), 251(2.85), 192(1.28), 157(20.02), 121(40.64), 112(1.50), 105(8.72), 91(52.10), 77(35.77), 65(15.76), 51(30.42).

18. (2-chlorobenzyl)(phenyl)selane^[10-11]


A colorless oil, 101.4 mg, 72%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1).

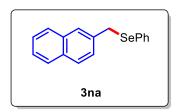
¹H NMR (400 MHz, Chloroform-*d*): δ 7.47 – 7.43 (m, 2H), 7.31 (dd, J = 7.8, 1.4 Hz, 1H), 7.22 (dd, J = 8.8, 6.8 Hz, 3H), 7.09 (td, J = 7.6, 2.0 Hz, 1H), 7.03 (td, J = 7.4, 1.4 Hz, 1H), 6.98 (dd, J = 7.5, 1.9 Hz, 1H), 4.14 (s, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 136.48, 134.29, 133.67, 130.49, 129.65, 129.56, 128.85, 128.15, 127.53, 126.49, 29.90.

MS(EI): m/z(%) 282(9.10), 207(88.51), 147(19.45), 142(100.00), 133(14.98), 100(50.05), 91(11.71), 79(12.92), 77(29.02), 57(32.52), 55(13.13).

19. (4-methylbenzyl)(phenyl)selane^{[7][10][12]}

A colorless oil, 78.4 mg, 60%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1).

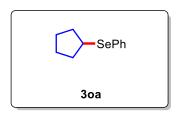

¹H NMR (400 MHz, Chloroform-*d*): δ 7.37 (ddd, J = 6.5, 3.1, 1.5 Hz, 2H), 7.18 – 7.13 (m, 3H), 7.02 (d, J = 8.1 Hz, 2H), 6.96 (d, J = 7.9 Hz, 2H), 4.00 (s, 2H), 2.22 (s, 3H).

¹³C NMR (**101** MHz, Chloroform-*d*) δ 136.47, 135.39, 133.26, 130.66, 129.09, 128.92, 128.66, 127.11, 31.92, 21.08.

MS(EI): m/z(%) 262(66.68), 179(2.18), 165(9.38), 157(51.58), 129(2.45), 117(8.35),

105(99.87), 91(10.60), 77(100.00), 65(19.72), 51(58.98).

20. (naphthalen-2-ylmethyl)(phenyl)selane^[13]

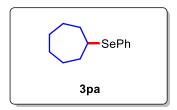

A yellow solid, 133.8 mg, 90%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1), M.P.: 33.0-35.0 °C.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.75 – 7.61 (m, 2H), 7.61 – 7.54 (m, 1H), 7.41 (s, 1H), 7.39 – 7.22 (m, 5H), 7.19 – 7.05 (m, 3H), 4.13 (s, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 135.93, 133.63, 133.19, 132.30, 130.74, 130.28, 129.58, 128.93, 128.18, 127.57, 127.55, 127.32, 127.16, 127.12, 126.03, 125.64, 32.61.

MS(EI): m/z(%) 298(3.44), 207(8.25), 142(17.99), 141(100.00), 139(9.02), 115(20.57), 91(2.74), 89(2.74), 78(2.89), 77(4.85), 51(3.46).

21. cyclopentyl(phenyl)selane^[14]

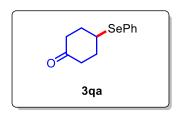

A pale yellow oil, 83.3 mg, 74%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.57 – 7.48 (m, 2H), 7.24 (dd, J = 5.1, 2.0 Hz, 3H), 3.63 (p, J = 6.6 Hz, 1H), 2.13 – 2.00 (m, 2H), 1.71 (dddq, J = 25.3, 12.5, 6.1, 3.1, 2.1 Hz, 4H), 1.58 (dt, J = 8.1, 5.9 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 133.43, 131.00, 128.83, 126.78, 41.75, 33.99, 24.81.

MS(EI): m/z(%) 226(68.16), 156(99.61), 117(13.34), 104(6.15), 91(10.02), 78(100.00), 69(61.16), 65(20.98), 63(5.31), 53(12.14), 51(55.04).

22. cycloheptyl(phenyl)selane^[15]

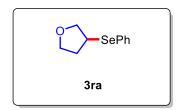


A pale yellow oil, 121.6 mg, 96%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.44 (dd, J = 6.6, 3.0 Hz, 2H), 7.21 – 7.12 (m, 3H), 3.35 (tt, J = 9.2, 4.3 Hz, 1H), 1.99 (ddt, J = 14.0, 7.0, 2.7 Hz, 2H), 1.60 (dddd, J = 12.3, 9.0, 5.6, 3.1 Hz, 4H), 1.46 (dt, J = 8.1, 4.7 Hz, 4H), 1.34 (qd, J = 9.6, 6.0 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*): δ 134.15, 130.48, 128.83, 127.00, 44.88, 35.46, 28.02, 26.66.

MS(EI): m/z(%) 254(61.64), 183(1.39), 155(64.62), 117(11.98), 104(4.45), 97(97.69), 91(15.55), 77(78.70), 69(27.89), 55(100.00), 51(48.81).

23. 4-(phenylselanyl)cyclohexan-1-one

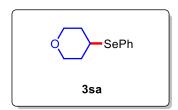

A pale yellow oil, 113.9 mg, 90%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 50:1-20:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.51 (dd, J = 7.3, 2.1 Hz, 2H), 7.30 – 7.14 (m, 3H), 3.54 (tt, J = 8.5, 3.6 Hz, 1H), 2.45 (dt, J = 13.5, 5.5 Hz, 2H), 2.27 (dt, J = 10.3, 5.3 Hz, 2H), 2.23 – 2.15 (m, 2H), 1.90 (dtd, J = 14.4, 9.4, 8.7, 4.4 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 209.92, 135.12, 129.06, 128.11, 127.90, 40.51, 39.62, 33.05.

HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_{12}H_{15}OSe$: 255.0282, found: 255.0285.

24. 3-(phenylselanyl)tetrahydrofuran

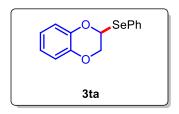

A pale yellow oil, 96.6 mg, 85%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.54 (dd, J = 6.6, 3.0 Hz, 2H), 7.30 – 7.23 (m, 3H), 4.14 – 4.06 (m, 1H), 3.89 (td, J = 8.0, 6.4 Hz, 1H), 3.82 (td, J = 7.9, 5.9 Hz, 1H), 3.77 – 3.70 (m, 2H), 2.32 (dq, J = 14.0, 7.4 Hz, 1H), 1.94 (ddt, J = 13.4, 7.6, 5.8 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 133.92, 129.24, 129.02, 127.45, 73.87, 67.48, 38.80, 33.31.

HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_{10}H_{13}OSe$: 228.9980, found: 228.9973.

25. 4-(phenylselanyl)tetrahydro-2H-pyran^[14]

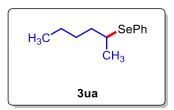

A pale yellow oil, 100.0 mg, 83%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.56 (dd, J = 7.2, 2.3 Hz, 2H), 7.33 – 7.23 (m, 3H), 3.92 (dt, J = 11.7, 3.8 Hz, 2H), 3.46 – 3.33 (m, 3H), 1.94 (dd, J = 13.4, 3.6 Hz, 2H), 1.79 (dtd, J = 14.4, 10.7, 4.2 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 135.20, 128.92, 127.91, 127.68, 67.97, 38.65, 33.91.

MS(EI): m/z(%) 242(97.27), 158(66.23), 129(6.26), 115(10.54), 104(7.49), 91(15.94), 85(85.14), 77(87.91), 65(15.99), 55(100.00), 51(70.37).

26. 2-(phenylselanyl)-2,3-dihydrobenzo[b][1,4]dioxine

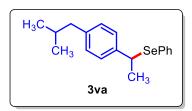

A pale yellow oil, 138.3 mg, 95%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.67 – 7.61 (m, 2H), 7.34 – 7.25 (m, 3H), 6.94 – 6.87 (m, 4H), 5.90 (dd, J = 3.5, 2.3 Hz, 1H), 4.46 (dd, J = 11.5, 2.3 Hz, 1H), 4.33 (dd, J = 11.6, 3.5 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 142.81, 141.28, 134.84, 129.13, 128.19, 127.67, 122.35, 122.00, 118.01, 117.28, 76.80, 68.06.

HRMS-ESI (m/z) [M + H]⁺ calcd for $C_{14}H_{13}O_2Se$: 293.0075, found: 293.0080.

27. hexan-2-yl(phenyl)selane

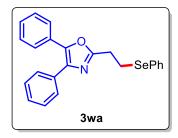

A colorless oil, 88.1 mg, 73%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.54 (dd, J = 6.5, 3.0 Hz, 2H), 7.25 (p, J = 3.4, 3.0 Hz, 3H), 3.28 (h, J = 6.8 Hz, 1H), 1.67 (dtd, J = 14.3, 8.0, 6.6 Hz, 1H), 1.56 (ddd, J = 15.3, 13.7, 7.1 Hz, 1H), 1.40 (dd, J = 10.0, 7.0 Hz, 5H), 1.29 (h, J = 6.9 Hz, 2H), 0.88 (t, J = 7.3 Hz, 3H).

¹³C NMR (**101** MHz, Chloroform-*d*): δ 134.80, 129.45, 128.79, 127.20, 39.73, 37.18, 29.96, 22.44, 22.12, 13.98.

HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_{12}H_{19}Se$: 243.0501, found: 243.0496.

28. (1-(4-isobutylphenyl)ethyl)(phenyl)selane^[14]

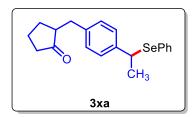

A colorless oil, 100.0 mg, 63%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.45 – 7.39 (m, 2H), 7.27 – 7.24 (m, 1H), 7.20 (t, J = 7.1 Hz, 2H), 7.14 (d, J = 7.8 Hz, 2H), 7.02 (d, J = 7.9 Hz, 2H), 4.45 (q, J = 7.1 Hz, 1H), 2.42 (d, J = 7.2 Hz, 2H), 1.84 (dq, J = 13.5, 6.7 Hz, 1H), 1.74 (d, J = 7.0 Hz, 3H), 0.89 (d, J = 6.6 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 140.63, 140.39, 135.49, 129.94, 128.99, 128.71, 127.69, 126.93, 45.02, 42.34, 30.19, 22.34, 22.32, 22.13.

MS(EI): m/z(%) 318(4.40), 161(100.00), 155(16.64), 145(8.50), 131(7.85), 119(99.28), 105(48.89), 91(82.10), 77(45.77), 65(12.76), 51(17.42).

29. 4,5-diphenyl-2-(2-(phenylselanyl)ethyl)oxazole

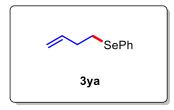

A pale yellow oil, 103.1 mg, 51%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 20:1-10:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.67 – 7.59 (m, 2H), 7.54 (ddd, J = 8.1, 6.1, 2.2 Hz, 4H), 7.40 – 7.28 (m, 6H), 7.24 (dd, J = 5.0, 2.0 Hz, 3H), 3.37 – 3.30 (m, 2H), 3.28 – 3.21 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 161.87, 145.28, 135.08, 133.39, 132.36, 129.10, 129.00, 128.86, 128.55, 128.50, 128.38, 128.01, 127.85, 127.29, 126.39, 29.63, 23.85.

HRMS-ESI (m/z) $[M + H]^+$ calcd for $C_{29}H_{20}NOSe$: 406.0632, found: 406.0705.

30. 2-(4-(1-(phenylselanyl)ethyl)benzyl)cyclopentan-1-one^[14]



A pale yellow oil, 105.4 mg, 59%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 20:1-10:1).

¹H NMR (400 MHz, Chloroform-*d*): δ 7.37 – 7.32 (m, 2H), 7.22 – 7.17 (m, 1H), 7.16 – 7.11 (m, 2H), 7.08 (d, J = 7.9 Hz, 2H), 6.97 (d, J = 7.8 Hz, 2H), 4.37 (q, J = 7.1 Hz, 1H), 3.02 (dd, J = 13.8, 4.1 Hz, 1H), 2.43 (dd, J = 13.9, 9.4 Hz, 1H), 2.30 – 2.20 (m, 2H), 2.02 (dddd, J = 19.0, 10.7, 8.6, 2.3 Hz, 2H), 1.87 (dtt, J = 11.9, 6.2, 2.9 Hz, 1H), 1.66 (d, J = 7.1 Hz, 3H), 1.50 – 1.41 (m, 1H), 1.18 (s, 1H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 220.25, 141.30, 138.61, 135.42, 129.85, 128.78, 128.72, 127.72, 127.24, 50.92, 42.16, 42.13, 38.20, 35.14, 29.05, 22.10, 20.52. **MS(EI): m/z(%)** 358(5.09), 201(50.37), 157(16.64), 145(6.50), 131(1.85), 115(1.28), 102(3.09), 91(21.10), 77(45.23), 61(2.29), 51(37.75).

31. but-3-en-1-yl(phenyl)selane

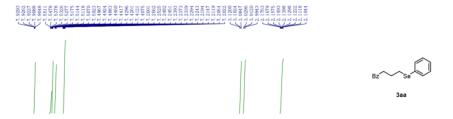
A pale yellow oil, 73.9 mg, 70%, purification by flash column chromatography (eluent: petroleum ether/ethyl acetate = 200:1-100:1).

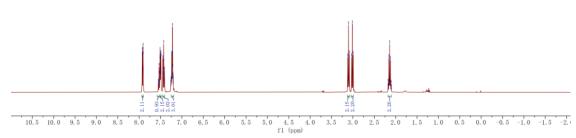
¹H NMR (400 MHz, Chloroform-*d*): δ 7.56 – 7.44 (m, 2H), 7.31 – 7.18 (m, 3H), 5.83 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.05 (t, J = 13.4 Hz, 2H), 2.95 (t, J = 7.5 Hz, 2H), 2.45 (q, J = 7.2 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 137.14, 132.62, 130.16, 128.98, 126.76, 115.90, 34.23, 26.68.

HRMS-ESI (m/z) [M + H]⁺ calcd for $C_{10}H_{13}Se$: 213.0098, found: 213.0131.

7 References.

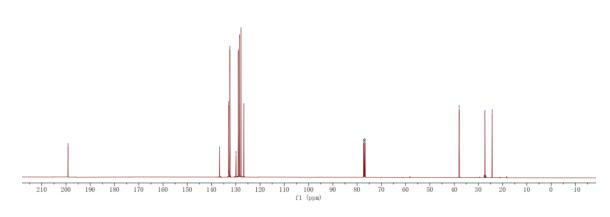

- [1] Deng, H.-H.; Tian, S.-Y.; Han, J.-H.; Liu, X.-Y.; Rao, W.; Shen, S.-S.; Sheng, D.; Yang, Z.-Y.; Wang, S.-Y. Regioselective 1,4-/1,3-difunctionalization of 1,3-enynes with selenosulfonates in water. *J. Org. Chem.* **2024**, *89*, 8804-8814.
- [2] Cismesia, M. A.; Yoon, T. P. Characterizing Chain Processes in Visible Light Photoredox Catalysis. *Chem. Sci.* **2015**, *6*, 5426–5434.
- [3] Ham, W. S.; Hillenbrand, J.; Jacq, J.; Genicot, C.; Ritter, T. Divergent Late-Stage (Hetero)aryl C-H Amination by the Pyridinium Radical Cation. *Angew. Chem. Int. Ed.* **2019**, *58*, 532–536.
- [4] Luis-Barrera, J.; LainaMartin, V.; Rigotti, T.; Peccati, F.; Solans-Monfort, X.; Sodupe, M.; Mas-Balleste, R.; Liras, M.; Aleman, J. Visible-Light Photocatalytic Intramolecular Cyclopropane Ring Expansion. *Angew. Chem., Int. Ed.* 2017, 56, 7826–7830.
- [5] Klauck, F. J. R.; James, M. J.; Glorius, F. Deaminative Strategy for the Visible-Light-Mediated Generation of Alkyl Radicals. *Angew. Chem. Int. Ed.* 2017, 56, 12336–12339.
- [6] Li, B.; Yi, L.; Maity, B.; Jia, J.; Shen, Y.; Chen, X.-Y.; Cavallo, L.; Rueping, M. Bio-inspired Halogen Bonding-Promoted Cross Coupling for the Synthesis of Organoselenium Compounds. ACS Catal. 2023, 13, 15194-15202.
- [7] Narayanaperumal, S.; Alberto, E. E.; Gul, K.; Rodrigues, O. E. D.; Braga, A. L. Synthesis of Diorganyl Selenides Mediated by Zinc in Ionic Liquid. *J. Org. Chem.*


- **2010**, 75, 3886-3889.
- [8] Ranu, B. C.; Das, A. A Convenient Synthesis of β-Phenylselenocarbonyl Compounds by In-TMSCl Promoted Cleavage of Diphenyl Diselenide and Subsequent Michael Addition. *Adv. Synth. Catal.* **2005**, 347, 712-714.
- [9] Tanini, D.; Lupori, B.; Malevolti, G.; Ambrosi, M.; Nostro, P. L.; Capperucci, A. Direct biocatalysed synthesis of first sulfur-, selenium- and tellurium- containing L-ascorbyl hybrid derivatives with radical trapping and GPx-like properties. *Chem. Commun.* **2019**, 55, 5705-5708.
- [10] Li, F.; Wang, D.; Chen, H.; He, Z.; Zhou, L.; Zeng, Q. Transition metal-free coupling reactions of benzylic trimethylammonium salts with di(hetero)aryl disulfides and diselenides. *Chem. Commun.* **2020**, 56, 13029-13032.
- [11] Ji, L.; Qiao, J.; Li, A.; Jiang, Z.; Lu, K.; Zhao, X. Metal-free synthesis of unsymmetrical selenides from pyridinium salts and diselenides catalysed by visible light. *Tetrahedron Lett.* **2021**,72, 153071.
- [12] Chen, Q.; Wang, P.; Yan, T.; Cai, M. A highly efficient heterogeneous ruthenium(III)-catalyzed reaction of diaryl diselenides with alkyl halides leading to unsymmetrical diorganyl selenides. *J. Organomet. Chem.* **2017**, 840, 38-46.
- [13] Cui, F.-H.; Chen, J.; Su, S.-X.; Xu, Y.-l.; Wang, H.-s.; Pan, Y.-m. Regioselective Synthesis of Selenide Ethers through a Decarboxylative Coupling Reaction. *Adv. Synth. Catal.* **2017**, 359, 3950-3961.
- [14] Guo, H.-C.; Lin, J.; Liu, M.-C.; Zhou, Y.-B.; Wu, H.-Y. Visible-Light-Induced decarboxylative selenation of N-Hydroxyphthalimide esters with diselenides to unsymmetrical monoselenides. *Tetrahedron Lett.* **2023**, 132, 154825.
- [15] Du, B.; Jin, B.; Sun, P. Syntheses of Sulfides and Selenides through Direct Oxidative Functionalization of C(sp³)-H Bond. *Org. Lett.* **2014**, 16, 3032-3035.

9 Copies of the NMR spectra.

1. 1-phenyl-4-(phenylselanyl)butan-1-one

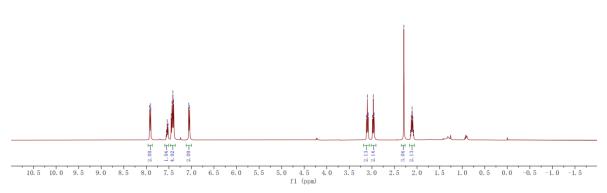
¹H NMR


¹³C NMR

- 199. 19

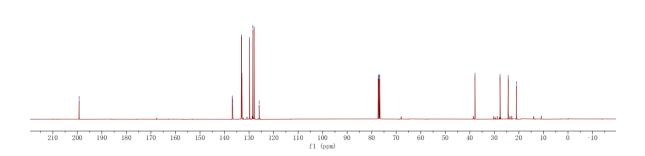
132.45 132.45 132.45 128.92 128.97 128.45 77.32

27. 28

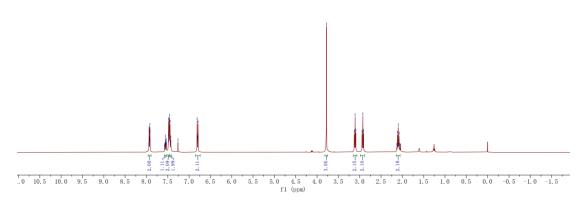

Bz Se

2. 1-phenyl-4-(p-tolylselanyl)butan-1-one

¹H NMR

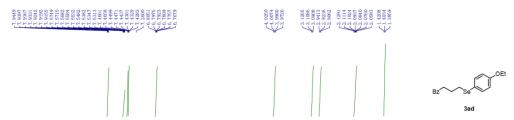


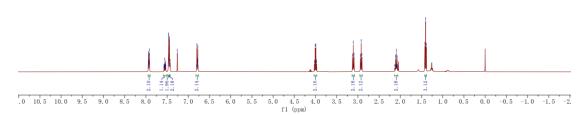
-199.30



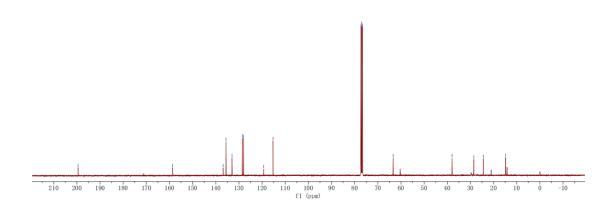
77.32

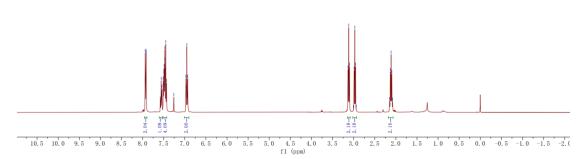
${\bf 3.~4\text{-}((4\text{-}methoxyphenyl)selanyl)\text{-}1\text{-}phenylbutan\text{-}1\text{-}one}$

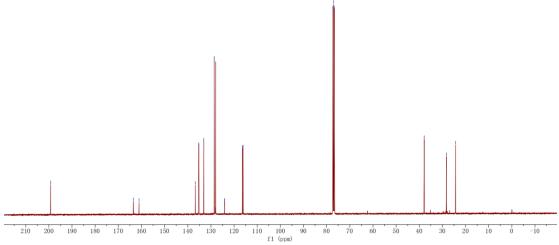


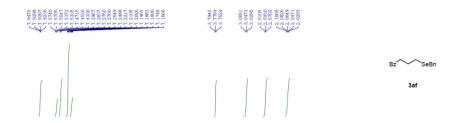


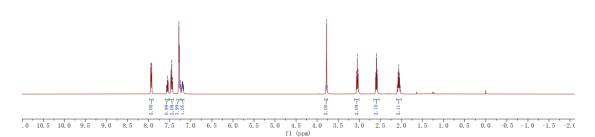
${\bf 4.\ 4-} ((4-ethoxyphenyl)selanyl)-1-phenylbutan-1-one$

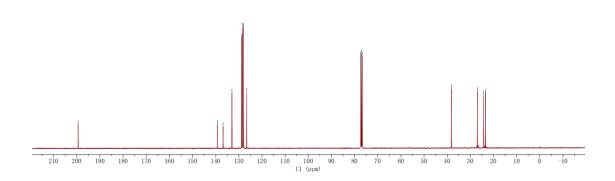


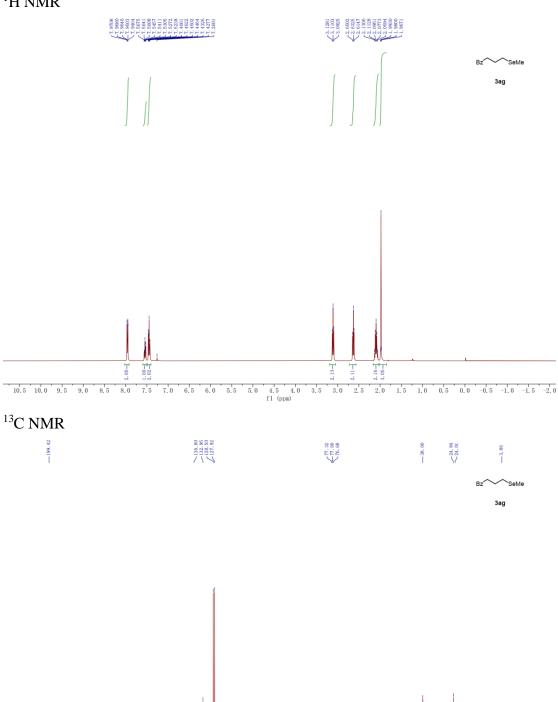


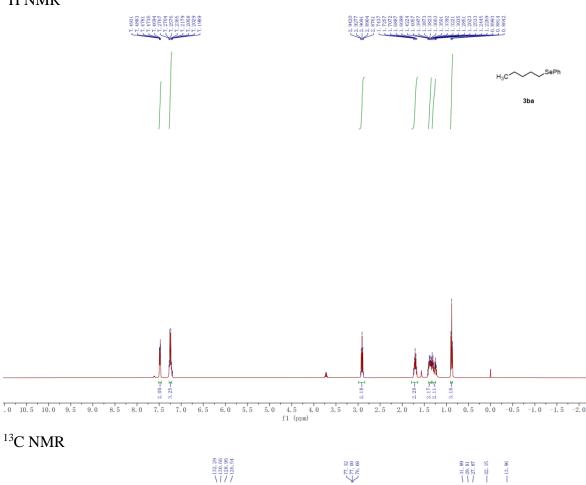

${\bf 5.}\quad {\bf 4\text{-}((4\text{-}fluorophenyl)selanyl)\text{-}1\text{-}phenylbutan\text{-}1\text{-}one}$



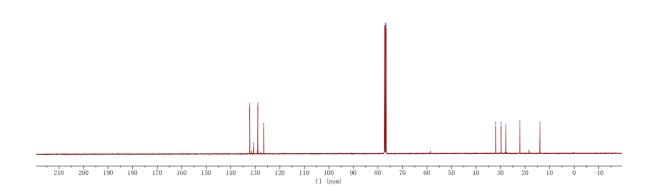



6. 4-(benzylselanyl)-1-phenylbutan-1-one



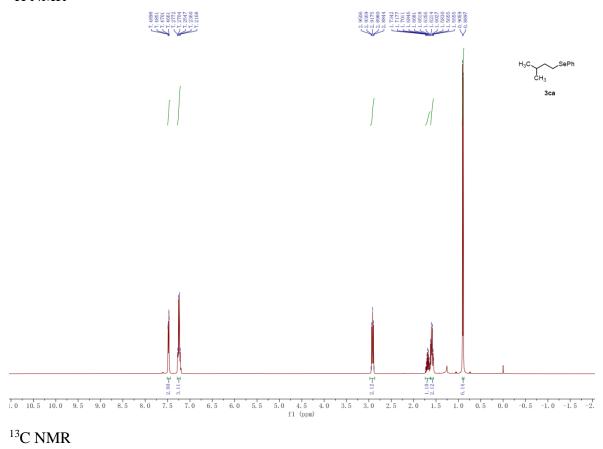

7. 4-(methylselanyl)-1-phenylbutan-1-one

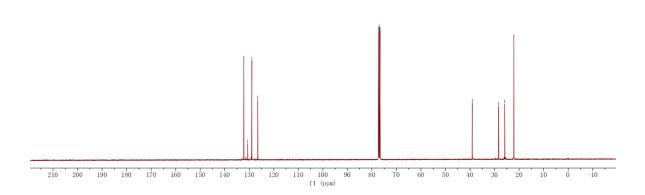
¹H NMR



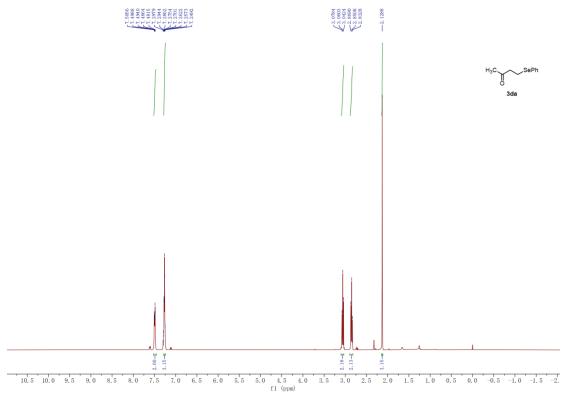
210 200 190 180 170 160 150 140 130 120 110 100 90 ft (ppm)

8. pentyl(phenyl)selane



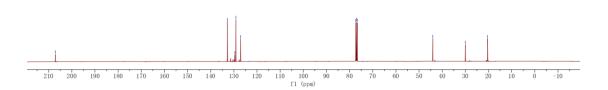

9. isopentyl(phenyl)selane

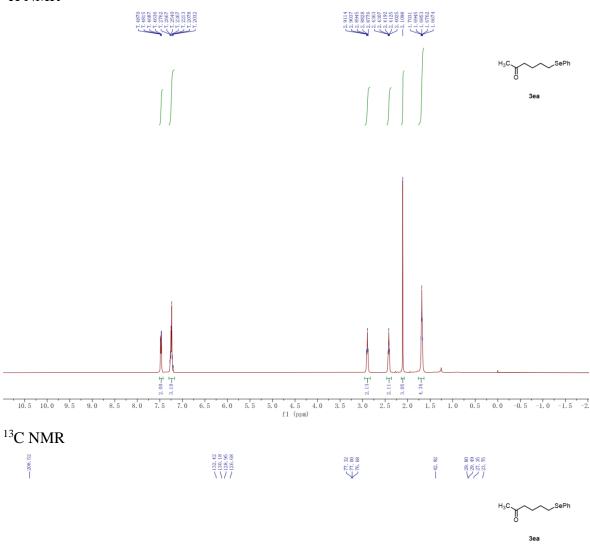
¹H NMR

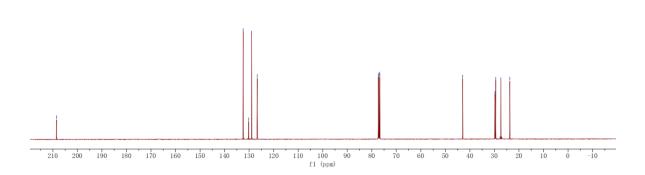


H₃C SePh CH₃

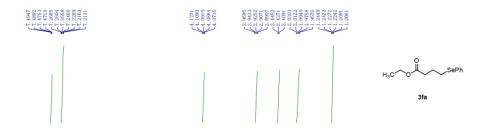
10. 4-(phenylselanyl)butan-2-one

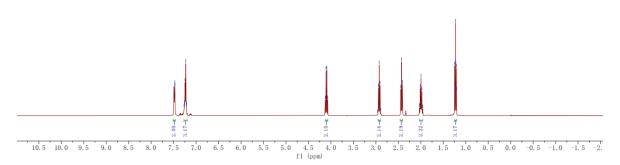

¹H NMR


¹³C NMR

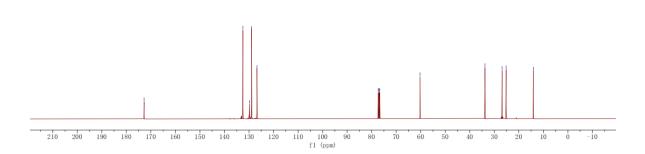

- 207.10 - 207.10 - 20.50 - 20

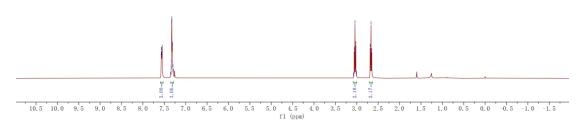
H₃C SePh

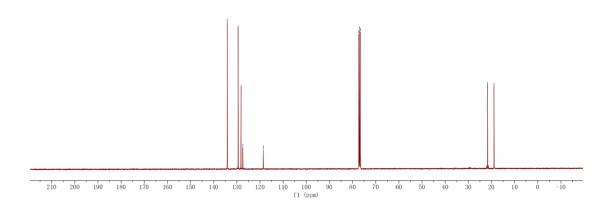

11. 6-(phenylselanyl)hexan-2-one



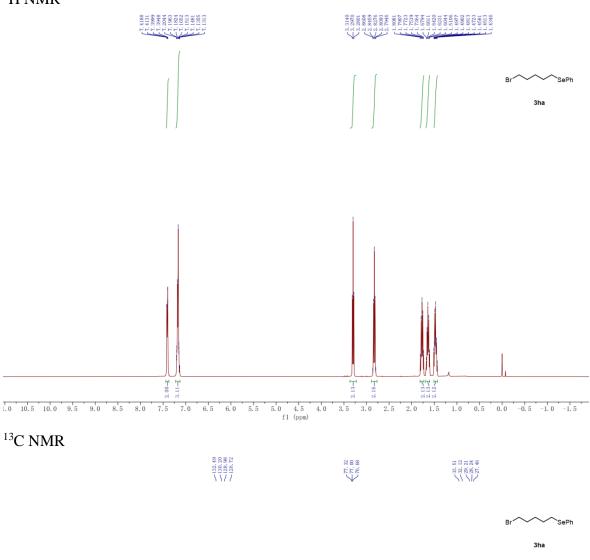
12. ethyl 4-(phenylselanyl)butanoate

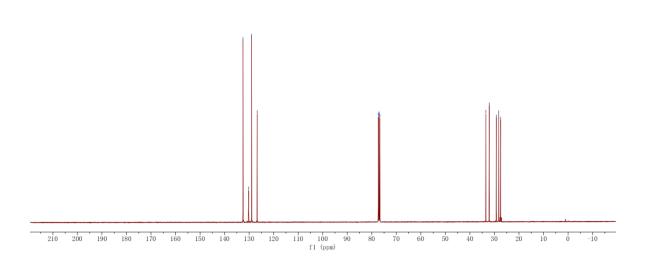

¹H NMR



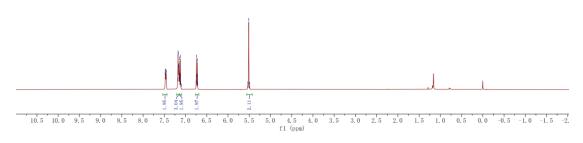

${\bf 13.\ 3-} (phenyl selanyl) propanenitrile$

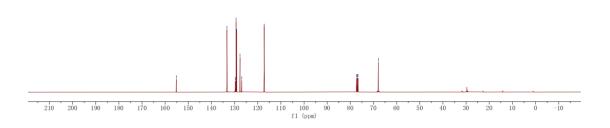
¹H NMR



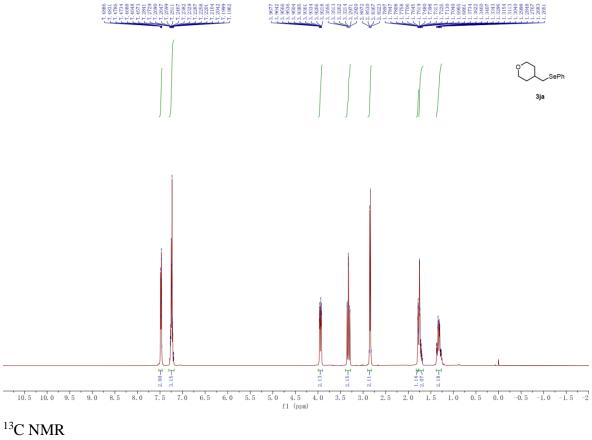


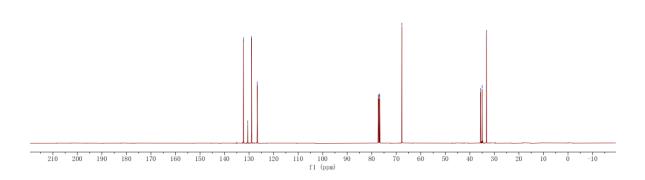
${\bf 14.}\ ({\bf 5\text{-}bromopentyl}) (phenyl) selane$

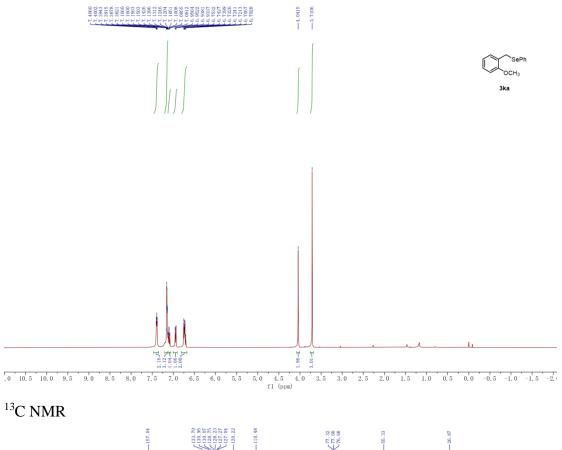


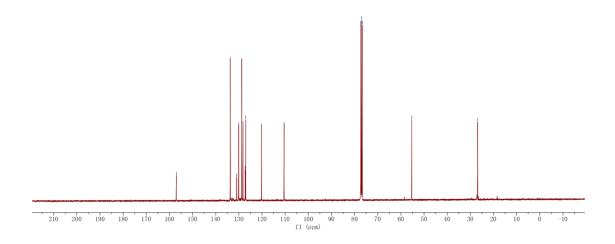

15. ((4-chlorophenoxy)methyl)(phenyl)selane

¹H NMR

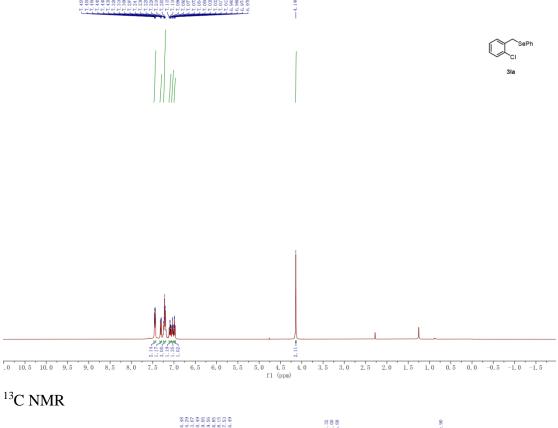


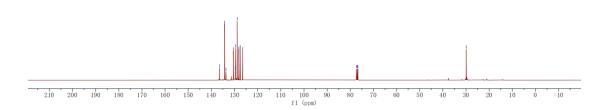



${\bf 16.\ 4-} ((phenylselanyl)methyl) tetrahydro-2H-pyran$

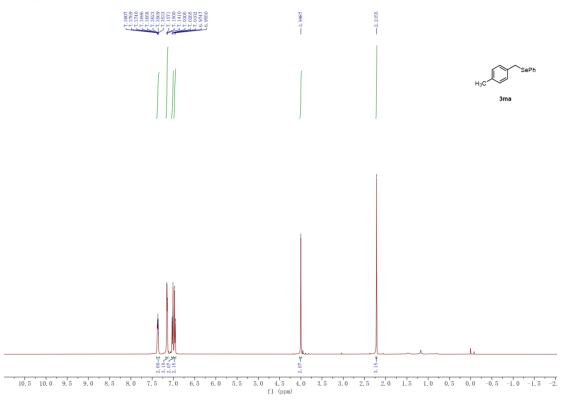


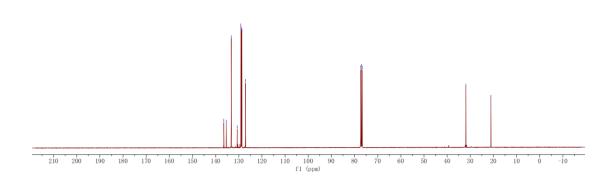
${\bf 17.}\ (\hbox{\it 2-methoxybenzyl}) (phenyl) selane$





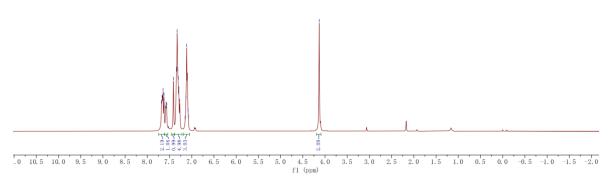
18. (2-chlorobenzyl)(phenyl)selane



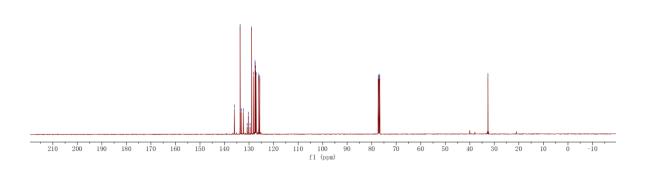


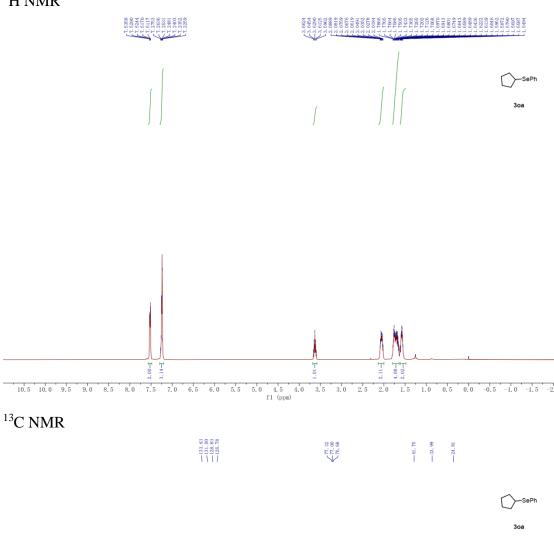
${\bf 19.}\ ({\bf 4-methylbenzyl}) (phenyl) selane$

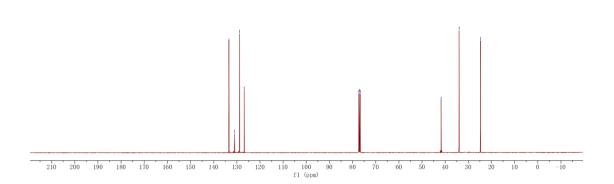
¹H NMR



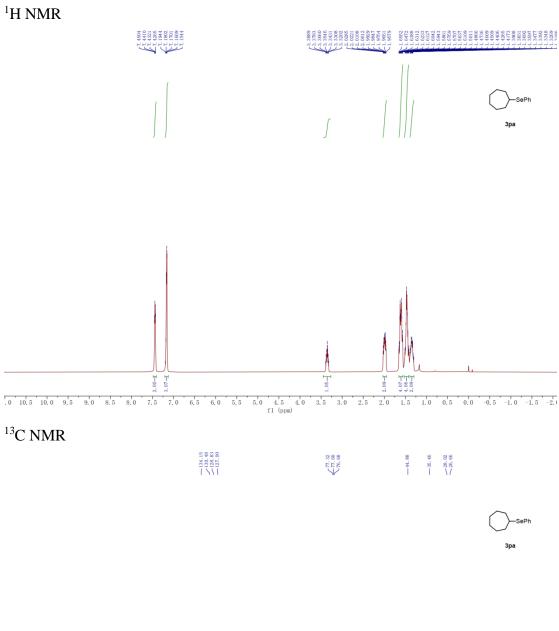
¹H NMR

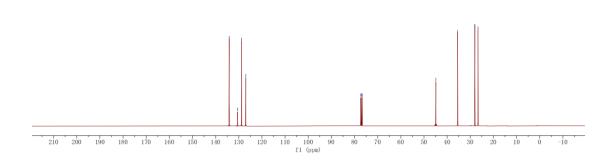


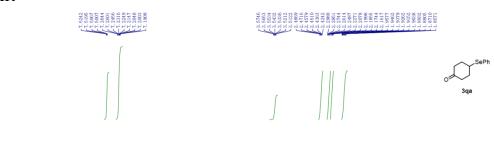

¹³C NMR

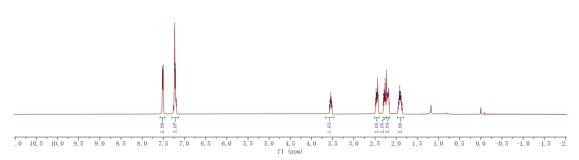


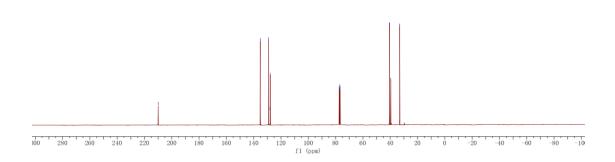
SePh 3na



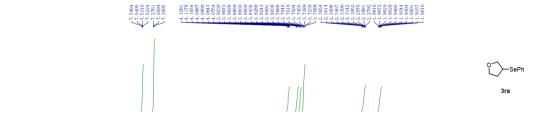

21. cyclopentyl(phenyl)selane

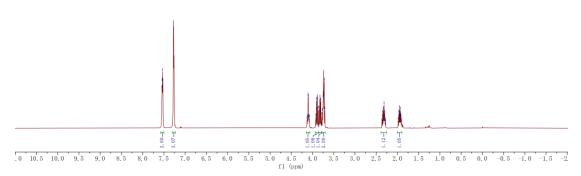

22. cycloheptyl(phenyl)selane

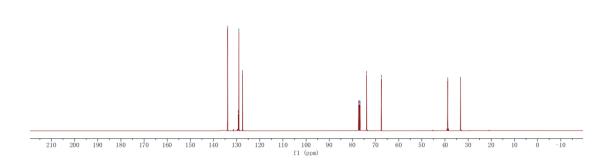



23. 4-(phenylselanyl)cyclohexan-1-one

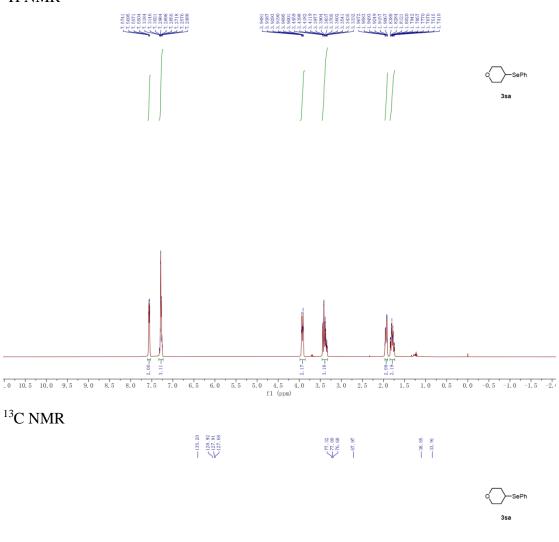
¹H NMR

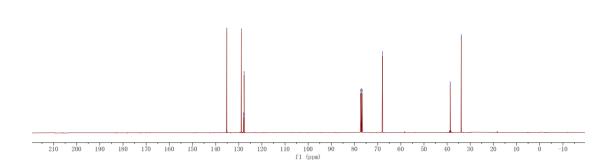


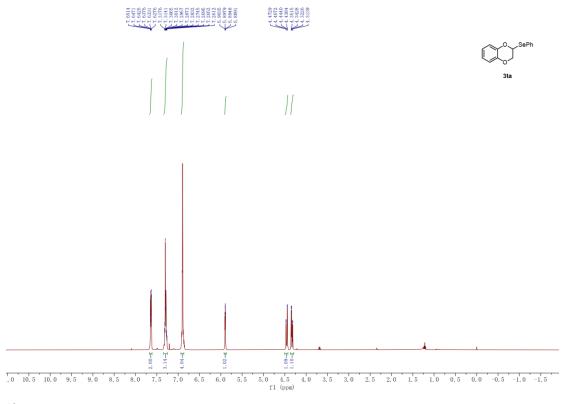


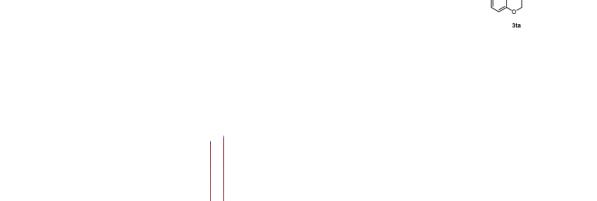

${\bf 24. \ 3-} (phenyl selanyl) tetra hydrofuran$

¹H NMR





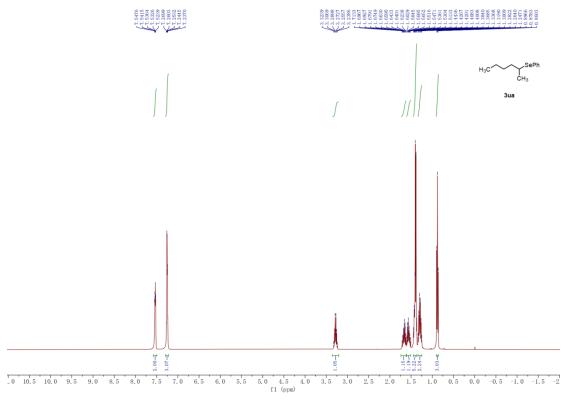

25. 4-(phenylselanyl)tetrahydro-2H-pyran



26. 2-(phenylselanyl)-2,3-dihydrobenzo[b][1,4]dioxine

¹H NMR

¹³C NMR

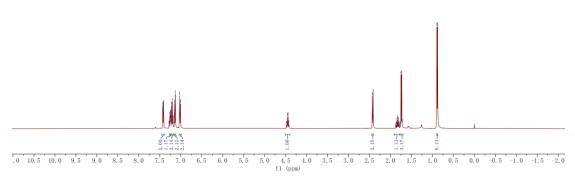


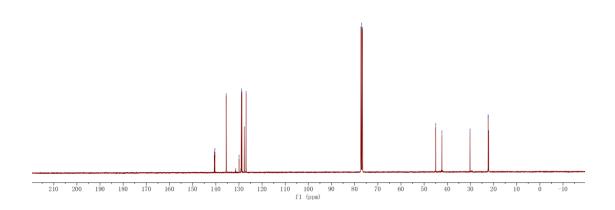
77.32

210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

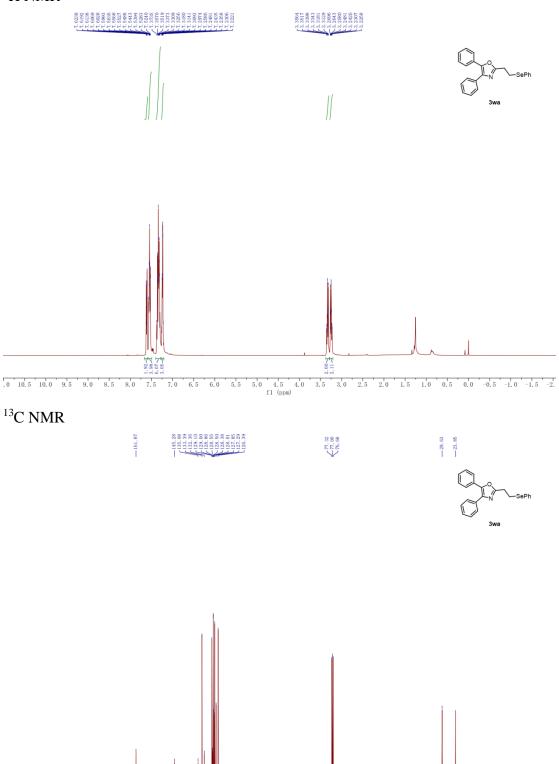
27. hexan-2-yl(phenyl)selane

¹H NMR

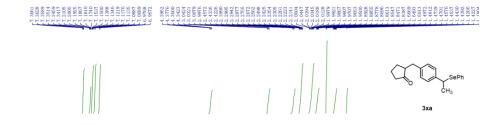


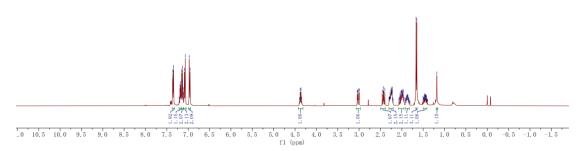

${\bf 28.}\ (\hbox{\it 1-(4-isobutylphenyl)ethyl}) (phenyl) selane$

¹H NMR



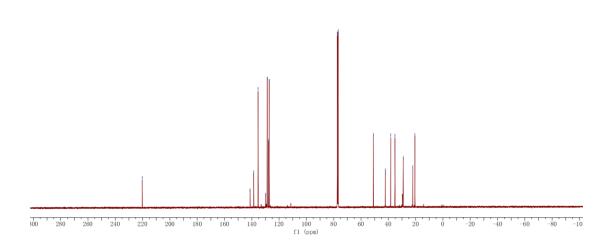
${\bf 29.\ 4,5-diphenyl-2-(2-(phenylselanyl)ethyl)oxazole}$

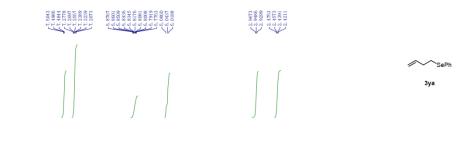

¹H NMR

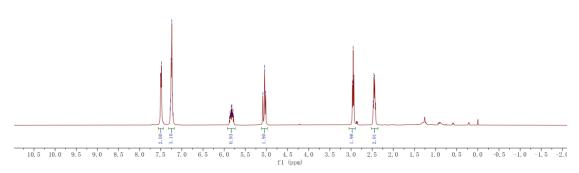


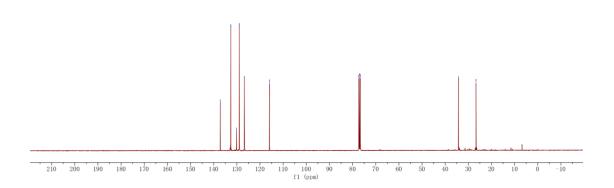
210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

30. 2- (4-(1-(phenylselanyl)ethyl)benzyl)cyclopentan-1-one


¹H NMR






31. but-3-en-1-yl(phenyl)selane

¹H NMR

