Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Information

X-shaped π -conjugated fluorophores enable cooperative ion-pair recognition with multicolour emission

Ryota Tazawa, Kaho Watanabe, Kei Mizuguchi, Shoki Mizoguchi, Takayuki Chiba, Shuji Okada, and Ryohei Yamakado*

Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa 992–8510, Japan

Table of Contents	
1. Synthetic procedures and spectroscopic data	S2
Fig. S1–14 ¹ H and ¹³ C NMR spectra.	S6
2. Optical properties	
Fig. S15–16 UV/vis absorption and photoluminescence spectra	S15
3. Ion-binding properties	
Fig. S17–19 ¹¹ B NMR spectral changes upon the addition of CN ⁻ as TBA salt	S16
Fig. S20 ¹ H NMR spectral changes upon the addition of CN ⁻ as TBA salt	S17
Fig. S21–24 ¹ H NMR spectral changes upon the addition of K ⁺ as PF ₆ salt	S18
Fig. S25–35 UV/vis absorption and fluorescence spectral changes upon the addition of ion pair	S20
Fig. S36 Emission colour coordinates	S25
Fig. S37 Photographs of L1, L2, and X1 with various ion pairs under visible light and UV irradiation	S26
4. Theoretical calculations	
Fig. S38–40 Optimized structures	S27
Fig. S41–43 Frontier molecular orbitals	S28
Fig. S44–45 Electron density diagrams	S28
Fig. S46–47 Simulated ¹ H NMR spectra	S29

1. Synthetic procedures and spectroscopic data General procedures.

$$NH_2$$
 CI OH NH_2 K_2CO_3 , $MeOH$

$\hbox{\bf 2-[(2-Hydroxyethyl)(phenyl)amino]ethan-1-ol}^{\rm [S1]}$

2-Chloroethanol (4.2 mL, 43.6 mmol) was added to a solution of aniline (1.0 mL, 10.9 mmol) and K_2CO_3 (4.45 g, 3.22 mmol) in MeOH (5 mL), and the mixture was stirred overnight at 40 °C. When the reaction was completed, the mixture was diluted with cold water (10 mL), and stirred for 5 minute. The mixture was extracted with CH_2Cl_2 and the organic layer was washed with cold water. A combined organic phase was dried over Na_2SO_4 and solvents were removed by a rotary evaporator. The residue was chromatographed over silica gel column (SiO_2 ; eluent: hexane/ EtOAc = 1/2) to afford 2-[(2-hydroxyethyl)(phenyl)amino]ethan-1-ol as a white solid (0.81 g, 4.46 mmol, 39%).

¹H-NMR (500 MHz, CDCl₃, δ) 7.23 (2H, dd, J = 8.6, 7.2 Hz), 6.74 (1H, t, J = 7.2 Hz), 6.69 (2H, d, J = 8.6 Hz), 3.85 (4H, t, J = 4.9 Hz), 3.58 (4H, t, J = 4.9 Hz), 3.41 (2H, s)

$\textbf{13-Phenyl-1,4,7,10-tetra} \textbf{oxa-13-azacyclopenta} \textbf{decane}^{[S2]}$

NaH (1.54 g, 38.0 mmol) was added to a solution of 2-[(2-hydroxyethyl)(phenyl)amino]ethan-1-ol (5.50 g, 30.0 mmol) in dry THF (400 mL) and heated at reflux temperature. Then the solution of triethyleneglycolbis(p-toluenesulfonate) (4.30 g, 9.37 mmol) in dry THF (300 mL) was slowly added dropwise to the reaction mixture, and refluxing was continued for another 24 h. When the reaction was completed, the mixture cooled, then filtered and washed with THF. The solvents were removed by a rotary evaporator and the residue was chromatographed over silica gel column (SiO₂; eluent: EtOAc/ CH₂Cl₂ = 1:9, R_f = 0.3) to afford 13-phenyl-1,4,7,10-tetraoxa-13-azacyclopentadecane as a white liquid (1.68 g, 5.70 mmol, 61%).

¹H-NMR (400 MHz, CDCl₃, δ) 7.21 (2H, t, J = 7.8 Hz), 6.66 (3H, t, J = 4.3 Hz,), 3.76 (4H, t, J = 6.2 Hz), 3.66 (12H, m), 3.60 (4H, t, J = 6.2 Hz)

$\textbf{13-(4-Iodophenyl)-1,4,7,10-tetra oxa-13-azacyclopenta decane}^{[S2]}$

13-Phenyl-1,4,7,10-tetraoxa-13-azacyclopentadecane (0.260 g, 0.880 mmol) in CH₂Cl₂ (3 mL) were added to KI (0.175 g, 1.05 mmol) and H₅IO₆ (0.134 g, 0.588 mmol) in H₂O (3 mL). The mixture was stirred vigorously for 2 h at r.t. When the reaction was completed, the mixture was washed with aq. Na₂S₂O₃ (10%). The aqueous fraction was extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄, and the solvent was removed by a rotary evaporator. The residue was chromatographed over silica gel column (SiO₂; eluent: CHCl₃/MeOH = 10:1, R_f = 0.5) to afford 13-(4-iodophenyl)-1,4,7,10-tetraoxa-13-azacyclopentadecane as a brown liquid (0.321 g, 0.761 mmol, 87%).

 1 H-NMR (500 MHz, CDCl₃, δ) 7.43 (2H, dd, J = 6.9, 2.3 Hz), 6.44 (2H, dd, J = 6.9, 2.3 Hz), 3.72 (4H, t, J = 6.0 Hz), 3.68–3.63 (12H, m), 3.55 (4H, t, J = 6.0 Hz)

$$I \longrightarrow \begin{matrix} O & O & \\ & O$$

$\textbf{13-\{4-[2-(Trimethylsilyl)ethynyl]phenyl\}-1,4,7,10-tetraoxa-13-azacyclopentadecane}^{[S2]}$

A mixture of 13-(4-iodophenyl)-1,4,7,10-tetraoxa-13-azacyclopentadecane (220 mg, 0.522 mmol), trimethylsilylacetylene (0.37 mL, 2.61 mmol), Pd(PPh₃)₂Cl₂ (37.0 mg, 0.0527 mmol), and CuI (10 mg, 0.0522 mmol) in 5 mL of i-Pr₂NH and 15 mL of dry DMF was stirred in an atmosphere of N₂ at 70 °C for 24 h. When the reaction was

completed, the reaction mixture was cooled at r.t., and the solvent was removed by rotary evaporator. The residue was chromatographed over silica gel column (SiO₂; eluent: EtOAc, $R_f = 0.5$) to afford 13-{4-[2-(trimethylsilyl)ethynyl]phenyl}-1,4,7,10-tetraoxa-13-azacyclopentadecane as a brown liquid (0.183 g, 0.467 mmol, 90%). ¹H-NMR (400 MHz, CDCl₃, δ) 7.30 (2H, d, J = 9.0 Hz), 6.55 (2H, d, J = 9.0 Hz), 3.74 (4H, t, J = 6.2 Hz), 3.66 (12H, m), 3.59 (4H, t, J = 6.2 Hz), 0.23 (9H, s)

$$-\stackrel{\backslash}{\text{Si}} = \stackrel{\bigcirc}{\longrightarrow} \stackrel{\bigcirc}{\stackrel{\bigcirc}{\bigcap}} \stackrel{\bigcirc}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow}$$

$\textbf{13-(4-Ethynylphenyl)-1,4,7,10-tetraoxa-13-azacyclopentadecane}^{[S2]}$

TBAF (395 mg, 1.25 mmol) in CH₂Cl₂ (10 mL) was added to a solution of 13-{4-[2-(trimethylsilyl)ethynyl]phenyl}-1,4,7,10-tetraoxa-13-azacyclopentadecane (170 mg, 0.434 mmol) in CH₂Cl₂ (50 mL), and the mixture was stirred for 4 h at 0 °C. After dichloromethane was added, the reaction mixture was washed with water. A combined organic phase was dried over Na₂SO₄, and solvents were removed by a rotary evaporator. The residue was chromatographed over silica gel column (SiO₂; eluent: EtOAc, $R_f = 0.5$) to afford 13-(4-ethynylphenyl)-1,4,7,10-tetraoxa-13-azacyclopentadecane as a brown liquid (0.136 g, 0.425 mmol, 98%).

¹H-NMR (600 MHz, CDCl₃, δ) 7.33 (2H, d, J = 9.0 Hz), 6.58 (2H, d, J = 9.0 Hz), 3.74 (4H, t, J = 6.2 Hz), 3.68–3.63 (12H, m), 3.60 (4H, t, J = 6.2 Hz), 2.97 (1H, s)

$16\hbox{-Phenyl-1,4,7,10,13-penta} ox a-16\hbox{-}aza cycloocta decane {}^{[S2]}$

NaH (781 mg, 19.6 mmol) was added to a solution of 2-[(2-hydroxyethyl)(phenyl)amino]ethan-1-ol (1.5 g, 8.28 mmol) in dry THF (300 mL) and heated at reflux temperature. Then the solution of tetraethyleneglycolbis(p-toluenesulfonate) (1.52 g, 3.31 mmol) in dry THF (80 mL) was slowly added dropwise to the reaction mixture, and refluxing was continued for another 24 h. When the reaction was completed, the mixture cooled, then filtered and washed with THF. The solvents were removed by a rotary evaporator and the residue was chromatographed over silica gel column (SiO₂; eluent: EtOAc/MeOH = 10:1, R_f = 0.2) to afford 16-phenyl-1,4,7,10,13-pentaoxa-16-azacyclooctadecane as a white liquid (0.598 g, 1.76 mmol, 21%).

¹H-NMR (500 MHz, CDCl₃, δ) 7.22–7.17 (2H, dd, J = 8.8, 7.3 Hz), 6.68 (2H, dJ = 8.8 Hz), 6.65 (1H, d, J = 7.3 Hz), 3.71–3.61 (24H, m)

$$\begin{array}{c|c} & & & \\ &$$

$\textbf{16-(4-Iodophenyl)-1,4,7,10,13-penta} ox a-\textbf{16-azacyclooctadecane}^{[S2]}$

16-Phenyl-1,4,7,10,13-pentaoxa-16-azacyclooctadecane (0.498 g, 1.47 mmol) in CH₂Cl₂ (6 mL) were added KI (0.293 g, 1.77 mmol) and H₅IO₆ (0.402 g, 1.77 mmol) in H₂O (5 mL). The mixture was stirred vigorously for 2 h at r.t. When the reaction was completed, the mixture was washed with aq. Na₂S₂O₃ (10 wt%). The aqueous fraction was extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄, and the solvent was removed by a rotary evaporator. The residue was chromatographed over silica gel column (SiO₂; eluent: EtOAc, $R_f = 0.3$) to afford 16-(4-iodophenyl)-1,4,7,10,13-pentaoxa-16-azacyclooctadecane as a brown liquid (0.484 g, 1.04 mmol, 71%).

¹H-NMR (500 MHz, CDCl₃, δ) 7.42 (2H, dd, J = 6.9, 2.3 Hz), 6.47 (2H, dd, J = 6.9, 2.3Hz), 3.68–3.56 (24H, m)

16-{4-[2-(Trimethylsilyl)ethynyl]phenyl}-1,4,7,10,13-pentaoxa-16-azacyclooctadecane^[S1]

A mixture of 16-(4-iodophenyl)-1,4,7,10,13-pentaoxa-16-azacyclooctadecane (0.300 g, 0.644 mmol), trimethylsilylacetylene (0.37 mL, 2.61 mmol), Pd(PPh₃)₂Cl₂ (45.2 mg, 0.0644 mol), and CuI (12.3 mg, 0.0644 mmol) in 7 mL of *i*-Pr₂NH and 20 mL of dry DMF was stirred in an atmosphere of N₂ at 70 °C for 24 h. When the reaction was completed, the reaction mixture was cooled at r.t., and the solvent was removed by rotary evaporator. The residue was chromatographed over silica gel column (SiO₂; eluent: EtOAc, $R_f = 0.3$) to afford 16-{4-[2-(trimethylsilyl)ethynyl]phenyl}-1,4,7,10,13-pentaoxa-16-azacyclooctadecane as a brown liquid (0.265 g, 0.608 mmol, 94%).

¹H-NMR (500 MHz, CDCl₃, δ) 7.30 (2H, dd, J = 6.9, 2.3 Hz), 6.57 (2H, dd, J = 6.9, 2.3 Hz), 3.69–3.61 (24H, m), 0.22 (9H, s)

$16\hbox{-}(4\hbox{-}Ethynylphenyl)\hbox{-}1,4,7,10,13\hbox{-}pentaoxa\hbox{-}16\hbox{-}azacyclooctadecane}^{[S2]}$

TBAF (0.520 g, 1.99 mmol) in CH₂Cl₂ (10 mL) was added to a solution of 16-{4-[2-(trimethylsilyl)ethynyl]phenyl}-1,4,7,10,13-pentaoxa-16-azacyclooctadecane (0.260 g, 0.596 mmol) in CH₂Cl₂ (50 mL), and the mixture was stirred for 4 h at 0 °C. After dichloromethane was added, the reaction mixture was washed with water. A combined organic phase was dried over Na₂SO₄, and solvents were removed by a rotary evaporator. The residue was chromatographed over silica gel column (SiO₂; eluent: EtOAc, R_f = 0.3) to afford 16-(4-ethynylphenyl)-1,4,7,10,13-pentaoxa-16-azacyclooctadecane as a brown liquid (0.209 g, 0576 mmol, 97%).

¹H-NMR (500 MHz, CDCl₃, δ) 7.33 (2H, d, J=8.9 Hz), 6.60 (2H, d, J=8.9 Hz), 3.70–3.62 (24H, m), 2.97 (1H, s)

$1,\!4\text{-}Bis[(trimethylsilyl)ethynyl]-2,\!5\text{-}bis\{[(4\text{-}dimesitylboryl)phenyl]ethynyl}\} benzene$

A mixture of 1,4-dibromo-2,5-bis{[(4-dimesitylboryl)phenyl]ethynyl}benzene^[S3] (0.360 g, 0.386 mmol), trimethylsilylacetylene (0.10 mL, 0.723 mmol), Pd(PPh₃)₄ (108 mg, 0.0935 mol), and CuI (28 mg, 0.147 mmol) in 10 mL of i-Pr₂NH and 10 mL of dry THF was stirred in an atmosphere of N₂ at 70 °C for 24 h. When the reaction was completed, the reaction mixture was cooled at r.t., and the solvent was removed by rotary evaporator. The residue was chromatographed over a silica gel column (SiO₂; eluent: CH₂Cl₂/hexane = 1/6) to afford 1,4-Bis[(trimethylsilyl)ethynyl]-2,5-bis{[(4-dimesitylboryl)phenyl]ethynyl]benzene (178 mg, 0.184 mmol, 51 %) as a yellow solid.

¹H NMR (400 Hz, CDCl₃) δ (ppm): 7.68 (2H, s), 7.51 (8H, s), 6.84 (8H, s), 2.33 (12H, s), 2.01 (24H, s), 0.25 (18H, s)

1,4-Diethynyl-2,5-bis{[(4-dimesitylboryl)phenyl]ethynyl}benzene

A mixture of 1,4-bis[(trimethylsilyl)ethynyl]-2,5-bis{[(4-dimesitylboryl)phenyl]ethynyl} benzene (0.176 g, 0.182 mmol) and K_2CO_3 (812 mg, 5.87 mmol) in THF (2 mL) and MeOH (4 mL) was stirred at room temperature for 24 h. After dichloromethane was added, the reaction mixture was washed with NH₄Cl aq. A combined organic phase was dried over Na₂SO₄, with the solvent removed by a rotary evaporator. The residue was chromatographed over silica gel column (SiO₂; eluent: CH₂Cl₂/hexane = 1/3, R_1 = 0.4) to afford 1,4-diethynyl-2,5-bis{[(4-dimesitylboryl)phenyl]ethynyl} benzene as a brown solid (0.140 g, 0.177 mmol, 97%).

¹H NMR (400 Hz, CDCl₃) δ (ppm): 7.70 (2H, s), 7.51 (8H, s), 6.83 (8H, s), 3.45 (2H, s), 2.31 (12H, s), 2.00 (24H, s)

- [S1] Bhange, D. S.; Sonawane, R. B.; Rasal, N. K.; Jagtap, S. V. ChemistrySelect 2020, 5 (33), 10387–10390.
- [S2] Paul, I.; Mittal, N.; De, S.; Bolte, M.; Schmittel, M. J. Am. Chem. Soc. 2019, 141 (13), 5139–5143.
- [S3] Morii, K.; Nabeta, H.; Yanbe, T.; Watanabe, K.; Sumikoshi, S.; Chiba, T.; Yamakado, R.; Okada, S. *ChemistrySelect* **2024**, *9* (1), e202305008.

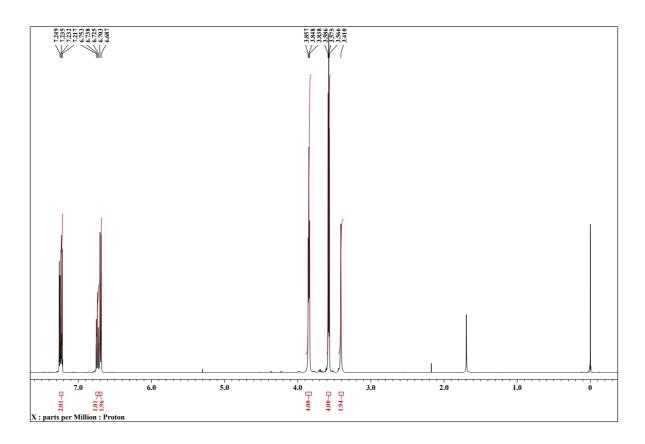


Fig. S1 ¹H-NMR spectrum of 2-[(2-hydroxyethyl)(phenyl)amino]ethan-1-ol in CDCl₃.

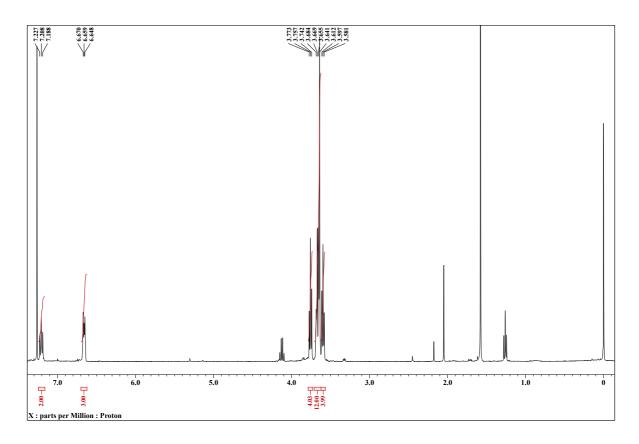


Fig. S2 ¹H-NMR spectrum of 13-phenyl-1,4,7,10-tetraoxa-13-azacyclopentadecane in CDCl₃.

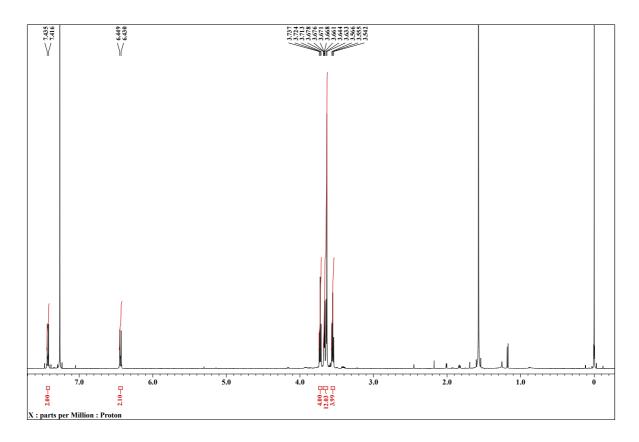
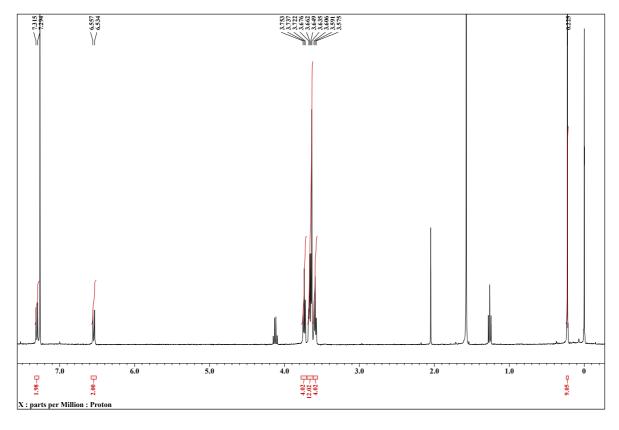



Fig. S3 ¹H-NMR spectrum of 13-(4-iodophenyl)-1,4,7,10-tetraoxa-13-azacyclopentadecane in CDCl₃.

 $\textbf{Fig. S4} \ ^{1}\text{H-NMR spectrum of } 13-\{4-[2-(trimethylsilyl)ethynyl]phenyl\}-1,4,7,10-tetraoxa-13-azacyclopentadecane in CDCl_{3}.$

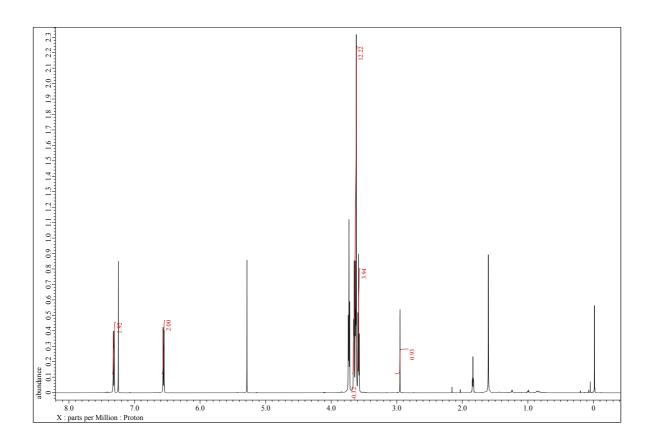


Fig. S5 ¹H-NMR spectrum of 13-(4-ethynylphenyl)-1,4,7,10-tetraoxa-13-azacyclopentadecane in CDCl₃.

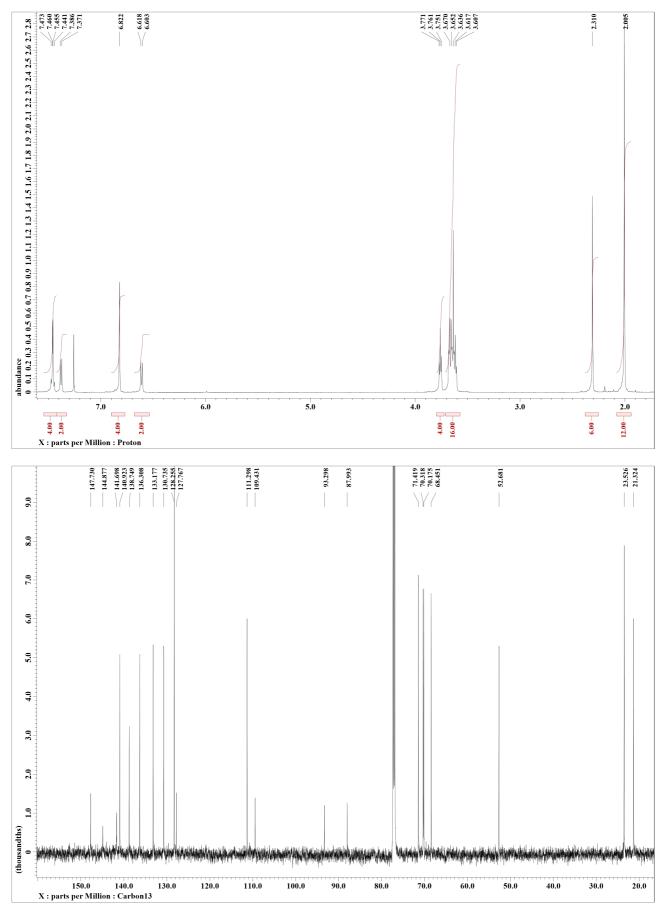


Fig. S6 ¹H (top) and ¹³C (bottom) NMR spectra of L1 in CDCl₃.

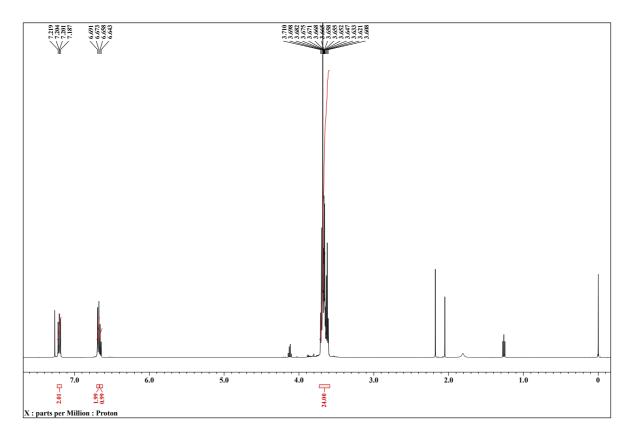


Fig. S7 ¹H-NMR spectrum of 16-phenyl-1,4,7,10,13-pentaoxa-16-azacyclooctadecane in CDCl₃.

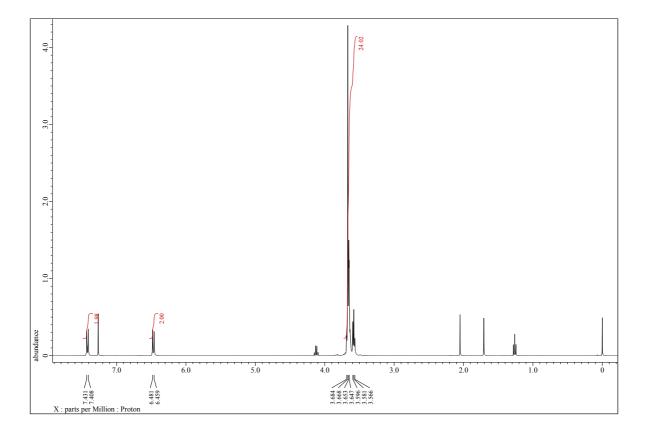
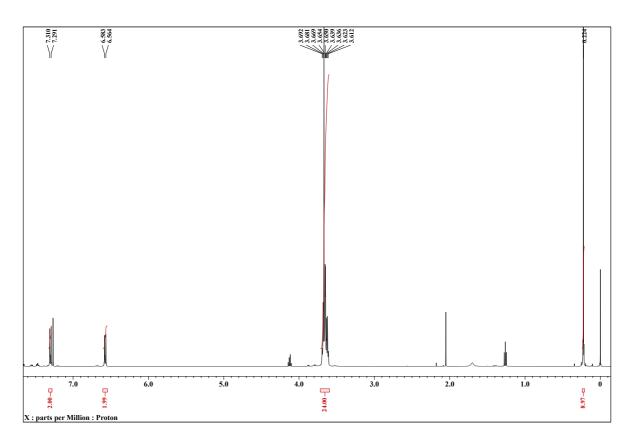



Fig. S8 ¹H-NMR spectrum of 16-(4-iodophenyl)-1,4,7,10,13-pentaoxa-16-azacyclooctadecane in CDCl₃.

 $\textbf{Fig. S9} \ ^{1}\text{H-NMR spectrum of 16-} \{4-[2-(trimethylsilyl)ethynyl] phenyl\} -1, 4, 7, 10, 13-pentaoxa-16-azacyclooctadecane in CDCl_{3}.$

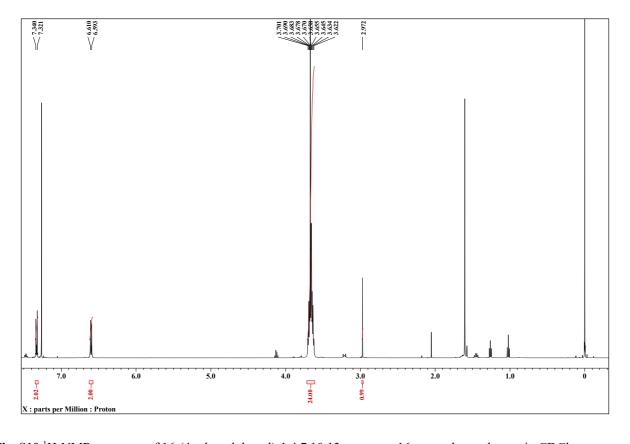
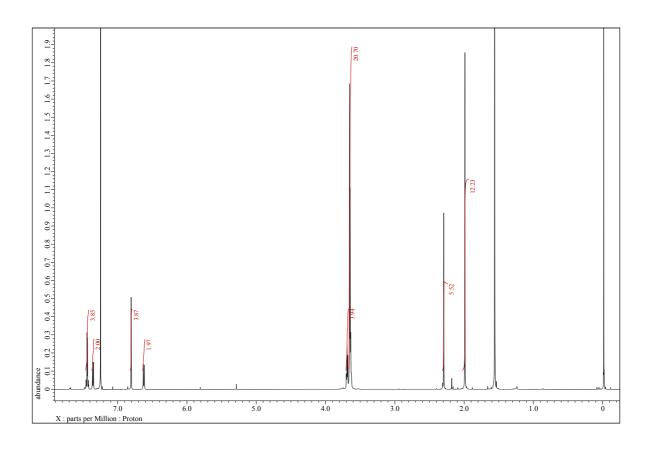



Fig. S10 ¹H-NMR spectrum of 16-(4-ethynylphenyl)-1,4,7,10,13-pentaoxa-16-azacyclooctadecane in CDCl₃.

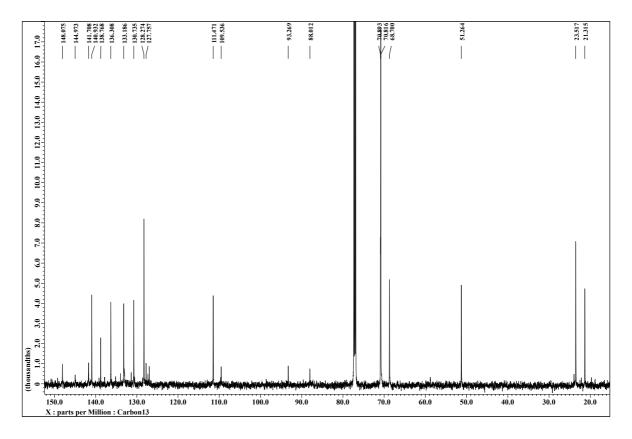
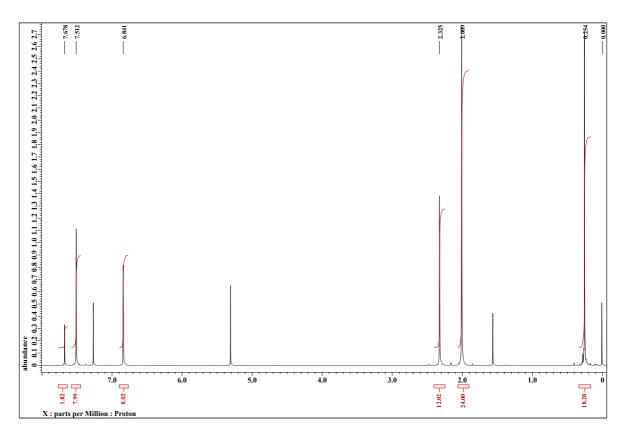



Fig. S11 ¹H (top) and ¹³C (bottom) NMR spectra of L2 in CDCl₃.

 $\textbf{Fig. S12} \ ^{1}H \ NMR \ spectrum \ of \ 1,4-bis[(trimethylsilyl)ethynyl]-2,5-bis\{[(4-dimesitylboryl)phenyl]ethynyl\} benzene \ in \ CDCl_{3}.$

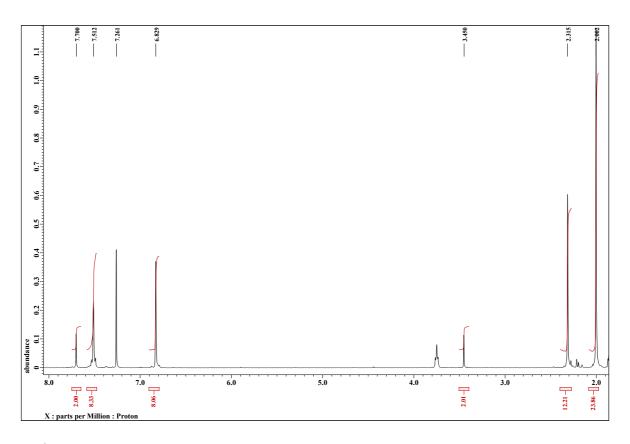


Fig. S13 ¹H NMR spectrum of 1,4-diethynyl-2,5-bis{[(4-dimesitylboryl)phenyl]ethynyl}benzene in CDCl₃.

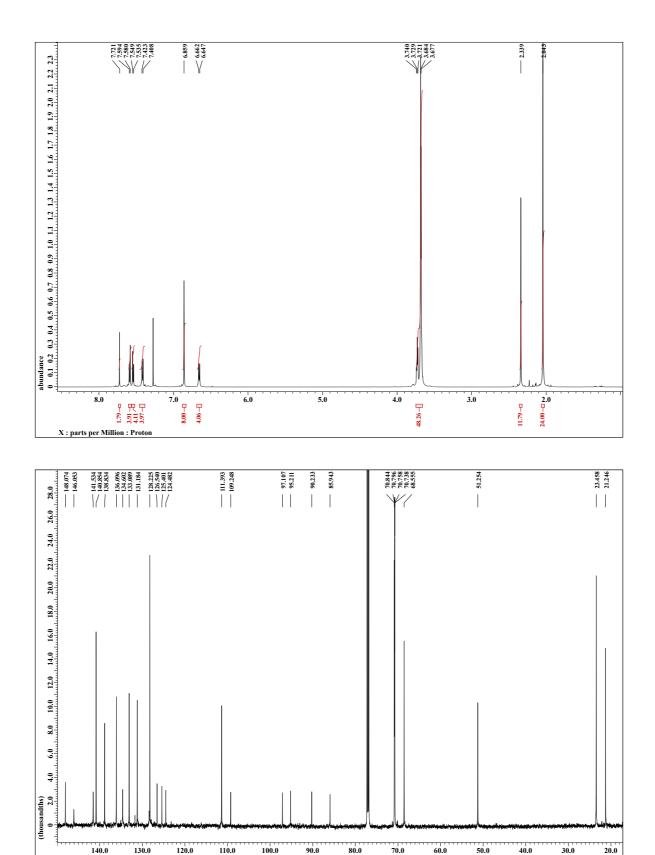


Fig. S14 ¹H (top) and ¹³C (bottom) NMR spectra of X1 in CDCl₃.

X : parts per Million : Carbon13

2. Optical properties

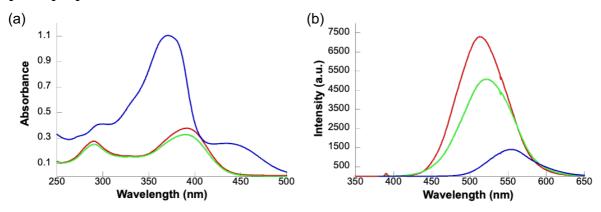


Fig. S15 (a) UV/vis absorption and (b) fluorescence spectra of L1 (red), L2 (green), and X1 (blue) in CH₂Cl₂ (10⁻⁵ M).

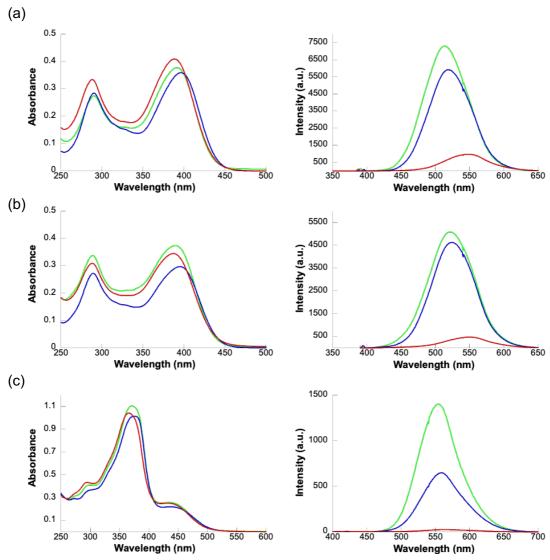
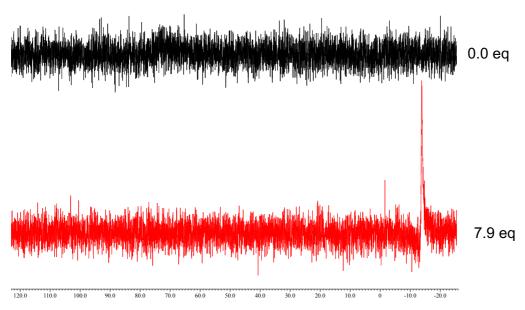
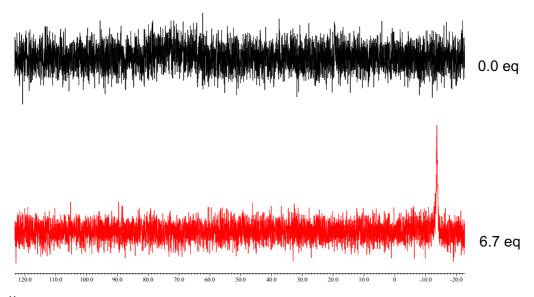
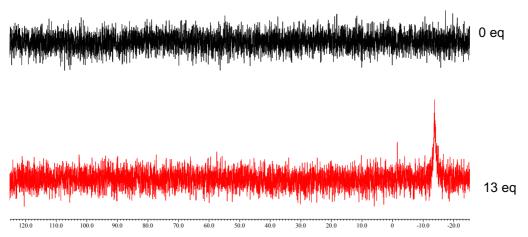
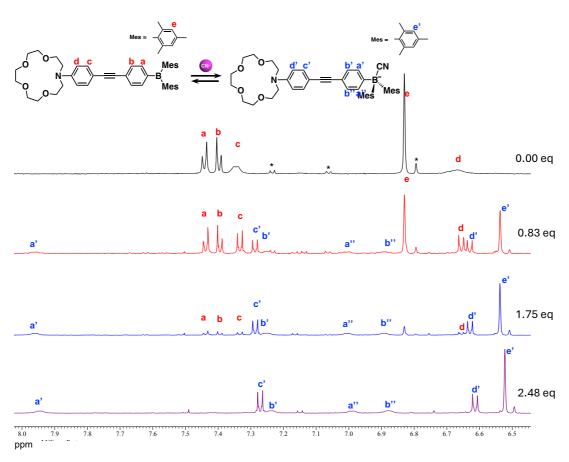




Fig. S16 UV/vis absorption (left) and fluorescence spectra (right) of (a) L1, (b) L2, and (c) X1 in CH₂Cl₂ (green), THF (blue), and MeCN (red) (10⁻⁵ M).


3. Ion-binding properties


Fig. S17 ¹¹B NMR spectral changes of **L1** (1.2 mM) upon the addition of CN⁻ as TBA salt in CD₂Cl₂/CD₃CN (1:1) at 25 °C. The ¹¹B NMR spectrum of **L1** showed broad signal at approximately 75 ppm, consistent with the trigonal planar geometry of the boron centre. Upon the addition of CN⁻ as a tetrabutylammonium (TBA⁺) salt, the original signal intensities decreased, and new peak appeared at –13.8 ppm.

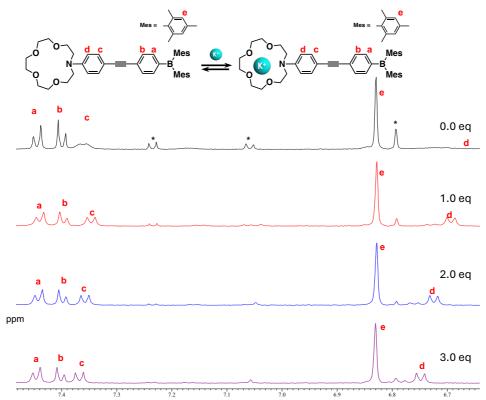

Fig. S18 11 B NMR spectral changes of **L2** (1.2 mM) upon the addition of CN⁻ as TBA salt in CD₂Cl₂/CD₃CN (1:1) at 25 $^{\circ}$ C. 11 B NMR spectrum of **L2** showed broad signal at approximately 75 ppm, consistent with the trigonal planar geometry of the boron centre. Upon the addition of CN⁻ as TBA⁺ salt, the original signal intensities decreased, and new peak appeared at -13.6 ppm.

Fig. S19 ¹¹B NMR spectral changes of **X1** (1.2 mM) upon the addition of CN⁻ as TBA salt in CD₂Cl₂/CD₃CN (1:1) at 25 °C. ¹¹B NMR spectrum of **X1** showed broad signal at approximately 75 ppm, consistent with the trigonal planar geometry of the boron centre. Upon the addition of CN⁻ as TBA⁺ salt, the original signal intensities decreased, and new peak appeared at –14.3 ppm.

Fig. S20 ¹H NMR spectral changes of **L1** (1.2 mM) upon the addition of CN⁻ as TBA⁺ salt in CD₂Cl₂/CD₃CN (1:1) at 25 °C. The protons of the boron-substituted phenyl group split into four distinct signals (a', a", b', and b") upon anion association. This splitting arises from steric hindrance that restricts rotation about the B–C bond, thereby lowering the molecular symmetry. Notably, the proton (a') subjected to the deshielding effect of the CN⁻ exhibited a pronounced downfield shift. These observations are in good agreement with the NMR spectra simulated by theoretical calculations. * was not observed when only dichloromethane was used, and was therefore presumed to originate from the formation of a complex with acetonitrile.

Fig. S21 1 H NMR spectral changes of **L1** (1.2 mM) upon the addition of K⁺ as PF₆⁻ salt in CD₂Cl₂/CD₃CN (1:1) at 25°C. * was not observed when only dichloromethane was used, and was therefore presumed to originate from the formation of a complex with acetonitrile.

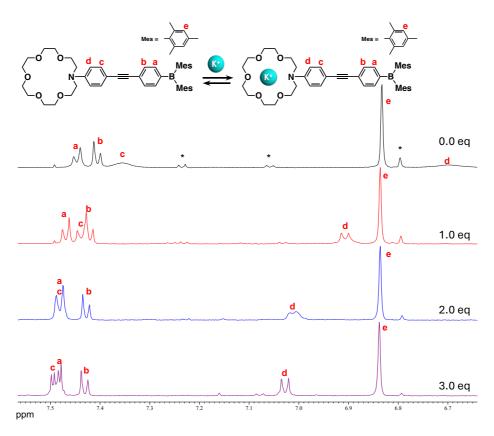


Fig. S22 1 H NMR spectral changes of L2 (1.2 mM) upon the addition of K⁺ as PF₆⁻ salt in CD₂Cl₂/CD₃CN (1:1) at 25 $^{\circ}$ C. * was not observed when only dichloromethane was used, and was therefore presumed to originate from the formation of a complex with acetonitrile.

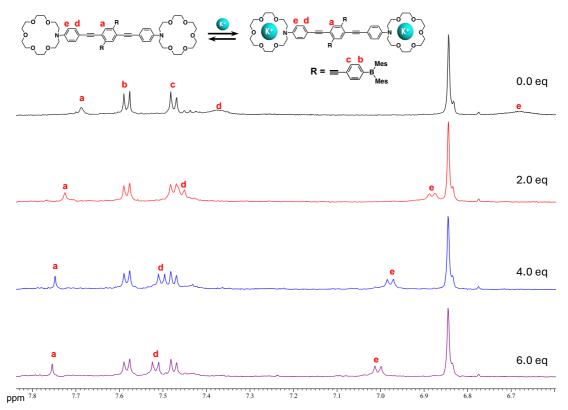
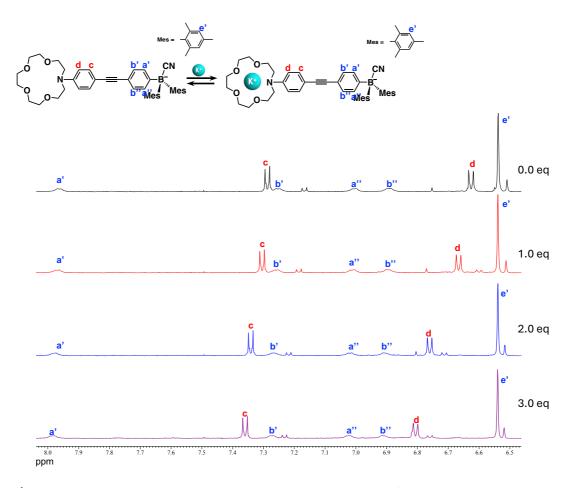
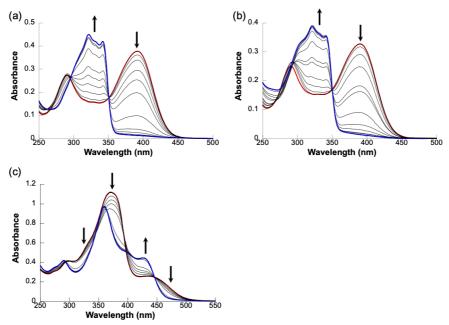
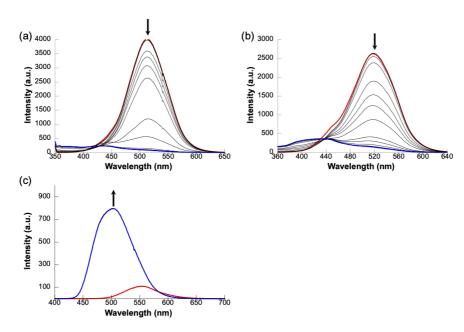
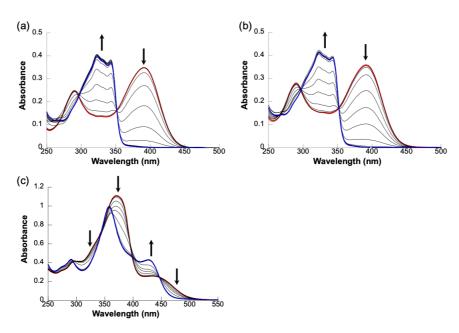
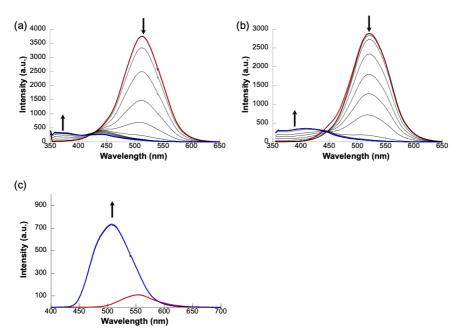
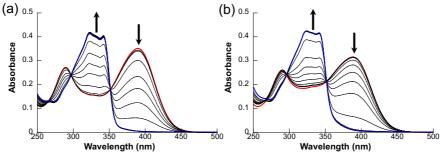


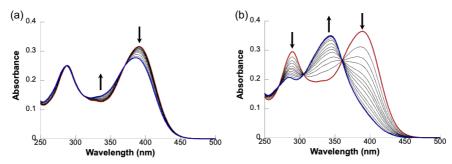
Fig. S23 1 H NMR spectral changes of X1 (0.6 mM) upon the addition of K^+ as PF_6^- salt in CD_2Cl_2/CD_3CN (1:1) at 25°C.

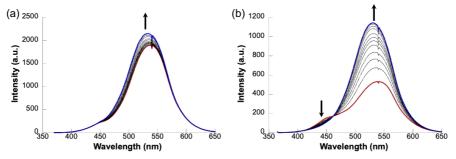




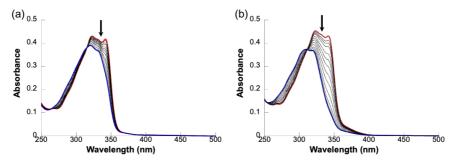

Fig. S24 1 H NMR spectral changes of L1–CN (1.2 mM) upon the addition of K^+ as PF_6^- salt in CD_2Cl_2/CD_3CN (1:1) at 25°C. L1–CN was prepared by the mixture of L1 and 3 eq. of TBACN.


Fig. S25 UV/vis absorption spectral changes of (a) L1, (b) L2, and (c) X1 upon the addition of F^- as TBA salt in CH₂Cl₂ (10⁻⁵ M).


Fig. S26 Fluorescence spectral changes of (a) **L1**, (b) **L2**, and (c) **X1** upon the addition of F⁻ as TBA salt in CH₂Cl₂ (10⁻ M). The fluorescence spectra of (a) and (b) were obtained by excitation at isosbestic points of anion titration, and (c) were obtained by excitation at absorption maxima. (See Fig. S25).


Fig. S27 UV/vis absorption spectral changes of (a) L1, (b) L2, and (c) X1 upon the addition of CN⁻ as TBA salt in CH₂Cl₂ (10^{-5} M).


Fig. S28 Fluorescence spectral changes of (a) **L1**, (b) **L2**, and (c) **X1** upon the addition of CN⁻ as TBA salt in CH₂Cl₂ (10⁻⁵ M). The fluorescence spectra of (a) and (b) were obtained by excitation at isosbestic points of anion titration, and (c) were obtained by excitation at absorption maxima. (See Fig. S27).


Fig. S29 UV/vis absorption spectral changes of (a) L1 and (b) L2 upon the addition of CN⁻ as TBA salt in CH₂Cl₂/MeCN (1:1) (10^{-5} M).

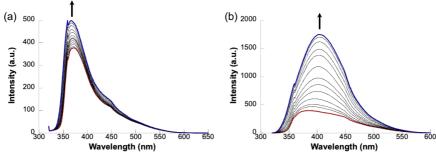

Fig. S30 UV/vis absorption spectral changes of (a) **L1** and (b) **L2** upon the addition of K⁺ as PF₆ salt in CH₂Cl₂/MeCN (1:1) (10⁻⁵ M).

Fig. S31 Fluorescence spectral changes of (a) **L1** and (b) **L2** upon the addition of K⁺ as PF₆ salt in CH₂Cl₂/MeCN (1:1) (10⁻⁵ M). The fluorescence spectra were obtained by excitation at isosbestic points of anion titration. (See Fig. S30).

Fig. S32 UV/vis absorption spectral changes of (a) L1–CN and (b) L2–CN upon the addition of K^+ as KPF₆ salt in CH₂Cl₂/MeCN (1:1) (10⁻⁵ M). L1–CN and L2–CN were prepared by the mixture of L1 and L2 and 3 eq. of TBACN.

Fig. S33 Photoluminescence spectral changes of (a) **L1**–CN and (b) **L2**–CN upon the addition of K⁺ as KPF₆ salt in CH₂Cl₂/MeCN (1:1) (10⁻⁵ M). **L1**–CN and **L2**–CN were prepared by the mixture of **L1** and **L2** with 3 eq. of TBACN. The fluorescence spectra were obtained by excitation at isosbestic points of anion titration. (See Fig. S32).

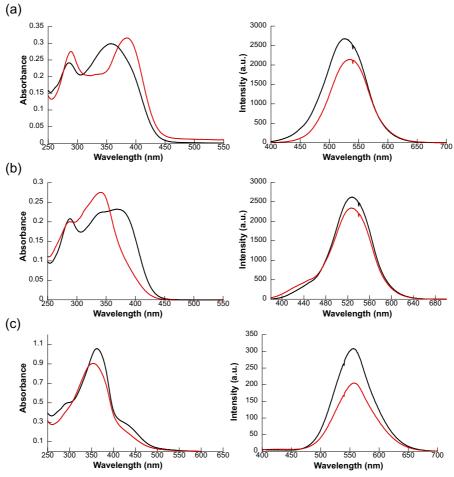


Fig. S34 UV/vis absorption (left) and fluorescence (right) spectra of (a) L1, (b) L2, and (c) X1 upon addition of excess NaClO₄ (black) and KPF₆ (red) in CH₂Cl₂/MeCN (1:1). The fluorescence spectra were obtained by excitation at absorption maxima.

Fig. S35 UV/vis absorption (left) and fluorescence (right) spectra of (a) L1–CN, (b) L2–CN, and (c) X1–(CN)₂ upon addition of excess NaClO₄ (black) and KPF₆ (red) in CH₂Cl₂/MeCN (1:1). The fluorescence spectra were obtained by excitation at absorption maxima.

Table S1 Summary of fluorescence quantum yields (Φ_F) of L1, L2, and X1 in CH₂Cl₂/MeCN (1:1).

_	$\Phi_{ ext{F}}$ (%)					
	free	+TBACN	+KPF ₆	+NaClO ₄	+TBACN/KPF ₆	+TBACN/NaClO ₄
L1	54	5	60	>99	7	13
L2	44	8	>99	87	31	10
X1	12	>99	26	28	>99	>99

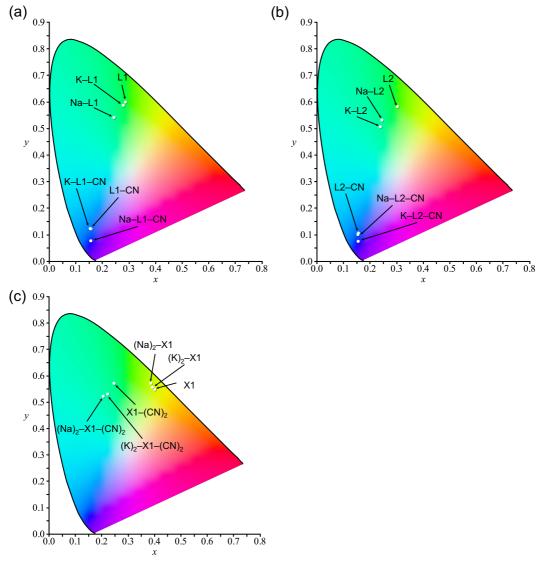


Fig. S36 Emission colour coordinates of (a) L1, (b) L2, and (c) X1 with various ion pairs in the CIE 1931 chromaticity diagram.

Table S2 Summary of emission colour coordinates of L1, L2, and X1 with various ion pairs in the CIE 1931 chromaticity diagram.

	L1	L2	X1
free	(0.286, 0.601)	(0.302,0.584)	(0.400,0.550)
+TBACN	(0.157, 0.122)	(0.156, 0.107)	(0.246, 0.573)
$+KPF_6$	(0.278, 0.589)	(0.238, 0.508)	(0.391, 0.558)
+NaClO ₄	(0.243, 0.543)	(0.244, 0.533)	(0.385, 0.573)
+TBACN +KPF ₆	(0.154, 0.124)	(0.155, 0.076)	(0.222, 0.532)
+TBACN +NaClO ₄	(0.156, 0.078)	(0.154, 0.102)	(0.205, 0.524)

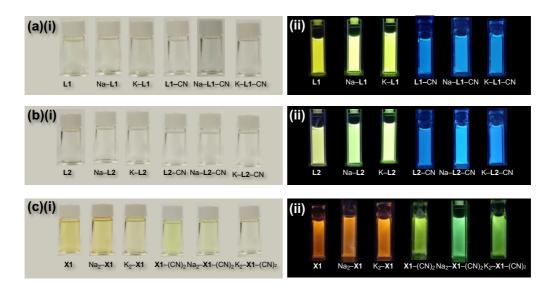


Fig. S37 Photographs of (a) L1, (b) L2, and (c) X1 with various ion pairs (i) under visible light and (ii) UV irradiation.

4. Theoretical calculations

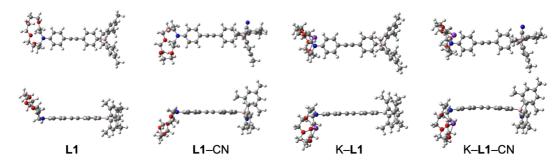


Fig. S38 Optimized structures of L1, L1–CN, K–L1, and K–L1–CN at B3LYP/6-31G(d,p) level.

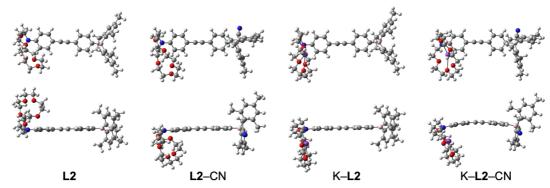


Fig. S39 Optimized structures of L2, L2–CN, K–L2, and K–L2–CN at B3LYP/6-31G(d,p) level.

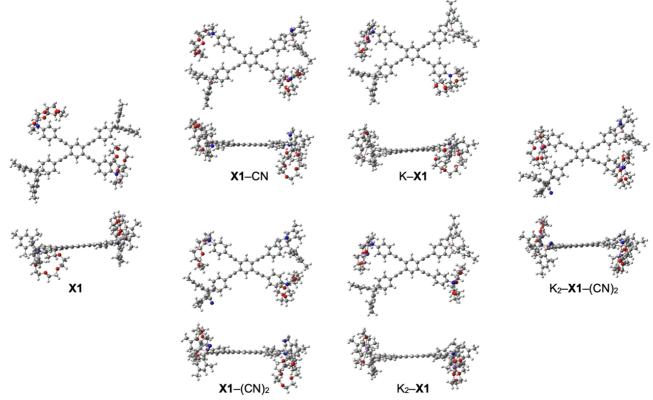


Fig. S40 Optimized structures of X1, X1–CN, X1–(CN)₂, K–X1, K₂–X1 and K₂–X1–(CN)₂ at B3LYP/6-31G(d,p) level.

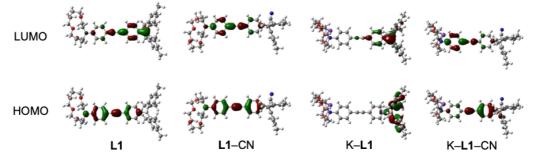
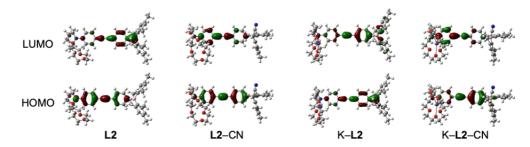



Fig. S41 Frontier molecular orbitals (HOMO and LUMO) of L1, L1–CN, K–L1 and K–L1–CN calculated at TD-cam-B3LYP/6-31G(d)//B3LYP/6-31G(d,p) level. Although the HOMO and LUMO are localized predominantly on the donor and acceptor units, respectively, both orbitals are delocalized over the diphenylacetylene framework.

Fig. S42 Frontier molecular orbitals (HOMO and LUMO) of **L2**, **L2**–CN, K–**L2** and K–**L2**–CN calculated at TD-cam-B3LYP/6-31G(d)//B3LYP/6-31G(d,p) level. Although the HOMO and LUMO are localized predominantly on the donor and acceptor units, respectively, both orbitals are delocalized over the diphenylacetylene framework.

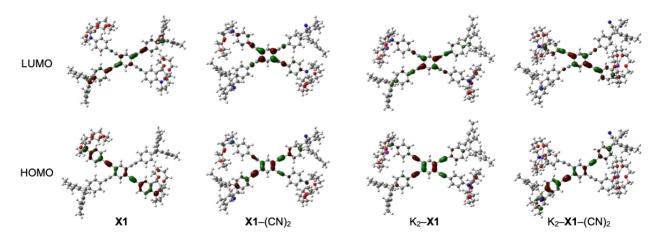
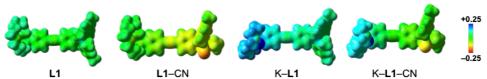



Fig. S43 Frontier molecular orbitals (HOMO and LUMO) of X1, X1–(CN)₂, K_2 –X1 and K_2 –X1–(CN)₂ calculated at TD-cam-B3LYP/6-31G(d)//B3LYP/6-31G(d,p) level. In compound X1, the HOMO and LUMO are localized on the bis(phenylethynyl)benzene units bearing the azacrown ether and the dimesitylborane moieties, respectively. In contrast, in K_2 –X1–(CN)₂, the HOMO is localized on the bis(phenylethynyl)benzene substituted with the boron–anion complex, while the LUMO is localized on the counterpart bearing the azacrown ether–cation complex. These results indicate that, even in the ion-pair complex, the HOMO and LUMO remain spatially separated, similar to the ion-free form.

Fig. S44 Electron density diagrams of L1, L1–CN, K–L1, and K–L1–CN estimated by electrostatic potential (ESP) mapped onto the electron density isosurface (% = 0.01) calculated at B3LYP/6-31+G(d,p) level for the optimized structures.

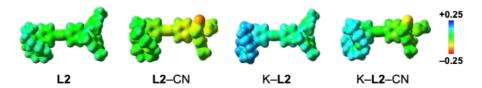


Fig. S45 Electron density diagrams of L2, L2–CN, K–L2, and K–L2–CN estimated by electrostatic potential (ESP) mapped onto the electron density isosurface (% = 0.01) calculated at B3LYP/6-31+G(d,p) level for the optimized structures.

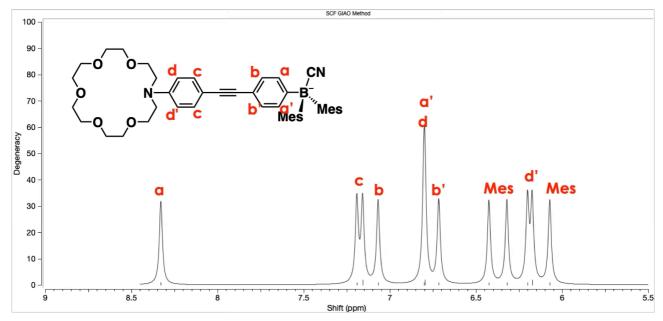


Fig. S46 Simulated ¹H NMR spectrum of L2–CN calculated at GIAO B3LYP/6-311+G(d)//B3LYP/6-31G(d,p).



Fig. S47 Simulated ¹H NMR spectrum of X1–(CN)₂ calculated at GIAO B3LYP/6-311+G(d)//B3LYP/6-31G(d,p).