SUPPORTING INFORMATION

Solvent-free reactions at work towards densely functionalized targets: synthesis of 3-amino(azido)-3-deoxy-D-galactose, a key structural motif of galectin ligands

Serena Traboni, Emiliano Bedini, Fabiana Esposito, Marcello Ziaco, Alfonso Iadonisi *

Table of Contents

Experimental procedures	S2 - S6
Copies of ¹ H and ¹³ C NMR spectra of compound 9	S7
Copies of ¹ H and ¹³ C NMR spectra of compound 10	S8
Copies of ¹ H and ¹³ C NMR and HSQC spectra of compound 11	S9 –S10
Copies of ¹ H and ¹³ C NMR and HSQC spectra compound 12	S11 –S12
Copies of ¹ H and ¹³ C NMR spectra of compound 13	S13
Copies of ¹ H and ¹³ C NMR spectra of compound 14	S14
Copies of ¹ H and ¹³ C NMR spectra of compound 15	S15
Copies of ¹ H and ¹³ C NMR spectra of compound 17	S16
HSQC spectrum of compound 17	S17
Copies of ¹ H and ¹³ C NMR spectra of compound 18	S18
HSQC spectrum of compound 18	S19

Experimental section

General information

Reactions were primarily monitored by TLC analysis; after elution, detection of compounds was performed by soaking the plates in 5% H₂SO₄ in ethanol and following heating at 230 °C. Eventual detection of UV-visible compounds under UV lamp preceded the acid treatment. NMR spectra were recorded in a Bruker 400 MHz in CDCl₃ or D₂O at 298 K.

p-Methoxyphenyl 6-O-trityl-β-D-galactopyranoside (9). Synthesis of tritylated compound 9 was accomplished by adapting a recently described solvent-free tritylation procedure.¹¹ To a round-bottom flask containing galactoside 8 (1.388 g, 4.85 mmol) and trityl chloride (1.487 g, 5.33 mmol), pyridine was added (0.98 mL, 12.1 mmol). The flask was immersed in an oil bath a 100 °C keeping the mixture under stirring, and after 20 minutes DIPEA (1.69 mL, 9.7 mmol) and further trityl chloride (1.351 g, 4.85 mmol) were added. After 40 min from the start, TLC analysis (eluent: ethyl acetate) evidenced the large prevalence of a tritylated compound (featuring a yellow charring spot in the plate). The crude mixture was directly subjected to silica-gel flash-chromatography (eluent from hexane/ethyl acetate 6:4 v/v to 0:1, always with three drops of pyridine for 100 mL of eluent), to isolate pure compound 9 as a foam (1.891 g, yield 74%). Compound 9: $[\alpha]_D^{19}$: -10.0 (c 1.3, CDCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.80-6.70 (aromatic protons, 19 H), 4.68 (d, J = 7.6 Hz, 1H, H-1), 3.96 (m, 1H, H-2), 3.81 (d, J = 2.8 Hz, 1H, H-4), 3.70 (s, 3H, -OCH₃), 3.60 (dd, J = 2.8 and 9.6 Hz, 1H, H-3), 3.55-3.45 (m, 2H, 6-CH₂), 3.26 (m, 1H, H-5). ¹³C NMR (100 MHz, CDCl₃): δ 155.3, 151.2, 143.8, 128.8, 127.8, 127.1, 118.7, 114.5, 102.5, 86.9, 74.2, 73.6, 71.3, 69.4, 63.2, 55.6. HRMS (MALDI): m/z [M+Na]⁺ calcd for [C₃₂H₃₂O₇+Na]⁺: 551.2046; found: 551.2038; Anal. Calcd for C₃₂H₃₂O₇: C, 72.71; H, 6.10; found C, 72.60; H, 6.20.

p-Methoxyphenyl 3-O-toluensulfonyl-6-O-trityl-β-D-galactopyranoside (**10**). Synthesis of tosylated compound **10** was accomplished by applying a recently described solvent-free tosylation procedure.⁹ To a round-bottom flask containing galactoside **9** (1.447 g, 2.74 mmol), dibutyltin oxide (68 mg, 0.27 mmol), and tetrabutylammonium bromide (TBAB) (265 mg, 0.82 mmol), were sequentially added DIPEA (1.91 mL, 10.9 mmol) and tosyl chloride (783 mg, 4.11 mmol). The mixture was suspended with

dichloromethane (0.5 mL) and the flask was immersed in an oil bath at 75 °C keeping the mixture under stirring and allowing the solvent to distill off. After 45 min from the start, TLC analysis (eluent: hexane/ethyl acetate 3:2) evidenced the conversion of **9** to less polar **10**. The crude mixture was directly subjected to silica-gel flash-chromatography (eluent: hexane/ethyl acetate from 3:2 to 0:1 v/v, always with three drops of pyridine for 100 mL of eluent), to isolate pure compound **10** as a foam (1.601 g, yield 85%). Compound **10**: $[\alpha]_D^{19}$: +27.3 (c 1.1, CDCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.91-6.80 (aromatic protons, 23 H), 4.74 (d, J = 7.6 Hz, 1H, H-1), 4.50 (dd, J = 3.2 and 10.0 Hz, 1H, H-3), 4.15-4.08 (overlapped signals, 2H, H-2 e H-4), 3.77 (s, 3H, -OCH₃), 3.60-3.50 (overlapped signals, 2H, H-5 and H-6a), 3.37 (dd, J = 4.0 and 9.2 Hz, 1H, H-6b), 2.42 (s, 3H, tosyl -CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 155.5, 151.1, 145.2, 143.5, 129.9-127.1, 118.7, 114.5, 102.3, 86.9, 82.6, 73.3, 68.9, 68.5, 62.9, 55.6, 21.7. HRMS (MALDI): m/z [M+Na]⁺ calcd for [C₃₉H₃₈O₉S+Na]⁺: 705.2134; found: 705.2145; Anal. calcd for C₃₉H₃₈O₉S: C, 68.60; H, 5.61; found: C, 68.45; H, 5.60.

p-Methoxyphenyl 2,3-Anhydro-6-O-trityl-β-D-gulopyranoside (11) and *p-Methoxyphenyl* 3,4-Anhydro-6-O-trityl-β-D-galactopyranoside (12). To a round-bottom flask containing galactoside 10 (1.314 g, 1.92 mmol) was added a concentrated solution of DBU (586 mg, 3.8 mmol) in DCM (0.5 mL). The flask was immersed in an oil bath at 80 °C keeping the mixture under stirring and allowing dichloromethane to distill off. After 2 hours from the start, TLC analysis (eluent: hexane/ethyl acetate 3:2) evidenced the prevalent conversion of 10 to a less polar compound 11. The crude mixture was diluted with dichloromethane and the organic phase washed with water. The aqueous phase was re-extracted with fresh dichloromethane, and collected organic phases were dried with dry sodium sulfate, filtered and concentrated *in vacuo*. The resulting crude was directly subjected to silica-gel flash-chromatography (eluent: hexane/ethyl acetate from 2.5:1 to 0:1 v/v, always with three drops of pyridine for 100 mL of eluent), to afford pure compound 11 as a foam (477 mg, yield 48%). Elution also provided a mixture of residual amounts of recovered 10 and rearranged epoxide 12 (129 mg, 13%). Compound 11: $[\alpha]_D^{19}$: -61.9 (c 0.85, CDCl₃); ¹H NMR (400 MHz, CDCl₃): δ7.50-6.83 (aromatic protons, 19 H), 5.48 (s, 1H, H-1), 4.10 (bs, 1H, H-4), 3.85 (dd, 1H, J = 5.2 and 6.4 Hz, H-5), 3.77 (s, 3H, -OCH₃), 3.47 (bs, 2H,

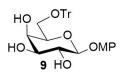
overlapped, H-2 and H-3), 3.43 (dd, 1H, J = 6.4 and 9.6 Hz, H-6a), 3.30 (dd, 1H, J = 5.2 and 9.6 Hz, H-6b), 2.61 (bs, 1H, OH-4). ¹³C NMR (100 MHz, CDCl₃): δ155.2, 150.7, 143.8, 128.8-127.0, 117.8, 114.5, 96.2 (C-1), 86.9, 69.9 (C-5), 64.9 (C-4), 63.2 (C-6), 55.7 (-OCH₃), 53.5, 52.5 (C-2, C-3). HRMS (MALDI): m/z [M+Na]⁺ calcd for [C₃₂H₃₀O₆+Na]⁺: 533.1940; found: 533.1935; Anal. calcd for C₃₂H₃₀O₆: C, 75.28; H, 5.92; found: C, 75.45; H, 5.80. Compound **12** [α]_D¹⁹: - 57.8 (c 1.0, CDCl₃); ¹H NMR (400 MHz, CDCl₃): δ7.50-6.83 (aromatic protons, 19 H), 4.64 (d, 1H, J = 7.2 Hz, H-1), 4.09 (dd, 1H, J = 6.0 and 7.2 Hz, H-5), 3.96 (d, 1H, J = 7.2 Hz, H-2), 3.80 (s, 3H, -OCH₃), 3.52 (dd, 1H, J = 7.2 and 9.6 Hz, H-6a), 3.38 (dd, 1H, J = 6.0 and 9.6 Hz, H-6b), 3.33 (bd, 1H, J = 4.0 Hz, H-3), 2.51 (bs, 1H, OH-2). ¹³C NMR (100 MHz, CDCl₃): δ155.4, 150.8, 143.7, 128.7, 127.8, 127.1, 118.4, 114.5, 102.0 (C-1), 87.0, 72.3 (C-5), 66.6 (C-2), 63.5 (C-6), 55.6 (-OCH₃), 54.2, 50.4 (C-3, C-4). HRMS (MALDI): m/z [M+Na]⁺ calcd for [C₃₂H₃₀O₆+Na]⁺: 533.1940; found: 533.1955. Anal. calcd for C₃₂H₃₀O₆: C, 75.28; H, 5.92; found: C, 75.15; H, 6.00.

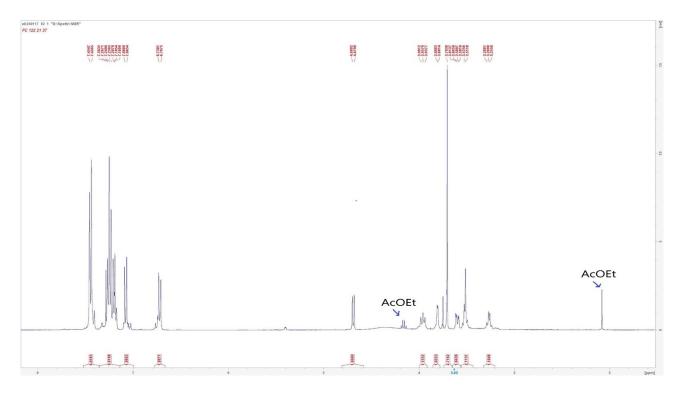
p-Methoxyphenyl 3-deoxy-3-amino-3-N-4-O-trichloroethylidene-6-O-trityl-β-D-galactopyranoside (14). To a solution of epoxide 11 (447 mg, 0.876 mmol) in dry dichloromethane (4 mL) were sequentially added trichloroacetonitrile (220 μL, 2.19 mmol), and a solution of DBU (40 mg, 0.26 mmol) in dichloromethane (1 mL). After 1h TLC analysis (eluent: hexane/ethyl acetate 3:1) evidenced the conversion of 11 into the less polar compound 13 (as ascertained by NMR). Flash-chromatography silica gel (2.5 g) was added and the volatiles were distilled off under vacuum at roto-evaporator. The resulting powder was kept in a bath at 50 °C under vacuum at roto-evaporator for 30 minutes. The powder was then loaded onto a short glass column and washed with an 85:10:5 DCM/MeOH/acetonitrile mixture in order to desorb crude compound 14 which was recovered upon removal *in vacuo* of the solvents, and directly submitted to the following step after concentration under vacuum.

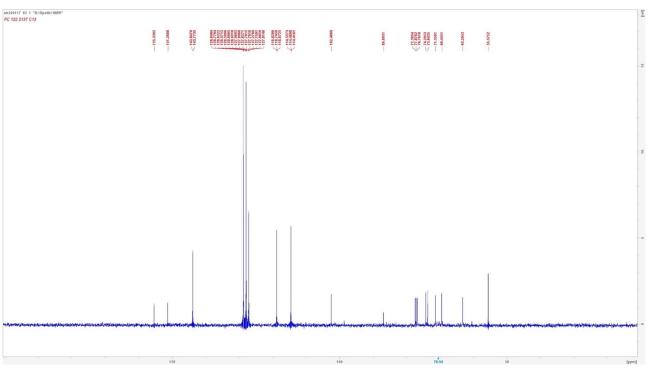
Compound 13: ¹H NMR (400 MHz, CDCl₃): δ 8.47 (s, 1H, -C=NH), 7.50-6.80 (aromatic protons, 19 H), 5.43 (bs, 1H, H-4), 5.41 (s, 1H, H-1), 3.94 (bt, 1H, J = 5.2 Hz, H-5), 3.77 (s, 3H, -OCH₃), 3.63 (bs, 1H, H-3), 3.55-3.45 (m, 2H, overlapped, H-2 and H-6a), 3.27 (dd, 1H, J = 5.2 and 9.6 Hz, H-6b). ¹³C NMR

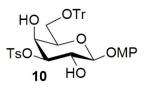
(100 MHz, CDCl₃): δ162.2, 155.2, 150.7, 143.7, 128.7, 127.7, 127.1, 117.8, 114.5, 96.4, 86.9, 69.8, 69.1, 62.5, 55.6, 54.1, 49.8.

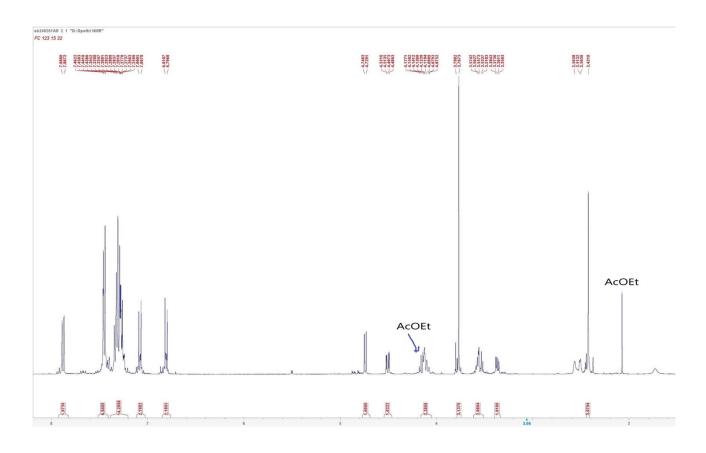
Compound **14**: ¹H NMR (400 MHz, CDCl₃): δ 7.48-6.77 (aromatic protons, 19 H), 4.95 (d, 1H, J = 6.0 Hz, H-1), 4.94 (dd, 1H, J = 2.4 and 8.8 Hz, H-4), 4.47 (dd, 1H, J = 6.0 and 8.8 Hz, H-3), 4.05 (td, 1H, J = 2.4 and 6.8 Hz, H-5), 3.82 (t, 1H, J = 6.0 Hz, H-2), 3.75 (s, 3H, -OCH₃), 3.58 (dd, 1H, J = 6.8 and 9.6 Hz, H-6a), 3.48 (dd, 1H, J = 6.8 and 9.6 Hz, H-6b). ¹³C NMR (100 MHz, CDCl₃): δ 164.2, 155.3, 150.9, 143.6, 128.8-127.0, 118.5, 114.5, 101.4, 86.9, 81.9, 71.9, 71.7, 69.1, 62.3, 55.6.

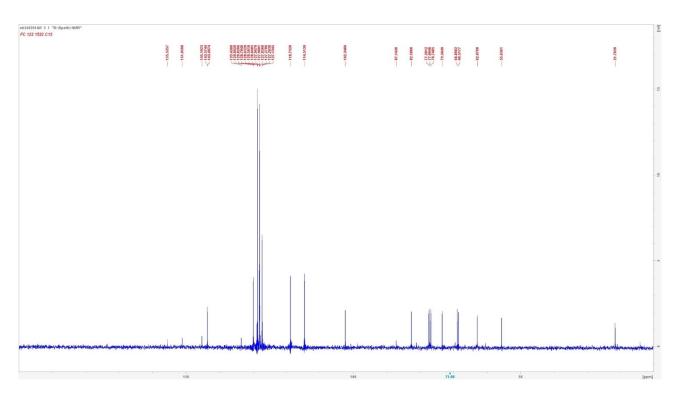

p-Methoxyphenyl 3-deoxy-3-amino-β-D-galactopyranoside chlorohydrate (**15**). To a solution of crude cyclic imidate **14** (estimated amount, 0.876 mmol) in THF (5.35 mL) was added a HCl aq solution (1M, 0.34 mL) in an ice bath. The mixture was stirred allowing the temperature to gradually raise, and after 40 minutes TLC analysis (eluent: ethyl acetate) evidenced generation of a polar not migrating compound. Solvent was removed with iterated co-evaporations with toluene. The resulting crude was treated with ethyl acetate (1 mL) in order to remove most of the trityl side products in the supernatant. The solid residue was directly used in the following step. ¹H NMR (400 MHz, D₂O): δ 7.27-6.77 (2 x d, J = 6.0 Hz, aromatic protons), 4.92 (d, 1H, J = 7.6 Hz, H-1), 4.09 (d, 1H, J = 3.8 Hz, H-4), 3.86-3.80 (overlapped signals, 2H, H-5 and H-6a), 3.71 (s, 3H, -OCH₃), 3.67 (m, 1H, H-6b), 3.44 (dd, 1H, J = 3.2 and 10.8 Hz, H-3). ¹³C NMR (100 MHz, D₂O): δ 154.8, 150.9, 118.2, 115.0, 101.8, 75.8, 67.2, 64.9, 60.2, 55.8, 55.0.

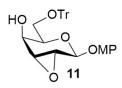

p-Methoxyphenyl 2,4,6-tri-O-acetyl-3-deoxy-3-azido-β-D-galactopyranoside (17). Diazotransfer agent 16¹⁵ (307 mg, 1.1 mmol) was added to a suspension of compound 17 (estimated amount, 0.876 mmol), K₂CO₃ (363 mg, 2.6 mmol), CuSO₄·7H₂O (7 mg, 0.028 mmol) in MeOH (4 mL). The mixture was kept 3 hours under stirring, when TLC analysis (eluent: ethyl acetate) evidenced the largely prevalent generation of a mobile product. Solvent was removed under vacuum immersing the reaction flask in a bath not exceeding 40 °C. The residue was treated with pyridine (3 mL) and acetic anhydride (1.5 mL). After 4 hours the reaction was quenched by addition of MeOH (2 mL) and the mixture was diluted with dichloromethane, and the organic phase washed with water. The aqueous phase was re-extracted with fresh dichloromethane, and collected organic phases were dried with dry sodium sulfate, filtered and

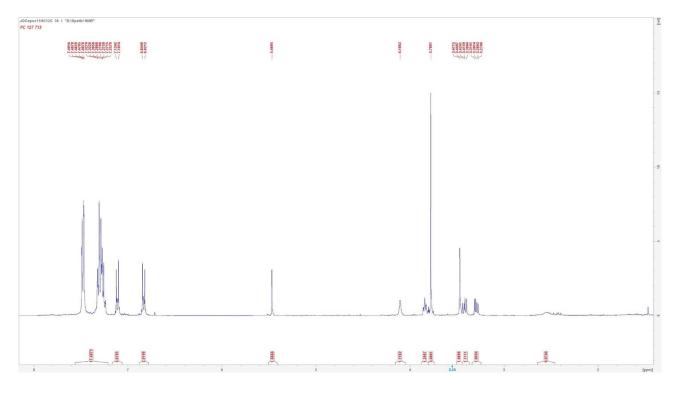

concentrated *in vacuo*. The resulting crude was directly subjected to silica-gel flash-chromatography (eluent: hexane/ethyl acetate from 3:1 to 0:1 v/v) to afford pure compound **17** (302 mg, yield 79% over five steps) as an oil.

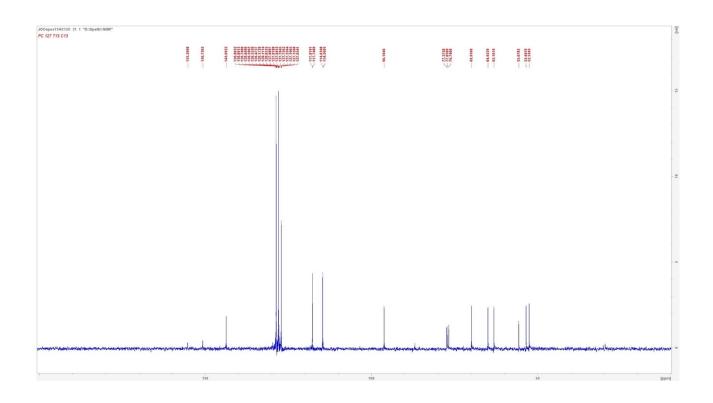

 $[\alpha]_D^{19}$: + 13.8 (c 0.5, CDCl₃); ¹H NMR (400 MHz, CDCl₃): δ 6.97 and 6.83 (AB, J = 9.2 Hz, 4H, aromatic protons), 5.49 (d, 1H, J = 3.2 Hz, H-4), 5.43 (dd, 1H, J = 8.0 and 10.4 Hz, H-2), 4.91 (d, 1H, J = 8.0 Hz, H-1), 4.18 (d, 2H, J = 6.4 Hz, H₂-6), 3.99 (t, 1H, J = 6.4 Hz, H-5), 3.80 (s, 3H, -OCH₃), 3.67 (dd, 1H, J = 3.2 and 10.4 Hz, H-3), 2.22, 2.19, 2.09 (3 x s, 9H, 3 x -COCH₃). ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 170.0, 169.3, 155.8, 150.9, 118.7, 114.6, 100.9 (C-1), 71.9 (C-5), 69.5 (C-2), 67.6 (C-4), 61.6 (C-3), 61.5 (C-6), 55.6 (-OCH₃), 20.7, 20.6. HRMS (MALDI): m/z [M+Na]⁺ calcd for [C₁₉H₂₃N₃O₉+Na]⁺: 460.1332; found: 460.1320. Anal. calcd for C₁₉H₂₃N₃O₉: C, 52.17; H, 5.30; found: C, 52.26; H, 5.20.

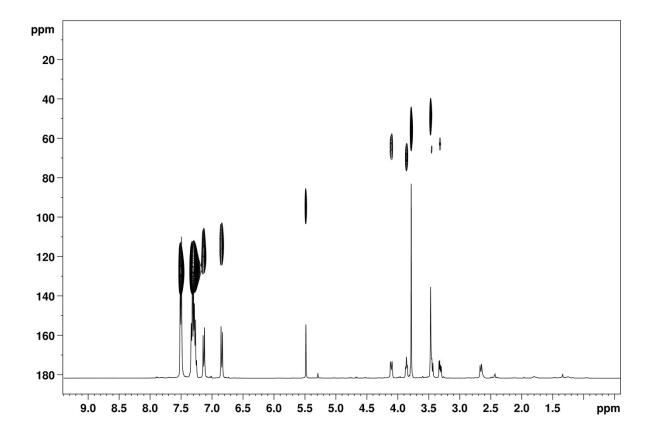

1,2,4,6-tri-O-acetyl-3-deoxy-3-azido-a/β-D-galactopyranose (18). Compound 17 (205 mg, 0.47 mmol) was dissolved with a mixture of acetic anhydride/acetic acid/cone H₂SO₄ 10:4:1 v:v:v (6 mL) keeping the vessel immersed in an ice bath. The mixture was kept under stirring, and the ice bath was removed after 30 minutes. After 5.5 hours, the mixture was diluted with dichloromethane, and the organic phase washed with water. The aqueous phase was re-extracted with fresh dichloromethane, and collected organic phases were dried with dry sodium sulfate, filtered and concentrated *in vacuo*. The residue was submitted to silica-gel flash-chromatography (eluent: hexane/ethyl acetate from 3:1 to 0:1 v/v) to afford compound 18 as an oil (α/β 6.5:1, 130 mg, yield 74%). ¹H NMR (400 MHz, CDCl₃): signals of prevalent anomer α at δ 6.38 (d, 1H, J = 3.6 Hz, H-1), 5.51 (d, 1H, J = 3.2 Hz, H-4), 5.27 (dd, 1H, J = 3.6 and 10.4 Hz, H-2), 4.30 (t, 1H, J = 6.4 Hz, H-5), 4.12 (dd, 1H, J = 6.8 and 10.6 Hz, H-6_a), 4.06-4.00 (m, 2H, H-3 and H-6_b), 2.18 (x2), 2.10, 2.07 (3 x s, 12H, 4 x –COCH₃). ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 169.8, 169.7, 168.8, 89.2 (C-1), 69.0 (C-5), 68.0 (C-2), 67.6 (C-4), 61.4 (C-6), 57.6 (C-3), 20.9, 20.7, 20.6, 20.5. HRMS (MALDI): m/z [M+Na]⁺ calcd for [C₁₄H₁₉N₃O₉+Na]⁺: 396.1019; found: 396.1025. Anal. calcd for C₁₄H₁₉N₃O₉: C, 45.04; H, 5.13. Found C, 45.15; H, 5.00.

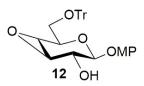


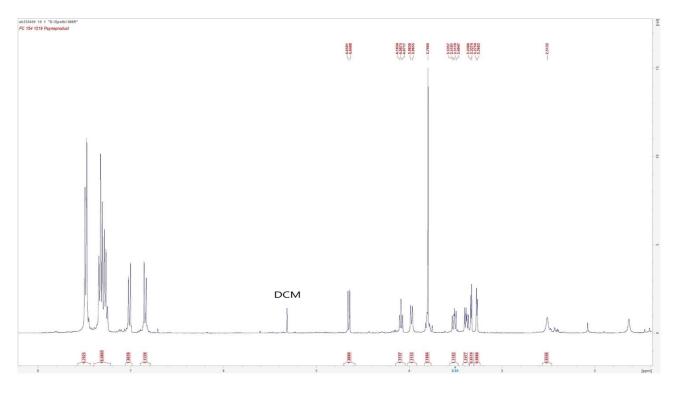


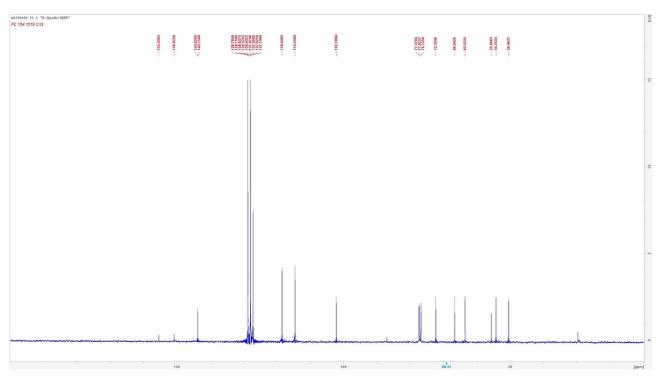


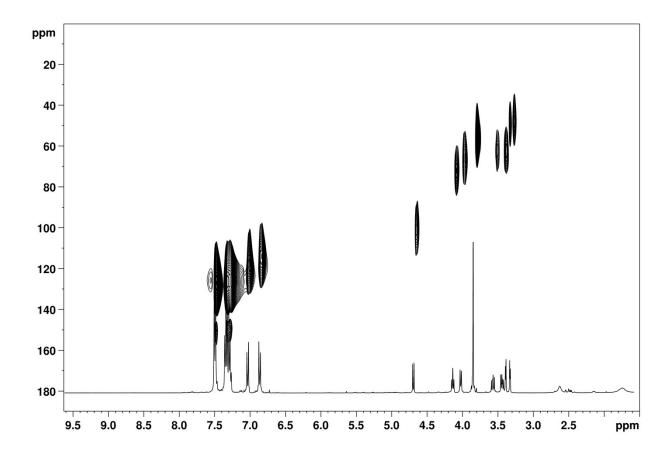


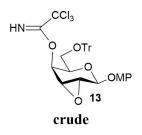


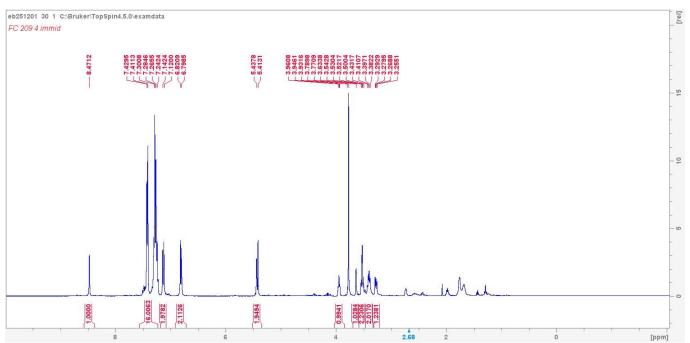


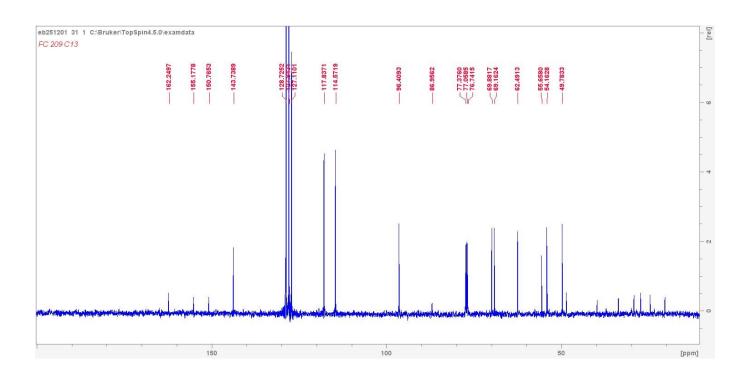


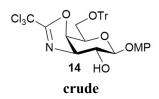


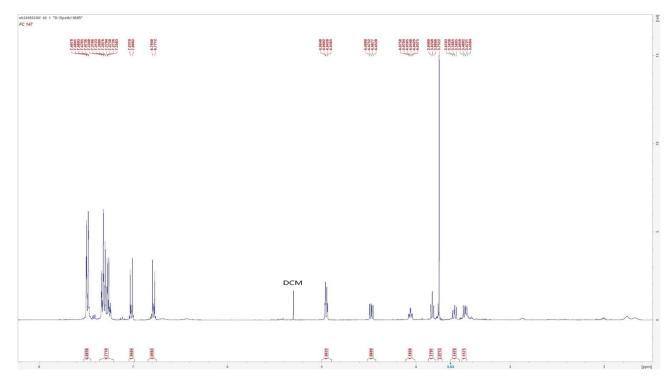


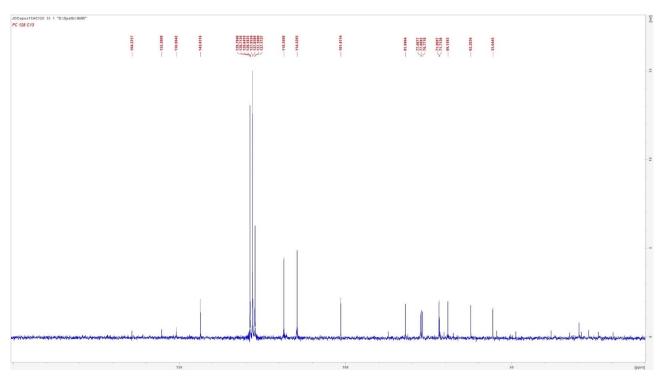


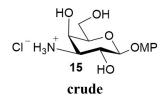


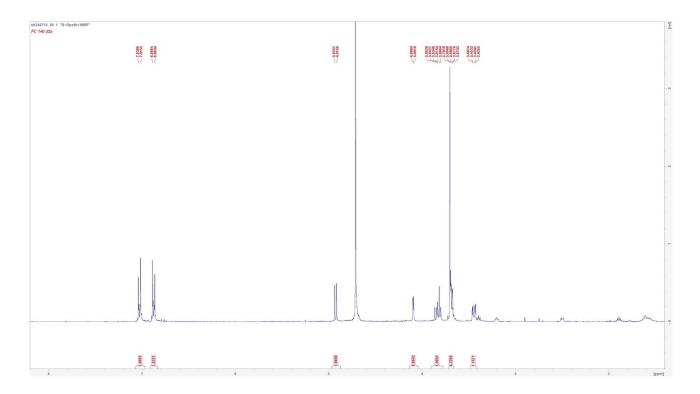


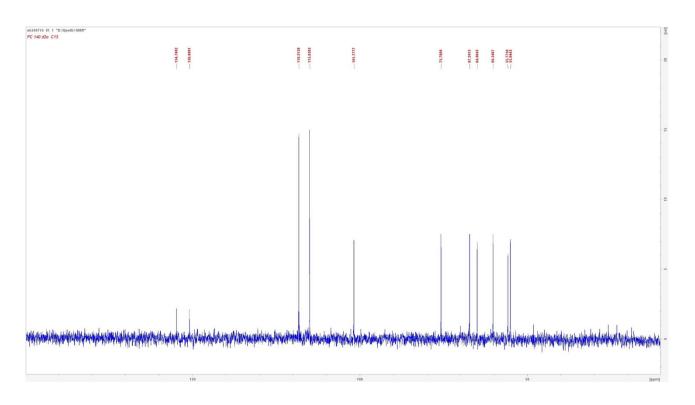

HSQC spectrum

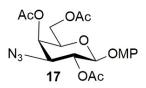


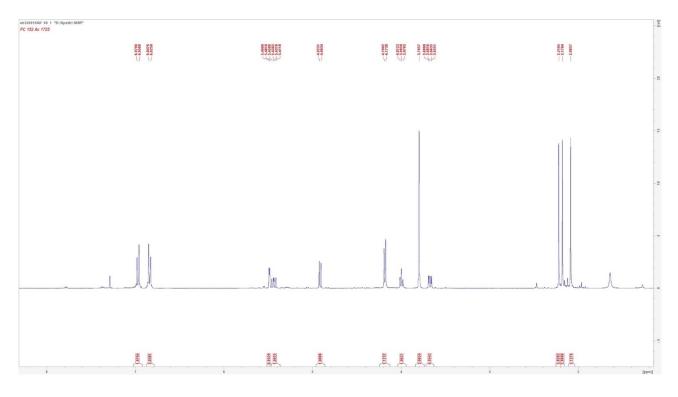


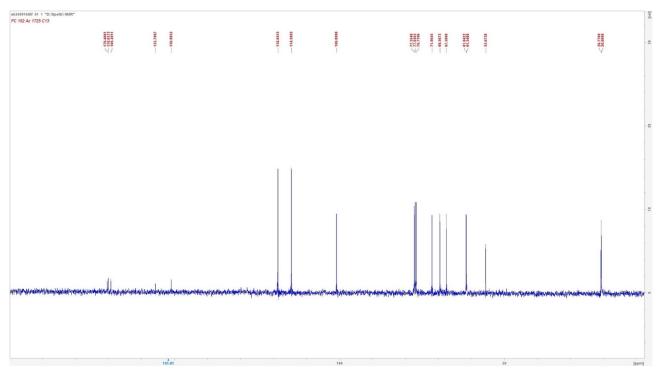


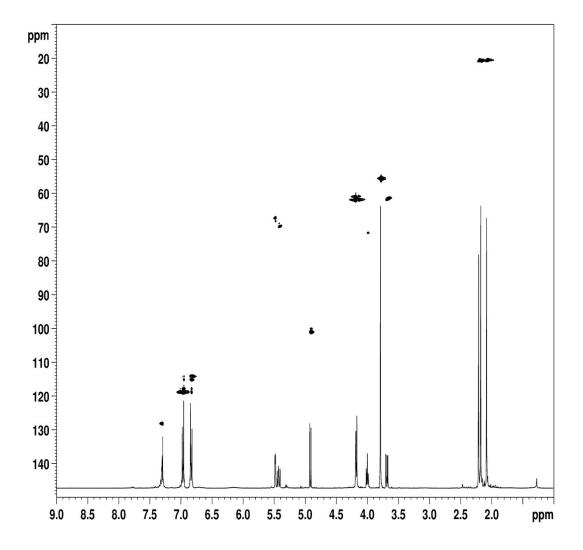


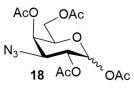


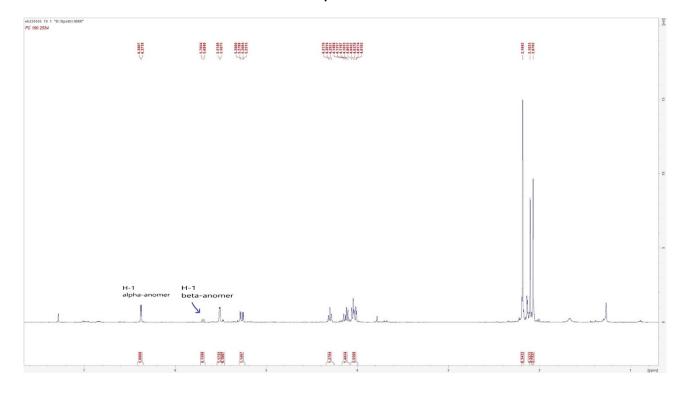


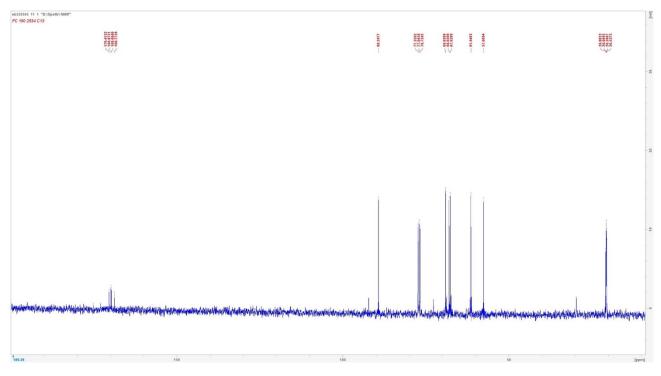


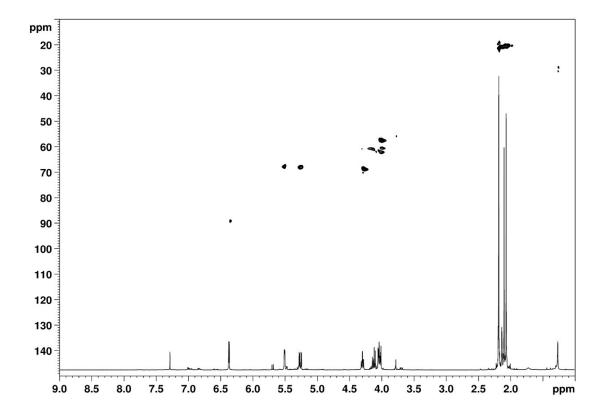









HSQC spectrum


α/β 6.5:1

HSQC spectrum

