Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Copper-Catalyzed *N*-Arylation of Isatins Employing Aryl(TMP)-Iodonium Salts

Ankita Rakshit, a Raktim Abha Saikia, b Snata Deka and Ashim Jyoti Thakur*a

^aDepartment of Chemical Sciences, Tezpur University, Napaam-784028, India ^bNational Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), 67-103 Donat Street, 400293 Cluj-Napoca, Romania

*E-mail: <u>ashim@tezu.ernet.in</u>

Table of Contents:

	Page Nos.
1. General experimental information	S1
2. Selected structures of indoline-2,3-diones (1a-i)	S2
3. Synthesis of diaryliodonium salts	S3-S5
4. Optimization for <i>N</i> -arylation of indoline-2,3-diones	S5-S8
5. Overall attempted substrates	S8-S9
6. Crystallographic data of 3j , 4b and 4d	S10-S13
7. General procedure for <i>N</i> -arylation of indoline-2,3-diones	S13-S14
8. Synthesis and characterization of <i>N</i> -aryl products	S14-S25
9. Gram-scale synthesis of 1-phenylindoline-2,3-dione (3a)	S25
10. Methods for post-modifications	S25-S26
11. Characterization data of products obtained from synthetic modifications	S26-S27
12. References	S27-S28
13. Copies of ¹ H, ¹³ C NMR and ¹⁹ F spectra of synthesised compounds	S29-S96

1. GENERAL EXPERIMENTAL INFORMATION

All reactions were performed in oven-dried Schlenk tubes or round-bottom flasks under ambient conditions, unless otherwise stated. Dichloromethane (DCM), 1,2-dichloroethane (DCE), and acetonitrile (ACN) were dried by refluxing over CaH₂ under nitrogen conditions and stored over 4Å molecular sieves. Toluene and 1,4-dioxane were dried utilising conventional drying procedures using sodium/benzophenone as an indicator and stored over 4Å molecular sieves. All chemicals were purchased from commercial suppliers and used as received unless otherwise stated. NaOH, Cs₂CO₃, K₃PO₄, and ^tBuOK were stored in a desiccator. The diaryliodonium salts were synthesized according to procedures described below. m-CPBA (Aldrich, >70% active oxidant) was dried at room temperature under high vacuum for 1 hour and titrated by iodometric titration¹ before use in the synthesis of diaryliodonium salts. Thin Layer Chromatography (TLC) analyses were performed on precoated Merck silica gel 60F₂₅₄ plates using UV (254 nm) light and/or with KMnO₄-stain. Column chromatography was performed on 100-200 mesh silica gel using the gradient system, a freshly distilled ethyl acetate-hexane mixture. All NMR data were recorded in a 400 MHz instrument at 298 K using CDCl₃ and DMSO-d₆ as solvents. Chemical shifts are given in ppm relative to the residual solvent peak (¹H NMR: CDCl₃ δ 7.26 and sometimes δ 1.56 (CDCl₃water) and in DMSO- d_6 δ 2.50 and δ 3.3 (DMSO-water); ¹³C NMR: CDCl₃ δ 77.16, DMSO $d_6 \delta 39.52$) with multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sex = sextet, sep = septet, m = multiplet, app = apparent) coupling constants (in Hz) and integration. Chemical shifts for ¹⁹F-NMR are given in ppm relative to mono-fluorobenzene (δ = -113.15 ppm) used as internal standard. The raw NMR data were processed by MestReNova software.

2. SELECTED STRUCTURES OF INDOLINE-2,3-DIONES

The following isatins (**1a-i**) were chosen for the synthesis of the desired *N*-arylated products. Isatin derivatives were purchased commercially and were used without any further purification.

3. SYNTHESIS OF DIARYLIODONIUM SALTS

3.1 Diaryliodonium salts synthesized in this work

Most of the diaryliodonium salts used in our work were synthesized following reported methods. One-pot synthesis of aryl(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate salts were accomplished according to the reported procedure as mentioned in Stuart's work (Method II). It is to be noted that these reactions were run without precautions to avoid air or moisture.

Olofsson's work:

Table S1. Synthesis of various diaryliodonium salts according to above mentioned procedures:

Stuart's work:

Table S2. Synthesis of various diaryliodonium salts according to above mentioned procedures:

Method III³

2u-TMP(OTs)

Method IV⁴

Method V

All diaryliodonium salts were prepared according to above mentioned procedures. The synthesis of iodonium salt, Ph-I-An(TFA) could not be achieved using reported procedure (method II). However, with slight moderation in the Stuart's method, it was be easily achieved

with 45% yield. Characterization data of these compounds were matched with those previously reported in the literature.

4. OPTIMIZATION OF REACTION CONDITIONS

4.1. Investigation for metal-free reaction conditions

The arylation was tried with indoline-2,3-dione **1a** (0.2 mmol) and phenyl(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate salt **2a-TMP(TFA)** (0.22 mmol) in 1,2-dicholoroethane at room temperature, delivering no significant yield of *N*-arylated product **3a** (Table S2). In order to maintain the metal-free prospect, various organic and inorganic bases with varying time and temperature were optimized (Entries 1-18, Table S3).

Table S3. Optimization under metal-free conditions^a

Entw	Base	Solvent	Temp.	Time	\mathbf{Yield}^b
Entry	(equiv.)	Solvent	(°C)	(h)	(%)
$1^{c,d}$	NaH (1.5)	DMF	RT	12	trace
$2^{c,d}$	NaH (1.5)	DMA	RT	12	trace
$3^{c,d}$	NaH (1.5)	THF	RT	12	trace
4	Cs_2CO_3 (1.2)	DMF	RT	10	trace
5	Cs ₂ CO ₃ (1.2)	DMF	70	12	trace
6	$Cs_2CO_3(2)$	CH ₃ CN	75	12	NR
7	$Cs_2CO_3(2)$	Toluene	100	12	NR
8	$Cs_2CO_3(1.5)$	DMF	RT	12	trace
9	$Cs_2CO_3(1.5)$	DMF	70	12	trace
10	$Cs_2CO_3(1.2)$	DMSO	RT	12	NR
11	$Cs_2CO_3(1.5)$	Toluene	100	12	NR
12	Na_2CO_3 (1.5)	Toluene	100	12	NR
13	<i>t</i> -BuOK (1.1)	DCE	0-RT	12	NR
14	t-BuOK (1.5)	Toluene	100	12	trace

15	DBU (1.2)	CH ₃ CN	80	12	NR
16	K_3PO_4 (1.5)	Toluene	100	12	18
17	$K_3PO_4(1.5)$	DMF	100	12	trace
18	$K_3PO_4(1.5)$	1,4-Dioxane	100	12	NR

^aReaction conditions: **1a** (0.2 mmol), **2a-TMP(TFA)** (1.1 equiv.), and solvent (2 ml) were used. ^bIsolated yield. ^cThe reaction was performed under a nitrogen atmosphere, ^ddry solvent was used, RT, i.e., room temperature, and NR, i.e., no reaction.

4.2. Investigation for Cu-catalyzed route

From Table S3, it was evident that metal-free conditions didn't show satisfactory results; therefore, it was further carried out under metal-catalyzed conditions, *namely*, using a copper catalyst. The *N*-arylation reaction proceeded with moderate to good yields (Table S4, entries 1-29). Variation of reaction parameters gave our optimized product (Table S4, entry 18).

Table S4. Optimization under copper-catalyzed condition^a

Entur	Entwr Catalyst	lyst Base (equiv.) Solvent	Temp	Time	Yield ^b	
Entry	Catalyst	Base (equiv.)	Solvent	(°C)	(h)	(%)
1	CuI	TEA (1.2)	DCE	0-RT	12	85
2	CuI	TEA (1.2)	DCE	60	12	76
3	CuI	TEA (1.2)	DCE	100	12	75
4	CuI	TEA (1.5)	DCE	0-RT	24	82
5	$Cu(OTf)_2$	TEA (1.2)	DCE	RT	24	44
6	$Cu(OTf)_2$	TEA (1.5)	DCE	RT	12	45
7	$Cu(OAc)_2$	TEA (1.2)	DCE	RT	12	trace
8	CuBr	TEA (1.2)	DCE	RT	12	83
9	$Cu(NO_3)_2$ · $3H_2O$	TEA (1.5)	DCE	RT	12	trace
10	CuI	TMEDA (1.2)	DCE	70	12	NR
11	CuI	DBU (1.2)	DCE	70	12	72
12	CuI	Na ₂ CO ₃ (1.2)	DCE	70	12	72

13	CuI	K ₃ PO ₄ (1.5)	DCE	RT	12	66
14	CuI	K_3PO_4 (1.5)	DCE	70	12	70
15	CuI	K ₃ PO ₄ (1.5)	Toluene	70	12	72
16	CuI	TEA (1.5)	Toluene	RT	12	60
17	CuI	TEA (1.5)	Toluene	45	12	74
18	CuI	TEA (1.5)	Toluene	60	24	81
19	CuI	DIPEA (1.5)	Toluene	60	24	80
20	CuI	TEA (1.5)	Toluene	70	12	88
21	CuI	TEA (1.5)	Toluene	120	12	82
23	CuI	TEA (1.5)	CH ₃ CN	80	12	66
24	CuI	TEA (1.5)	1,4-Dioxane	70	12	trace
25	CuI	$Cs_2CO_3(1.5)$	DMF	120	24	trace
26	CuI	$Cs_2CO_3(1.5)$	DMSO	120	24	trace
27	CuCl	TEA (1.5)	Toluene	70	12	76
28	CuBr	TEA (1.5)	Toluene	70	12	81
29	Cu(OTf) ₂	TEA (1.5)	Toluene	70	12	62

^aReaction conditions: **1a** (0.5 mmol), **2a-TMP(TFA)** (1.1 equiv.), Cu salt (10 mol%), base (1.5 equiv.), and solvent (3 ml) were used. ^bIsolated yield.

4.3. Effect of the nature of auxiliary group and counter-anions

Table S5. Variation of auxiliary group and counter-anions^a

E-starr A.	A	Counter	\mathbf{Yield}^{b}	
Entry	Entry Ar	Aux	anion (X)	(%)
1	Ph	TMP	TFA	88
2	Ph	TMP	OTs	74
3	Ph	TMP	OTf	76
4	Ph	Mes	OTf	78

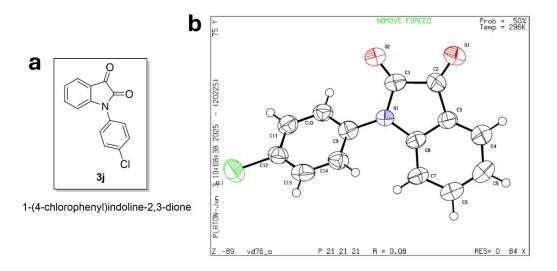
5	Ph	Mes	OTs	72
6	Ph	An	OTf	3a : 66 and 3m : 24
7	Ph	An	TFA	3a : 45 and 3m : 42
8	TMP	DMIX	TFA	3v : 45

^aReaction conditions: **1a** (0.2 mmol), **2** (1.1 equiv.), CuI (10 mol%), TEA (1.5 equiv.), and solvent (3 ml) were used. ^bIsolated yield. Ph, i.e., Phenyl. TMP, i.e., 2,4,6-trimethoxyphenyl. Mes i.e, Mesityl. An, i.e, Anisyl. OTs, i.e, Tosylate. OTf, i.e., Triflate. TFA, i.e., trifluoroacetate anion.

5. OVERALL ATTEMPTED SUBSTRATES

Scheme S6. Substrate scope of isatin derivatives^a

^aReaction conditions: **1b-i** (0.2 mmol), **2a-TMP(TFA)** (1.1 equiv.), and solvent (3 ml) were used. ^bIsolated yield. TMP, i.e., 2,4,6-trimethoxyphenyl.


Scheme S7. Scope of the iodonium salts^a

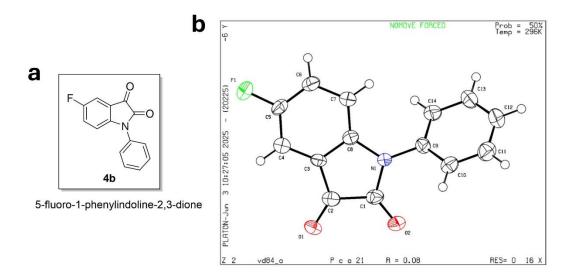
^aReaction conditions: **1a** (0.2 mmol), **2** (1.1 equiv.), and solvent (3 ml) were used. ^bIsolated yield. ^cUsing Mes/OTf salt. TMP, i.e., 2,4,6-trimethoxyphenyl. Mes, i.e., Mesityl.

6. CRYSTALLOGRAPHIC DATA

6.1. Crystal structure of 3j (1-(4-chlorophenyl)indoline-2,3-dione):

Good quality crystals were obtained by slow evaporation of solvent from a solution of the compound **3j** in chloroform.

Figure 1. a) Chemical structure of **3j** and b) ORTEP diagram of the compound **3j** with 50% probability ellipsoid.


Obtained data for 3j:

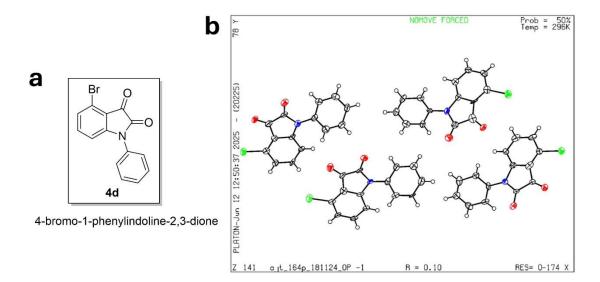
Empirical formula	C ₁₄ H ₈ ClNO ₂
CCDC No.	2456163
Formula weight	257.66
Temperature/K	100
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	3.9146(19)
b/Å	13.289(7)
c/Å	21.939(11)
α/°	90
β/°	90
γ/°	90
$Volume/\mathring{A}^3$	1141.3(10)
Z	4

ρ_{calc}/cm^3	1.500
μ /mm ⁻¹	0.325
F(000)	528.0
Reflections (R) collected	2903
Unique observed	1092
R1	0.0816
wR^2	0.2374

6.2. Crystal structure of 4b [5-fluoro-1-phenylindoline-2,3-dione]:

Good quality crystals were obtained by slow evaporation of solvent from a solution of the compound **4b** in chloroform.

Figure 1. a) Chemical structure of **4b** and b) ORTEP diagram of the compound **4b** with 50% probability ellipsoid.


Obtained data for 4b:

Empirical formula	$C_{14}H_8FNO_2$
CCDC No.	2456164
Formula weight	241.21
Temperature/K	100
Crystal system	orthorhombic
Space group	Pca2 ₁

a/Å	21.146(14)
b/Å	6.933(5)
c/Å	7.634(5)
α/°	90
β/°	90
γ/°	90
$Volume/\mathring{A}^3$	1119.1(13)
Z	4
ρ_{calc}/cm^3	1.432
μ /mm ⁻¹	0.108
F(000)	496.0
Reflections (R) collected	2865
Unique observed	1380
R1	0.0837
wR^2	0.2420

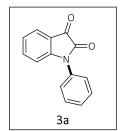
6.1. Crystal structure of 4d (4-bromo-1-phenylindoline-2,3-dione):

Good quality crystals were obtained by slow evaporation of solvent from a solution of the compound **4d** in chloroform.

Figure 1. a) Chemical structure of **4d**. b) ORTEP diagram of the compound **4d** with 50% probability ellipsoid.

Obtained data for 4d:

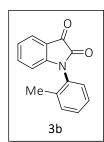
Englished for morely	C II D.MO
Empirical formula	$C_{14}H_8BrNO_2$
CCDC No.	2463849
Formula weight	302.12
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	3.938(6)
b/Å	13.90(2)
c/Å	43.76(6)
α/°	98.65(5)
β/°	88.67(5)
γ/°	89.92(5)
$Volume/\mathring{A}^3$	2367(6)
Z	8
ρ_{calc}/cm^3	1.696
μ /mm ⁻¹	3.465
F(000)	1200.0
Reflections (R) collected	12756
Unique observed	4339
R1	0.0983
wR^2	0.3318


7. GENERAL PROCEDURE FOR N-ARYLATION OF INDOLINE-2,3-DIONES

General procedure (GP). To an oven-dried Schlenk tube, indoline-2,3-diones 1 (0.5 mmol), aryl(TMP)iodonium salt (0.55 mmol, 1.1 equiv.), CuI (0.025 mmol, 0.1 equiv.), and Et₃N (TEA, 0.75 mmol, 1.5 equiv.) were added. After adding dry toluene (3 mL, 0.1 M), the tube was sealed and stirred at room temperature to 70 °C. The reaction mixture was stirred for 10-12 h at 70 °C. The reaction mixture was then passed through Celite and washed with minimal EtOAc (15-20 mL). The organic mixture was then mixed with water, followed by a brine wash. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure.

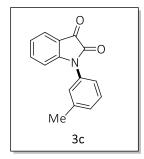
Then, the crude product was purified using flash column chromatography (using 60-120 mesh silica with an eluent of 10:90 EtOAc/hexane) to obtain the desired product.

8. SYNTHESIS AND CHARACTERIZATION OF N-ARYL PRODUCTS


1-phenylindoline-2,3-dione (3a)⁵

Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2a-TMP(TFA)** (267 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **3a** (98 mg, 0.43 mmol, 88%) as an orange solid. R_f 0.2 (AcOEt /Hexane: 20/80).

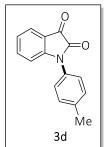
¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (d, J = 8 Hz, 1H), 7.50-7.55 (m, 3H), 7.39-7.46 (m, 3H), 7.16 (t, J = 8 Hz, 1H), 6.88 (d, J = 8 Hz, 1H). ¹³**C**{¹**H**} **NMR** (100 MHz, CDCl₃) δ 183.0, 157.4, 151.7, 138.5, 132.9, 130.0, 128.9, 126.1, 125.7, 124.4, 117.5, 111.4. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₄H₉NO₂Na 246.0525; found 246.0520.


1-(o-tolyl)indoline-2,3-dione (3b)

Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2b-TMP(TFA)** (275 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95 \rightarrow 10/90$) to afford **3b** (74 mg, 0.31 mmol, 62%) as an orange solid. R_f 0.6 (AcOEt/Hexane: 20/80).

¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8 Hz, 1H), 7.50 (t, J = 8 Hz, 1H), 7.31-7.41 (m, 3H), 7.22-7.25 (m, 1H), 7.14 (t, J = 8 Hz, 1H), 6.53 (d, J = 8 Hz, 1H), 2.21 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 182.3, 156.3, 152.6, 138.9, 136.2, 131.8, 131.5, 129.7, 127.5, 127.4, 125.4, 124.0, 117.4, 111.2, 17.1. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₅H₁₁NO₂Na is 260.0682; found 260.0686.

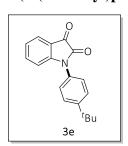
1-(m-tolyl)indoline-2,3-dione $(3c)^6$



Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2c-TMP(TFA)** (275 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95 \rightarrow 10/90$) to afford **3c** (100 mg, 0.42 mmol, 84%) as an orange solid. R_f 0.6 (AcOEt /Hexane: 20/80).

¹**H NMR** (400 MHz, CDCl₃) δ 7.68 (d, J = 8 Hz, 1H), 7.54 (t, J = 8 Hz, 1H), 7.44 (t, J = 8 Hz, 1H), 7.26-7.28 (m, 1H), 7.19-7.22 (m, 2H), 7.15-7.18 (m, 1H), 6.88 (d, J = 8.0 Hz, 1H), 2.43 (s, 3H). ¹³**C**{¹**H**} **NMR** (100 MHz, CDCl₃) δ 182.9, 157.2, 152.2, 140.1, 138.2, 133.4, 129.6, 129.6, 126.5, 125.4, 124.1, 122.9, 117.3, 111.2, 21.3.

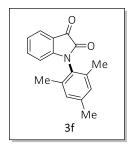
HRMS (ESI) m/z: $[M+Na]^+$ calculated for $C_{15}H_{11}NO_2Na$ is 260.0682; found 260.0682.


1-(p-tolyl)indoline-2,3-dione $(3d)^7$

Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2d-TMP(TFA)** (275 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95 \rightarrow 10/90$) to afford **3d** (109 mg, 0.45 mmol, 92%) as an orange solid. R_f 0.4 (AcOEt/Hexane: 20/80).

¹**H NMR** (400 MHz, CDCl₃) δ 7.68 (d, J = 8 Hz, 1H), 7.53 (t, J = 8 Hz, 1H), 7.34-7.37 (m, 2H), 7.26-7.30 (m, 2H), 7.16 (t, J = 8 Hz, 1H), 6.87 (d, J = 8 Hz, 1H), 2.43 (s, 3H). ¹³C{¹**H**} NMR (100 MHz, CDCl₃) δ 182.6, 157.7, 152.1, 139.2, 136.9, 130.8, 129.9, 126.1, 125.7, 124.4, 116.7, 111.5, 21.5. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₅H₁₁NO₂Na is 260.0682; found 260.0684.

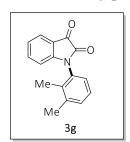
1-(4-(*tert*-butyl)phenyl)indoline-2,3-dione (3e)



Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2e-TMP(TFA)** (298 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **3e** (123 mg, 0.44 mmol, 88%) as an orange solid. R_f 0.6 (AcOEt/Hexane: 20/80).

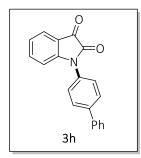
¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (d, J = 8 Hz, 1H), 7.51-7.55 (m, 3H) 7.32 (d, J = 8 Hz, 2H), 7.14 (t, J = 8 Hz, 1H), 6.90 (d, J = 8 Hz, 1H), 1.35 (s, 9H). ¹³C{¹**H**} **NMR** (100 MHz,

CDCl₃) δ 182.6, 156.4, 152.2, 152.1, 137.6, 130.3, 127.2, 125.7, 124.4, 116.4, 109.6, 34.3, 31.4. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₈H₁₇NO₂Na is 302.1151; found 302.1150.


1-mesitylindoline-2,3-dione (3f)⁸

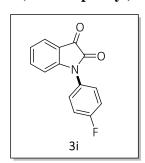
Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2f-TMP(TFA)** (290 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95 \rightarrow 10/90$) to afford **3f** (70 mg, 0.26 mmol, 53 %) as an orange solid. R_f 0.7 (AcOEt/Hexane: 20/80).

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (d, J = 8 Hz, 1H), 7.50 (t, J = 8 Hz, 1H), 7.12-7.18 (m, 1H), 7.03 (s, 2H), 6.43 (d, J = 8 Hz, 1H), 2.35 (s, 3H), 2.13 (s, 6H). ¹³C{¹**H**} NMR (100 MHz, CDCl₃) δ 182.4, 156.4, 151.2, 139.9, 138.9, 137.6, 130.0, 127.5, 125.9, 123.8, 117.8, 110.2, 22.2, 19.3. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₇H₁₅NO₂Na is 288.0995; found 288.0994.


1-(2,3-dimethylphenyl)indoline-2,3-dione (3g)

Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2g-TMP(TFA)** (282 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **3g** (73 mg, 0.29 mmol, 58 %) as a red solid. R_f 0.7 (AcOEt/Hexane: 20/80).

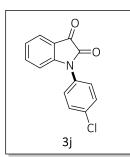
¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (d, J = 8 Hz, 1H), 7.51 (t, J = 8 Hz, 1H), 7.23-7.32 (m, 2H), 7.15 (t, J = 8 Hz, 1H), 7.11 (d, J = 8 Hz, 1H), 6.55 (d, J = 8.0 Hz, 1H), 2.37 (s, 3H), 2.11 (s, 3H). ¹³**C NMR**{¹**H**} (100 MHz, CDCl₃) δ 182.7, 158.1, 152.9, 139.5, 138.7, 135.0, 131.8, 131.4, 127.2, 125.7, 125.2, 124.3, 117.6, 112.1, 20.6, 14.7. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₆H₁₃NO₂Na is 274.0838; found 274.0837.


$1-(1,1'-biphenyl]-4-yl)indoline-2,3-dione (3h)^6$

Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2h**-**TMP**(**TFA**) (309 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **3h** (108 mg, 0.36 mmol, 72 %) as an orange solid. R_f 0.3 (AcOEt /Hexane: 20/80).

¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 80 Hz, 2H), 7.63 (d, J = 8 Hz, 1H), 7.54 (d, J = 8 Hz, 2H), 7.42-7.56 (m, 1H), 7.41 (t, J = 8 Hz, 4H), 7.30-7.36 (m, 1H), 7.08-7.14 (m, 1H), 6.90 (d, J = 8.0 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 181.8, 157.6, 151.8, 142.0, 140.1, 138.6, 132.1, 129.2, 128.8, 128.1, 127.4, 126.4, 125.9, 124.6, 117.7, 111.6. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₀H₁₃NO₂Na is 276.0631; found 276.0633.

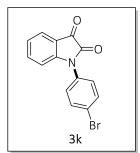
1-(4-fluorophenyl)indoline-2,3-dione (3i)⁸



Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2i-TMP(TFA)** (277 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **3i** (78 mg, 0.32 mmol, 65 %) as an orange solid. R_f 0.5 (AcOEt/Hexane: 20/80).

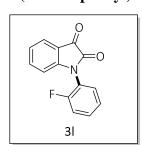
¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (d, J = 8 Hz, 1H), 7.56 (t, J = 8

Hz, 1H), 7.39-7.43 (m, 2H), 7.23-7.28 (m, 2H), 7.19 (t, J = 8 Hz, 1H), 6.85 (d, J = 8 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 182.8, 162.5 (d, ¹ $J_{\text{C-F}} = 248$ Hz), 157.6, 138.6, 128.9 (d, ⁴ $J_{\text{C-F}} = 4$ Hz), 128.3 (d, ³ $J_{\text{C-F}} = 8$ Hz), 126.0, 124.7, 117.7, 117.2 (d, ² $J_{\text{C-F}} = 23$ Hz), 111.3. ¹⁹F NMR (375 MHz, CDCl₃) δ -111.30. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₄H₈FNO₂Na is 264.0431; found 264.0431.


1-(4-chlorophenyl)indoline-2,3-dione (3j)⁸

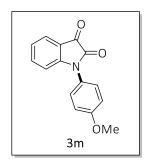
Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2j-TMP(TFA)** (286 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **3j** (101 mg, 0.39 mmol, 78 %) as an orange solid. R_f 0.5 (AcOEt/Hexane: 20/80).

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (d, J = 8 Hz, 1H), 7.53-7.59 (m Hz, 3H), 7.38 (d, J = 8 Hz, 2H), 7.20 (t, J = 8 Hz, 1H), 6.89 (d, J = 8 Hz, 1H). ¹³C{¹**H**} NMR (100 MHz, CDCl₃) δ 190.1, 165.4, 151.3, 137.9, 134.4, 129.8, 127.5, 126.5, 124.8, 117.0, 113.6, 111.8. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₈H₁₇ClNO₂Na is 280.0136; found 280.0134.


1-(4-bromophenyl)indoline-2,3-dione (3k)⁸

Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2k-TMP(TFA)** (310 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95 \rightarrow 10/90$) to afford **3k** (112 mg, 0.37 mmol, 74 %) as an orange solid. R_f 0.5 (AcOEt /Hexane: 20/80).

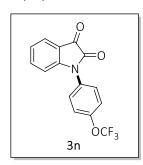
¹**H NMR** (400 MHz, CDCl₃) δ 7.68-7.72 (m, 3H), 7.55-7.59 (m, 1H), 7.32 (d, J = 8 Hz, 2H), 7.18-7.20 (m, 1H), 6.90 (d, J = 8.0 Hz, 1H). ¹³C{¹**H**} NMR (100 MHz, CDCl₃) δ 180.3, 158.4, 151.6, 140.4, 135.5, 131.9, 127.1, 126.3, 125.2, 123.0, 117.5, 111.7. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₄H₈BrNO₂Na is 323.9631; found 323.9638.


1-(2-fluorophenyl)indoline-2,3-dione (3l)

Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2l-TMP(TFA)** (277 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **3l** (57 mg, 0.23 mmol, 47 %) as an orange solid. R_f 0.3 (AcOEt/Hexane: 20/80).

¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (d, J = 8 Hz, 1H), 7.56 (t, J = 8 Hz, 1H), 7.41-7.53 (m, 2H), 7.29-7.37 (m, 2H), 7.19 (t, J = 8 Hz, 1H), 6.72 (d, J = 8 Hz, 1H). ¹³C{¹**H**} NMR (100 MHz, CDCl₃) δ 182.4, 157.8 (d, ${}^{1}J_{\text{C-F}} = 252$ Hz), 157.4, 151.2, 138.7, 131.3 (d, ${}^{3}J_{\text{C-F}} = 8$ Hz), 129.2, 125.8, 125.5 (d, ${}^{3}J_{\text{C-F}} = 4$ Hz), 124.6, 120.6 (d, ${}^{2}J_{\text{C-F}} = 13$ Hz), 117.8, 117.6 (d, ${}^{2}J_{\text{C-F}} = 19$ Hz), 111.5. ¹⁹**F NMR** (375 MHz, CDCl₃) δ -117.34. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₄H₈FNO₂Na is 264.0431; found 264.0434.

1-(4-methoxyphenyl)indoline-2,3-dione (3m)⁹

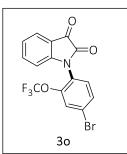


Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2m-TMP(TFA)** (283 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **3m** (99 mg, 0.39 mmol, 78 %) as a red solid. R_f 0.3 (AcOEt/Hexane: 20/80).

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (d, J = 8 Hz, 1H), 7.46 (t, J = 8

Hz, 1H), 7.25 (d, J = 8 Hz, 2H), 7.08 (t, J = 8 Hz, 1H), 6.99 (d, J = 8 Hz, 2H), 6.76 (d, J = 8 Hz, 1H), 3.80 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 183.3, 159.5, 157.8, 152.8, 138.5, 127.6, 125.6, 125.5, 124.3, 117.6, 115.4, 111.4, 55.8. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₅H₁₁NO₃Na is 276.0631; found 276.0633.

1-(4-(trifluoromethoxy)phenyl)indoline-2,3-dione (3n)

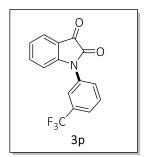


Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2n-TMP(TFA)** (313 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **3n** (111 mg, 0.36 mmol, 72 %) as a yellow solid. R_f 0.3 (AcOEt/Hexane: 20/80).

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (d, J = 8 Hz, 1H), 7.58 (t, J = 8

Hz, 1H), 7.49 (d, J = 8 Hz, 2H), 7.41 (d, J = 8 Hz, 2H), 7.21 (t, J = 8 Hz, 1H), 6.91 (d, J = 8 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 182.5, 158.3, 151.7 (q, J = 2 Hz), 149.1, 127.7, 126.1, 124.8, 122.7, 121.9 (q, ${}^{1}J_{\text{C-F}} = 257$ Hz), 117.8, 111.3. ¹⁹F NMR (375 MHz, CDCl₃) δ -57.74. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₅H₈F₃NO₂Na is 330.0348; found 330.0349.

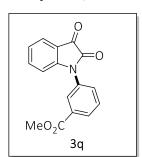
1-(4-bromo-2-(trifluoromethoxy)phenyl)indoline-2,3-dione (30)



Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2o-TMP(TFA)** (356 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **3o** (89 mg, 0.23 mmol, 46 %) as an orange solid. R_f 0.4 (AcOEt /Hexane: 20/80).

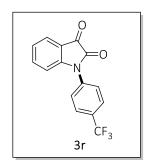
¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (d, J = 8 Hz, 1H), 7.68-7.62 (m, 2H), 7.60-7.55 (m, 1H), 7.36 (d, J = 8 Hz, 1H), 7.21 (d, J = 7.6 Hz, 1H), 6.64 (d, J = 8.0 Hz,

1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 181.8, 157.1, 145.7, 138.8, 130.9, 126.0, 125.6 (d, J = 2 Hz), 124.9, 124.6, 124.1, 120.2 (q, ${}^{1}J_{\text{C-F}} = 260$ Hz), 117.7, 111.3. ¹⁹F NMR (375 MHz, CDCl₃) δ -57.46. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₅H₇O₃NF₃BrNa 407.9454; found 407.9454.


1-(3-(trifluoromethyl)phenyl)indoline-2,3-dione (3p)⁸

Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2p-TMP(TFA)** (304 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **3p** (96 mg, 0.33 mmol, 66 %) as an orange solid. R_f 0.3 (AcOEt /Hexane: 20/80).

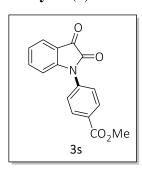
¹H NMR (400 MHz, CDCl₃) δ 7.69-7.61 (m, 4H), 7.59 (d, J = 6.5 Hz, 1H), 7.55-7.49 (m, 1H), 7.16 (t, J = 7.1 Hz, 1H), 6.84 (d, J = 8.0 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 182.3, 151.0, 133.7, 132.9, 132.7 (q, ${}^{2}J_{\text{C-F}} = 33$ Hz), 130.9, 129.7, 126.2, 125.8 (q, ${}^{3}J_{\text{C-F}} = 4$ Hz), 125.0, 123.5 (q, ${}^{1}J_{\text{C-F}} = 271$ Hz), 123.04 (q, ${}^{3}J_{\text{C-F}} = 4$ Hz), 111.2. ¹⁹F NMR (375 MHz, CDCl₃) δ -62.60. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₅H₈F₃NO₂Na 314.0399; found 314.0398.


methyl 3-(2,3-dioxoindolin-1-yl)benzoate (3q)9

Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2q-TMP(TFA)** (120 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **3q** (77 mg, 0.28 mmol, 55 %) as an orange solid. R_f 0.4 (AcOEt/Hexane: 20/80).

¹**H NMR** (400 MHz, CDCl₃) δ 8.10-8.17 (m, 2H), 7.72 (d, J = 8 Hz, 1H), 7.65-7.67 (m, 2H), 7.57 (t, J = 8 Hz, 1H), 7.21 (t, J = 8 Hz, 1H), 6.91 (d, J = 8 Hz, 1H), 3.95 (s, 3H). ¹³C{¹**H**} **NMR** (100 MHz, CDCl₃) δ 183.5, 166.0, 156.3, 151.4, 138.2, 133.4, 132.3, 130.8, 130.4, 130.0, 127.1, 126.0, 124.8, 117.7, 109.8, 52.2. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₆H₁₁NO₄Na is 304.0580; found 304.0581.

1-(4-(trifluoromethyl)phenyl)indoline-2,3-dione (3r)⁹

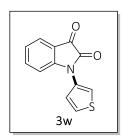


Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2r-TMP(TFA)** (304 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **3r** (61 mg, 0.21 mmol, 42 %) as an orange solid. R_f 0.4 (AcOEt/Hexane: 20/80).

¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (d, J = 8 Hz, 2H), 7.75 (d, J = 8

Hz, 1H), 7.56-7.62 (m, 3H), 7.24 (t, J = 8 Hz, 1H), 6.97 (d, J = 8 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 181.6, 156.7, 150.4, 140.1, 136.2, 130.9 (q, ${}^{2}J_{\text{C-F}} = 33$ Hz), 127.3 (d, ${}^{3}J_{\text{C-F}} = 4$ Hz), 126.3, 126.2, 125.1, 123.7 (q, ${}^{1}J_{\text{C-F}} = 270$ Hz), 117.8, 113.4. ¹⁹F NMR (375 MHz, CDCl₃) δ -62.55. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₅H₈F₃NO₂Na is 314.0399; found 314.0399.

methyl-4-(2,3-dioxoindolin-1-yl)benzoate (3s)

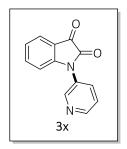


Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2s-TMP(TFA)** (298 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95 \rightarrow 10/90$) to afford **3s** (51 mg, 0.18 mmol, 36 %) as an orange solid. R_f 0.4 (AcOEt /Hexane: 20/80).

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (d, J = 8 Hz, 2H), 7.72-7.75 (m,

1H), 7.58-7.61 (m, 1H), 7.55 (d, J = 8 Hz, 2H), 7.22 (t, J = 8 Hz, 1H), 6.98 (d, J = 8 Hz, 1H), 3.97 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 182.4, 166.2, 157.2, 151.5, 138.2, 137.1, 131.4, 130.4, 126.9, 125.7, 124.2, 117.9, 111.5, 52.7. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₆H₁₁NO₄Na is 304.0580; found 304.0586.

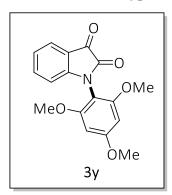
1-(thiophen-3-yl)indoline-2,3-dione (3w)⁹



Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2w-TMP(TFA)** (270 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **3w** (83 mg, 0.36 mmol, 72 %) as a red solid. R_f 0.2 (AcOEt/Hexane: 20/80).

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (d, J = 8 Hz, 1H), 7.59 (t, J = 8 Hz, 1H), 7.48-7.51 (m, 2H), 7.21-7.24 (m, 1H), 7.18 (t, J = 8 Hz, 1H), 7.04 (d, J = 8 Hz, 1H). ¹³C{¹**H**} **NMR** (100

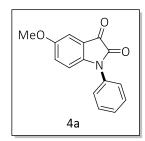
MHz, CDCl₃) δ 182.6, 157.4, 152.3, 139.5, 132.5, 127.6, 125.8, 124.6, 123.9, 120.8, 118.8, 111.6. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₂H₇NO₂SNa is 252.0090; found 252.0089.


1-(pyridin-3-yl)indoline-2,3-dione (3x)

Following **GP**, starting from isatin **1a** (89 mg, 0.6 mmol) and **2x-Mes(OTf)** (312 mg, 0.66 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $20/80 \rightarrow 30/70$) to afford **3x** (51 mg, 0.23 mmol, 38 %) as a red solid. R_f 0.4 (AcOEt /Hexane: 30/70). ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.72 (d, J = 8 Hz, 1H), 7.82 (dq, J = 8 and 1.6 Hz, 1H), 7.74-7.76

(m, 1H), 7.60 (dt, J = 8 and 1.2 Hz, 1H), 7.53-7.56 (m, 1H), 7.24 (t, J = 8 Hz, 1H), 6.93 (d, J = 8 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 182.2, 156.9, 150.9, 150.0, 146.7, 138.3, 133.5, 130.3, 126.3, 125.1, 123.7, 117.8, 111.6. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₃H₈N₂O₂Na is 247.0478; found 247.0488.

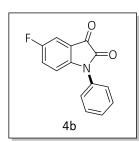
1-(2,4,6-trimethoxyphenyl)indoline-2,3-dione (3y)



Following **GP**, starting from isatin **1a** (74 mg, 0.5 mmol) and **2y-TMP(TFA)** (268 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95 \rightarrow 10/90$) to afford **3y** (71 mg, 0.22 mmol, 45 %) as an orange solid. R_f 0.3 (AcOEt /Hexane: 20/80).

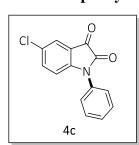
¹**H NMR** (400 MHz, CDCl₃) δ 7.64 (d, J = 8 Hz, 1H), 7.47 (t, J = 8 Hz, 1H), 7.09 (t, J = 8 Hz, 1H), 6.50 (d, J = 8 Hz, 1H), 6.22

(s, 2H), 3.86 (s, 3H), 3.76 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 182.6, 163.8, 158.3, 157.6, 153.8, 139.4, 138.4, 126.6, 125.2, 123.9, 123.6, 118.1, 113.8, 111.6, 105.0, 93.1, 57.5, 55.8. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₇H₁₅NO₅Na is 336.0842; found 336.0845.


5-methoxy-1-phenylindoline-2,3-dione (4a)⁹

Following **GP**, starting from isatin **1b** (89 mg, 0.5 mmol) and **2a-TMP(TFA)** (266.3 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **4a** (109 mg, 0.43 mmol, 86 %) as a brown solid. R_f 0.3 (AcOEt/Hexane: 20/80).

¹**H NMR** (400 MHz, CDCl₃) δ 7.53-7.57 (m, 2H), 7.41-7.43 (m, 3H), 7.21 (d, J = 2 Hz, 1H), 7.08-7.11 (m, 1H), 6.85 (d, J = 8 Hz, 1H), 3.83 (s, 3H). ¹³**C**{¹**H**} **NMR** (100 MHz, CDCl₃) δ 180.8, 157.6, 154.9, 145.8, 132.8, 129.4, 128.3, 125.9, 125.2, 118.1, 112.6, 108.1, 56.2. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₅H₁₁NO₃Na is 276.0631; found 276.0639.


5-fluoro-1-phenylindoline-2,3-dione (4b)⁹

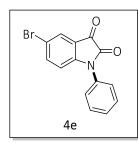
Following **GP**, starting from isatin **1c** (83 mg, mmol) and **2a-TMP(TFA)** (267 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **4b** (68 mg, 0.28 mmol, 56 %) as a deep red solid. R_f 0.4 (AcOEt/Hexane: 20/80).

¹H NMR (400 MHz, CDCl₃) δ 7.55-7.59 (m, 2H), 7.43-7.49 (m, 1H), 7.38-7.42 (m, 3H), 7.24-7.28 (m, 1H), 6.86-6.89 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 181.9, 159.7 (d, ${}^{1}J_{\text{C-F}} = 245 \text{ Hz}$), 157.2, 148.0, 132.9, 130.3, 129.2, 126.1, 124.9 (d, ${}^{2}J_{\text{C-F}} = 24 \text{ Hz}$), 118.3 (d, ${}^{3}J_{\text{C-F}} = 7 \text{ Hz}$), 112.7 (d, ${}^{3}J_{\text{C-F}} = 1 \text{ Hz}$), 112.6 (d, ${}^{2}J_{\text{C-F}} = 33 \text{ Hz}$). ¹⁹F NMR (375 MHz, CDCl₃) δ -117.35. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₄H₈FNO₂Na is 264.0431; found 264.0435.

5-chloro-1-phenylindoline-2,3-dione (4c)

Following **GP**, starting from isatin **1d** (91 mg, 0.5 mmol) and **2a-TMP(TFA)** (267 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **4c** (93 mg, 0.36 mmol, 72 %) as an orange solid. R_f 0.5 (AcOEt/Hexane: 20/80).

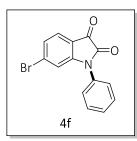
¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (d, J = 1.6 Hz, 1H), 7.66, 7.55-7.58 (m, 2H), 7.45-7.51 (m, 2H), 7.38-7.40 (m, 2H), 6.86 (d, J = 8 Hz, 1H). ¹³C{¹**H**} **NMR** (100 MHz, CDCl₃) δ


192.7, 178.4, 156.3, 149.2, 137.3, 132.9, 130.6, 129.6, 126.4, 125.9, 118.4, 113.7. HRMS (ESI) *m/z*: [M+Na]⁺ calculated for C₁₄H₈ClNO₂Na is 280.0136; found 280.0147.

4-bromo-1-phenylindoline-2,3-dione (4d)

Following **GP**, starting from isatin **1e** (113 mg, 0.5 mmol) and **2a-TMP(TFA)** (267 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **4d** (95 mg, 0.31 mmol, 63 %) as an orange solid. R_f 0.4 (AcOEt/Hexane: 20/80).

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (t, J = 8 Hz, 2H), 7.38-7.43 (m, 1H), 7.29-7.34 (m, 2H), 7.27 (d, J = 8 Hz, 1H), 7.21-7.24 (m, 1H), 6.75 (d, J = 8 Hz, 1H). ¹³C{¹**H**} NMR (100 MHz, CDCl₃) δ 179.9, 156.6, 153.4, 138.5, 132.1, 130.3, 129.4, 129.1, 126.4, 122.5, 116.9, 111.1. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₄H₈BrNO₂Na 323.9631; found 325.9630.


5-bromo-1-phenylindoline-2,3-dione (4e)

Following **GP**, starting from isatin **1f** (113 mg, 0.5 mmol) and **2a-TMP(TFA)** (267 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95 \rightarrow 10/90$) to afford **4e** (77 mg, 0.25 mmol, 51 %) as a brown solid. R_f 0.4 (AcOEt /Hexane: 20/80).

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (d, J = 2 Hz, 1H), 7.63-7.65 (m, 1H), 7.54-7.60 (m, 2H), 7.45-7.50 (m, 1H), 7.37-7.40 (m, 2H), 6.81 (d, J = 8 Hz, 1H). ¹³**C**{¹**H**} **NMR** (100 MHz, CDCl₃) δ 182.0, 156.8, 151.2, 141.6, 132.7, 130.3, 129.4, 128.5, 126.1, 119.5, 117.3, 113.2. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₄H₈BrNO₂Na is 323.9631; found 323.9631.

6-bromo-1-phenylindoline-2,3-dione (4f)

Following **GP**, starting from isatin **1g** (113 mg, 0.5 mmol) and **2a-TMP(TFA)** (267 mg, 0.55 mmol). The reaction mixture was stirred for 12 h and purified by column chromatography (AcOEt/Hexane: $5/95\rightarrow10/90$) to afford **4f** (106 mg, 0.35 mmol, 70 %) as an orange solid. R_f 0.4 (AcOEt /Hexane: 20/80).

¹**H NMR** (400 MHz, CDCl₃) δ 7.55-7.61 (m, 3H), 7.47-7.52 (m, 1H), 7.38-7.41 (m, 2H), 7.32-7.35 (m, 1H), 7.06 (s, 1H). ¹³**C**{¹**H**} **NMR** (100 MHz, CDCl₃) δ 181.0, 156.3, 151.9,

133.9, 132.6, 130.4, 129.5, 127.8, 126.8, 126.2, 116.3, 115.0. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₄H₈BrNO₂Na is 323.9631; found 323.9637.

9. GRAM-SCALE SYNTHESIS

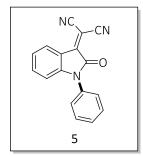
1-phenylindoline-2,3-dione (3a)

To an oven-dried 100 ml round-bottom flask, indoline-2,3-diones **1a** (5 mmol), **2a-TMP(TFA)** phenyl(TMP)iodonium salt (5.5 mmol, 1.1 equiv.), CuI (10 mol%, 0.5 mmol, equiv.), and Et₃N (TEA, 7.5 mmol, 1.5 equiv.) were added. After adding dry toluene (15 mL, 0.1 M), it was sealed with a rubber septum and stirred at 70 °C. The reaction mixture was stirred for 15 h. The reaction mixture was then passed through Celite and washed with minimal EtOAc (15–20 mL). The organic mixture was then mixed with water, followed by a brine wash. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Then, the crude product was purified using flash column chromatography (using 60-120 mesh silica with an eluent of 10:90 EtOAc/hexane) to obtain the desired product. The yield of the phenylated product was 76%.

10. METHODS FOR POST-MODIFICATIONS

To illustrate the synthetic applicability of our method, an attempt was made to derivatize compound **3a** under different conditions (Scheme S8).

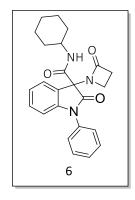
Mohsenzadeh and co-workers provided a general method for the preparation of isatylidene malononitriles from isatins (1 equiv.) and malononitrile (1.2 equiv.) in water (5 ml). The reaction was stirred at room temperature for 0.5 h (Scheme S8). The precipitated solid was filtered, washed with water, and dried to afford the corresponding products.¹⁰


Scheme S8. General procedure for the preparation of substituted isatylidene malononitriles

Pineiro and co-workers designed a three-component Ugi reaction employing substituted isatins (1 equiv.), 2-aminopropanoic acid (1 equiv.), and isocyanides (1 equiv.) as model substrates. They carried out the following reaction in the presence of 2,2,2-trifluoroethanol (1 ml) to synthesize β -lactam-oxindole hybrids under catalyst-free conditions (Scheme S9).¹¹

Scheme S9. General procedure for the three-component Ugi reaction

11. CHARACTERIZATION DATA OF PRODUCTS OBTAINED FROM SYNTHETIC MODIFICATIONS


2-(2-oxo-1-phenylindolin-3-ylidene)malononitrile (5)9

Following the general method for preparation of **5**, starting from *N*-phenyl isatin **3a** (25 mg, 0.11 mmol) and malononitrile (8 mg, 0.11 mmol) in water (5 ml). The reaction was stirred at room temperature for 0.5 h. The heterogeneous mixture was filtered, washed with water, and dried to afford **5** (23 mg, 0.08 mmol, 77 %) as a deep red solid.

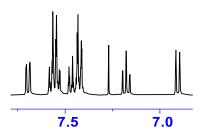
¹**H NMR** (400 MHz, DMSO- D_6) δ 8.01 (d, J = 8 Hz, 1H), 7.54-7.60 (m, 3H), 7.42-7.51 (m, 3H), 7.24 (t, J = 8 Hz, 1H), 6.78 (d, J = 8 Hz, 1H). ¹³**C NMR** (100 MHz, DMSO- D_6) δ 162.6, 151.2, 147.1, 137.8, 133.6, 129.8, 129.0, 127.2, 125.8, 124.0, 119.7, 114.4, 112.0, 110.8, 82.1. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₇H₉N₃ONa is 294.0638; found 294.0636.

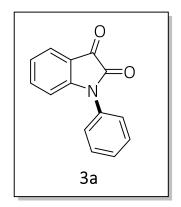
N-cyclohexyl-2-oxo-3-(2-oxoazetidin-1-yl)-1-phenylindoline-3-carboxamide (6)¹⁰

Following the general method for preparation of **6** starting from *N*-phenyl isatin **3a** (40 mg, 0.18 mmol), 2-aminopropanoic acid (90 mg, 0.18 mmol), and cyclohexyl isocyanide (22 μ l, 0.18 mmol). The reaction was stirred for 96 h at room temperature. The reaction mixture was purified by column chromatography (AcOEt/Hexane: 20/80 \rightarrow 30/70) to afford **6** (62 mg, 0.15 mmol, 85%) as an off-white solid. R_f 0.3 (AcOEt/Hexane: 30/70).

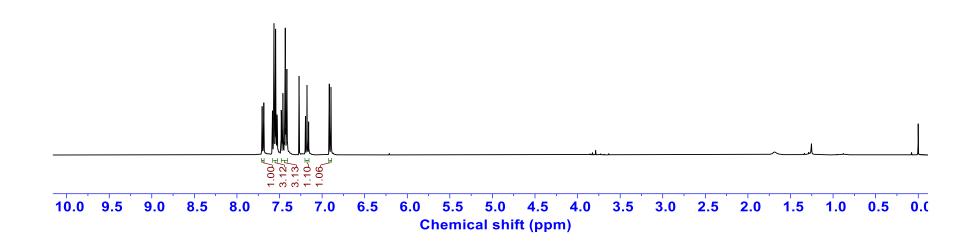
¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8 Hz, 1H), 7.53-7.57 (m, 2H), 7.45-7.48 (m, 3H), 7.29 (t, J = 8 Hz, 1H), 7.17 (t, J = 8 Hz, 1H), 6.80 (d, J = 8 Hz, 1H), 3.80-3.84 (m, 1NH), 3.60-3.64 (m, 1H), 3.40-3.43 (m, 1H), 2.94-2.97 (m, 1H), 1.97-2.00 (m, 1H), 1.83-1.87 (m, 1H), 1.57-1.76 (m, 4H), 1.21-1.39 (m, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.0, 167.3, 162.4, 143.7, 133.7, 130.3, 130.0, 128.9, 127.1, 126.9, 125.4, 124.2, 110.2, 67.7, 49.3, 40.6, 36.3, 32.8, 32.6, 26.0, 24.7. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₄H₂₅N₃O₃Na is 426.1788; found 426.1788.

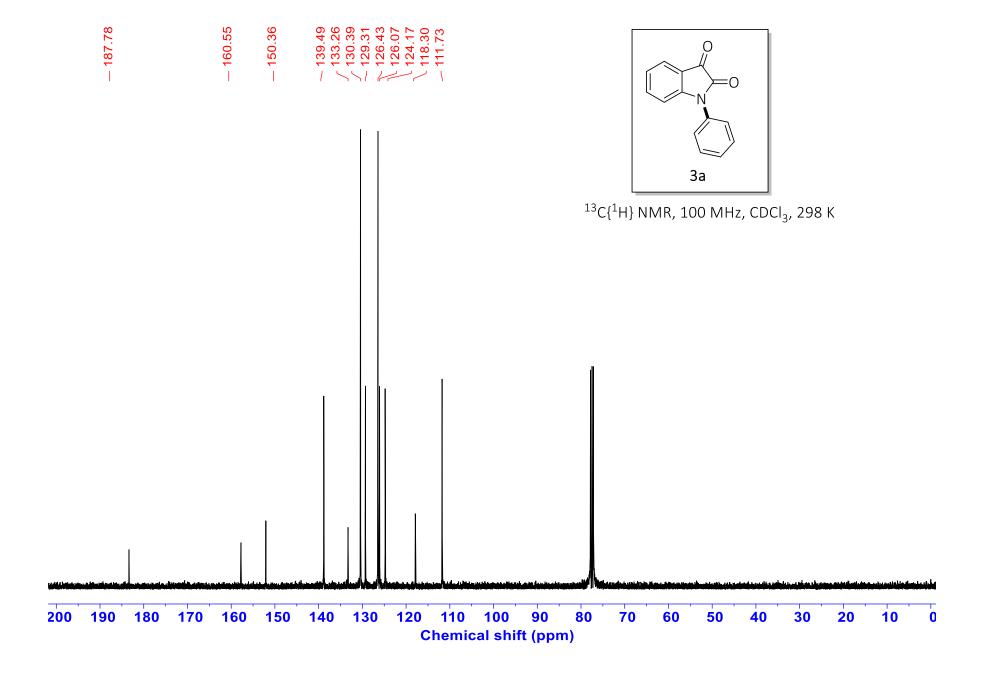
12. REFERENCES

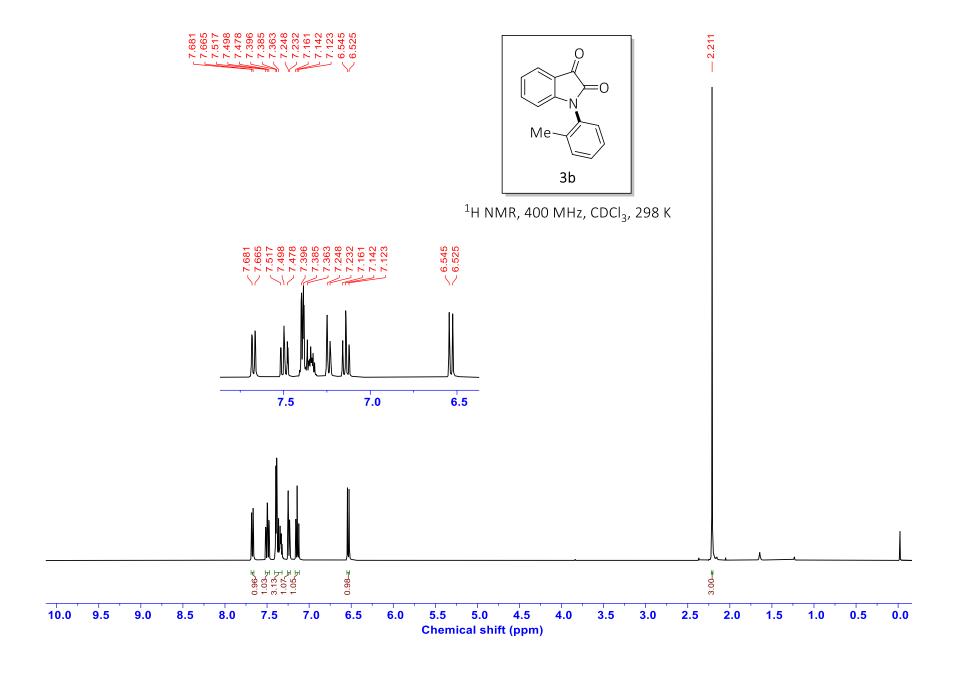

- 1. S. Doobary, L. Kersting, P. Villo, M. Akter and Olofsson, B. Sustainable and scalable one-pot synthesis of diaryliodonium salts, *Chem. Comm.*, 2025, **61**, 5158-5161.
- 2. V. Carreras, A. H. Sandtorv and D. R. Stuart, Synthesis of aryl (2,4,6-trimethoxyphenyl)iodonium trifluoroacetate salts, *J. Org. Chem.*, 2017, **82**, 1279-1284.
- 3. T. L. Seidl, S. K. Sundalam, B. McCullough and D. R. Stuart, Unsymmetrical aryl (2,4,6-trimethoxyphenyl)iodonium salts: one-pot synthesis, scope, stability, and synthetic studies, *J. Org. Chem.*, 2016, **81**, 1998-2009.
- 4. M. Bielawski, J. Malmgren, L. M. Pardo, Y. Wikmark and B. Olofsson, One-pot synthesis and applications of *N*-heteroaryl iodonium salts, *ChemistryOpen*, 2014, **3**, 19-22.
- H. Ji, Y. Zhu, Y. Shao, J. Liu, Y. Yuan and X. Jia, Active sp³ C-H Bond Oxidation Initiated sp³-sp² Consecutive C-H Functionalization of *N*-Arylglycine Amides: Construction of Isatins, *J. Org. Chem.*, 2017, 82, 9859-9865.

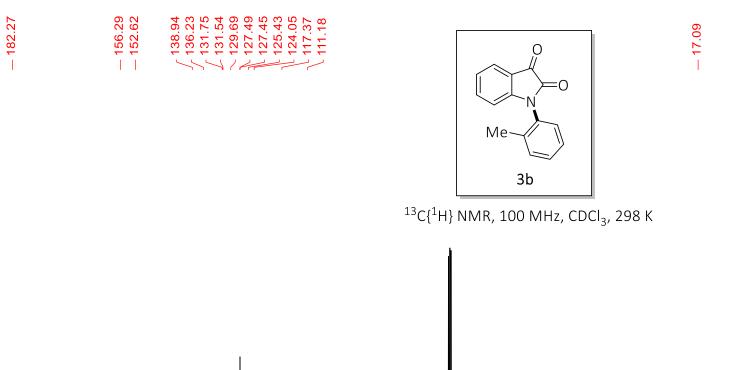

- 6. N. M. Brikci-Nigassa, G. Bentabed-Ababsa, W. Erb, F. Chevallier, L. Picot, L. Vitek, A. Fleury, V. Thiéry, M. Souab, T. Robert, S. Ruchaud, S. Bach, T. Roisnel and F. Mongin, 2-Aminophenones, a common precursor to N-aryl isatins and acridines endowed with bioactivities, *Tetrahedron*, 2018, 74, 1785-1801.
- 7. P. Qian, J. H. Su, Y. Wang, M. Bi, Z. Zha and Z. Wang, Electrocatalytic C-H/N-H coupling of 2'-aminoacetophenones for the synthesis of isatins. *J. Org. Chem.*, 2017, **82**, 6434-6440.
- 8. D. C. Rogness and R. C. Larock, Synthesis of *N*-Arylisatins by the Reaction of Arynes with Methyl 2-Oxo-2-(arylamino) acetates, *J. Org. Chem.*, 2011, **76**, 4980-4986.
- 9. S. Sunny, M. Maingle, L. Sheeba, F. R. Pathan, H. Juloori, S. G. Gadewar and K. Seth, Cu(II)-catalyzed 'in-water' *N*-arylation of electron-deficient *NH*-heterocycles, *Green Chem.*, 2024, **26**, 3149-3158.
- 10. I. Yavari, M. Ahmadi, P. Ravaghi and R. Mohsenzadeh, Diastereoselective assembly of dispiro-cyclopentene-linked bisoxindoles *via* annulation involving isatylidene malononitriles and benzylamines, *Org. Biomol. Chem.*, 2025, **23**, 2712-2720.
- 11. P. Brandao, O. Lopez, L. Leitzbach, H. Stark, J. G. Fernandez-Bolanos, A. J. Burke and M. Pineiro, Ugi reaction synthesis of oxindole–lactam hybrids as selective butyrylcholinesterase inhibitors, *ACS Med. Chem. Lett.*, 2021, **12**, 1718-1725.

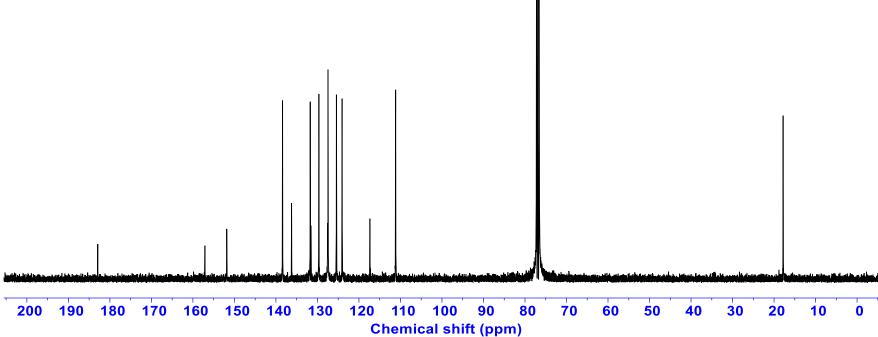
13. COPIES OF 1 H, 13 C and 19 F NMR SPECTRA

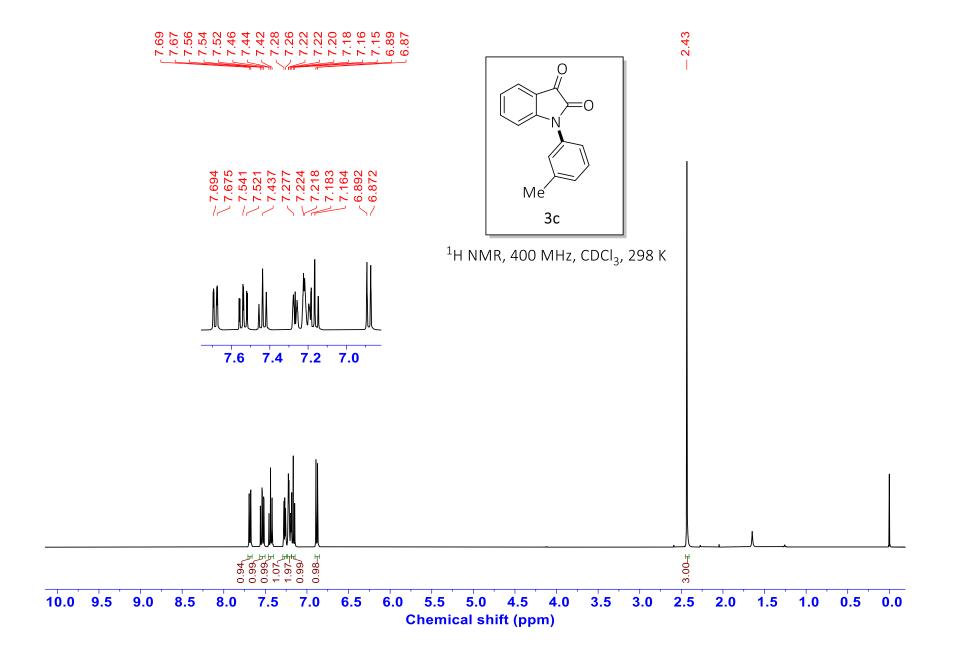


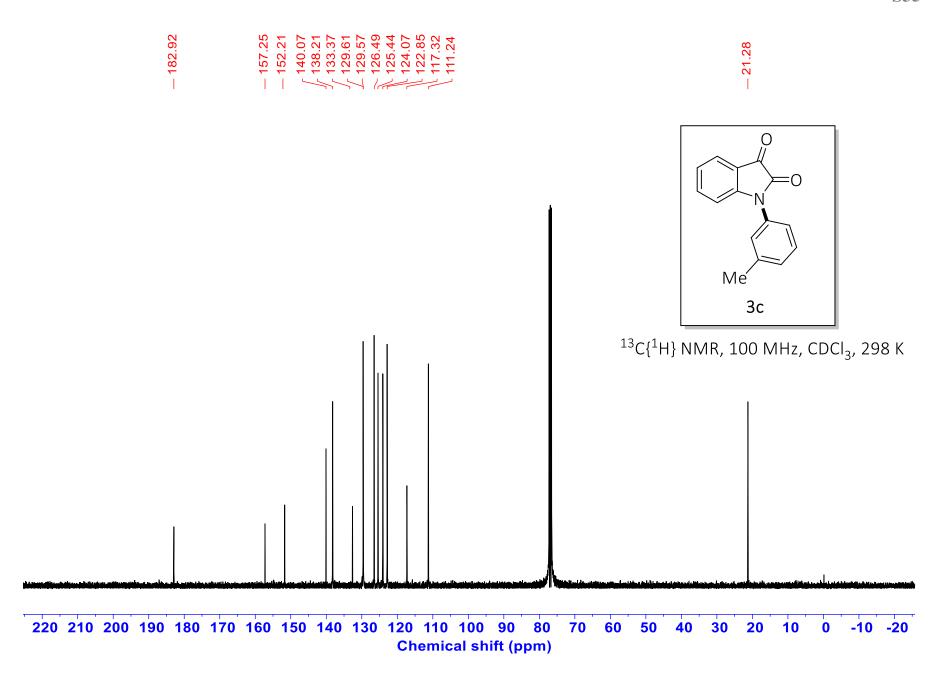


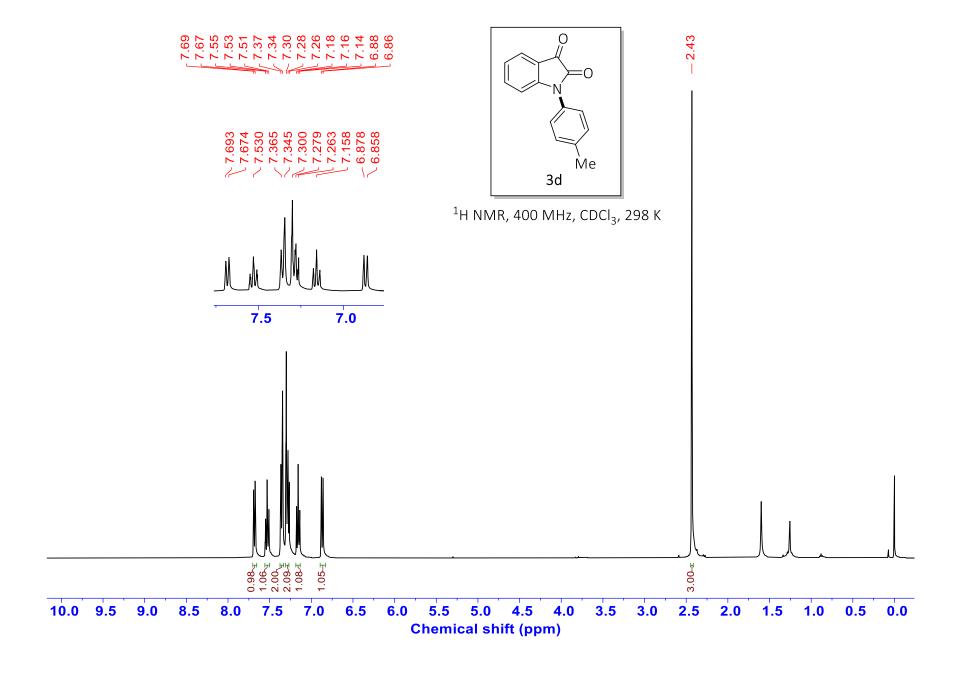


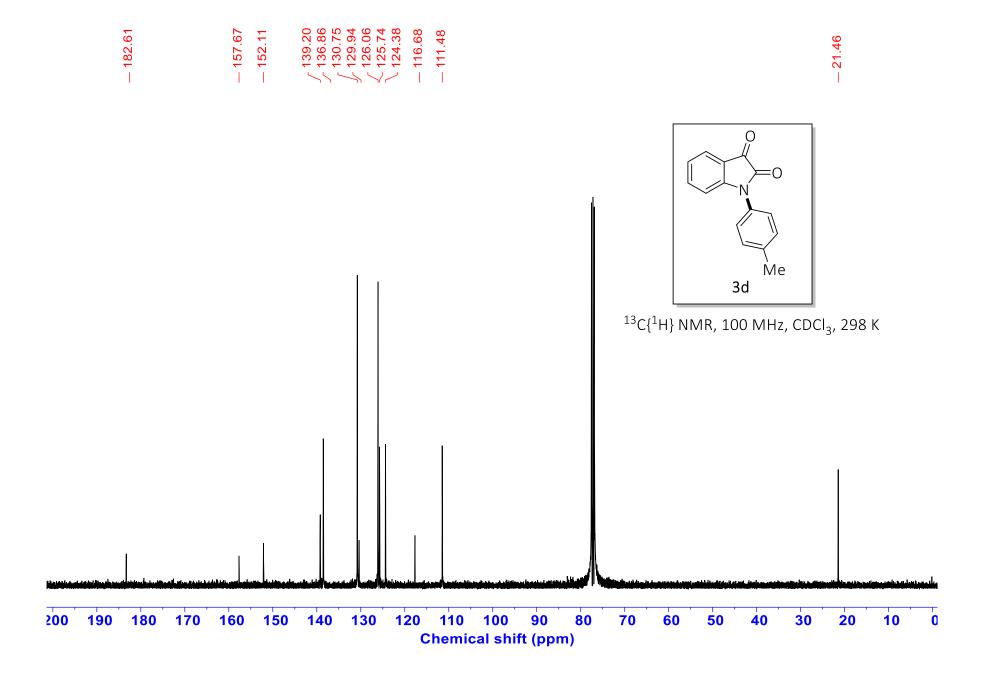


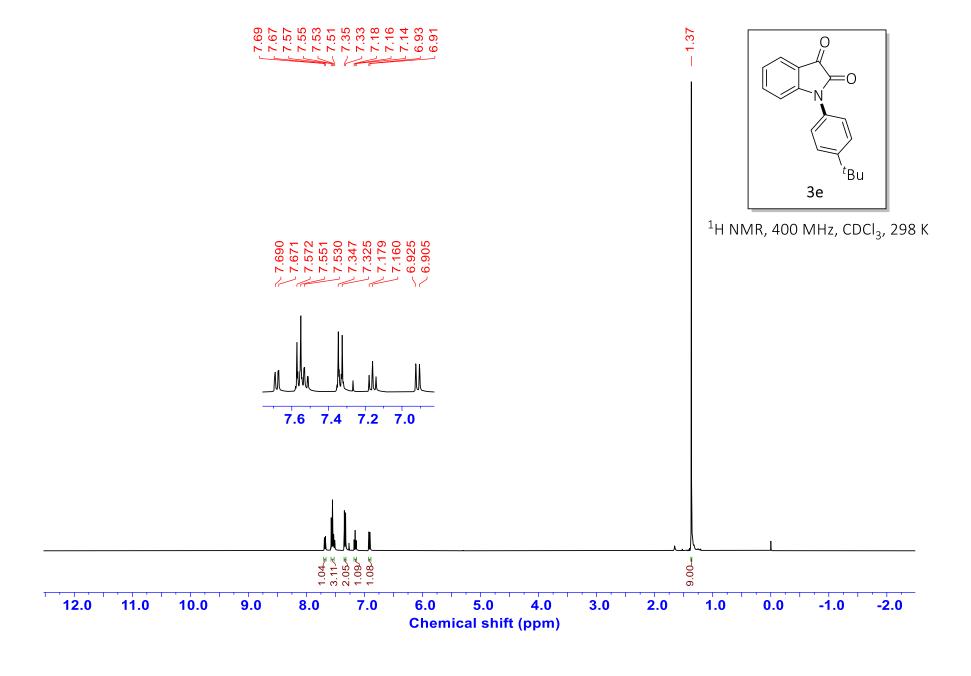

¹H NMR, 400 MHz, CDCl₃, 298 K

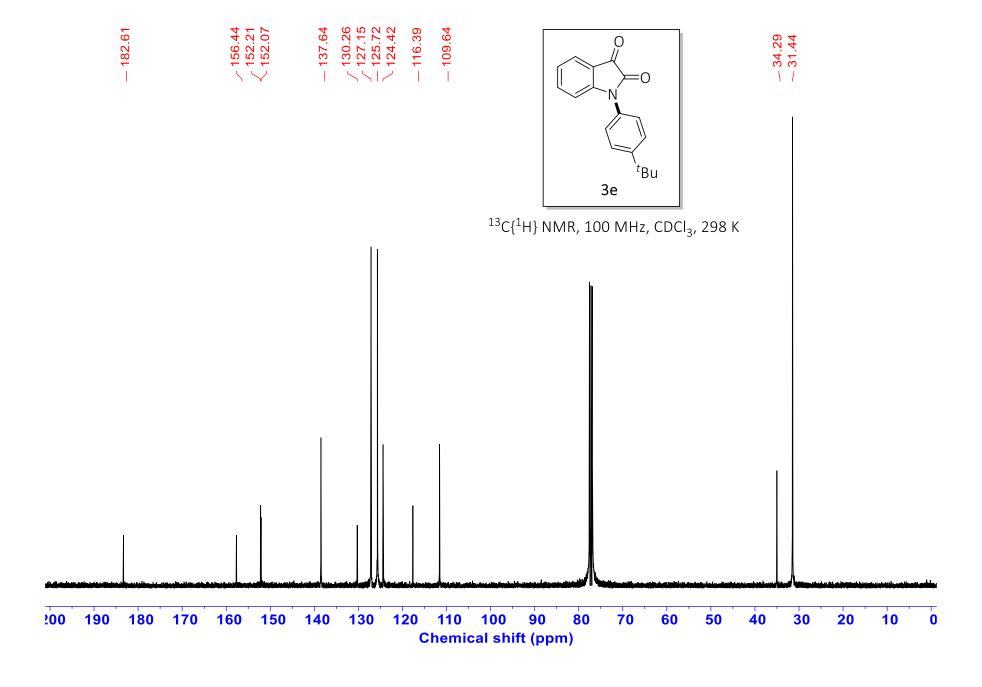


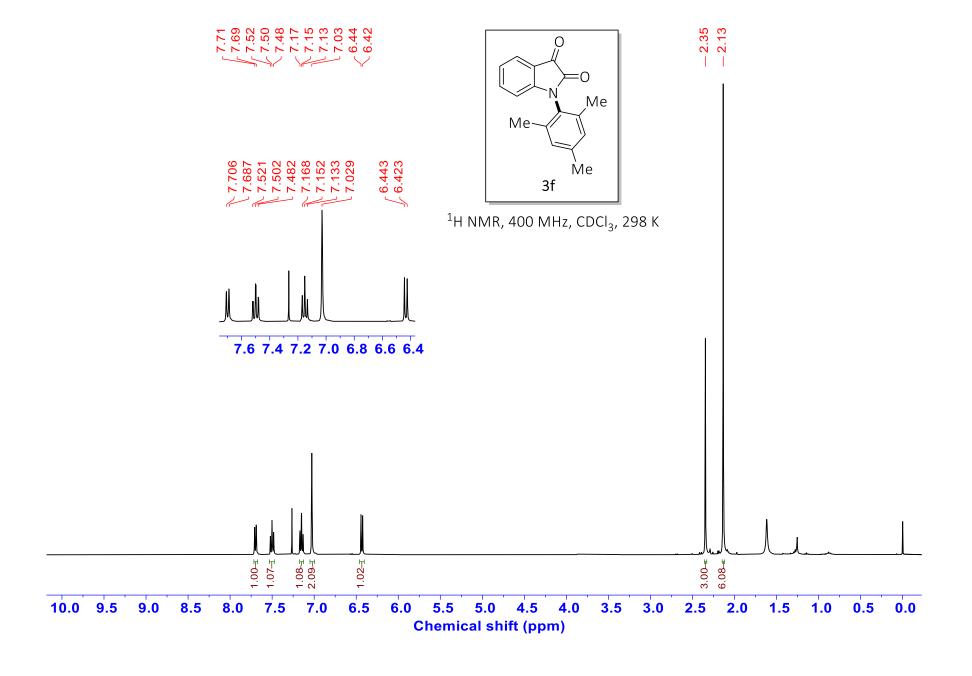


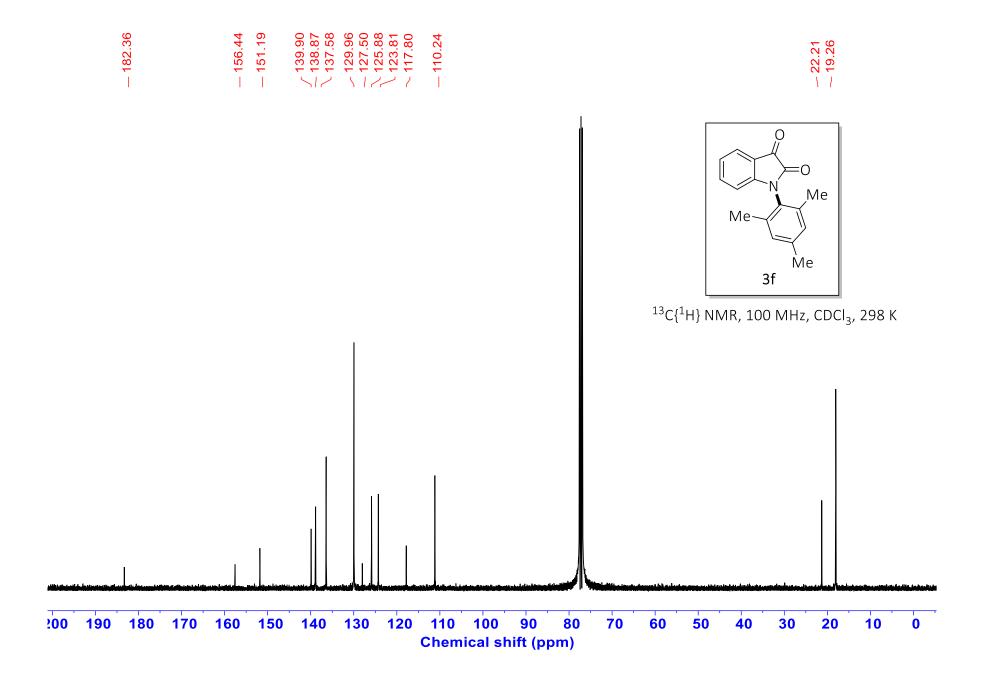


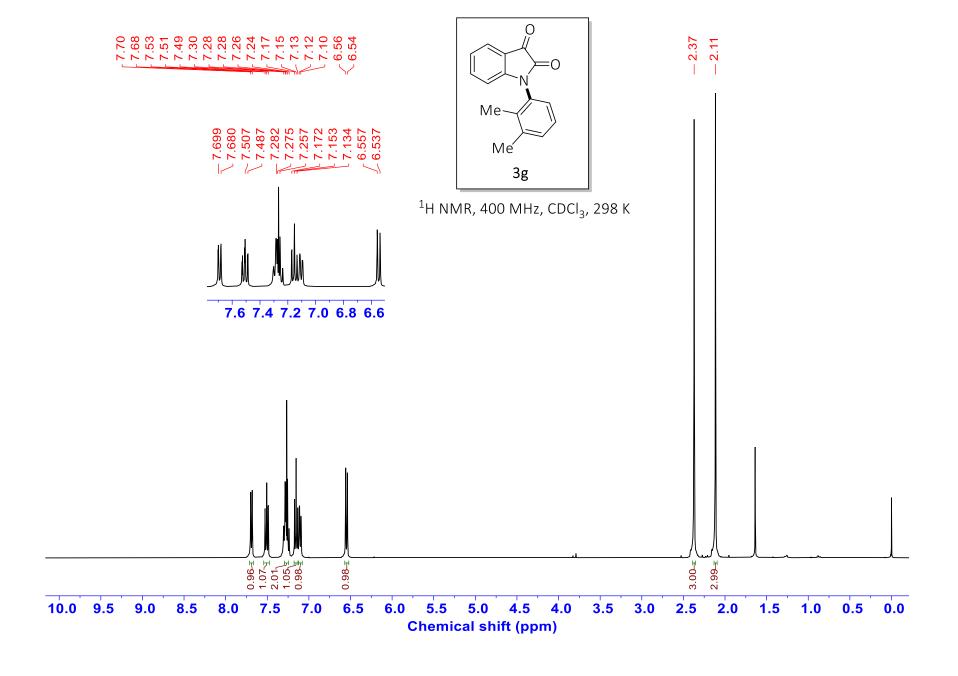


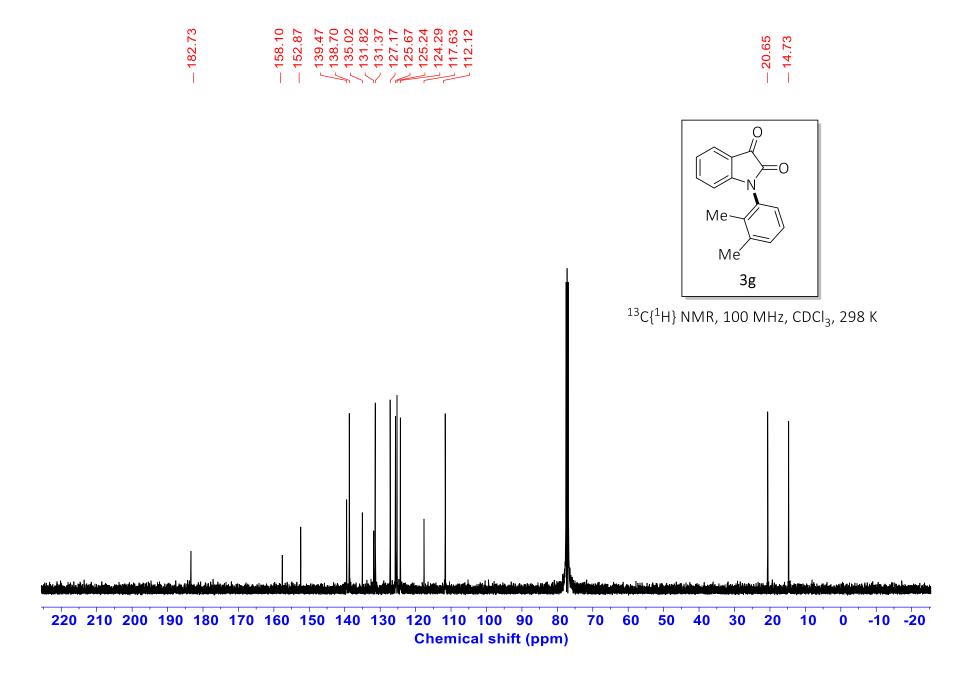


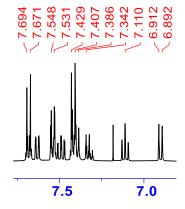


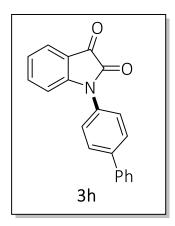


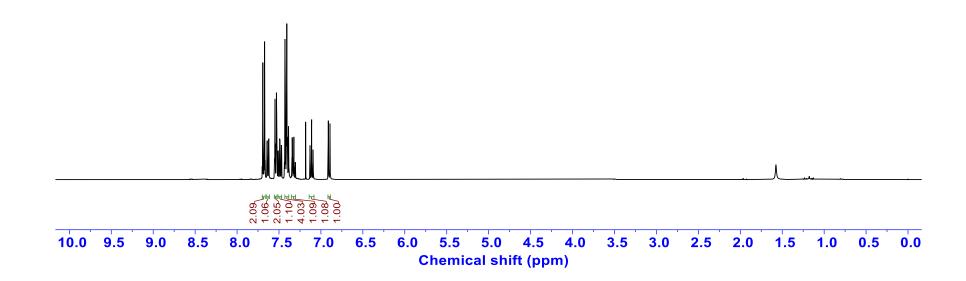


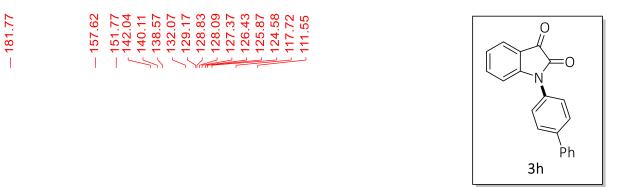


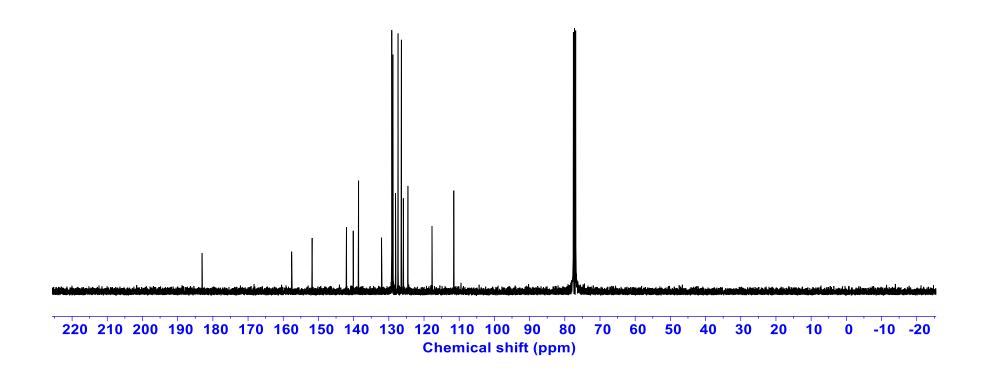




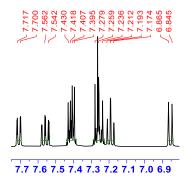


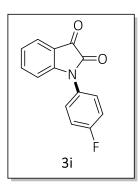



09.7 7.62 7.62 7.62 7.63 7.64 7.73

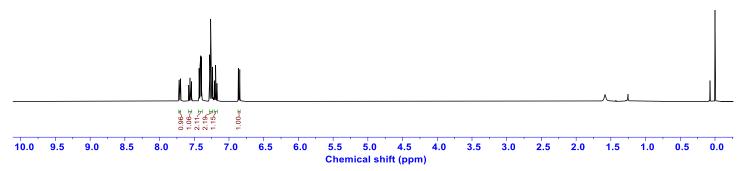


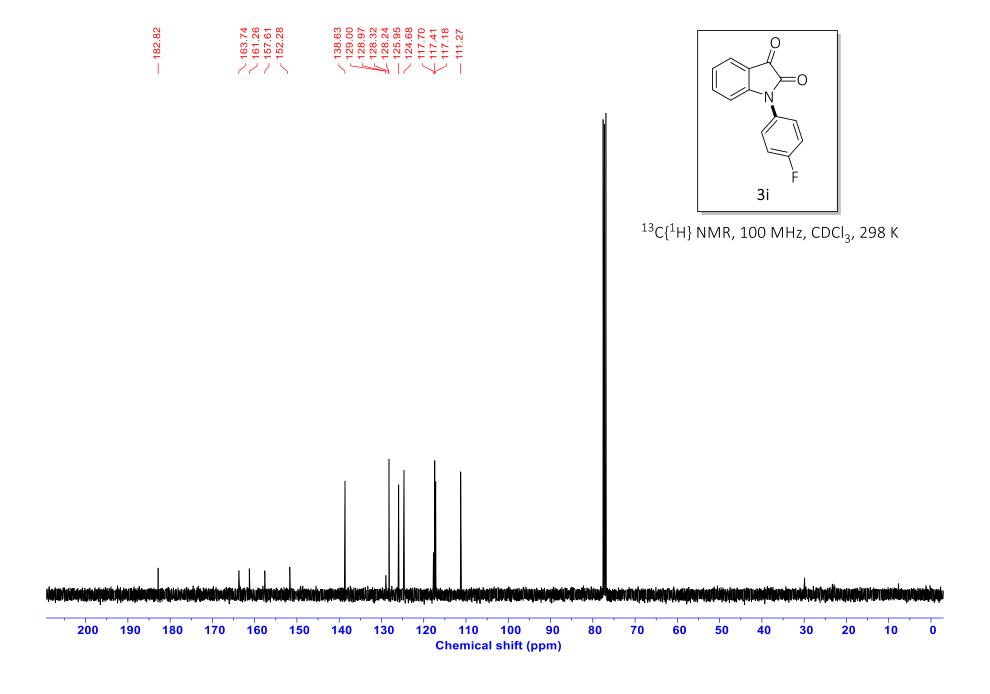
¹H NMR, 400 MHz, CDCl₃, 298 K

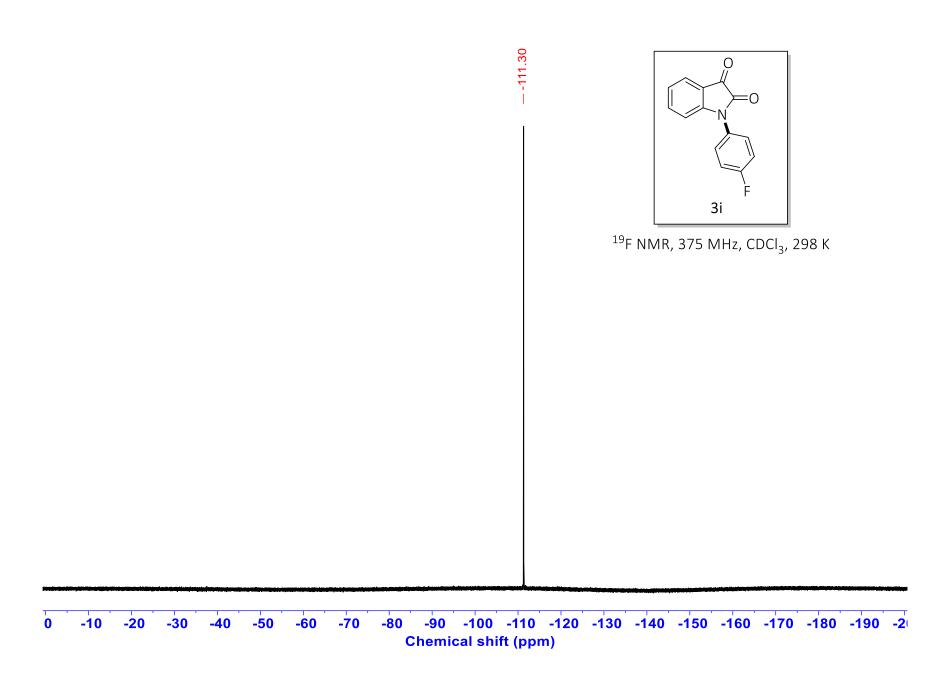


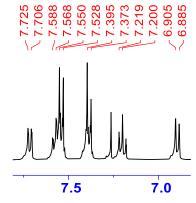


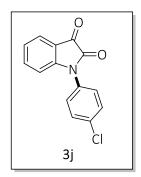
 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR, 100 MHz, CDCl $_{3}$, 298 K

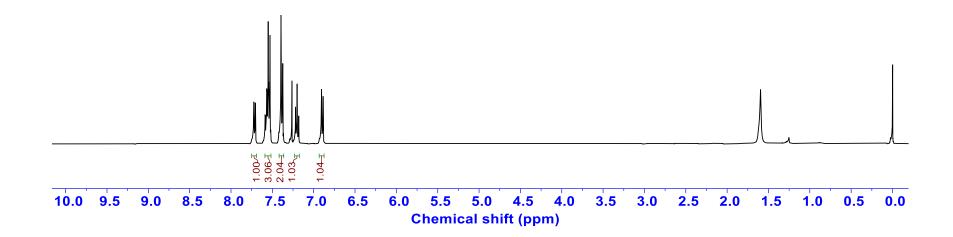


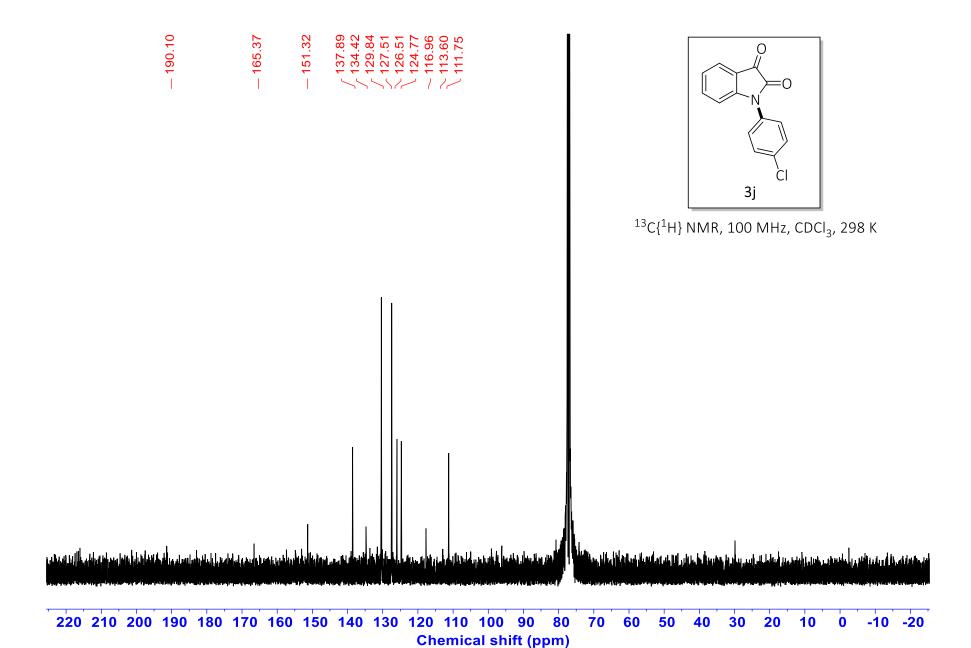

7.717 7.700 7.700 7.581 7.582 7.5430 7.4430 7.4407 7.212 7.212 7.212 7.212 7.212

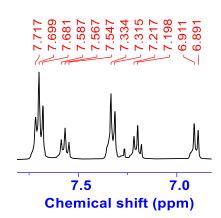


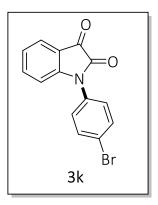

¹H NMR, 400 MHz, CDCl₃, 298 K

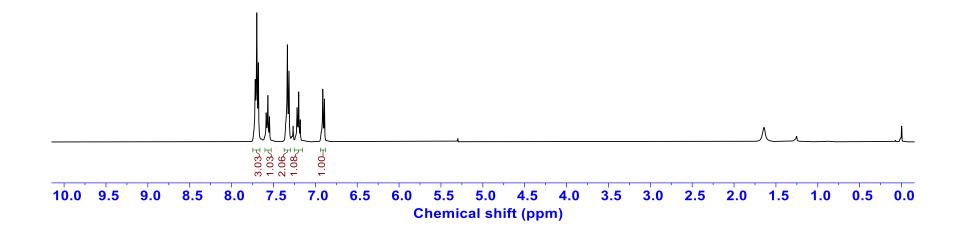


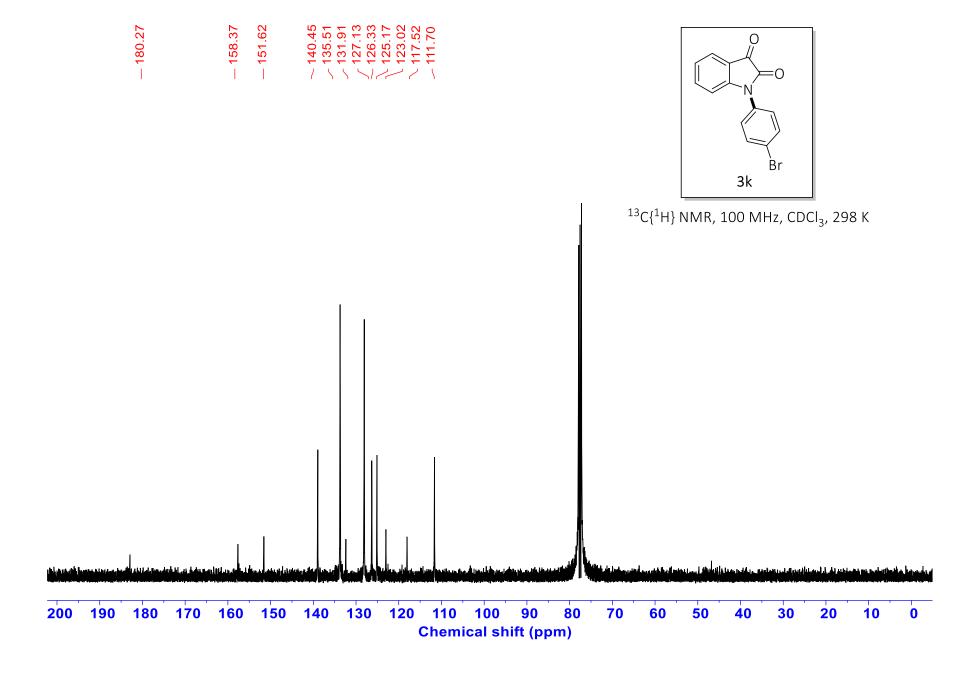


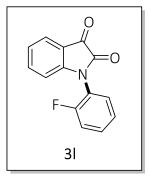


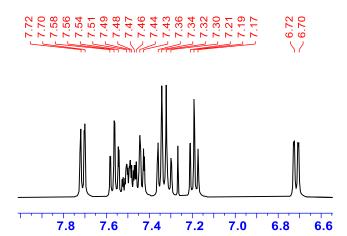


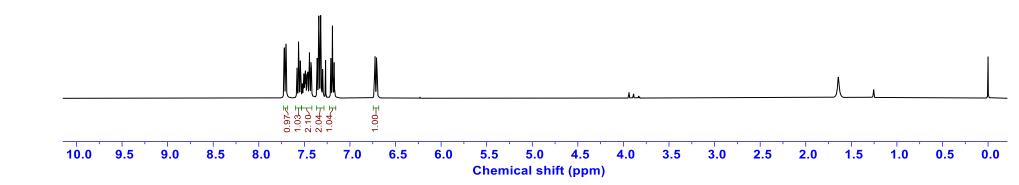

¹H NMR, 400 MHz, CDCl₃, 298 K

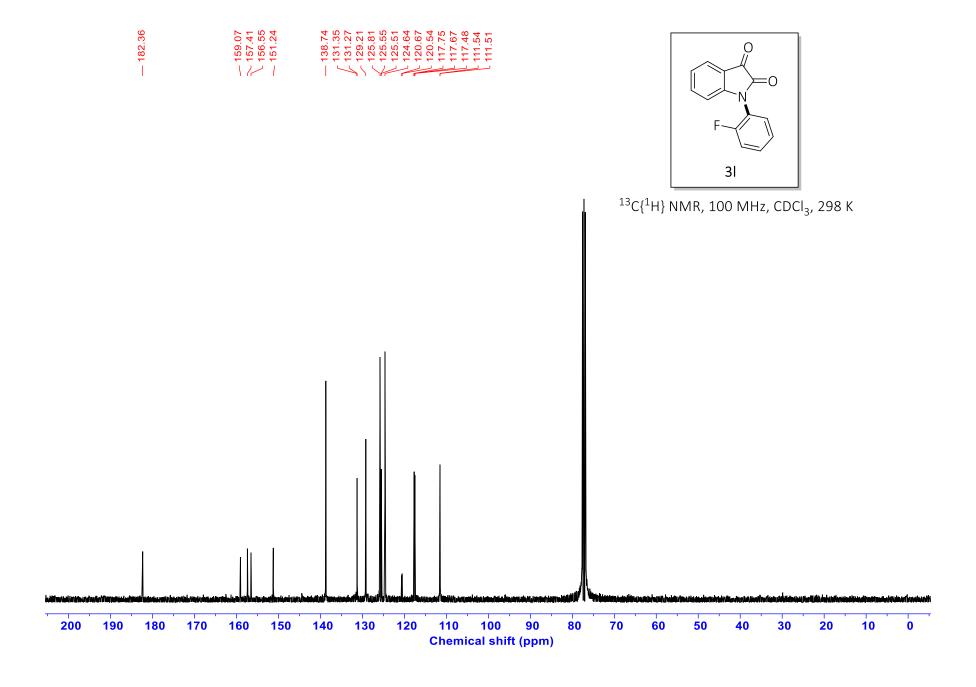


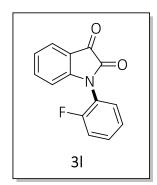




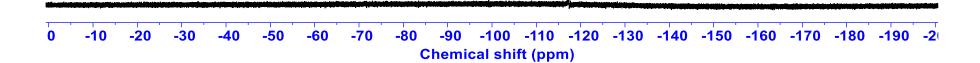

 1 H NMR, 400 MHz, CDCl $_{3}$, 298 K

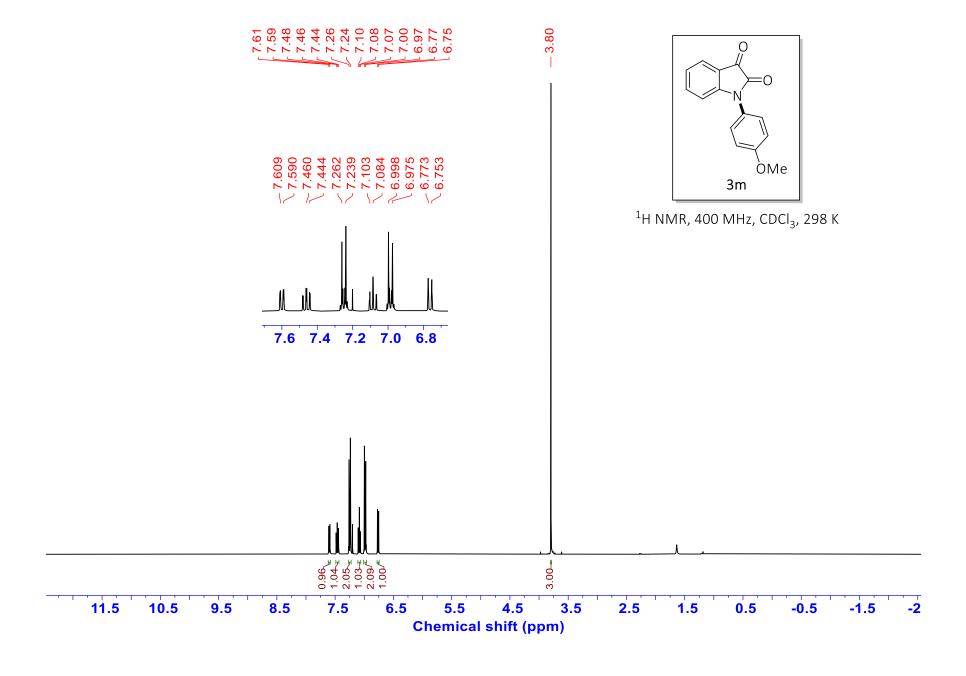


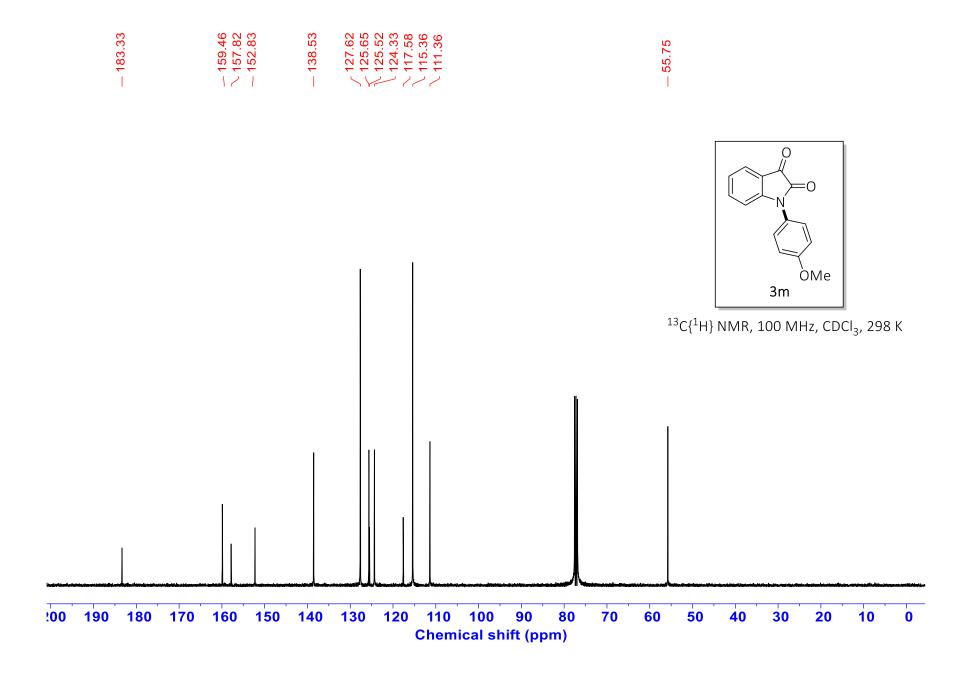




¹H NMR, 400 MHz, CDCl₃, 298 K

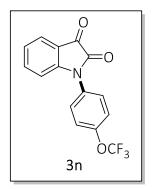


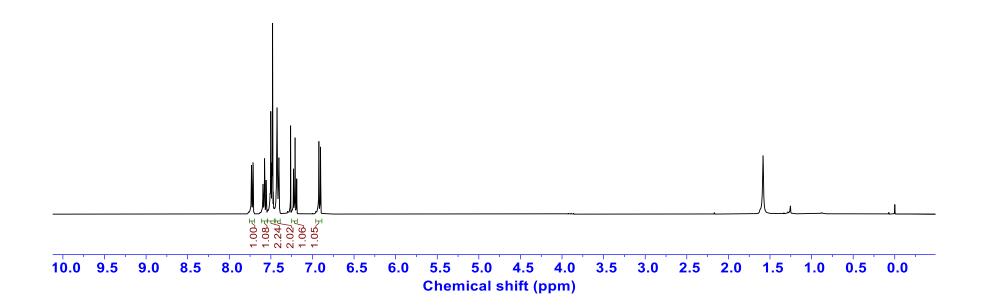


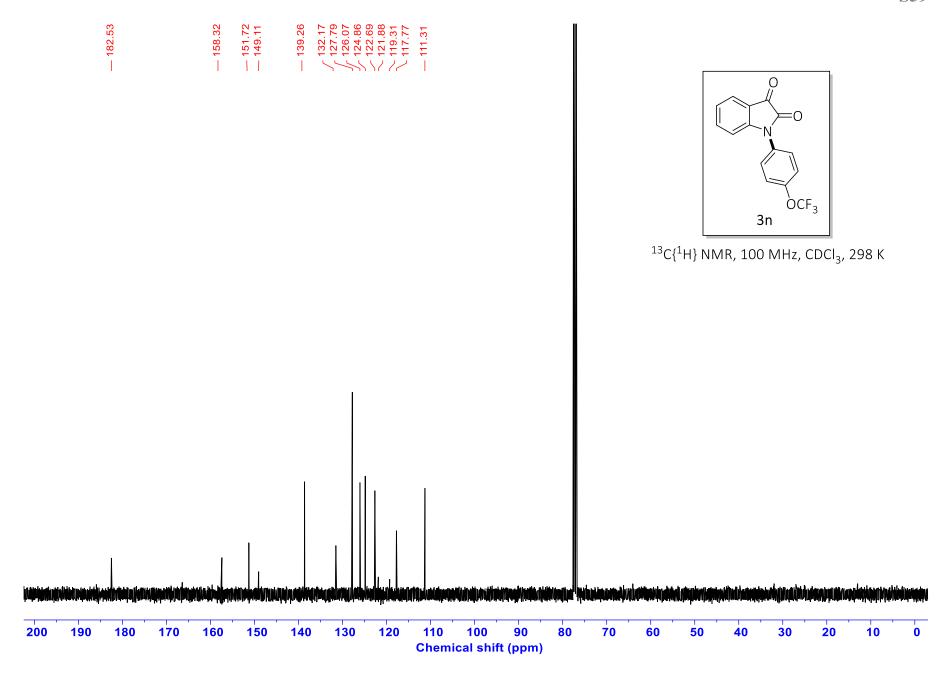


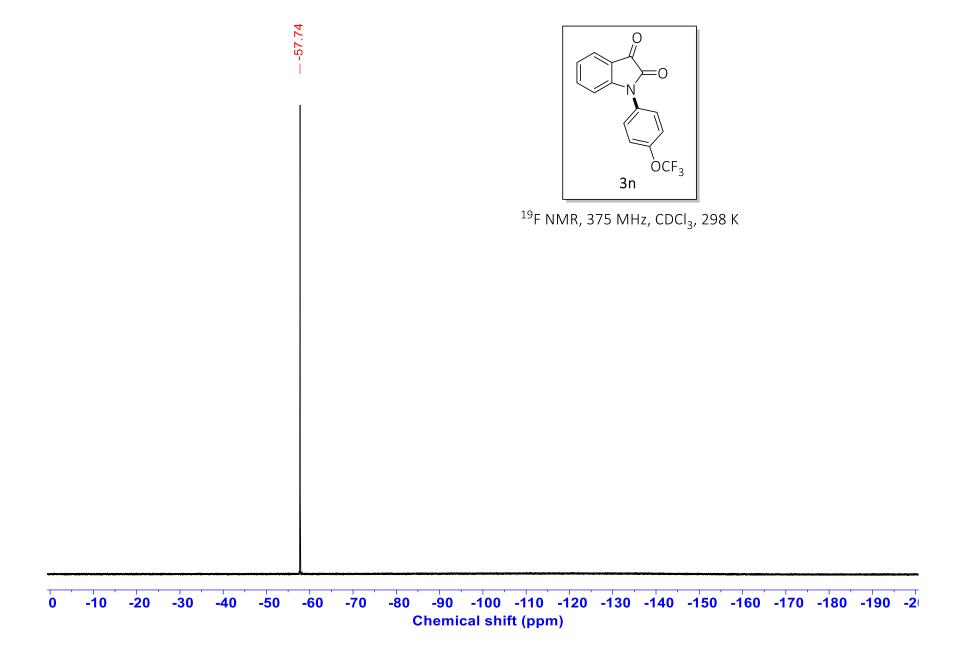


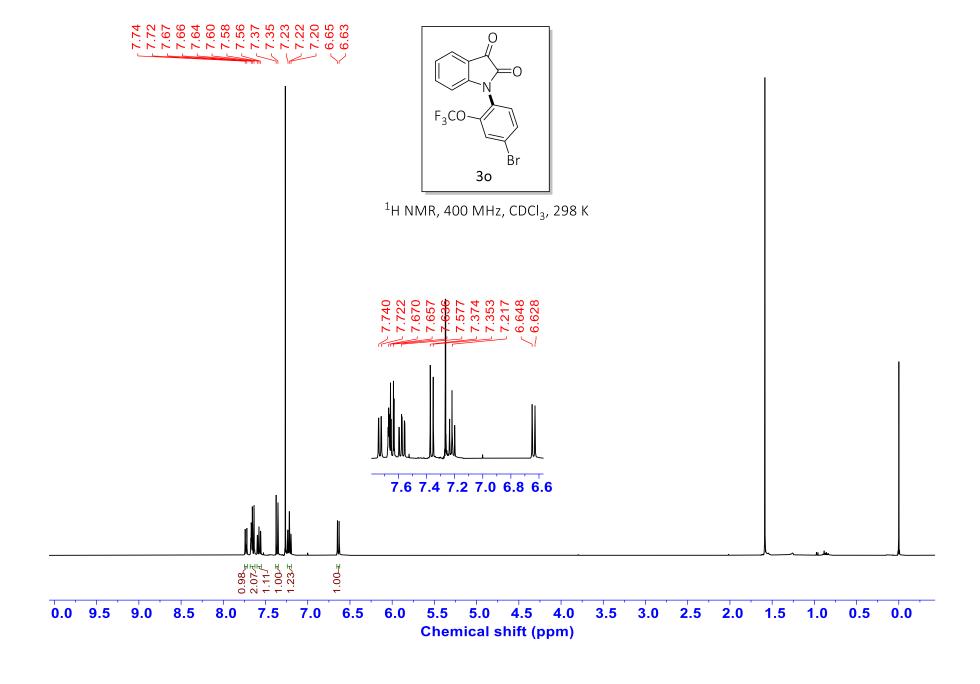
¹⁹F NMR, 375 MHz, CDCl₃, 298 K

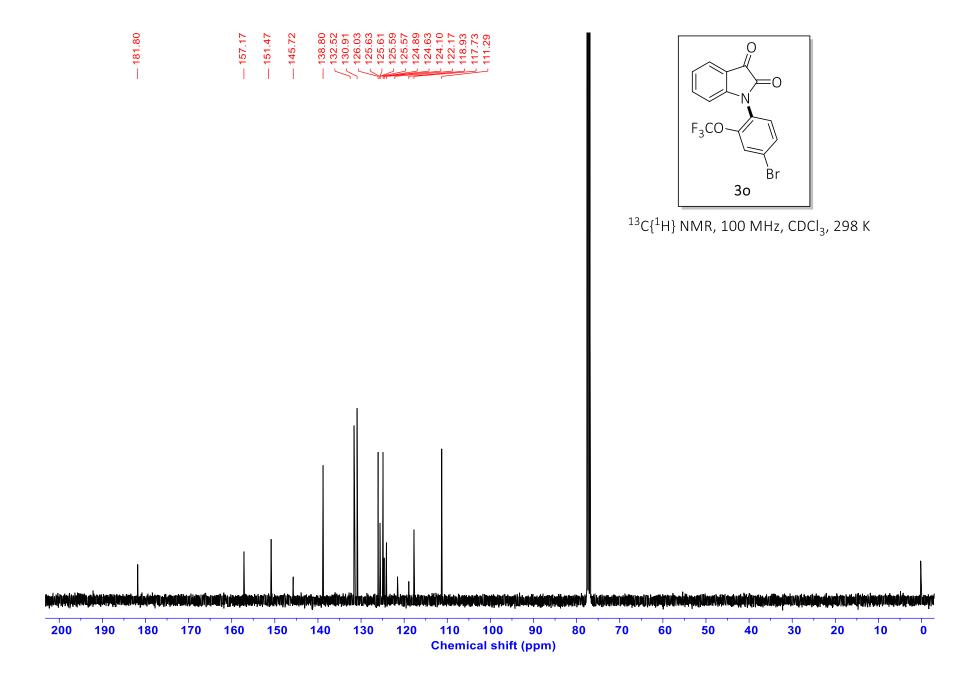


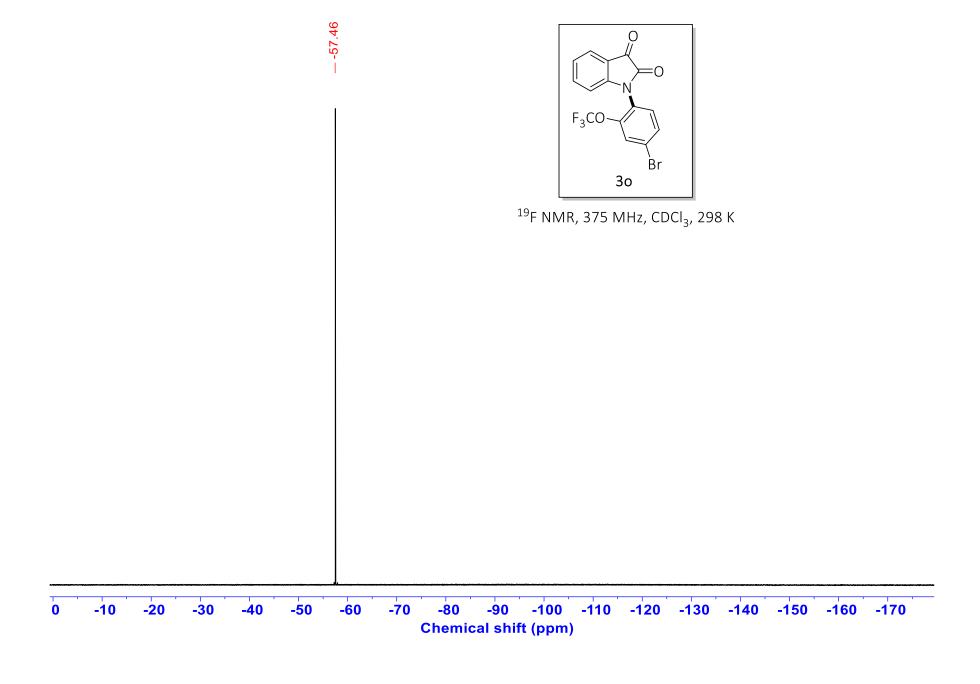


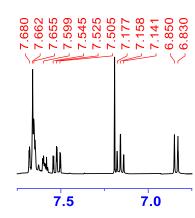

7.0

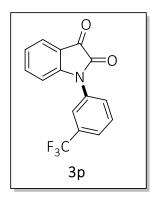

7.5

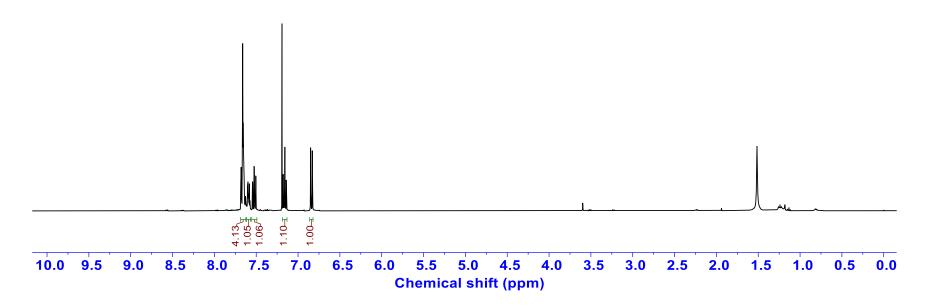


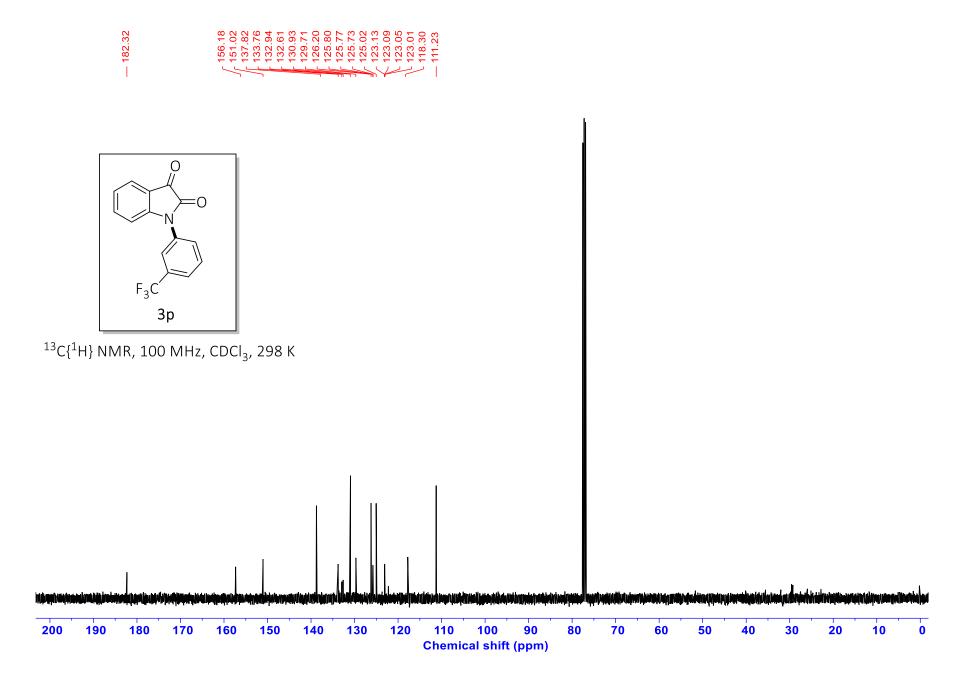

 1 H NMR, 400 MHz, CDCl $_{3}$, 298 K

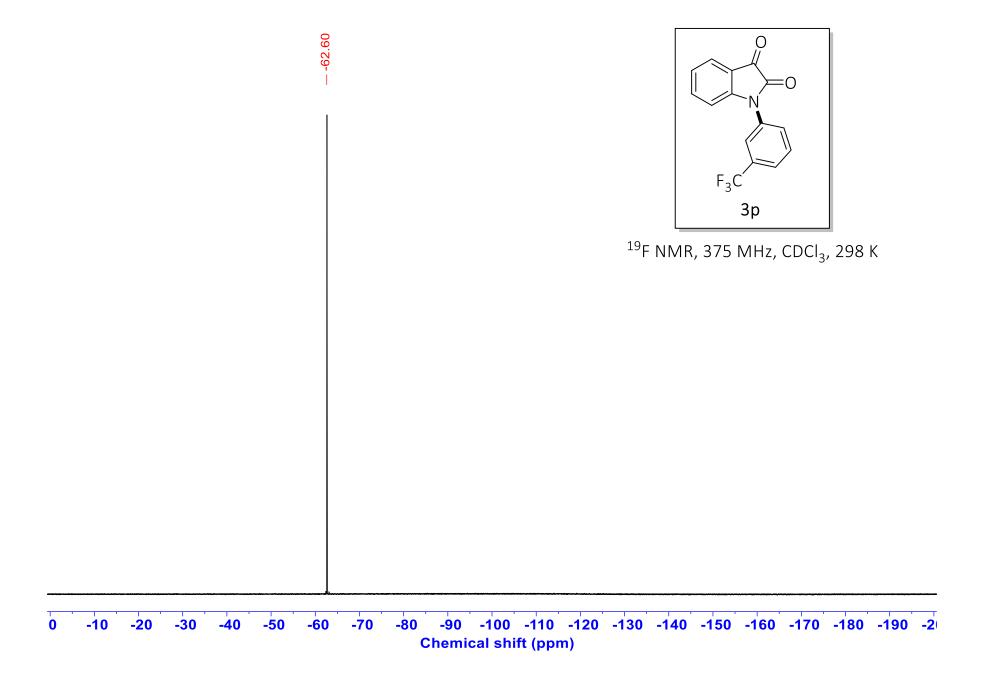


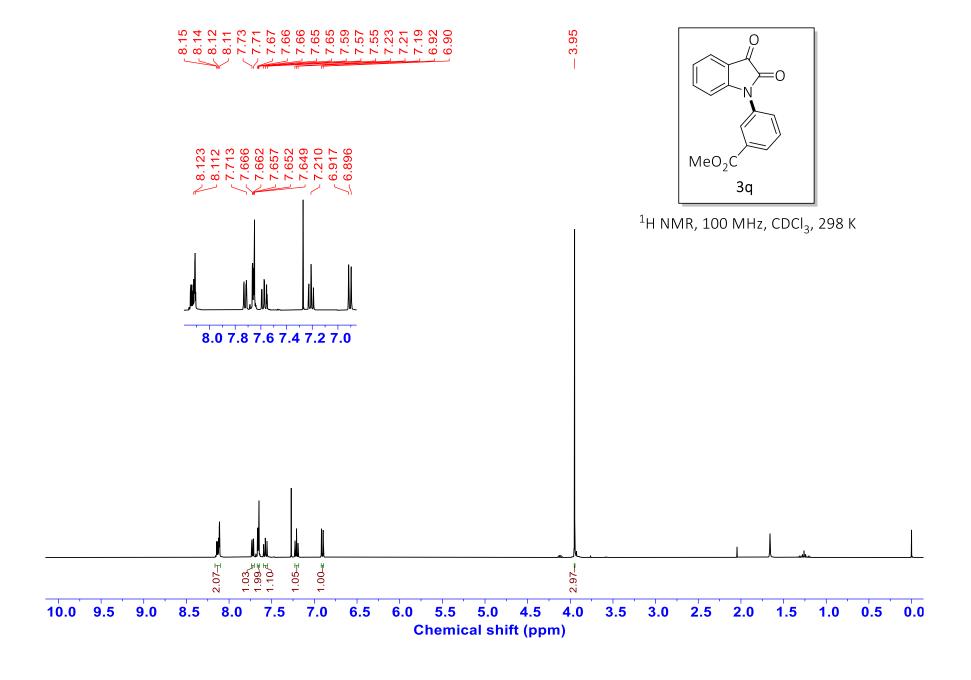


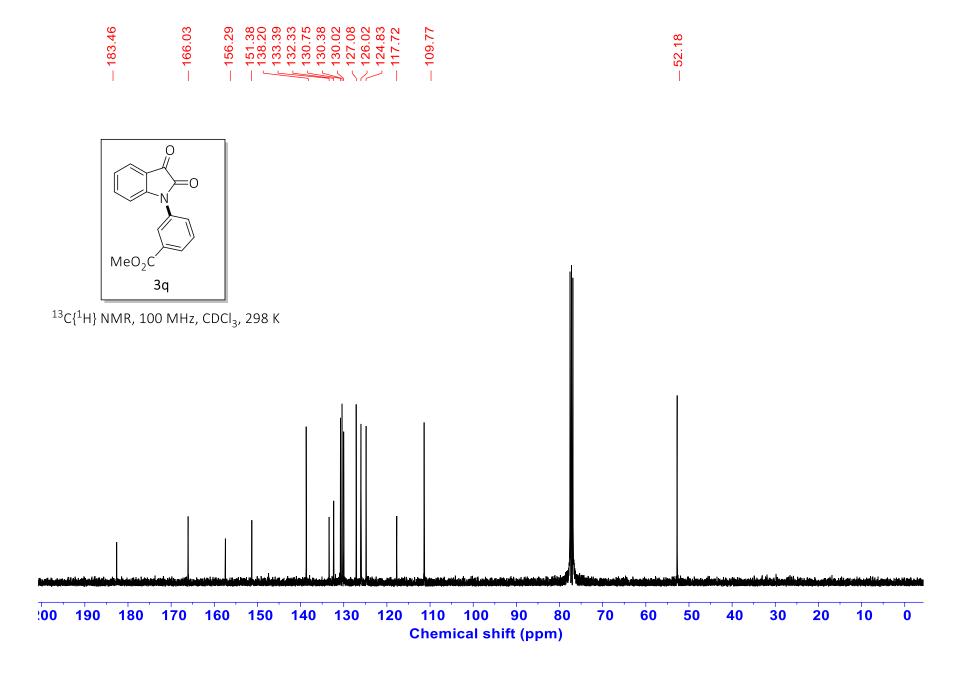


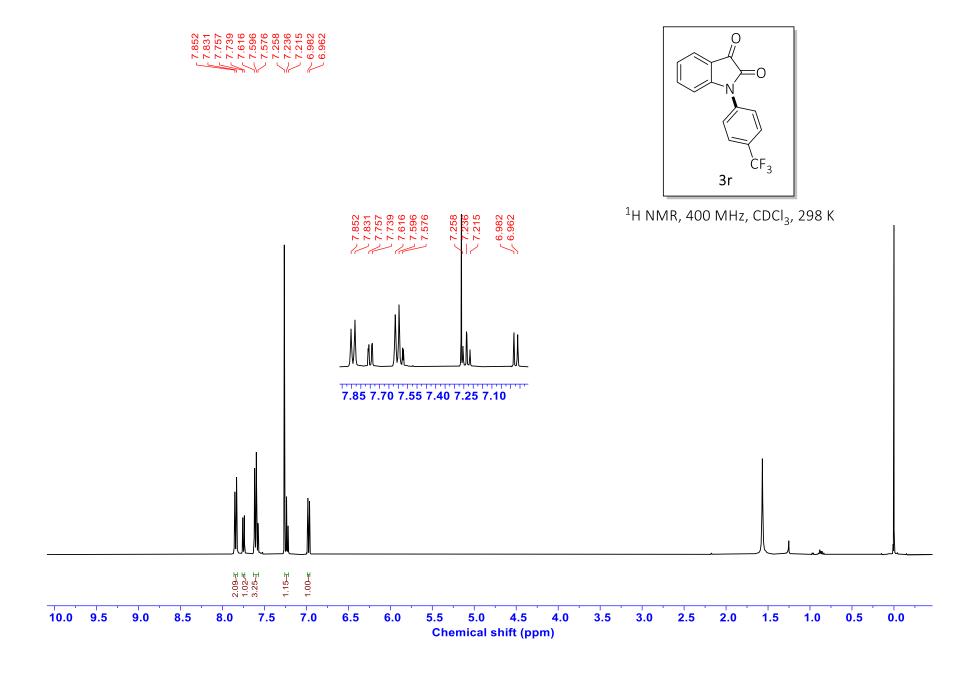


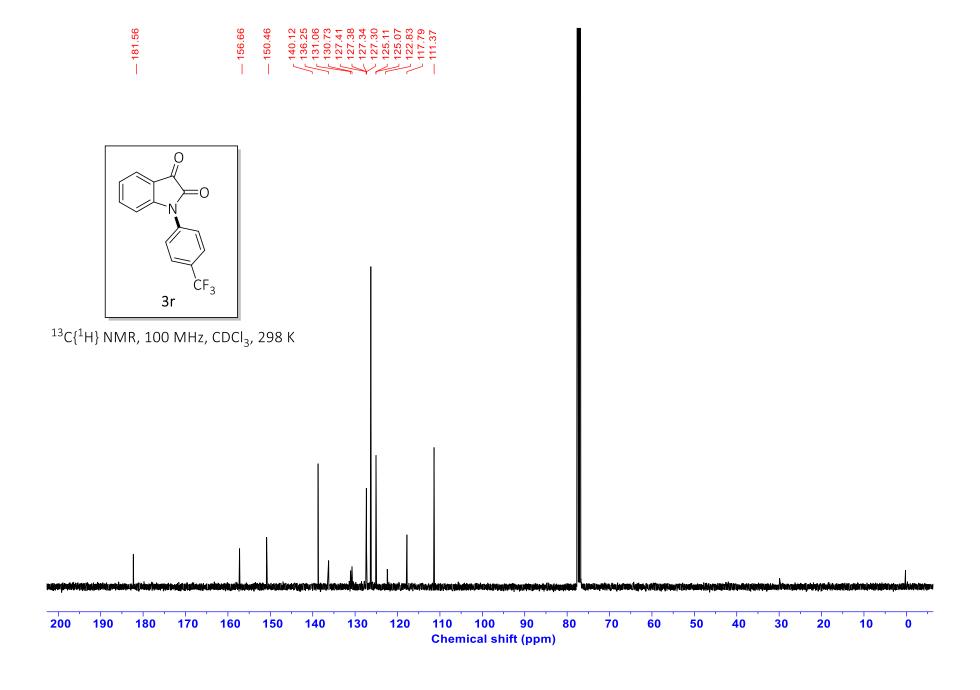


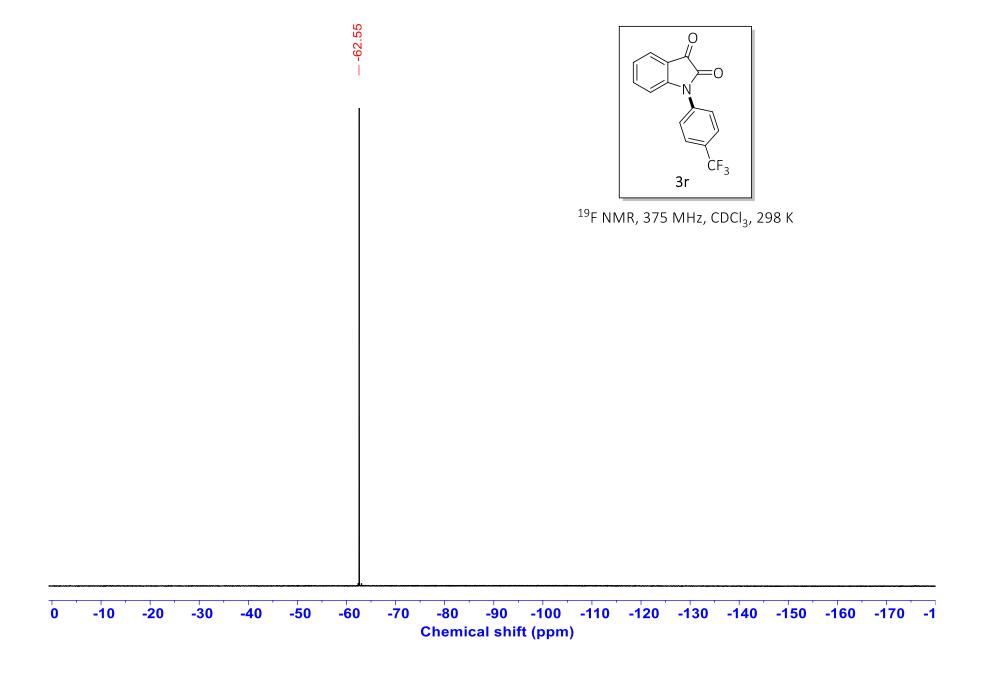


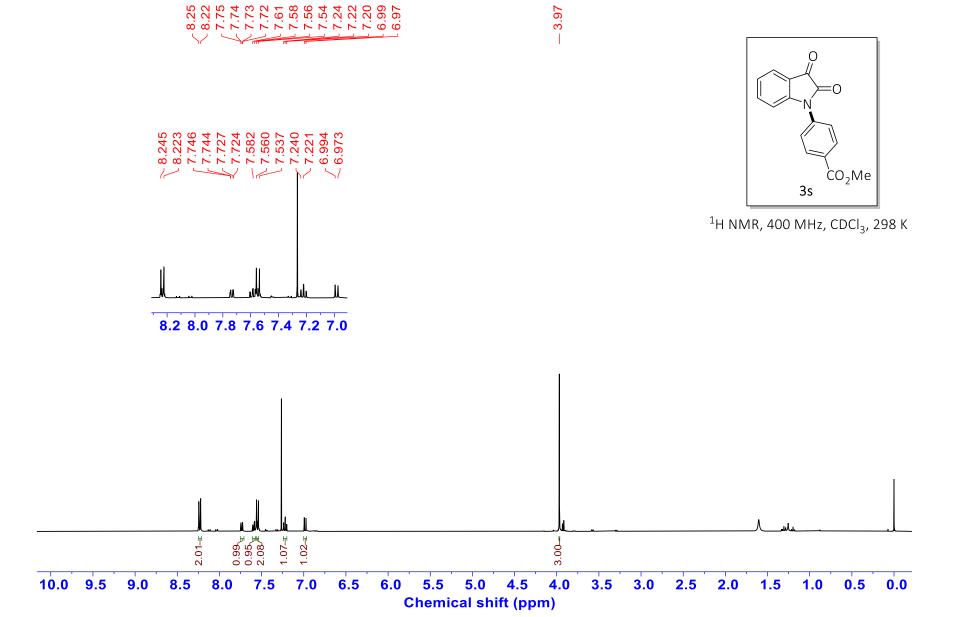


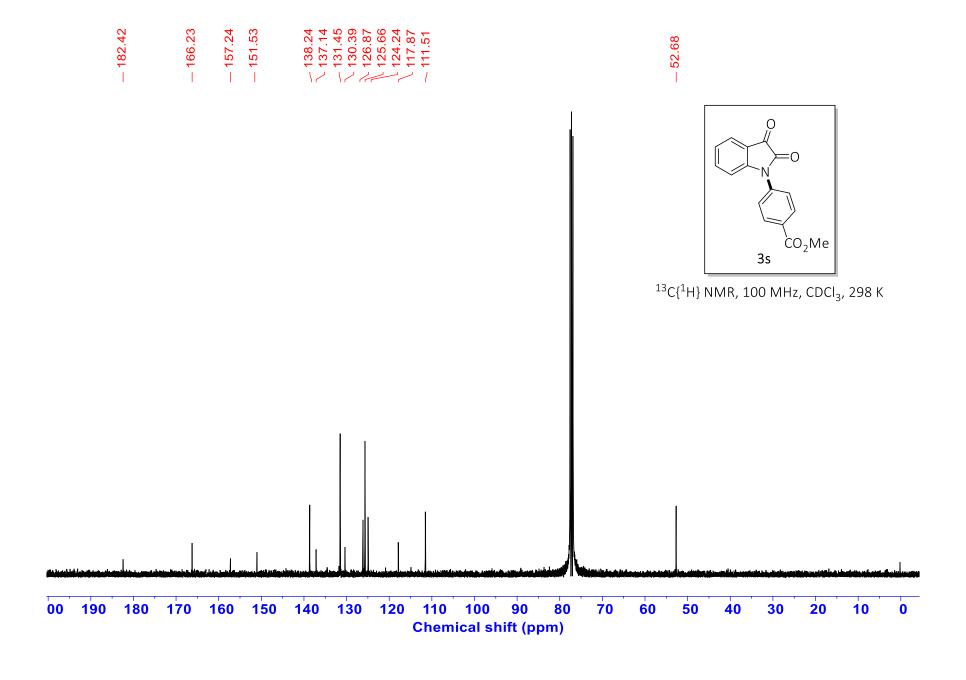

¹H NMR, 400 MHz, CDCl₃, 298 K

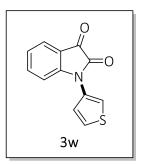


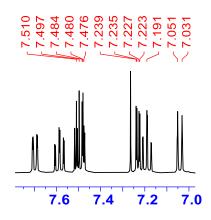


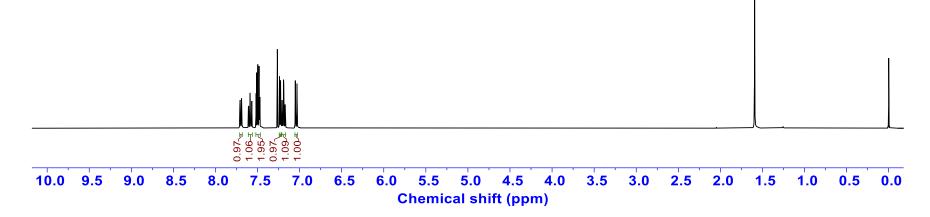


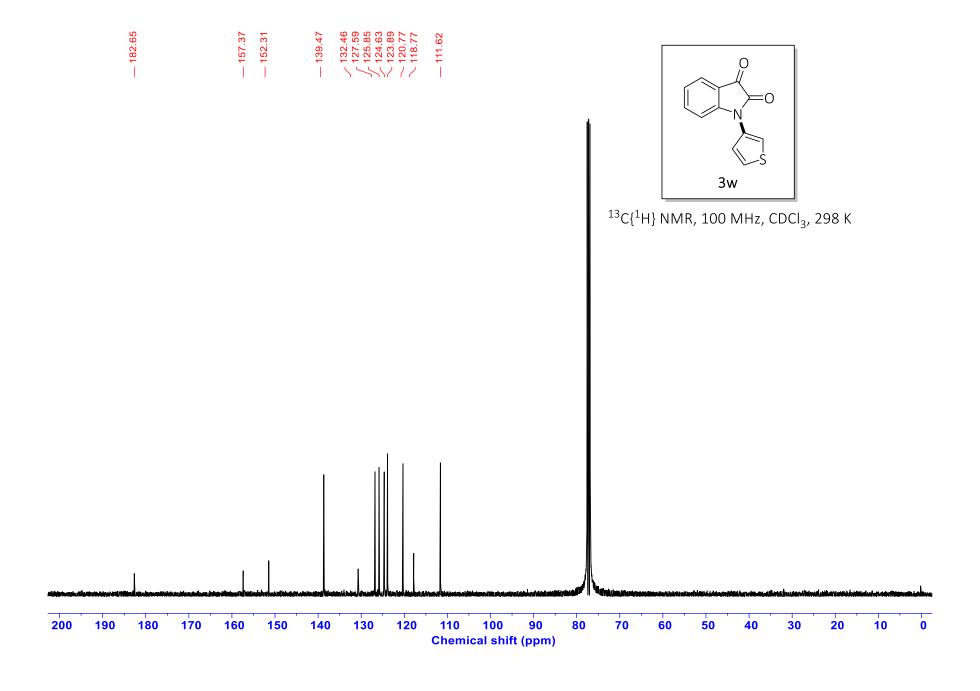


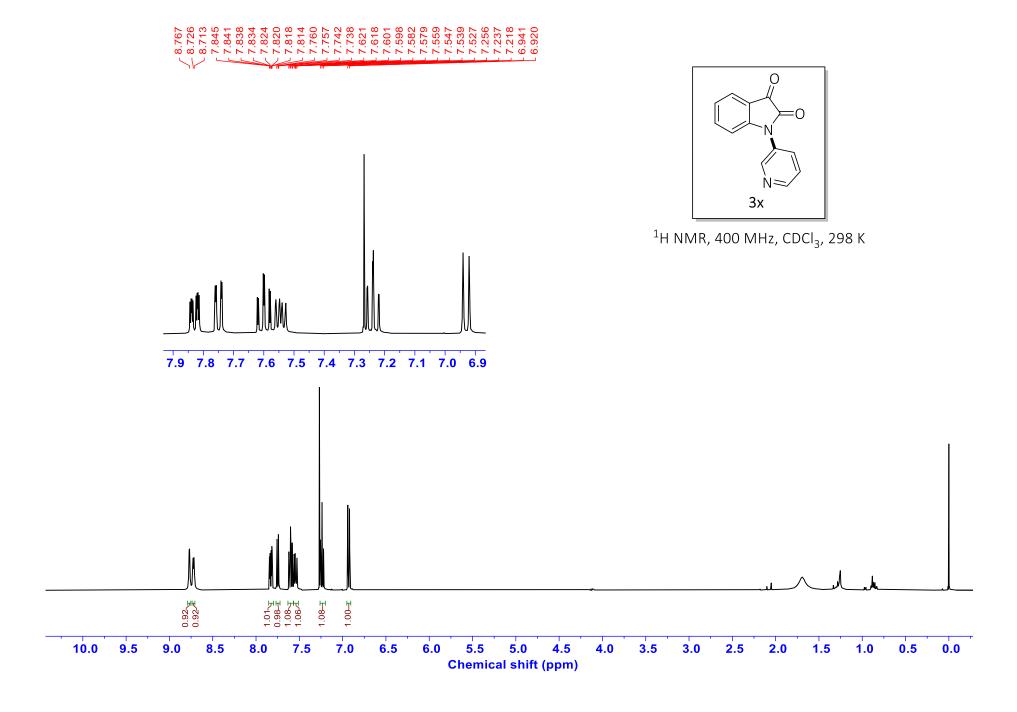


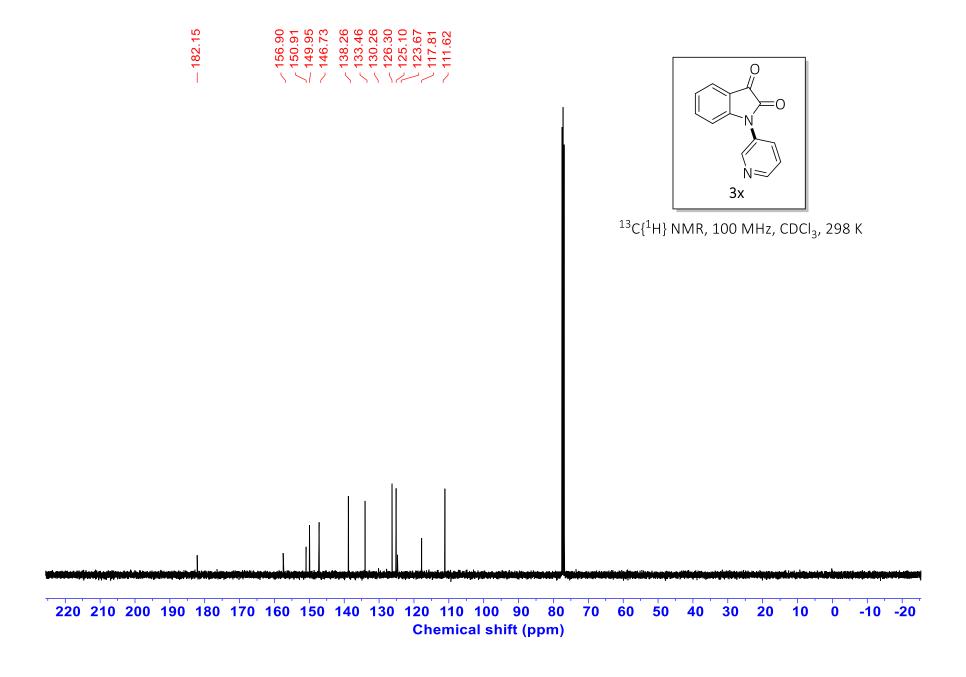


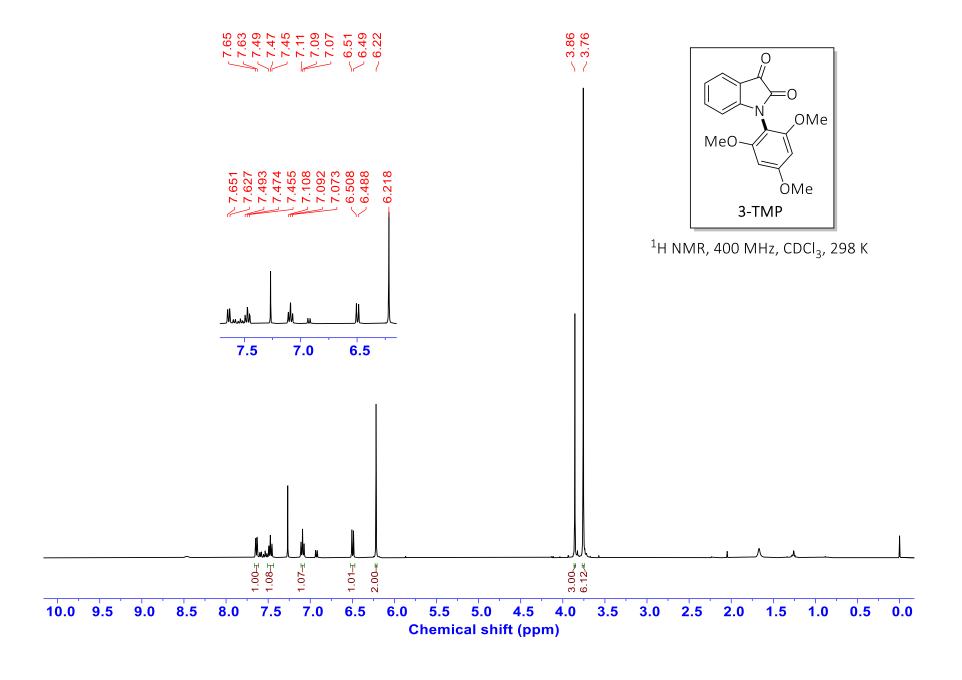


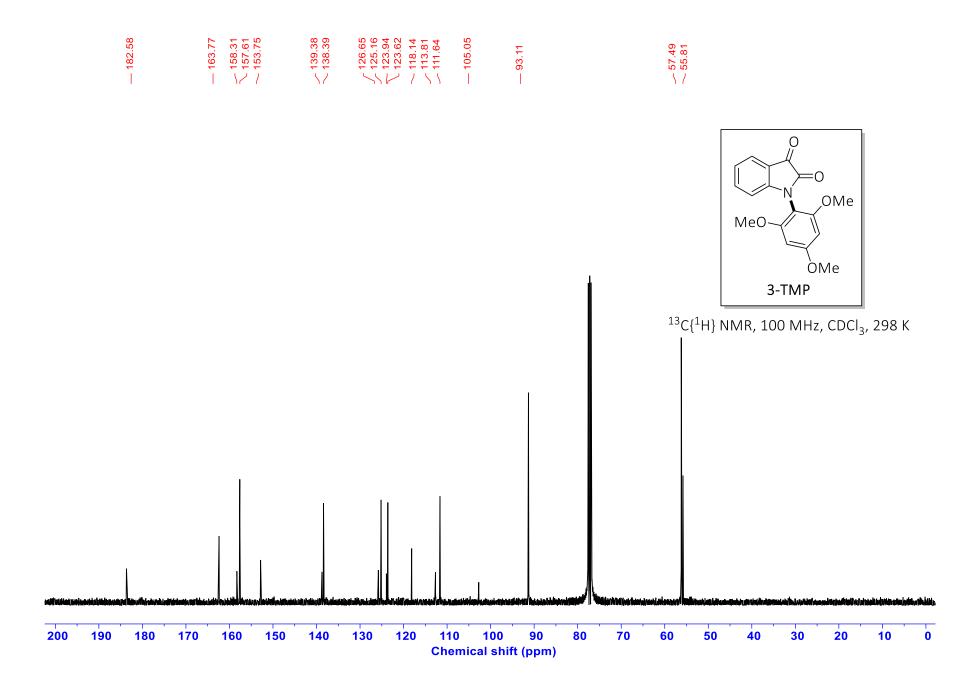


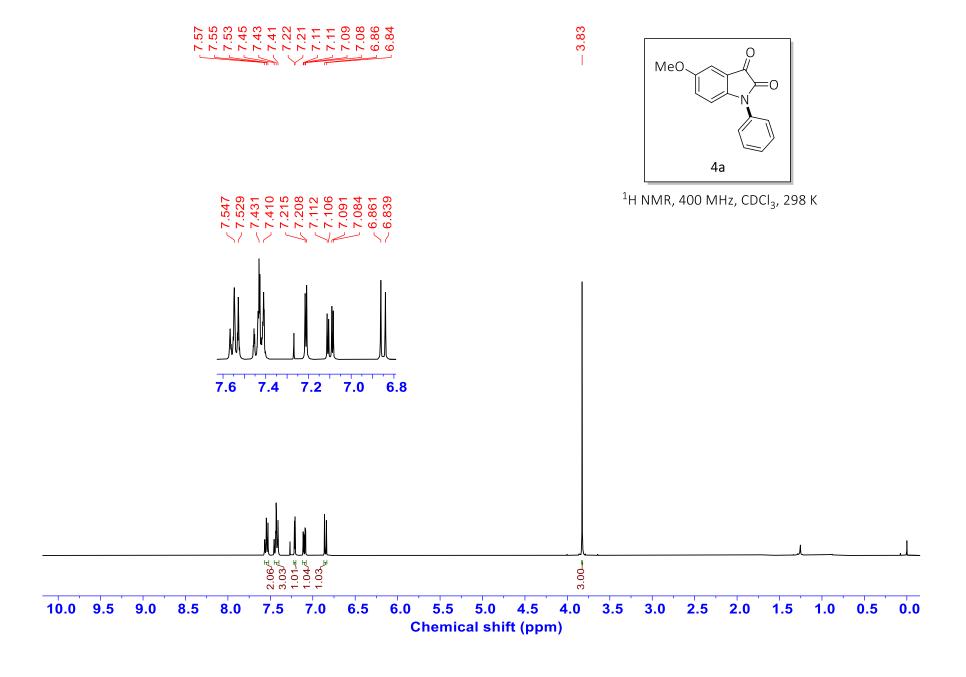


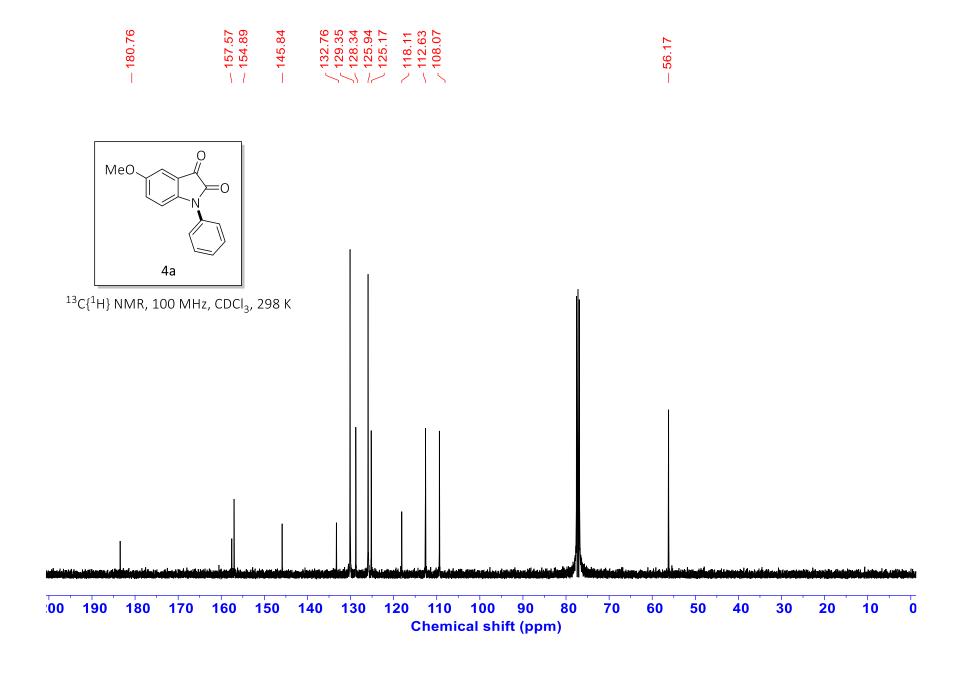


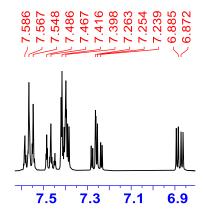

¹H NMR, 400 MHz, CDCl₃, 298 K

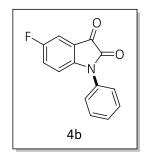


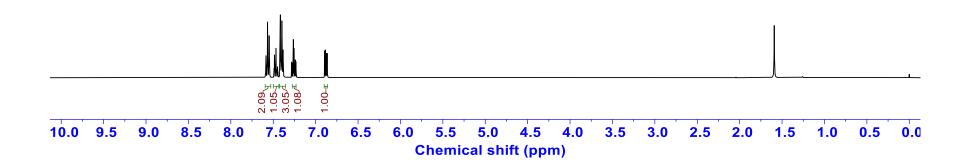


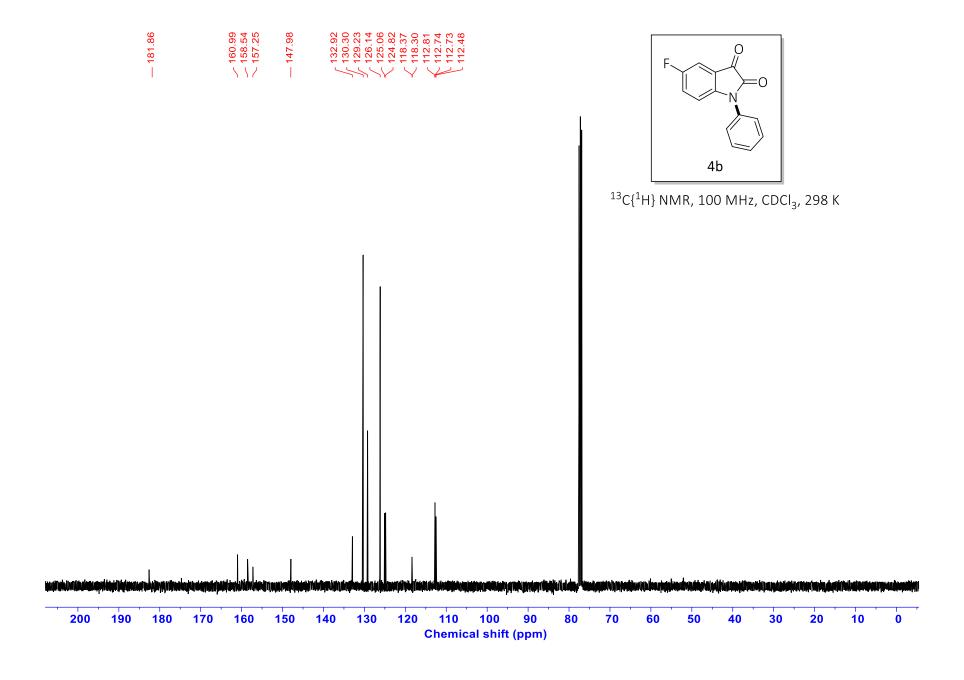




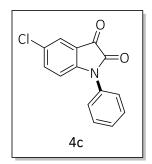


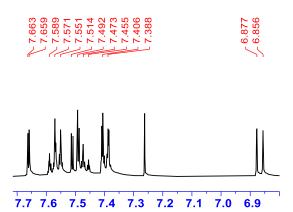


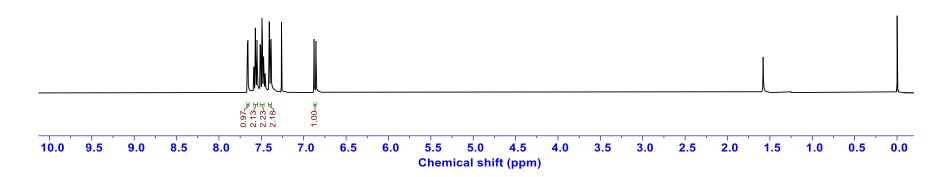


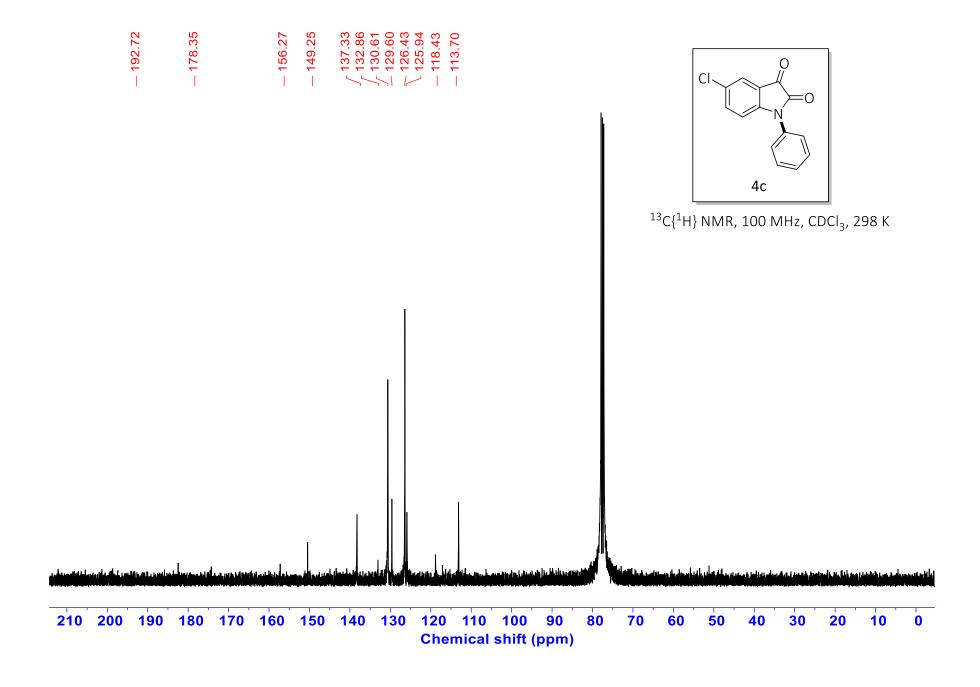


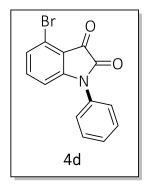
¹H NMR, 400 MHz, CDCl₃, 298 K

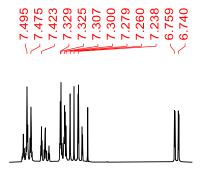


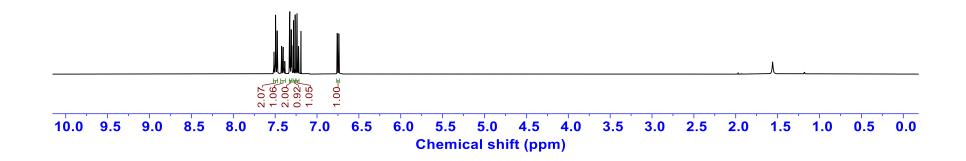

¹⁹F NMR, 375 MHz, CDCl₃, 298 K

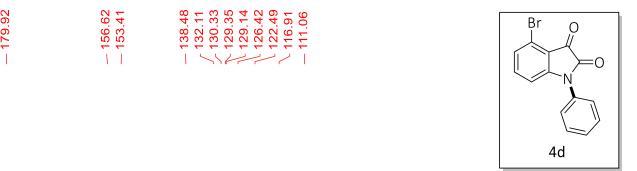




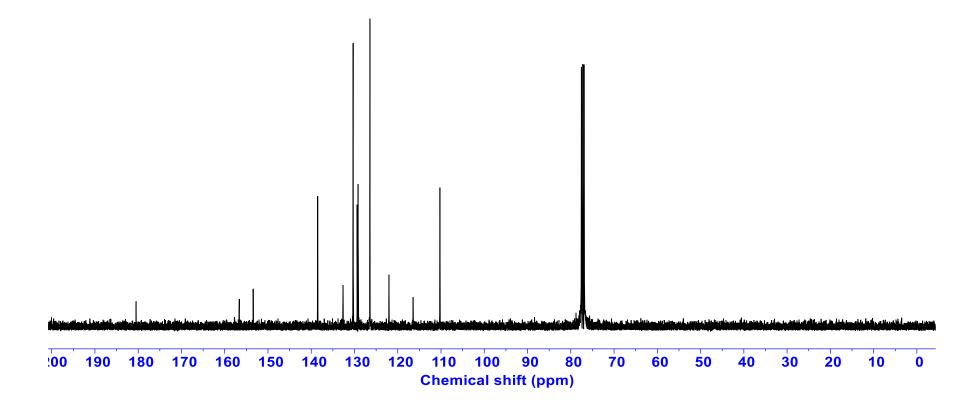

¹H NMR, 400 MHz, CDCl₃, 298 K



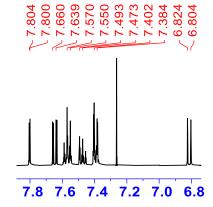

¹H NMR, 400 MHz, CDCl₃, 298 K

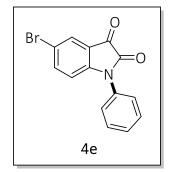


7.0

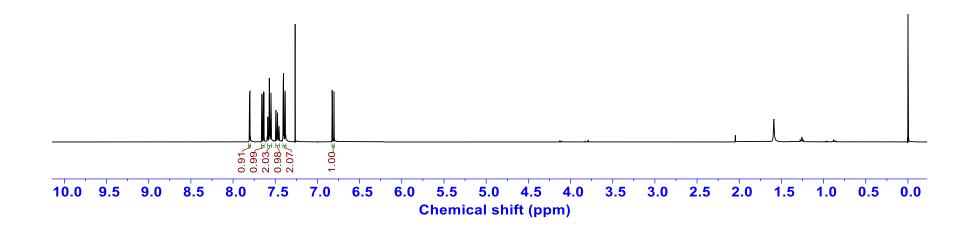

6.8

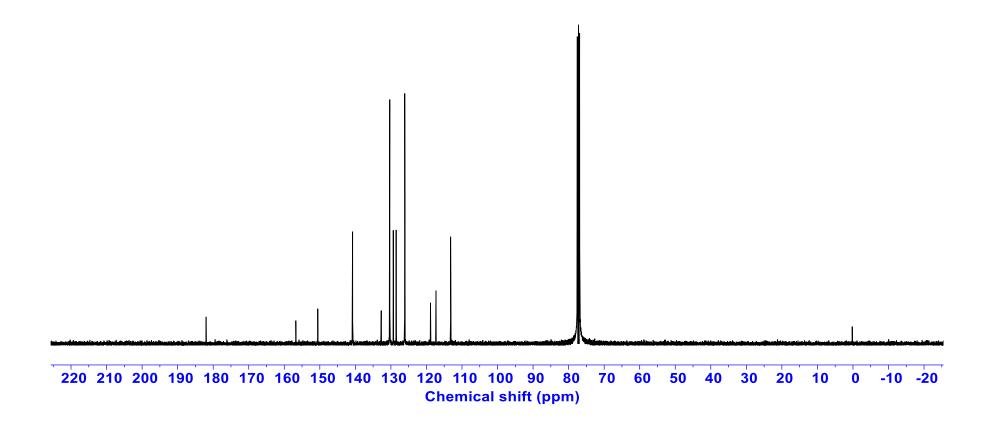
7.4 7.2

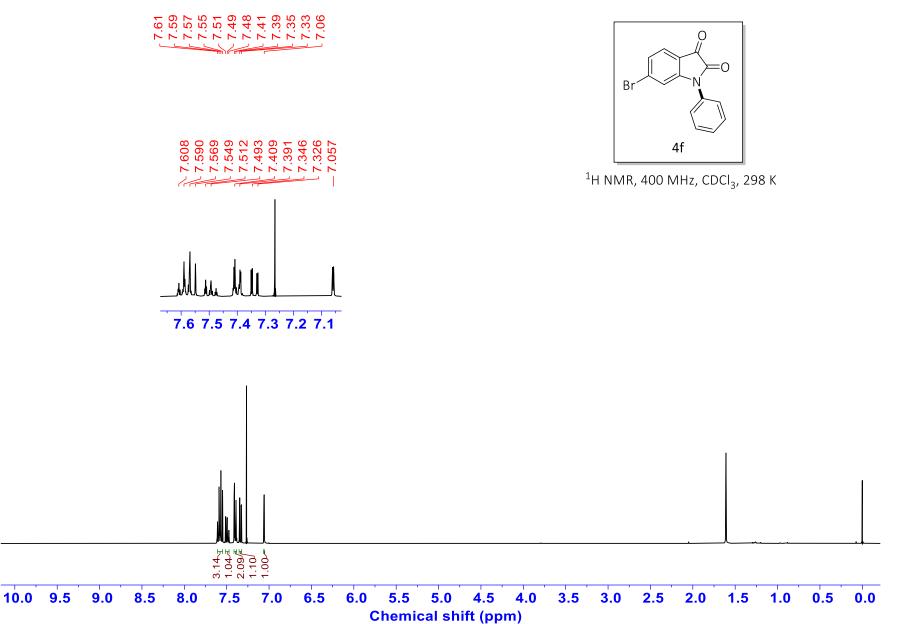




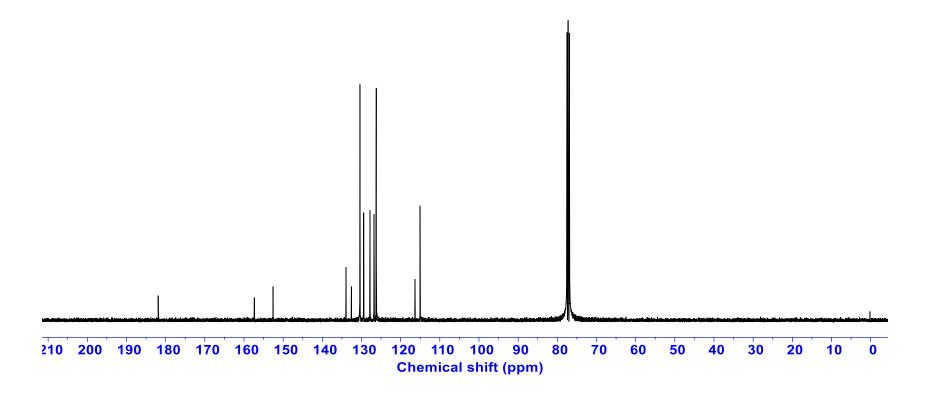
 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR, 100 MHz, CDCl_{3} , 298 K

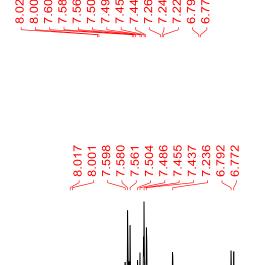


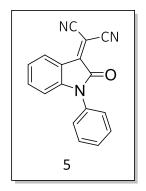


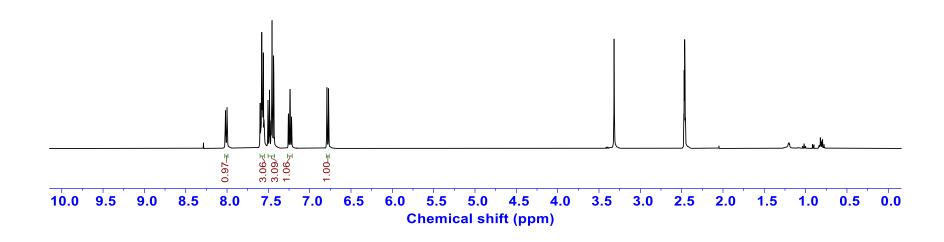

 1 H NMR, 400 MHz, CDCl $_{3}$, 298 K

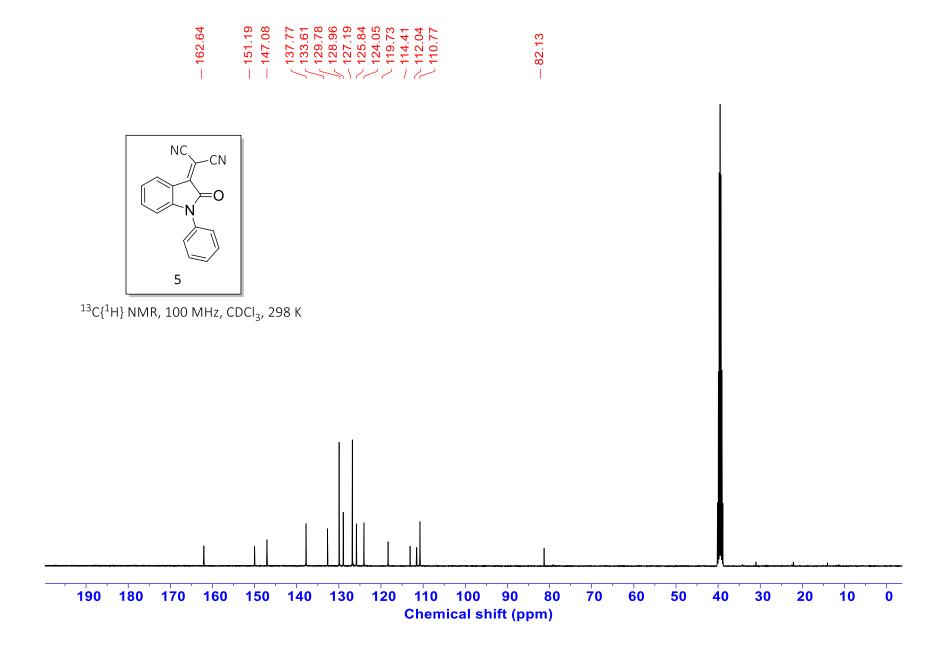


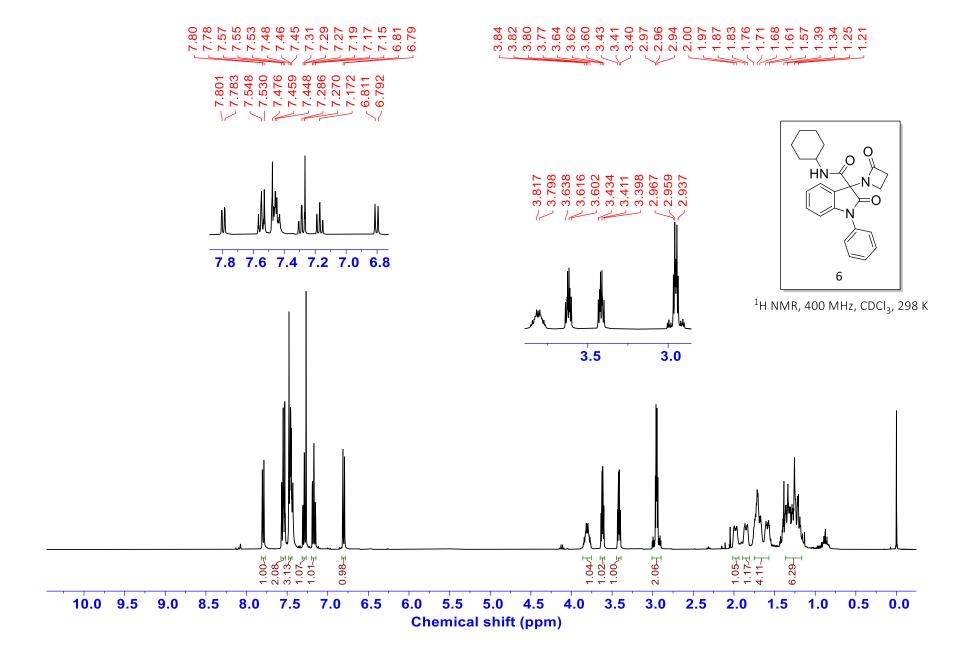


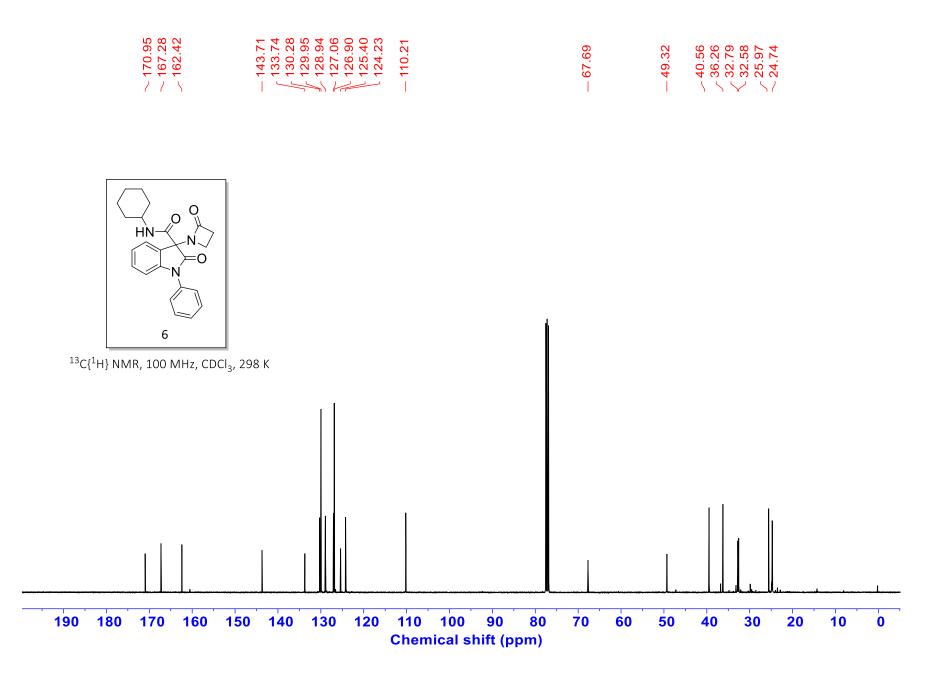

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}\,\mathrm{NMR}$, 100 MHz, CDCl $_{3}$, 298 K








8.0 7.8 7.6 7.4 7.2 7.0 6.8



¹H NMR, 400 MHz, CDCl₃, 298 K

