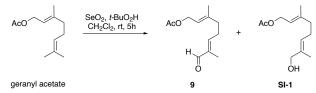
Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Biomimetic synthesis of *Sinularia* meroterpenoids and photochemical reactivity of capillobenzopyranol

Sarah A. French, Ricardo A. Peralta and Jonathan H. George*

Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.

Supporting Information


Table of Contents

1.	General Methods	S2
2.	Synthetic Procedures	S3
3.	NMR Spectra	S18
4.	Tables of ¹ H and ¹³ C NMR Data	S32
5.	Crystallography Data	S36

1. General Methods

All chemicals used were purchased from commercial suppliers and used as received unless specified otherwise. All reactions using dried solvents were performed under an inert atmosphere of N₂. All organic extracts were dried over anhydrous magnesium sulfate or sodium sulfate. Thin layer chromatography was performed using aluminium sheets coated with silica gel F254. Visualization was aided by viewing under a UV lamp and staining with ceric ammonium molybdate (CAM), KMnO₄ or vanillin followed by heating. The TLC stain solutions were prepared as follows. CAM stain: to a mixture of Ce(SO₄)₂ (1.2 g), (NH₄)₆Mo₇O₂₄.4H₂O (6.2 g) in H₂O (90 mL) was added conc. sulfuric acid (10 mL) and the mixture was stirred until homogeneous. Vanillin stain: vanillin (6 g) was dissolved in EtOH (95 mL) followed by addition of conc. sulfuric acid (1.5 mL). KMnO₄ stain: KMnO₄ (0.75 g) and K₂CO₃ (5 g) were dissolved in H₂O (100 mL) and aq. NaOH (10%, 1 mL) was added. All R_f values were measured to the nearest 0.05. Flash column chromatography was performed using 40-63 micron grade silica gel. High field NMR spectra were recorded using either a 500 MHz spectrometer (¹H at 500 MHz, ¹³C at 125 MHz) or 600 MHz spectrometer (¹H at 600 MHz, ¹³C at 150 MHz). The solvent used for NMR spectra was CDCl₃ unless otherwise specified. ¹H chemical shifts are reported in ppm on the δ-scale relative to CDCl₃ (δ 7.26), (CH₃)₂CO (2.050) and C₆D₆ (7.610) and ¹³C NMR chemical shifts are reported in ppm relative to CDCl₃ (δ 77.16), (CH₃)₂CO (29.840) and C₆D₆ (128.060). Multiplicities are reported as (br) broad, (s) singlet, (d) doublet, (t) triplet, (q) quartet, (quin) quintet, (sext) sextet, (hept) heptet and (m) multiplet. All J-values were rounded to the nearest 0.1 Hz. ESI high resolution mass spectra were recorded on an Agilent 6230 TOF LC/MS mass spectrometer. Infrared spectra were recorded as the neat compounds using an FT-IR Shimadzu IRSpirit spectrometer fitted with an ATR head. Melting points were recorded on a digital melting point apparatus and are uncorrected.

2. Synthetic Procedures

To a solution of geranyl acetate (70%, 102 mmol, 31.4 mL, 1 equiv.) in CH₂Cl₂ (500 mL) was added SeO₂ (4.52 g, 40.7 mmol, 0.4 equiv.) and *t*-BuO₂H (57.4 mL, 316 mmol, 5.50 M in decane, 3.1 equiv.). The mixture was stirred for 5 hours at room temperature then quenched with a saturated aqueous solution of Na₂S₂O₃ (500 mL). The organic layer was separated, and the aqueous layer was further extracted with CH₂Cl₂ (2 x 150 mL). The combined organic extracts were washed with brine (400 mL) then dried with MgSO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash chromatography on SiO₂ using hexanes/EtOAc (10:1 \rightarrow 2:1, gradient elution) to provide aldehyde 9 (7.07 g, 33%) followed by the allylic alcohol SI-1 (6.15 g, 28%) both observed as colourless oils. Data for 9 and SI-1 matched those previously reported in the literature.¹

Data for aldehyde 9:

R_f: 0.70 (2:1 hexanes/EtOAc)

¹H NMR (500 MHz, CDCl₃): δ 9.39 (s, 1H), 6.44 (t, J = 6.9 Hz, 1H), 5.38 (t, J = 7.5 Hz, 1H), 4.59 (d, J = 7.0 Hz, 2H), 2.49 (q, J = 7.5 Hz, 2H), 2.23 (t, J = 7.6 Hz, 2H), 2.05 (s, 3H), 1.75 (s, 3H), 1.74 (s, 3H) ppm.

Partial data for SI-1:

R_f: 0.45 (2:1 hexanes/EtOAc).

¹H NMR (500 MHz, CDCl₃): δ 5.47 – 5.32 (m, 2H), 4.58 (d, J = 7.1 Hz, 2H), 3.99 (s, 2H), 2.18 (q, J = 7.3 Hz, 2H), 2.11 – 2.07 (m, 2H), 2.05 (d, J = 0.9 Hz, 3H), 1.71 (s, 3H), 1.67 (s, 3H) ppm.

¹ F. M. Ippoliti, J. S. Barber, Y. Tang and N. K. Garg, J. Org. Chem., 2018, **83**, 11323.

To a solution of 5-methyl-(2H)-furanone (4.40 mL, 50.97 mmol, 1 equiv.) in chlorobenzene (175 mL) was added NBS (9.97 g, 56.07 mmol, 1.1 equiv.) and t-BuOOH (0.46 mL, 2.54 mmol, 5.5 M in decane, 0.05 equiv.). The mixture was heated to 95 °C using a metal heating mantle for 3 hours, after which time starting material consumption was observed by TLC (visualised with KMnO₄ stain). The solution was cooled to room temperature and concentrated *in vacuo*. The residue was redissolved with EtOAc (200 mL) and washed with a saturated aqueous Na₂SO₃ solution (2 x 100 mL) then brine (100 mL). The organic layer was dried with MgSO₄, filtered and concentrated *in vacuo*. The orange oil was diluted with triethyl phosphite (8.3 mL, 48.4 mmol, 1 equiv.) and heated to 110 °C for 1 hour. The solution was cooled to room temperature and directly purified by flash chromatography on SiO₂ using hexanes/EtOAc (1:1 \rightarrow 1:3, gradient elution) to provide phosphonate 10 as a pale-yellow oil (6.95 g, 61% over two steps). Data for 10 matched that previously reported in the literature.²

Partial data for phosphonate 10:

R_f: 0.30 (1:3 hexanes/EtOAc, visualise with CAM stain and gentle heating).

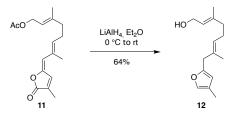
¹H NMR (500 MHz, CDCl₃): δ 7.19 (q, J = 1.9 Hz, 1H), 5.16 (dt, J = 15.2, 2.2 Hz, 1H), 4.27 – 4.21 (m, 2H), 4.21 – 4.14 (m, 2H), 1.98 (ddd, J = 4.7, 2.2, 1.6 Hz, 3H), 1.37 (t, J = 7.1 Hz, 3H), 1.31 (td, J = 7.1, 0.6 Hz, 3H) ppm.

4

² P. Yang, M. Yao, J. Li, Y. Li and A. Li, *Angew. Chem. Int. Ed.*, 2016, **55**, 6964.

To phosphonate 10 (1.86 g, 7.94 mmol, 1.1 equiv.) was added anhydrous THF (40 mL) and the solution was cooled to -78 °C. LiHMDS (8.65 mL, 1M in THF, 8.85 mmol, 1.2 equiv.) was added before the solution was warmed to room temperature and stirring continued for 15 minutes. A solution of aldehyde 9 (1.52 g, 7.21 mmol, 1 equiv.) in anhydrous THF (15 mL) was then added at this temperature. The mixture was stirred for a further 2 hours before 1M HCl (50 mL) was added. The organic layer was separated, and the aqueous layer was extracted with Et₂O (3 x 50 mL). The combined organic extracts were washed with brine (100 mL), dried with MgSO₄ then filtered and concentrated *in vacuo*. The orange oil residue was purified by flash chromatography on SiO₂ using hexanes/EtOAc (8:1 \rightarrow 4:1, gradient elution) to provide butenolide 11 (1.47 g, 70%) as a pale yellow wax.

Data for butenolide 11:


R_f: 0.50 (4:1 hexanes/EtOAc).

¹H NMR (500 MHz, CDCl₃): δ 7.44 (s, 1H), 6.22 (s, 1H), 5.71 (t, J = 7.1 Hz, 1H), 5.36 (tt, J = 5.6, 2.8 Hz, 1H), 4.59 (d, J = 7.0 Hz, 2H), 2.34 (q, J = 7.6 Hz, 2H), 2.15 (t, J = 7.6 Hz, 2H), 2.05 (s, 3H), 2.04 (s, 3H), 1.92 (s, 3H), 1.72 (s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 171.2, 170.6, 147.1, 141.2, 138.6, 135.0, 131.1, 130.3, 119.3, 119.2, 61.4, 38.8, 26.9, 21.2, 16.6, 15.6, 11.0 ppm.

HRMS (ESI): calculated for $C_{17}H_{23}O_4$ [M+H]⁺, 291.1518, found 291.1519.

IR (neat): 2928, 1751, 1650, 1002, 954 cm⁻¹.

A solution of butenolide **11** (2.88 g, 9.93 mmol, 1 equiv.) in Et₂O (150 mL) was cooled to 0 °C then LiAlH₄ (14.9 mL, 29.8 mmol, 2 M in THF, 3 equiv.) was added at a dropwise rate. The solution was allowed to warm to room temperature. After 1.5 hours the solution was cooled in an ice bath and a saturated aqueous solution of Rochelle's salt (150 mL) was added – initially at a dropwise rate. Once added, the mixture was vigorously stirred for 1.5 hours for two distinct layers to form. The aqueous layer was then extracted with Et₂O (3 x 75 mL). The combined organic extracts were washed with brine (100 mL), dried with MgSO₄ then filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on SiO₂ using hexanes/EtOAc (4:1) to provide alcohol **12** (1.59 g, 64%) as a colourless oil. ¹H NMR was consistent with that previously reported.³

Partial data for alcohol 12:

R_f: 0.25 (4:1 hexanes/EtOAc).

¹H NMR (500 MHz, CDCl₃): δ 7.09 – 7.05 (m, 1H), 5.87 (s, 1H), 5.41 (ddd, J = 8.2, 5.6, 1.3 Hz, 1H), 5.24 – 5.17 (m, 1H), 4.14 (d, J = 6.9 Hz, 2H), 3.23 (s, 2H), 2.16 (q, J = 7.3 Hz, 2H), 2.10 – 2.03 (m, 2H), 1.99 (s, 3H), 1.68 (s, 3H), 1.60 (s, 3H) ppm.

_

³ C. W. Jefford, J.-C. Rossier, J. Boukouvalas, A. W. Sledeski and P.-Z Huang, J. Nat. Prod., 2004, 67, 1383.

Procedure adapted from Berliner.⁴ To a solution of dimethoxymethane (8.1 mL, 91.15 mmol, 4 equiv.) in CH₂Cl₂ (45 mL) was added ZnBr₂ (51 mg, 0.23 mmol, 0.01 equiv.) at room temperature under N₂. Acetyl chloride (6.5 mL, 91.15 mmol, 4 equiv.) was added dropwise and the solution was stirred for 1 hour before cooling to 0 °C. Solid 2-bromo-5-methyl hydroquinone (4.6 g, 22.7 mmol, 1 equiv.) was added neat in 2 portions with stirring between each addition until dissolved. Hünig's base (16 mL, 91.15 mmol, 4 equiv.) was then added slowly, initially at a rate of 1 mL over 5 minutes [CAUTION: gas evolution] while a bleed needle was inserted through the septum. Once the addition was complete, the solution was brought to room temperature and stirred for 24 hours. H₂O (10 mL) was added to the reaction mixture followed by aqueous 1M HCl (60 mL) and stirring continued for 15 minutes. The aqueous layer was extracted with CH₂Cl₂ (3 x 50 mL) and the combined organic extracts were washed with brine (75 mL), dried with MgSO₄ then filtered and concentrated *in vacuo*. The yellow solid was recrystallised from 95% EtOH to provide aryl bromide 13 (3.96 g, 60%) as pale brown needles. ¹H NMR was consistent with that previously reported.⁵

Partial data for aryl bromide 13:

R_f: 0.45 (8:1 hexanes/EtOAc).

¹H NMR (500 MHz, CDCl₃): δ 7.25 (s, 1H), 6.96 (s, 1H), 5.16 (s, 2H), 5.12 (s, 2H), 3.53 (s, 3H), 3.48 (s, 3H), 2.19 (s, 3H) ppm.

⁴ M. Berliner and K. Belecki. J. Org. Chem. 2005, 70, 9618.

⁵ J. R. Vyvyan, C. Loitz, R. E. Looper, C. S. Mattingly, E. A. Peterson and S. T. Staben. *J. Org. Chem.* **2004**, *69*, 2461.

A solution of alcohol 12 (1.00 g, 4.27 mmol, 1 equiv.) in anhydrous THF (16 mL) was cooled to 0 °C under N₂ and protected from light. MsCl (0.50 mL, 6.41 mmol, 1.5 equiv.) was added dropwise followed by Et₃N (1.18 mL, 8.54 mmol, 2 equiv.). The solution was stirred for 45 minutes at this temperature. Meanwhile, LiBr was dried with a heat gun under high vacuum for 5 minutes. Once cooled, the solid was dissolved in anhydrous THF to provide a 1.5 M stock solution. To the reaction mixture was added freshly prepared 1.5 M LiBr solution in THF (5.7 mL, 17.09 mmol, 4 equiv.) and stirring continued for a further 45 minutes. The solution was then diluted with H₂O (10 mL) and the aqueous layer was extracted with Et₂O (3 x 30 mL). The organic extracts were washed with a saturated aqueous NaHCO₃ solution (2 x 20 mL) then brine (2 x 20 mL), dried with MgSO₄ then filtered and concentrated *in vacuo* at 25 °C while protected from light. The resulting alkyl bromide intermediate was further dried under vacuum for 15 minutes then used immediately.

Aryl bromide 13 (1.62 g, 5.55 mmol, 1.3 equiv.) was dissolved in anhydrous THF (25 mL) in an oven dried flask then cooled to -78 °C. *t*-BuLi (6.5 mL, 5.56 mmol, 1.7 M in pentane, 3.6 equiv.) was added dropwise over 5 minutes. After stirring for 15 minutes, a solution of freshly prepared alkyl bromide in anhydrous THF (6 mL) and added at this temperature. Following the addition, the reaction warmed to room temperature to stir for 3 hours before a saturated aqueous NH₄Cl solution (30 mL) was added. The aqueous layer was extracted with EtOAc (3 x 15 mL). The combined organic extracts were then washed with brine (50 mL), dried with MgSO₄ then filtered and concentrated *in vacuo*. The brown residue was purified by flash chromatography on SiO₂ using CH₂Cl₂/hexanes (2:3 \rightarrow 1:1, gradient elution) to provide hydroquinone 14 (882 mg, 48% over two steps) as a light brown oil.

Data for hydroquinone 14:

R_f: 0.40 (8:1 hexanes/EtOAc).

¹H NMR (500 MHz, CDCl₃): δ 7.06 (s, 1H), 6.87 (s, 1H), 6.86 (s, 1H), 5.86 (s, 1H), 5.34 – 5.27 (m, 1H), 5.24 (t, J = 6.8 Hz, 1H), 5.12 (s, 2H), 5.11 (s, 2H), 3.48 (s, 6H), 3.30 (d, J = 7.2 Hz, 2H), 3.22 (s, 2H), 2.21 (s, 3H), 2.17 – 2.10 (m, 2H), 2.08 – 2.02 (m, 2H), 1.98 (s, 3H), 1.71 (s, 3H), 1.59 (s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 154.6, 150.4, 149.8, 137.8, 136.0, 131.9, 129.3, 126.8, 126.0, 122.9, 120.6, 117.5, 116.5, 108.9, 95.6, 95.3, 56.1, 56.1, 39.7, 38.6, 28.6, 27.0, 16.3, 16.3, 16.0, 10.0 ppm.

HRMS (ESI): calculated for $C_{26}H_{37}O_5$ [M+H]⁺ 429.2636, found 429.2640.

IR (neat): 2922, 1505, 1147, 1007 cm⁻¹.

Note: Compound 14 was observed to be unstable overtime hence trace impurities are observed in the NMR spectra.

To a solution containing 14 (523 mg, 1.22 mmol, 1 equiv.) in EtOH (20 mL) was added pyridinium *p*-toluenesulfonate (1.22 g, 4.88 mmol, 4 equiv.) at room temperature. The solution was heated to 70 °C using a metal heating mantle, under N₂ while protected from light. After refluxing for 8 hours starting material consumption was observed by TLC and the mixture was diluted with H₂O (20 mL), then EtOAc (25 mL) and brine (2 mL). The aqueous phase was extracted with EtOAc (3 x 20 mL), then the combined organic phases were washed with brine (2 x 50 mL), dried with Na₂SO₄ then filtered and concentrated at 25 °C *in vacuo*, while protected from light. The crude was recrystallised from a Et₂O/hexanes mixture twice to afford furanoquinol (3) (297 mg, 72%) as a yellow solid. Data matched that previously reported following the isolation of 3.6

Data for furanoquinol (3):

R_f: 0.30 (4:1 hexanes/EtOAc).

¹H NMR (600 MHz, C₆D₆): δ 6.97 (t, J = 1.2 Hz, 1H), 6.32 (s, 1H), 6.28 (s, 1H), 5.83 (s, 1H), 5.37 (tq, J = 7.3, 1.4 Hz, 1H), 5.26 (tq, J = 7.0, 1.4 Hz, 1H), 4.10 (s, 1H), 3.76 (s, 1H), 3.28 (d, J = 7.2 Hz, 2H), 3.24 (s, 2H), 2.10 (q, J = 7.2 Hz, 2H), 2.04 (s, 3H), 2.03 – 2.01 (m, 2H), 1.81 (d, J = 1.2 Hz, 3H), 1.58 (s, 3H), 1.55 (s, 3H) ppm.

¹³C NMR (150 MHz, C₆D₆): δ 154.9, 148.2, 148.1, 138.2, 136.9, 132.4, 126.7, 125.6, 123.0, 122.5, 120.8, 118.2, 116.4, 109.3, 39.8, 38.9, 29.2, 26.8, 16.1, 16.0, 15.6, 9.9 ppm.

¹H NMR (600 MHz, CDCl₃): δ 7.07 (s, 1H), 6.59 (s, 1H), 6.54 (s, 1H), 5.87 (s, 1H), 5.29 (t, J = 7.1 Hz, 1H), 5.20 (t, J = 7.0 Hz, 1H), 4.51 (br s, 2H), 3.27 (d, J = 7.6 Hz, 2H), 3.23 (s, 2H), 2.17 (s, 3H), 2.16 (m, 1H), 2.12 – 2.09 (m, 2H), 1.98 (s, 3H), 1.74 (s, 3H), 1.60 (s, 3H) ppm.

¹³C NMR (150 MHz, CDCl₃): δ 154.5, 147.9, 147.6, 138.1, 137.9, 132.4, 126.3, 125.4, 122.6, 122.0, 120.7, 118.2, 116.3, 109.0, 39.5, 38.6, 29.3, 26.5, 16.3, 16.1, 15.6, 10.0 ppm.

HRMS (ESI): calculated $C_{22}H_{29}O_3$ [M+H]⁺ 341.2111, found 341.2112.

IR (neat): 3336, 2925, 2362, 1418, 1185 cm⁻¹.

Note: Furanoquinol (3) was observed to be unstable on SiO₂, after prolonged periods under aerobic conditions or in some organic solvents (e.g. CDCl₃), hence trace impurities are present in the synthetic sample by NMR.

⁶ J. C. Coll, N. Liyanage, G. J. Stokie, I. Van Altena, J. N. E. Nemorin, S. Sternhell and R. Kazlauskas. *Aust. J. Chem.* **1978**, *31*, 157.

Furanoquinol (3) (99 mg, 0.29 mmol, 1 equiv.) was dissolved in MeOH (2.5 mL) and left open to air at room temperature. Ag₂O (134.6 mg, 0.58 mmol, 2 equiv.) was added. After 10 minutes, TLC showed complete starting material consumption. The reaction mixture was diluted with H₂O (2 mL) and extracted with EtOAc (4 x 2 mL). The combined organic extracts were washed with brine (10 mL), dried with Na₂SO₄ then filtered and concentrated *in vacuo* to afford the furanoquinone (4) (85 mg, 86%) as a pale brown solid. Data matched that previously reported following the isolation of 4.6

Data for furanoquinone (4):

R_f: 0.60 (4:1 hexanes/EtOAc).

¹H NMR (600 MHz, C₆D₆): δ 6.99 (q, J = 1.2 Hz, 1H), 6.35 (t, J = 1.7 Hz, 1H), 6.10 (q, J = 1.7 Hz, 1H), 5.86 (s, 1H), 5.25 (ddq, J = 7.1, 5.6, 1.4 Hz, 1H), 5.05 (tq, J = 7.4, 1.3 Hz, 1H), 3.29 (s, 2H), 3.00 (d, J = 7.3, 2H), 2.07 (q, J = 7.3 Hz, 2H), 1.96 (t, J = 7.4 Hz, 2H), 1.83 (d, J = 1.2 Hz, 3H), 1.58 – 1.57 (m, 3H), 1.57 (br s, 3H), 1.42 (s, 3H) ppm. ¹³C NMR (150 MHz, C₆D₆): δ 187.8, 187.4, 154.8, 148.1, 145. 2, 139.2, 138.2, 133.4, 132.5, 132.3, 126.6, 120.7, 119.1, 109.3, 39.7, 38.9, 27.5, 26.8, 16.1, 15.9, 15.1, 9.9 ppm.

¹H NMR (500 MHz, CDCl₃): δ 7.06 (s, 1H), 6.59 – 6.58 (m, 1H), 6.49 (t, J = 1.8 Hz, 1H), 5.87 (s, 1H), 5.20 (ddt, J = 7.0, 5.6, 1.4 Hz, 1H), 5.15 (tq, J = 7.3, 1.4 Hz, 1H), 3.24 (s, 2H), 3.11 (d, J = 7.2 Hz, 2H), 2.18 – 2.12 (m, 2H), 2.11 – 2.06 (m, 2H), 2.03 (d, J = 1.7 Hz, 3H), 1.98 (d, J = 1.2 Hz, 3H), 1.62 (s, 3H), 1.60 (s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 188.5, 188.0, 154.5, 148.6, 145.8, 139.8, 137.8, 133.6, 132.5, 132.4, 126.3, 120.6, 118.2, 108.9, 39.7, 38.6, 27.2, 26.6, 16.3, 16.1, 15.6, 10.0 ppm.

HRMS (ESI): calculated for $C_{22}H_{27}O_3$ [M+H]⁺ 339.1955, found 339.1952.

IR (neat): 2922, 2364, 1654, 1612 cm⁻¹.

Note: Furanoquinone (4) was observed to be unstable over time or in some organic solvents (e.g. CDCl₃), hence trace impurities are observed in the NMR spectra.

Furanoquinone (4) (10 mg, 0.027 mmol) was stirred in pyridine (1 mL) at 60 °C using a metal heating mantle for 1.5 hours. The reaction was then cooled and the solvent was removed in vacuo. The crude residue was purified by flash chromatography on SiO₂ using hexanes/EtOAc (9:1 \rightarrow 4:1, gradient elution) to afford capillobenzopyranol (2) (7 mg, 72%) as a colourless oil. Data matched that previously reported following the isolation of 2.7

Data for capillobenzopyranol (2):

12

R_f: 0.50 (4:1 hexanes/EtOAc).

¹H NMR (500 MHz, CDCl₃): δ 7.06 (s, 1H), 6.56 (s, 1H), 6.41 (s, 1H), 6.25 (d, J = 9.8 Hz, 1H), 5.86 (s, 1H), 5.53 (d, J = 9.9 Hz, 1H), 5.21 (t, J = 7.2 Hz, 1H), 4.35 (s, 1H), 3.21 (s, 2H), 2.21 - 2.12 (m, 2H), 2.18 (s, 3H), 1.98 (s, 3H), 1.74 - 1.66 (m, 2H), 1.58(s, 3H), 1.36 (s, 3H) ppm.

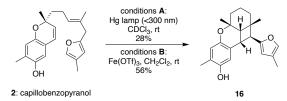
¹³C NMR (125 MHz, CDCl₃) δ: 154.5, 147.5, 146.9, 137.8, 132.2, 129.9, 126.5, 124.6, 122.6, 120.6, 119.7, 118.3, 112.6, 108.9, 78.1, 40.9, 38.5, 26.2, 22.9, 16.0, 16.0, 10.0 ppm.

HRMS (ESI) m/z: Calculated for $C_{22}H_{27}O_3$ [M+H]⁺ 339.1955, found 339.1944.

IR (neat) v_{max}: 2924, 1771, 1456, 1197 cm⁻¹.

Condition screen for desired cascade reaction via tautomerisation of 4:

⁷ S.-Y. Cheng, K.-J. Huang, S.-K. Wang, Z.-H. Wen, P.-W. Chen and C.-Y. Duh, *J. Nat. Prod.*, 2010, **73**, 771.


60 °C

1.5 h

pyridine

decomposition

3 (72%)

Procedure A: A solution of capillobenzopyranol (2) (100 mg, 0.30 mmol) in CDCl₃ (4 mL) was degassed with N₂ in a quartz cuvette for 10 minutes. The cuvette was then capped and sealed with parafilm. The reaction vial was then placed 5 centimetres from a broad spectrum Hg lamp (<300 nm) and irradiated for 60 minutes when ¹H NMR showed complete starting material consumption. The crude was concentrated *in vacuo* onto SiO₂ then purified by flash chromatography on SiO₂ using a hexanes/EtOAc (9:1 \rightarrow 4:1, gradient elution) to provide tetracycle **16** (28 mg, 28%) as a pale yellow oil.

Procedure B: To a solution of chromene **2** (41 mg, 0.122 mmol) in dry CH₂Cl₂ (8 mL) at -40 °C was added Fe(OTf)₃ (18.5 mg, 0.037 mmol, 0.3 equiv.). The solution was allowed to slowly warm to room temperature. After 6 hours, brine (10 mL) was then added and the aqueous phase was extracted with CH₂Cl₂ (3 x 3 mL). The combined organic extracts were washed with brine (20 mL) then dried with MgSO₄, filtered and concentrated *in vacuo*. The crude was purified by flash chromatography on SiO₂ using hexanes/EtOAc (9:1) to provide tetracycle **16** (23 mg, 56%) as a yellow oil. Recrystallisation of **16** from Et₂O provided crystals for X-ray crystallography.

Data for tetracycle 16:

R_f: 0.45 (4:1 hexanes/EtOAc).

¹H NMR (500 MHz, CDCl₃): δ 7.05 (s, 1H), 6.66 (s, 1H), 6.54 (s, 1H), 5.91 (s, 1H), 4.26 (br s, 1H), 3.59 (t, J = 9.1 Hz, 1H), 3.40 (d, J = 9.7 Hz, 1H), 2.17 (s, 3H), 2.04 – 2.01 (m, 2H), 1.97 (s, 3H), 1.88 – 1.86 (m, 1H), 1.65 (d, J = 15.1, 1H), 1.60 – 1.57 (m, 1H), 1.35 – 1.29 (m, 1H), 1.15 – 1.13 (m, 1H), 1.02 (s, 3H), 1.01 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 155.4, 148.3, 147.9, 138.1, 127.3, 122.7, 120.9, 120.3,

113.9, 108.9, 75.6, 47.5, 44.4, 38.7, 37.1, 34.9, 34.0, 28.9, 28.9, 26.2, 17.3, 15.8, 10.0 ppm.

HRMS (ESI): calculated for $C_{22}H_{27}O_3$ [M+H]⁺ 339.1955, found 339.1944.

IR (neat): 3358, 2923, 1457, 1173, 1126, 951, 908 cm⁻¹.

To a solution of alcohol 12 (1.01 g, 4.29 mmol, 1 equiv.) in CHCl₃ (50 mL) was added Na₂CO₃ (2.30 g, 21.45 mmol, 5 equiv.) and MnO₂ (1.86 g, 21.45 mmol, 5 equiv.). The mixture was heated to 60 °C using a metal heating mantle. After 24 hours another portion of MnO₂ was added (930 mg, 2.5 equiv.) and the mixture was stirred for a further 72 hours. The solution was cooled then filtered through celite which was washed with CH₂Cl₂ (250 mL) before the filtrate was concentrated *in vacuo*. The crude material was purified by flash chromatography on SiO₂ using hexanes/EtOAc (6:1 \rightarrow 2:1, gradient elution) to afford the aldehyde 17 (680 mg, 69%) as a pale yellow oil and further elution provided the recovered starting material 12 (160 mg, 16%) as a colourless oil.

Data for aldehyde 17:

R_f: 0.45 (4:1 hexanes/EtOAc).

¹H NMR (500 MHz, CDCl₃): δ 9.99 (d, J = 8.0 Hz, 1H), 7.06 (t, J = 1.2 Hz, 1H), 5.91 – 5.83 (m, 2H), 5.20 – 5.17 (m, 1H), 3.23 (s, 2H), 2.28 – 2.22 (m, 4H), 2.17 (d, J = 1.3 Hz, 3H), 1.98 (d, J = 1.2 Hz, 3H), 1.61 (s, 3H) ppm.

¹³C NMR (150 MHz, CDCl₃): δ 191.4, 163.7, 154.0, 137.9, 133.5, 127.6, 124.9, 120.7, 109.1, 40.5, 38.5, 25.9, 17.7, 16.1, 9.9 ppm.

HRMS (ESI): calculated for $C_{15}H_{21}O_2$ [M+H]⁺ 259.1329, found 259.1333.

IR (neat): 2926, 1671, 1116, 949, 805, 598 cm⁻¹.

To a solution of 2-bromo, 5-methyl hydroquinone (2.04 g, 10.05 mmol) in CH₂Cl₂ (80 mL) was added TBSCl (3.58 g, 23.6 mmol, 2.4 equiv.) and imidazole (1.64 g, 24.08 mmol, 2.4 equiv.) at room temperature. The solution was stirred for 6 hours then diluted with H₂O (100 mL) and extracted into CH₂Cl₂ (3 x 50 mL). The combined organic extracts were washed with brine (150 mL), dried with MgSO₄ then filtered and concentrated *in vacuo*. The crude was purified by flash chromatography on SiO₂ using hexanes/EtOAc (40:1) to afford silyl ether **18** (3.64 g, 86%) as white crystals.

Data for 18:

R_f: 0.80 (20:1 hexanes /EtOAc).

¹H NMR (500 MHz, CDCl₃): δ 6.90 (s, 1H), 6.65 (s, 1H), 2.11 (m, 3H), 1.03 (s, 9H), 1.00 (s, 9H), 0.21 (s, 6H), 0.19 (s, 6H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 148.4, 146.6, 129.1, 122.9, 122.2, 111.2, 26.0, 25.9, 18.5, 18.4, 17.0, -4.1, -4.2 ppm.

HRMS (ESI): Ions corresponding to [M+H/Na/K]⁺ or resulting from decomposition were not found despite substantial effort.

IR (neat): 2928, 1470, 1251, 1206, 915, 837, 777 cm⁻¹.

MP: 95.7 °C.

Aryl bromide **18** (773 mg, 1.79 mmol, 1.5 equiv.) was dissolved in dry Et₂O (15 mL) then cooled to –78 °C. *t*-BuLi (1.7 M in pentane, 2.10 mL, 3.58 mmol, 3 equiv.) was added dropwise. After stirring for 20 minutes, a solution of aldehyde **17** (275 mg, 1.16 mmol, 1 equiv.) in Et₂O (3 mL) was added before the solution was allowed to warm to room temperature. After stirring for 90 minutes, H₂O (20 mL) was added and the aqueous layer was extracted with Et₂O (3 x 10 mL). The combined organic extracts were washed with brine (30 mL), dried with MgSO₄, then filtered and concentrated *in vacuo*. The crude material was used immediately.

For analytical purposes, a portion of the crude reaction mixture was purified by flash chromatography on phosphate-buffered SiO_2 using hexanes/EtOAc (40:1 \rightarrow 20:1, gradient elution) to provide an analytical sample of alcohol 19, which was found to be unstable.

Data for alcohol 19:

R_f: 0.20 (40:1 hexanes/EtOAc).

¹H NMR (600 MHz, (CD₃)₂CO): δ 7.12 (s, 1H), 6.94 (s, 1H), 6.64 (d, J = 0.8 Hz, 1H), 5.91 (s, 1H), 5.66 (dd, J = 7.9, 4.4 Hz, 1H), 5.45 (dq, J = 7.9, 1.3 Hz, 1H), 5.28 – 5.22 (m, 1H), 3.73 (dd, J = 4.4, 1.2 Hz, 1H), 3.19 (s, 2H), 2.14 (m, 5H), 2.05 – 2.00 (m, 2H), 1.94 (d, J = 1.3 Hz, 3H), 1.74 (d, J = 1.4 Hz, 3H), 1.57 (d, J = 1.4 Hz, 3H), 1.03 (s, 9H), 1.02 (s, 9H), 0.27 (s, 3H), 0.24 (s, 3H), 0.21 (s, 3H), 0.21 (s, 3H) ppm.

¹³C NMR (150 MHz, (CD₃)₂CO): δ 155.1, 148.7, 147.0, 138.6, 137.1, 134.8, 132.7, 129.9, 128.1, 127.0, 121.6, 121.2, 118.5, 109.6, 65.1, 40.1, 38.9, 27.3, 26.3, 26.2, 18.9, 18.8, 17.2, 16.9, 16.0, 9.8, -3.9, -3.9, -4.0, -4.0 ppm.

HRMS (ESI): calculated for C₃₄H₅₆O₄Si₂Na [M+Na]⁺ 607.3609, found 607.3604.

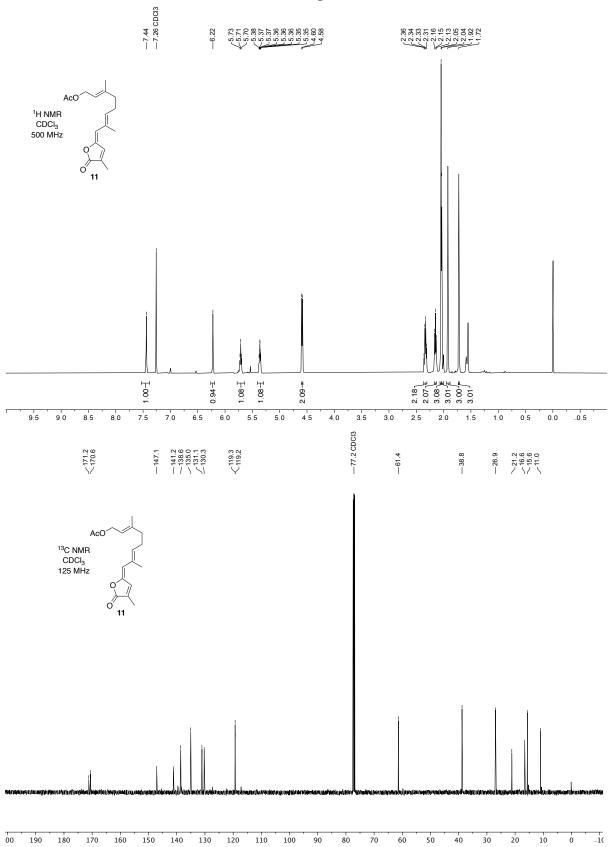
IR (neat): 3349, 2973, 1406, 1162, 1130, 949, 839, 818 cm⁻¹.

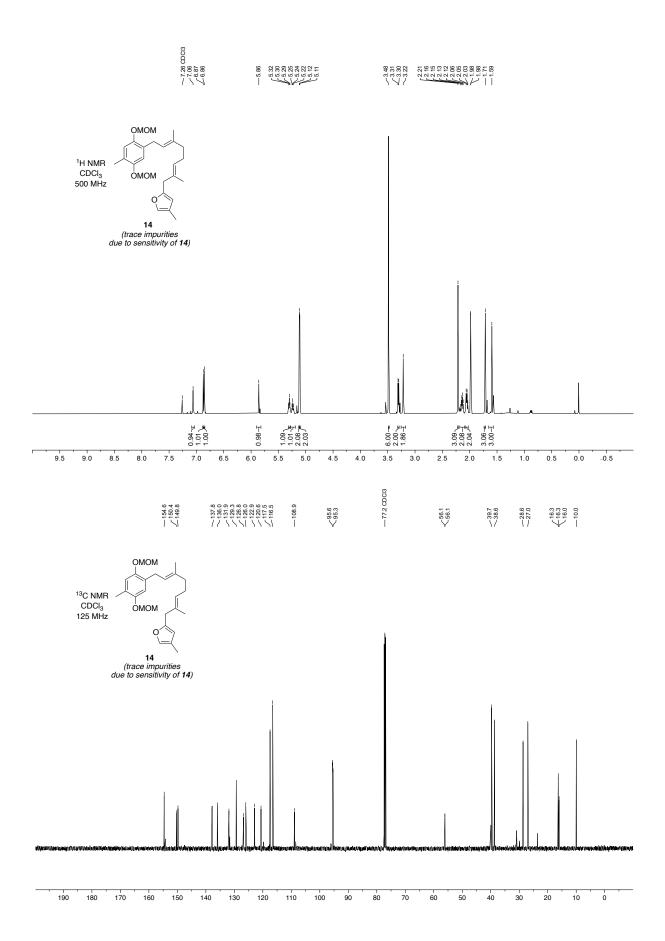
The dried reaction crude containing 19 (assumed 1.16 mmol) was diluted with EtOH (20 mL) and H₂O (100 mL) before K₂CO₃ (336 mg, 2.43 mmol, 2 equiv.) was added. The solution was heated to 75 °C using a metal heating mantle. After 4 hours, the crude mixture was cooled and filtered through celite which was washed with EtOAc (60 mL) and the filtrate was concentrated *in vacuo*. The crude was purified by flash chromatography on SiO₂ using hexanes/EtOAc (40:1 \rightarrow 4:1, gradient elution) to provide 20 (162 mg, 31% over two steps) as a pale yellow oil.

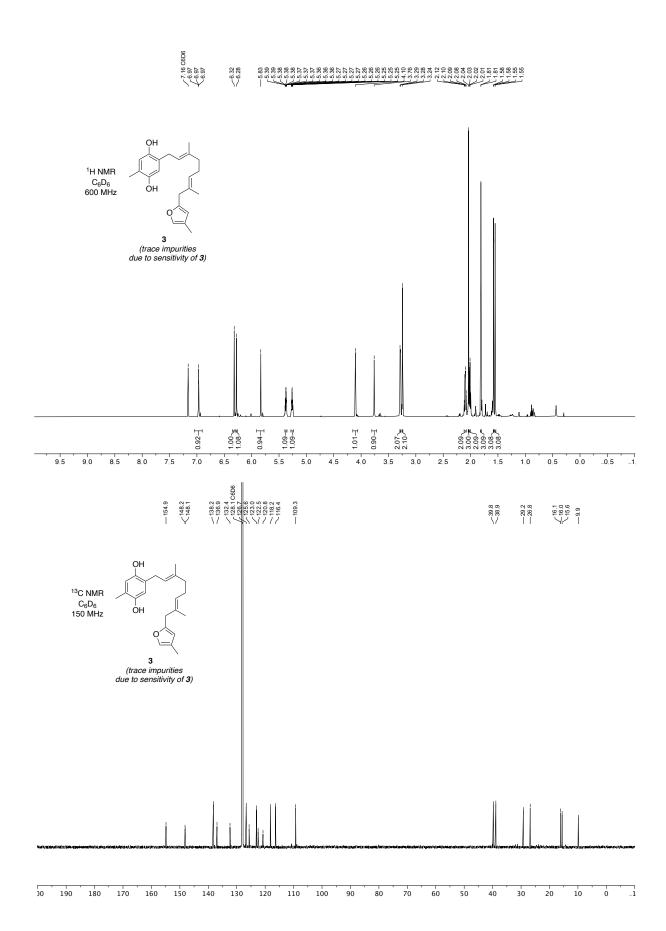
Data for 20:

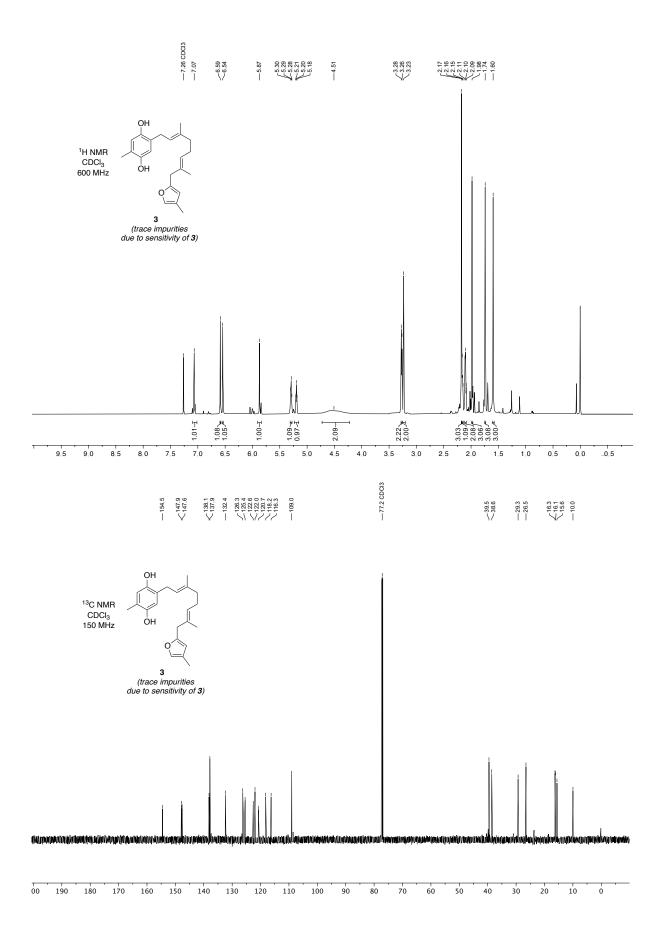
R_f: 0.70 (40:1 hexanes/EtOAc).

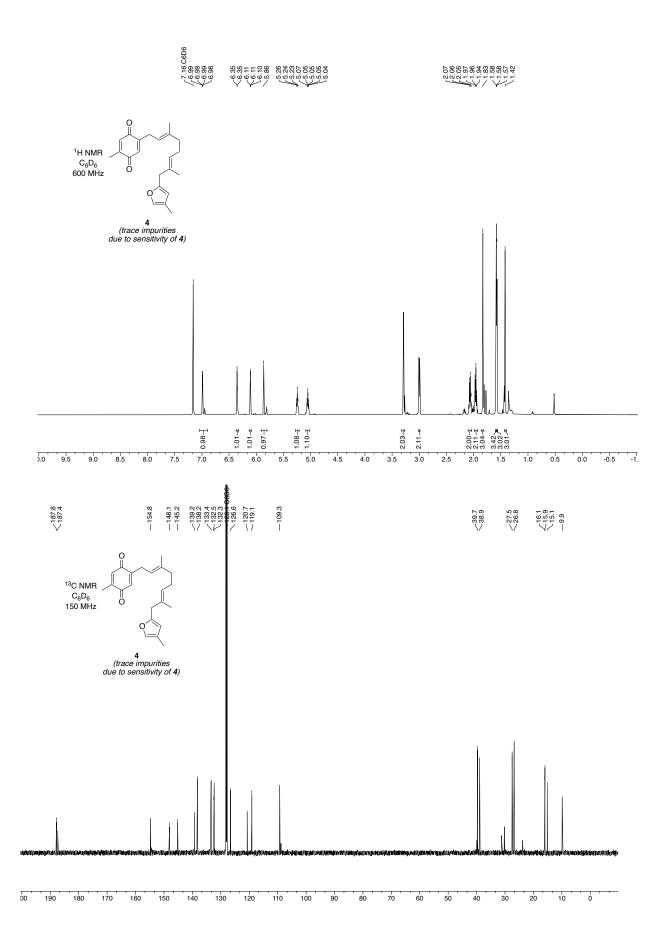
¹H NMR (500 MHz, CDCl₃): δ 7.06 (s, 1H), 6.56 (s, 1H), 6.38 (s, 1H), 6.25 (d, J = 9.8 Hz, 1H), 5.86 (s, 1H), 5.50 (d, J = 9.8 Hz, 1H), 5.21 (t, J = 7.2 Hz, 1H), 3.21 (s, 2H), 2.15 (m, 2H), 2.13 (s, 3H), 1.98 (s, 3H), 1.76 – 1.70 (m, 1H), 1.68 – 1.64 (m, 1H), 1.58 (s, 3H), 1.36 (s, 3H), 1.01 (s, 9H), 0.18 (s, 6H) ppm.

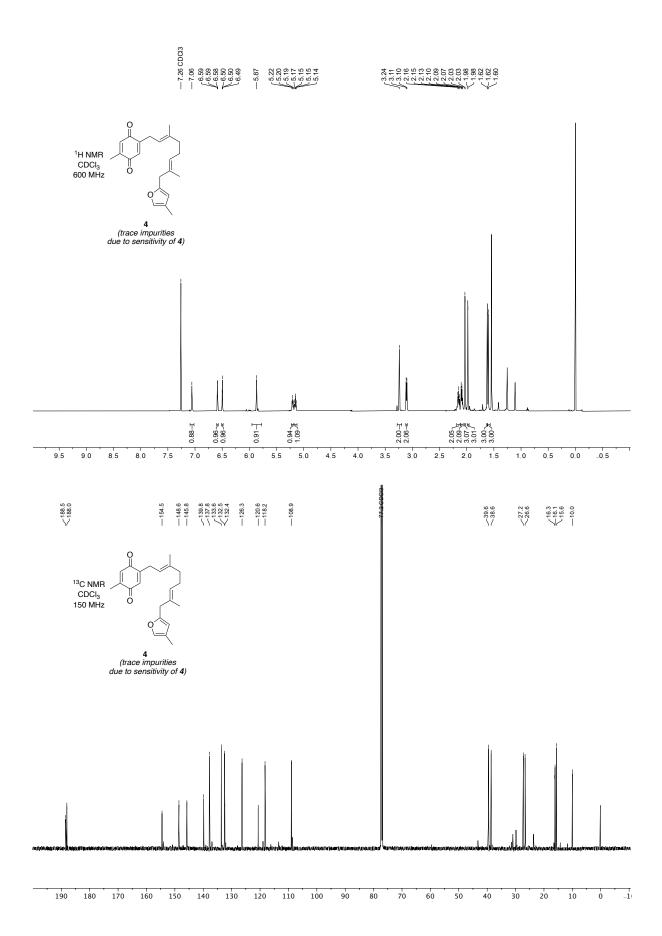

¹³C NMR (125 MHz, CDCl₃): δ 154.5, 147.4, 147.0, 137.8, 132.2, 129.7, 129.3, 129.3, 126.7, 126.6, 123.0, 119.2, 118.3, 116.1, 109.0, 78.1, 40.9, 38.6, 26.3, 26.0, 22.9, 18.4, 17.1, 16.0, 10.0, -4.1 ppm.

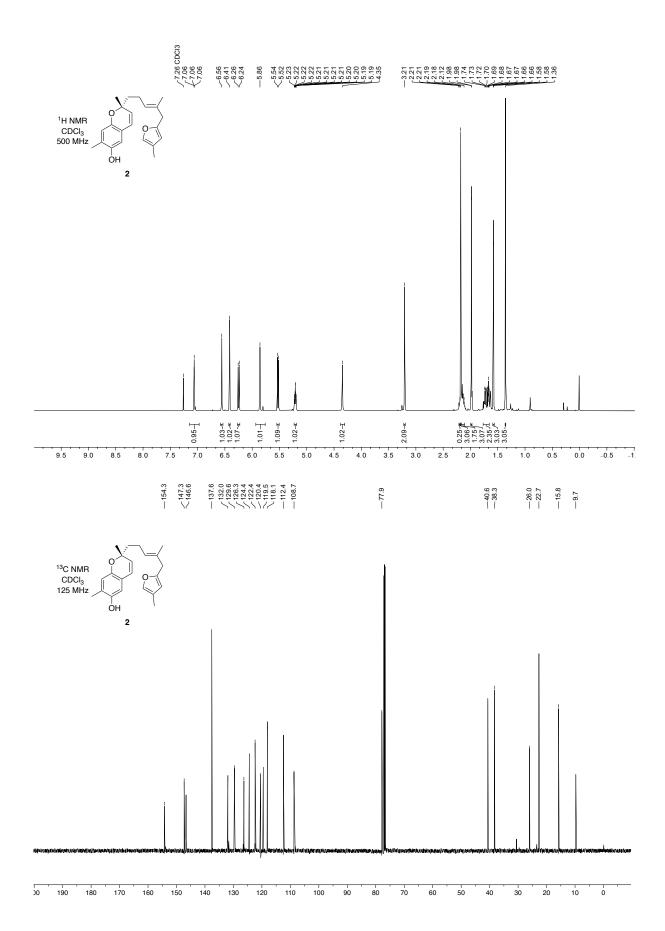

HRMS (ESI): calculated for $C_{28}H_{41}O_3Si$ [M+H]⁺ 453.2810, found 453.2819.

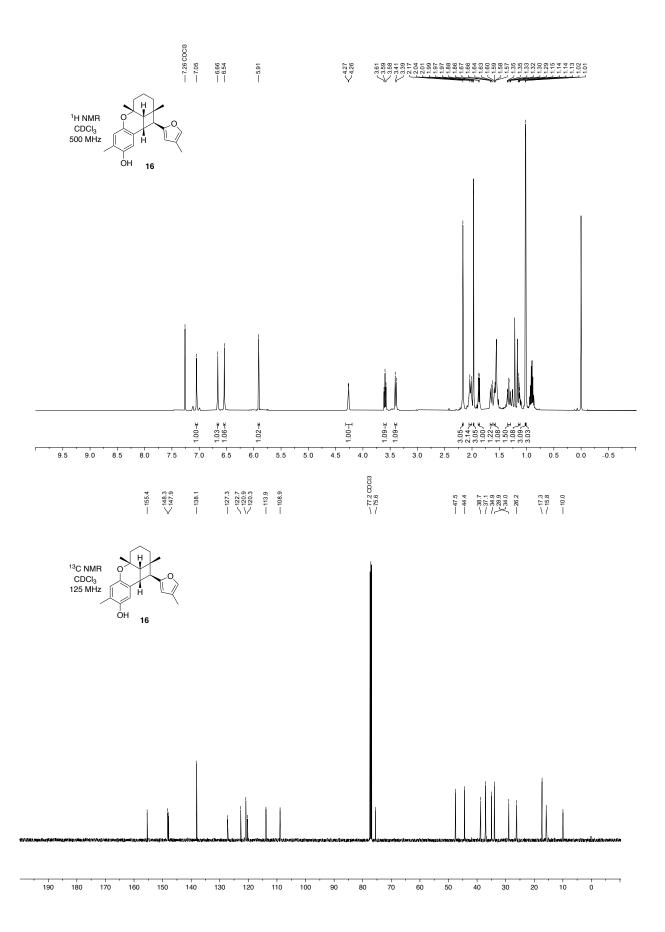

IR (neat): 2928, 1496, 1174, 934, 837, 777 cm⁻¹.

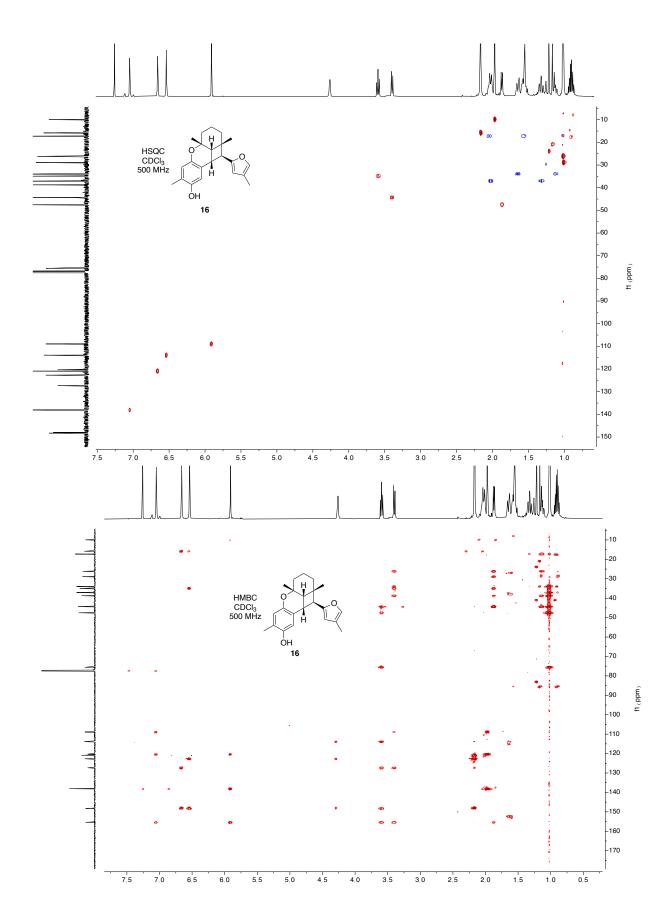

To a solution of **20** (59 mg, 0.13 mmol, 1 equiv.) in THF (5 mL) was added TBAF (1M in THF, 0.156 mL, 0.16 mmol, 1.2 equiv.) at 0 °C. The solution was stirred for 15 minutes before the solution was diluted with H₂O (4 mL), and the aqueous layer was extracted with EtOAc (3 x 6 mL). The combined organic extracts were washed with brine (15 mL), dried with MgSO₄, filtered then concentrated *in vacuo*. The crude was purified by flash chromatography on SiO₂ using hexanes/EtOAc (6:1) to provide the capillobenzopyranol (**2**) (28.6 mg, 65%) as a pale yellow oil. Data was consistent with that previously reported.

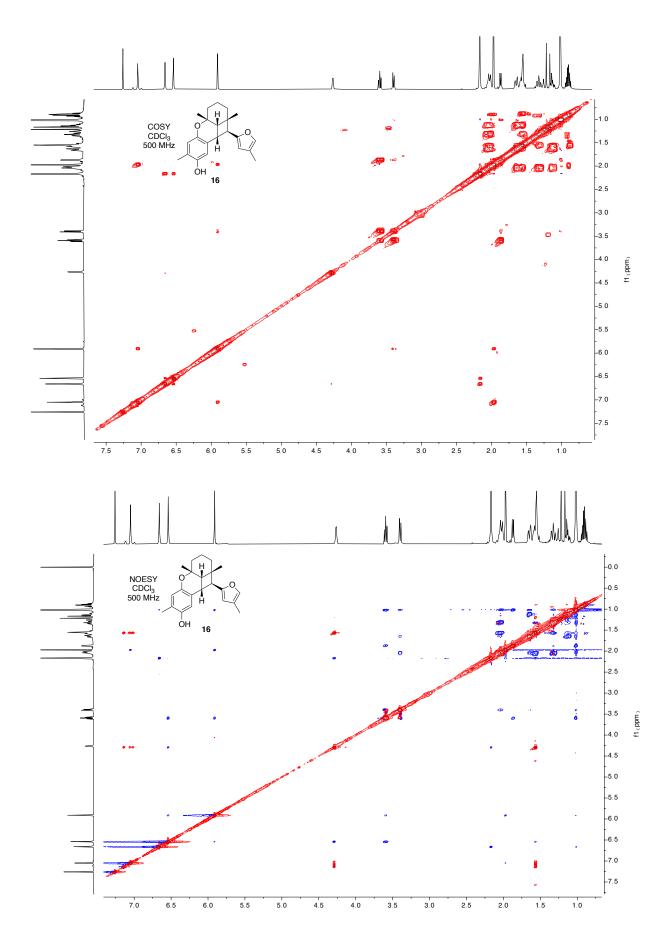


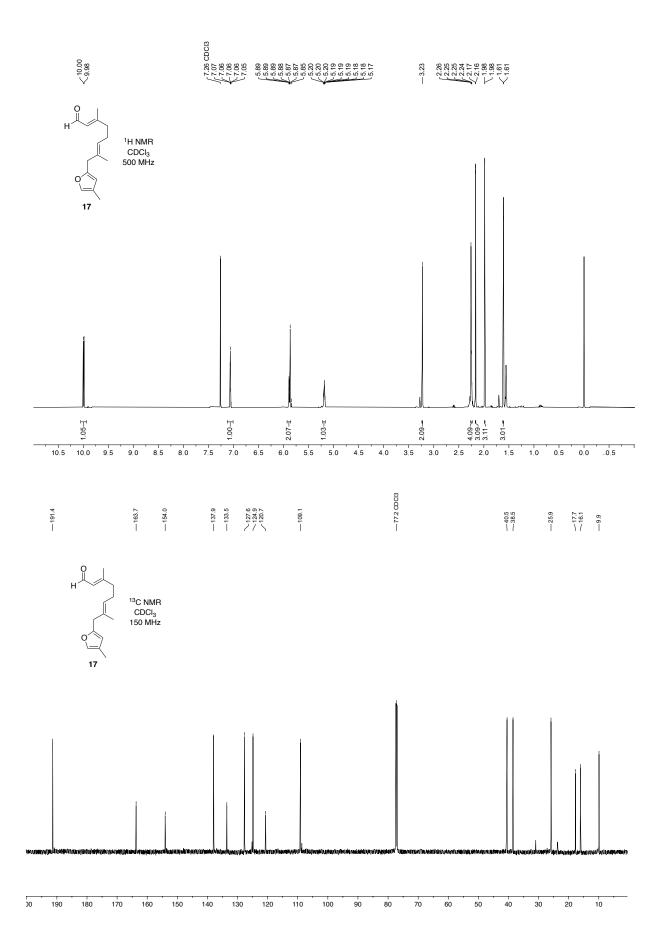


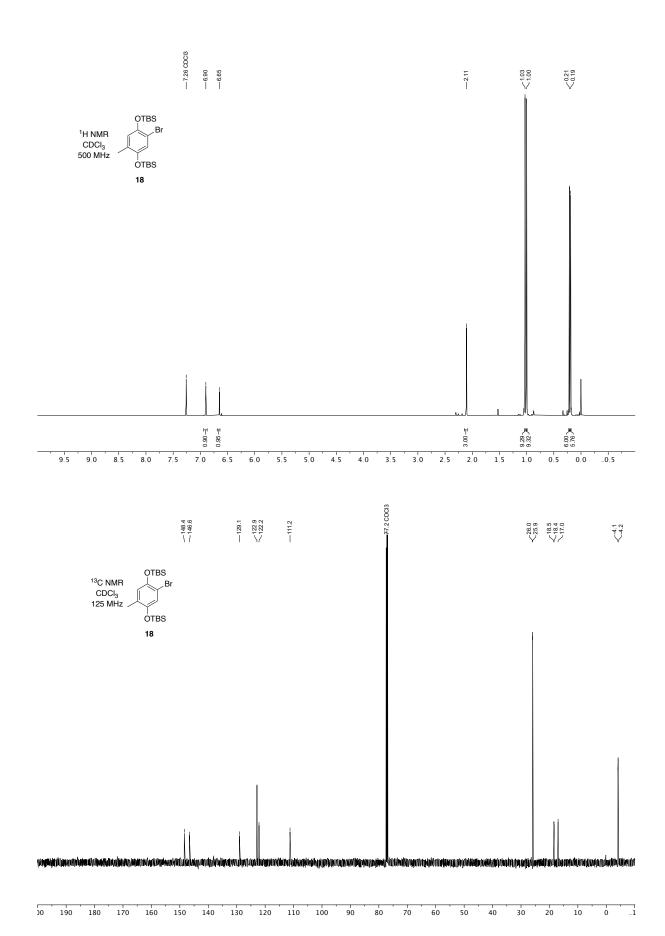


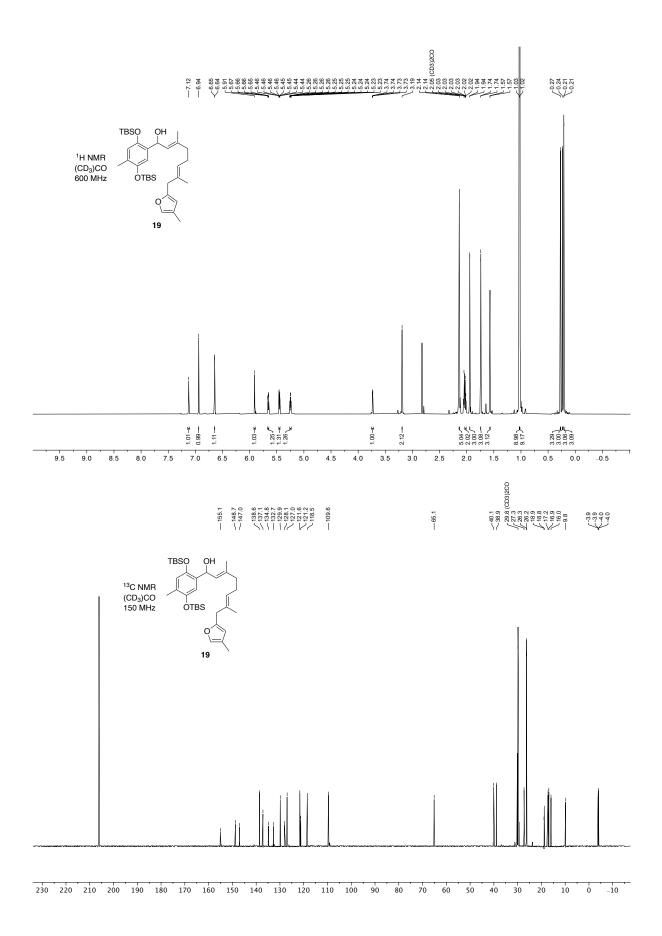


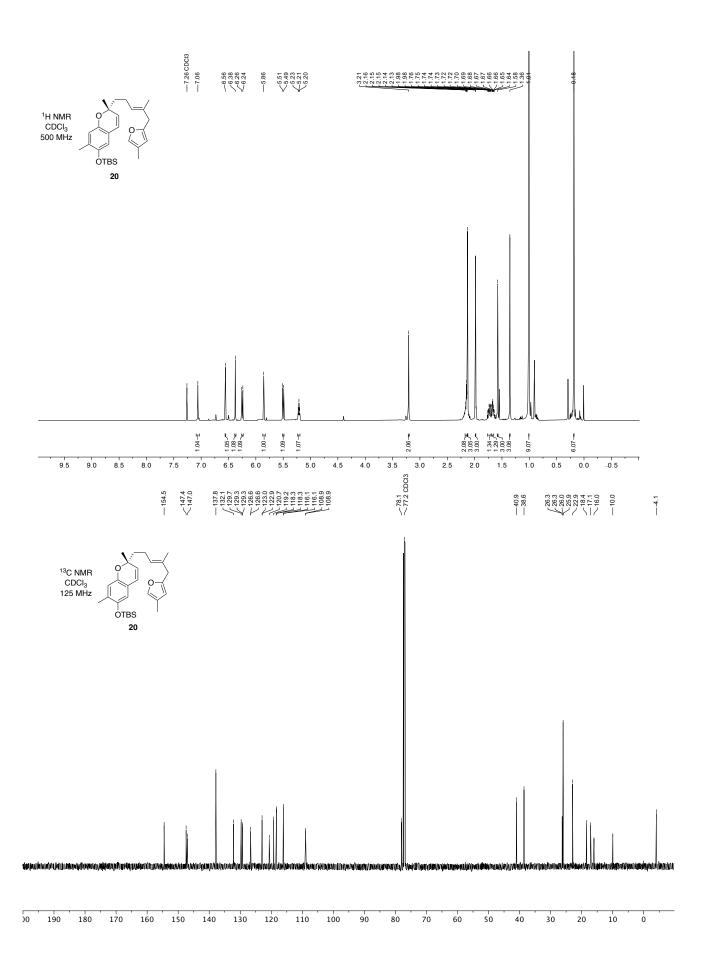












4. Tables of ¹H and ¹³C NMR Data

Assignment	1 H NMR ($C_{6}D_{6}$) δ_{H} ppm, mult., (J in Hz), int		13 C NMR (C ₆ D ₆): $\delta_{\rm C}$ ppm	
Assignment	Synthetic 3 ⁸	Natural 3 ⁹	Synthetic 3 ⁸	Natural 3 ⁹
1			148.1	147.4
2			125.6	125.5
3	6.32, s, 1H	6.329	116.4	116.2
4			148.2	147.4
5			123.0	122.6
5 CH ₃	2.04, s, 3H	2.04	15.6	15.4
6	6.28, s, 1H	6.298	118.2	118.0
1'	3.28, d $(J=7.2)$ 1H	3.27	29.2	28.8
2'	5.37, tq ($J = 7.3 & 1.4$) 1H	5.36	126.7	126.2
3'			132.4	132.1
3' CH ₃	1.55, s, 3H	1.59	16.1	16.9
4'	2.03 – 2.01, m, 2H	2.1	39.8	39.6
5'	2.10, q (J = 7.2) 2H	2.1	26.8	26.5
6'	5.26, tq ($J = 7.0 & 1.4$) 1H	5.25	122.5	121.9
7'			138.2	137.6
7' CH ₃	1.58, s, 3H	1.65	16.0	16.0
8'	3.24, s, 2H	3.23	38.9	38.4
2''			154.9	154.3
3"	5.83, s, 1H	5.85	109.3	108.8
4''			120.8	120.5
4" CH ₃	1.81, d $(J = 1.2)$ 3H	1.82	9.9	9.7
5"	6.97, t, $(J = 1.2)$ 1H	6.96	136.9	137.6

 ⁸ ¹H and ¹³C NMR spectroscopic data obtained at 600 MHz and 150 MHz, respectively.
⁹ ¹H and ¹³C NMR spectroscopic data obtained at 100 MHz and 20 MHz, respectively.
Isolation: J. C. Coll, N. Liyanage, G. J. Stokie, I. Van Altena, J. N. E. Nemorin, S. Sternhell and R. Kazlauskas, Aust. J. Chem. 1978, 31, 157.

	าดดนเ่	ทดเ

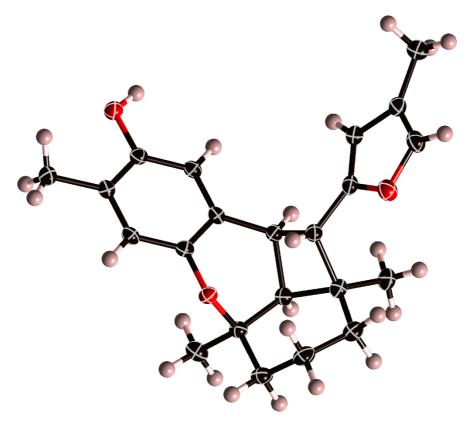
Aggignment	1 H NMR (CDCl ₃): δ_{H} ppm, mult., (J in Hz), int		¹³ C NMR (CDCl ₃): δ _C ppm	
Assignment	Synthetic 3 ¹⁰	Natural 3 ¹¹	Synthetic 3 ⁹	Natural 3 ¹¹
1			147.9	147.4
2			125.4	125.5
3	6.54, s, 1H	6.65	116.3	116.2
4			147.6	147.4
5			122.6	122.6
5 CH ₃	2.17, s, 3H	2.18	15.6	15.4
6	6.59, s, 1H	6.65	118.2	118.0
1'	3.27, d ($J = 7.6$) 2H	3.35	29.3	28.8
2'	5.29, t ($J = 7.1$) 1H	5.3	126.3	126.2
3'			132.4	132.1
3' CH ₃	1.74, s, 3H	1.75	16.3	16.9
4'	2.12 – 2.09, m, 2H	2.15	39.5	39.6
5'	2.16, m, 1H	2.15	26.5	26.5
6'	5.20, t ($J = 7.0$) 1H	5.3	122.0	121.9
7'			138.1	137.6
7' CH ₃	1.60, s, 3H	1.65	16.1	16.0
8'	3.23, s, 2H	3.3	38.6	38.4
2"			154.5	154.3
3"	5.87, s, 1H	5.95	109.0	108.8
4''			120.7	120.5
4" CH ₃	1.98, s, 3H	2.0	10.0	9.7
5"	7.07, s, 1H	7.1	137.9	137.6

 ¹⁰ ¹H and ¹³C NMR spectroscopic data obtained at 600 MHz and 150 MHz respectively.
¹¹ ¹H and ¹³C NMR spectroscopic data obtained at 100 MHz and 20 MHz respectively.
Isolation: J. C. Coll, N. Liyanage, G. J. Stokie, I. Van Altena, J. N. E. Nemorin, S. Sternhell and R. Kazlauskas, Aust. J. Chem. 1978, 31, 157.

4: furanoquinone

Assignment	¹ H NMR (C ₆ D ₆): δ _H ppm, mult. (J in Hz) int		13 C NMR (C_6D_6): δ_C ppm	
Assignment	Synthetic 4 ¹²	Natural 4 ¹³	Synthetic 4 ¹²	Natural 4 ¹³
1			187.4	187.3 or 187.7
2			148.1	148.1
3	6.35, t (<i>J</i> = 1.7) 1H	6.36	132.3	132.3
4			187.8	187.3 or 187.7
5			145.2	145.3
5 CH ₃	1.58-1.57, m, 3H	1.70	15.1	15.2
6	6.10, q (<i>J</i> = 1.7) 1H	6.23	133.4	133.4
1'	3.00, d (J = 7.3) 2H	3.01	27.5	27.5
2'	5.05, tq ($J = 7.4 & 1.3$) 1H	5.08	126.6	126.6
3'			132.5	132.4
3' CH ₃	1.42, d ($J = 1.3$) 3H	1.62	15.9	15.93 or 15.98
4'	1.96, t $(J = 7.4)$ 2H	1.9 - 2.2	39.7	39.7
5'	2.07, q (J = 7.3) 2H	1.9 - 2.2	26.8	26.7
6'	5.25, ddq ($J = 7.1$, 5.6 & 1.4) 1H	5.22	119.1	119.1
7'			139.2	139.1
7' CH ₃	1.57, br s, 3H	1.62	16.1	15.93 or 15.98
8'	3.29, s, 2H	3.25	38.9	38.8
2"			154.8	154.7
3"	5.86, s, 1H	5.83	109.3	109.2
4"			120.7	120.6
4" CH ₃	1.83, d ($J = 1.2$) 3H	1.86	9.9	9.9
5"	6.99, q (<i>J</i> = 1.2) 1H	6.99	138.2	138.1

 ¹² ¹H and ¹³C NMR spectroscopic data obtained at 600 MHz and 150 MHz respectively.
¹³ ¹H and ¹³C NMR spectroscopic data obtained at 100 MHz and 20 MHz respectively.
Isolation: J. C. Coll, N. Liyanage, G. J. Stokie, I. Van Altena, J. N. E. Nemorin, S. Sternhell and R. Kazlauskas, Aust. J. Chem. 1978, 31, 157.


	¹ H NMR (CDCl ₃): δ _H ppm mult. (J in Hz) int		¹³ C NMR (CDCl ₃): δ _C ppm
Assignment	Synthetic 4 ¹⁴	Natural 4 ¹⁵	Synthetic 4 ^{Error!} Bookmark not defined.
1			188.0
2			148.6
3	6.49, t (<i>J</i> = 1.8) 1H	6.45	132.5
4			188.5
5			145.8
5 CH ₃	2.03, d ($J = 1.7$) 3H	1.97 or 2.03	15.6
6	6.59, m, 1H	6.50	133.6
1'	3.11, d $(J = 7.2)$ 2H	3.11	27.2
2'	5.15, tq (<i>J</i> = 7.3 & 1.4) 1H	5.17	118.2
3'			132.4
3' CH ₃	1.60 or 1.62, s, 3H	1.62	16.3 or 16.1
4'	2.11 – 2.06, m, 2H	2.1	39.7
5'	2.18 – 2.12, m, 2H	2.1	26.6
6'	5.20, ddt (<i>J</i> = 7.0, 5.6 & 1.4) 1H	5.17	126.3
7'			139.8
7' CH ₃	1.60 or 1.62, s, 3H	1.60	16.3 or 16.1
8'	3.24, s, 2H	3.24	38.6
2"			154.5
3"	5.87, s, 1H	5.87	108.9
4"			120.6
4" CH ₃	1.98, d ($J = 1.2$) 3H	2.03 or 1.97	10.0
5"	7.06, s, 1H	7.08	137.8

 ¹⁴ ¹H and ¹³C NMR spectroscopic data obtained at 600 MHz and 150 MHz respectively.
¹⁵ ¹H spectroscopic data obtained at 100 MHz.
Isolation: J. C. Coll, N. Liyanage, G. J. Stokie, I. Van Altena, J. N. E. Nemorin, S. Sternhell and R. Kazlauskas, Aust. J. Chem. 1978, 31, 157.

5. Crystallography Data

Single crystals suitable for X-ray analysis of (1S,1aS,1a1S,4aR,9bR)-1a,4a,7-trimethyl-1-(4methylfuran-2-vl)-1,1a,1a1,2,3,4,4a,9b-octahydrocyclobuta[kl]xanthen-8-ol (15 mg, 0.014 μmol) were recrystalized in Et₂O (5 mL) in a 15 mL vial and left at room temperature overnight to afford pale brown block crystals (7 mg, 50 %). A single crystal of (1S,1aS,1a1S,4aR,9bR)-1a,4a,7-trimethyl-1-(4-methylfuran-2-yl)-1,1a,1a1,2,3,4,4a,9b-octahydrocyclobuta[kl]xanthen-8-ol was mounted in paratone-N oil on a MiteGen crystal mount and X-ray diffraction was collected at 150(2) K on an Oxford X-calibur single crystal diffractometer using Mo Ka radiation. The data set was corrected for absorption and the structures solved by direct methods using SHELXS-97¹ and refined by full-matrix least squares on F2 by SHELXL-2015,² interfaced through the programs X-Seed³ and Olex2.⁴ In general, all nonhydrogen atoms were refined anisotropically and hydrogen atoms were included as invariants at geometrically estimated positions. Full data for the structure determination have been deposited with the Cambridge Crystallographic Data Centre as CCDC 2101324. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Street, Cambridge CB2 1EZ, U.K. (fax, +44-1223-336-033; e-mail, deposit@ccdc.cam.ac.uk). The table below provides the crystal data and structure refinement details for (1S,1aS,1a1S,4aR,9bR)-1a,4a,7-trimethyl-1-(4-methylfuran-2-yl)-1,1a,1a1,2,3,4,4a,9b-octahydrocyclobuta[kl]xanthen-8-ol.

Crystal data and structure refinement for 16.			
Identification code	P21c		
Empirical formula	C ₂₂ H ₂₆ O ₃		
Formula weight	338.43		
Temperature/K	150.00(14)		
Crystal system	monoclinic		
Space group	P2 ₁ /c		
a/Å	11.6017(8)		
b/Å	13.7639(6)		
c/Å	12.7600(8)		
α/°	90		
β/°	114.935(8)		
γ/°	90		
Volume/Å ³	1847.6(2)		
Z	4		
ρ_{calcg}/cm^3	1.217		
μ/mm ⁻¹	0.079		
F(000)	728.0		
Crystal size/mm ³	$0.3 \times 0.26 \times 0.051$		
Radiation	$MoK\alpha (\lambda = 0.71073)$		
2Θ range for data collection/°	6.888 to 58.742		
Index ranges	$-15 \le h \le 15, -18 \le k \le 18, -17 \le l \le 16$		
Reflections collected	80523		
Independent reflections	$4806 [R_{int} = 0.0846, R_{sigma} = 0.0427]$		
Data/restraints/parameters	4806/0/231		
Goodness-of-fit on F ²	1.054		
Final R indexes [I>=2σ (I)]	$R_1 = 0.0518, wR_2 = 0.1408$		
Final R indexes [all data]	$R_1 = 0.0816, wR_2 = 0.1586$		
Largest diff. peak/hole / e Å-3	0.33/-0.20		

A perspective view of one selected molecule of the asymmetric unit of **16**, with all non-hydrogen atoms represented by ellipsoids at the 50% probability level (Carbon, black; Hydrogen, white; Oxygen, red).

Crystallography References:

- ¹ G. M. Sheldrick, Acta Crystallogr. Sect. A **1990**, 46, 467–473.
- ² G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112–122.
- ³ L. J. Barbour, *J. Supramol. Chem.* **2001**, *1*, 189–191.
- ⁴ L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howardand and H. Puschmann, *Acta Crystallogr. Sect. A* **2015**, *71*, 59–75.