Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Modular and Chromatography-Free Synthesis of Natural Linear Polyamines

Masato Takahashi, ^{a*} Teruyuki Kobayashi, ^a Takuya Noguchi, ^a Seisuke Mimori, ^a Masakiyo Hosokawa, ^a Takashi Fukui, ^b Akira Takagi, ^b Nobuaki Okumura, ^c Hiroshi Kawabe, ^c Takanori Yano, ^d Naomi Ohta, ^e Akihisa Hata, ^e Ryoji Mitsui, ^d Noboru Fujitani ^f

- ^a Department of Pharmacy, Faculty of Pharmacy, Chiba Institute of Science, 15-8, Shiomi-cho, Choshi, Chiba 288-0025, Japan
- ^b Department of Health and Medical Sciences, Faculty of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi, Choshi, Chiba 288-0025, Japan
- ^c Institute for Bee Products and Health Science, Yamada Bee Company Inc., 194 Ichiba, Kagaminocho, Tomata-gun, Okayama 708-0393, Japan
- ^d Department of Bioscience, Faculty of Lifescience, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama-shi, Okayama 700-0005, Japan
- ^e Faculty of Veterinary Medicine, Okayama University of Science, 1-3, Ikoinooka, Imabari, Ehime 797-8555, Japan
- ^f Biomedical Science Examination and Research Center, Okayama University of Science, 1-3, Ikoinooka, Imabari, Ehime 797-8555, Japan

*Corresponding author

Masato Takahashi, PhD

Faculty of Pharmacy, Chiba Institute of Science, 15-8, Shiomi-cho, Choshi, Chiba, 288-0025, Japan Tel: +81 479 30 4680; E-mail: matakahashi@cis.ac.jp

Contents

General Information	S4
Synthesis of 23a	S4
Synthesis of 23b	
Synthesis of 23c	
Synthesis of 23d	
Synthesis of 23e	S6
Synthesis of 24a	
Synthesis of 24b	S6
Synthesis of 24c	
Synthesis of 24d	S7

Synthesis of 24e	S8
Synthesis of 6	S8
Synthesis of 7	S8
Synthesis of 8	S9
Synthesis of 9	S9
Synthesis of 10	S9
Synthesis of 26a	S10
Synthesis of 26b	S10
Synthesis of 27a	S10
Synthesis of 27b	S11
Synthesis of 28a	S11
Synthesis of 28b	S12
Synthesis of 28c	S12
Synthesis of 29a	S12
Synthesis of 29b	S13
Synthesis of 29c	S13
Synthesis of 11	S14
Synthesis of 12	S14
Synthesis of 13	S14
Synthesis of 31	S15
Synthesis of 32	S15
Synthesis of 1	S15
Synthesis of 33	S16
Synthesis of 34	S16
Synthesis of 35	S16
Synthesis of 14	S17
Synthesis of 36	S17
Synthesis of 37	S17
Synthesis of 38	S18
Synthesis of 17	S18
Table S1. Comparison of the present polyamine synthesis with previously reported methods	S19
NMR chart of 23a	S20
NMR chart of 23b	S21
NMR chart of 23c	S22
NMR chart of 23d	S23
NMR chart of 23e	S24
NMR chart of 24a	S25
NMR chart of 24h	S26

NMR chart of 24c	S27
NMR chart of 24d	S28
NMR chart of 24e	S29
NMR chart of 6	S30
NMR chart of 7	S31
NMR chart of 8	S32
NMR chart of 9	S33
NMR chart of 10	S34
NMR chart of 26a	S35
NMR chart of 26b	S36
NMR chart of 27a	S37
NMR chart of 27b	S38
NMR chart of 28a	S39
NMR chart of 28b	S40
NMR chart of 28c	S41
NMR chart of 29a	S42
NMR chart of 29b	S43
NMR chart of 29c	S44
NMR chart of 11	S45
NMR chart of 12	S46
NMR chart of 13	S47
NMR chart of 31	S48
NMR chart of 32	S49
NMR chart of 1	S50
NMR chart of 33	S51
NMR chart of 34	S52
NMR chart of 35	S53
NMR chart of 14	S54
NMR chart of 36	S55
NMR chart of 37	S56
NMR chart of 38	S57
NMR chart of 17	S58

General Information.

All reactions were carried out under ambient air unless otherwise noted. All reagents and solvents were of reagent grade and used without further purification. An oil bath was employed as the heating source for reactions requiring elevated temperatures. Unless otherwise stated, reaction mixtures were stirred using a magnetic stirrer. All organic solvents were removed under reduced pressure using a rotary evaporator. Yields are reported immediately prior to the subsequent reaction step and after recrystallization of the final products, unless otherwise noted.

¹H- and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on an AscendTM 400 spectrometer (Bruker, MA, USA) in CDCl₃, DMSO-d6, CD₃OD, or D₂O, as indicated. Chemical shifts (δ) are reported in parts per million (ppm). Residual solvent signals were used as internal references for spectra recorded in CDCl₃ (δH = 7.26 ppm, δC = 77.0 ppm), DMSO-d6 (δH = 2.51 ppm, δC = 39.5 ppm), and CD₃OD (δH = 3.31 ppm, δC = 49.0 ppm). For spectra measured in D₂O, the residual HDO signal (δH = 4.79 ppm) was used as the reference for ¹H NMR; no internal reference was used for ¹³C NMR. Signal multiplicities are designated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = double doublet, dt = double triplet. High-resolution mass spectra (HRMS) were obtained using electrospray ionization (ESI) in positive/negative mode on a LIT-q-TOF tandem mass spectrometer (NanoFrontier LD) coupled to a liquid chromatograph (Hitachi High-Tech Corporation, Japan).

Synthesis of 23a

di-tert-Butyl ((*propane-1,3-diylbis*(*azanediyl*))*bis*(*3-oxopropane-3,1-diyl*))*dicarbamate* (**23a**). A mixture of *N*-Boc-β-alanine (**21a**) (1135 mg, 6.0 mmol), propane-1,3-diamine (**22a**) (148 mg, 2.0 mmol), EDC·HCl (1150 mg, 6.0 mmol), and DMAP (24 mg, 0.2 mmol) in DMF (10 mL) was stirred at 50 °C for 3 h. After cooling in an ice bath, 5% aqueous NaHCO₃ (30 mL) was added, stirred for 10 min at the same temperature, and the precipitate was collected by filtration using a Kiriyama funnel and washed with hexane/ethyl acetate (10:1). The resulting colorless solid **23a** (802 mg, 96.3%) was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 6.52 (br s, 2H), 5.28 (br s, 2H), 3.40 (dt, J = 6.0, 6.0 Hz, 4H), 3.28 (dt, J = 6.0, 6.0 Hz, 4H), 2.42 (t, J = 6.0 Hz, 4H), 1.66–1.60 (m, 2H), 1.43 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.0, 156.2, 79.4, 36.8, 36.5, 35.8, 29.5, 28.4; HRMS (ESI-TOF) m/z calcd for C₁₉H₃₇N₄O₆ [M+H]⁺ 417.2708, found 417.2701.

Synthesis of 23b

di-tert-Butyl ((butane-1,4-diylbis(azanediyl))bis(3-oxopropane-3,1-diyl))dicarbamate (23b). A mixture of N-Boc-β-alanine (21a) (1140 mg, 6.0 mmol), butane-1,4-diamine (22b) (176 mg, 2.0 mmol), EDC·HCl (1155 mg, 6.0 mmol), and DMAP (24 mg, 0.2 mmol) in DMF (10 mL) was stirred at 50 °C for 3 h. After cooling in an ice bath, 5% aqueous NaHCO₃ (30 mL) was added, stirred for 10 min at the same temperature, and the precipitate was collected by filtration using a Kiriyama funnel and washed with hexane/ethyl acetate (10:1). The resulting colorless solid 23b (833 mg, 96.7%) was used in the next step without further purification. 1 H NMR (400 MHz, DMSO-d6) δ 7.81 (t, J = 5.2 Hz, 2H), 6.73 (t, J = 5.2 Hz, 2H), 3.11 (dt, J = 6.8, 6.8 Hz, 4H), 3.02–3.01 (m, 4H), 2.20 (t, J = 7.2 Hz, 4H), 1.40–1.35 (m, 22H); 13 C{ 1 H} NMR (100 MHz, DMSO-d6) δ 170.1, 155.4, 77.5, 38.1, 36.8, 35.8, 28.2, 26.5; HRMS (ESI-TOF) m/z calcd for C₂₀H₃₉N₄O₆ [M+H] $^{+}$ 431.2864, found 431.2865.

Synthesis of 23c

di-tert-Butyl ((*pentane-1,5-diylbis*(*azanediyl*))*bis*(*3-oxopropane-3,1-diyl*))*dicarbamate* (**23c**). A mixture of *N*-Boc-β-alanine (**21a**) (1137 mg, 6.0 mmol), pentane-1,5-diamine (**22c**) (204 mg, 2.0 mmol), EDC·HCl (1149 mg, 6.0 mmol), and DMAP (24 mg, 0.2 mmol) in DMF (10 mL) was stirred at 50 °C for 3 h. After cooling in an ice bath, 5% aqueous NaHCO₃ (30 mL) was added, stirred for 10 min at the same temperature, and the precipitate was collected by filtration using a Kiriyama funnel and washed with hexane/ethyl acetate (10:1). The resulting colorless solid **23c** (871 mg, 98.0%) was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 6.13 (br s, 2H), 5.34 (br s, 2H), 3.39 (dt, J = 6.0, 6.0 Hz, 4H), 3.25 (dt, J = 6.0, 6.0 Hz, 4H), 2.40 (t, J = 6.0 Hz, 4H), 1.55–1.48 (m, 4H), 1.42 (s, 18H), 1.37–1.30 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.5, 156.3, 79.3, 39.0, 36.8, 36.4, 28.9, 28.4, 23.7; HRMS (ESI-TOF) m/z calcd for C₂₁H₄₁N₄O₆ [M+H]⁺ 445.3021, found 445.3027.

Synthesis of 23d

di-tert-Butyl ((*propane-1,3-diylbis*(*azanediyl*))*bis*(*4-oxobutane-4,1-diyl*))*dicarbamate* (**23d**). A mixture of *N*-Boc-γ-aminobutyric acid (**21b**) (1219 mg, 6.0 mmol), propane-1,3-diamine (**22a**) (148 mg, 2.0 mmol), EDC·HCl (1150 mg, 6.0 mmol), and DMAP (24 mg, 0.2 mmol) in DMF (10 mL) was stirred at 50 °C for 3 h. After cooling in an ice bath, 5% aqueous NaHCO₃ (30 mL) was added, stirred for 10 min at the same temperature, and the precipitate was collected by filtration using a Kiriyama funnel and washed with hexane/diethyl ether (10:1). The resulting colorless solid **23d** (866 mg, 97.4%) was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 6.81 (br s, 2H),

4.88 (br s, 2H), 3.28 (dt, J = 6.0, 6.0 Hz, 4H), 3.18 (dt, J = 6.0, 6.0 Hz, 4H), 2.24 (t, J = 7.2 Hz, 4H), 1.84–1.77 (m, 4H), 1.68–1.62 (m, 2H), 1.43 (s, 18H); $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) δ 173.2, 156.3, 78.9, 39.7, 35.9, 33.5, 29.3, 28.2, 26.1; HRMS (ESI-TOF) m/z calcd for $C_{21}H_{41}N_{4}O_{6}$ [M+H]⁺ 445.3021, found 445.3026.

Synthesis of 23e

di-tert-Butyl ((*butane-1,4-diylbis*(*azanediyl*))*bis*(*4-oxobutane-4,1-diyl*))*dicarbamate* (*23e*). A mixture of *N*-Boc-γ-aminobutyric acid (*21b*) (1220 mg, 6.0 mmol), butane-1,4-diamine (*22b*) (176 mg, 2.0 mmol), EDC·HCl (1150 mg, 6.0 mmol), and DMAP (24 mg, 0.2 mmol) in DMF (10 mL) was stirred at 50 °C for 3 h. After cooling in an ice bath, 5% aqueous NaHCO₃ (30 mL) was added, stirred for 10 min at the same temperature, and the precipitate was collected by filtration using a Kiriyama funnel and washed with hexane/ethyl acetate (10:1). The resulting colorless solid *23e* (909 mg, 99.1%) was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 6.63 (br s, 2H), 4.93 (br s, 2H), 3.27 (dt, J = 6.0, 6.0 Hz, 4H), 3.15 (dt, J = 6.0, 6.0 Hz, 4H), 2.22 (t, J = 6.8 Hz, 4H), 1.83–1.77 (m, 4H), 1.58–1.52 (m, 4H), 1.43 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.9, 156.5, 79.3, 39.7, 39.0, 33.6, 28.4, 26.7, 26.4; HRMS (ESI-TOF) m/z calcd for C₂₂H₄₃N₄O₆ [M+H]⁺ 459.3177, found 459.3179.

Synthesis of 24a

di-tert-Butyl ((*propane-1,3-diylbis*(*azanediyl*))*bis*(*3-oxopropane-3,1-diyl*))*dicarbamate* (*24a*). A 3.6 M solution of Red-Al in toluene (2.0 mL, 7.2 mmol) was slowly added to a solution of diamide **23a** (250 mg, 0.6 mmol) in toluene/THF (2:1, 10 mL) at 0 °C. The reaction mixture was stirred at 40 °C for 3 h. After cooling to 0 °C, 1.0 M aqueous NaOH (10 mL) was added slowly. The mixture was stirred for 5 min and extracted with toluene (20 mL). The organic layer was washed with H₂O (5 mL) and brine (5 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting colorless solid **24a** (227 mg, 97.1%) was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 5.20 (br s, 2H), 3.16–3.12 (m, 4H), 2.62–2.59 (m, 8H), 1.64–1.54 (m, 6H), 1.39 (s, 20H); 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 156.0, 78.8, 48.2, 47.7, 39.1, 30.2, 29.8, 28.4; HRMS (ESI-TOF) m/z calcd for C₁₉H₄₁N₄O₄ [M+H]⁺ 389.3122, found 389.3117.

Synthesis of 24b

di-tert-Butyl ((butane-1,4-diylbis(azanediyl))bis(propane-3,1-diyl))dicarbamate (24b). A 3.6 M solution of Red-Al in toluene (1.3 mL, 4.7 mmol) was slowly added to a solution of diamide 23b (172 mg, 0.4 mmol) in toluene/THF (2:1, 10 mL) at 0 °C. The reaction mixture was stirred at 40 °C for 3 h. After cooling to 0 °C, 1.0 M aqueous NaOH (10 mL) was added slowly. The mixture was stirred for 5 min and extracted with toluene (20 mL). The organic layer was washed with H_2O (5 mL) and brine (5 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting colorless oil 24b (143 mg, 89.0%) was used in the next step without further purification. 1H NMR (400 MHz, CDCl₃) δ 5.21 (br s, 2H), 3.16–3.11 (m, 4H), 2.60 (t, J = 6.8 Hz, 4H), 2.57–2.52 (m, 4H), 1.62–1.55 (m, 4H), 1.47–1.44 (m, 4H), 1.38 (s, 18H); NH protons (2H) were not observed; $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) δ 156.0, 78.8, 49.7, 47.6, 39.1, 29.8, 28.3, 27.7; HRMS (ESI-TOF) m/z calcd for $C_{20}H_{43}N_4O_4$ [M+H] $^+$ 403.3279, found 403.3274.

Synthesis of 24c

di-tert-Butyl ((pentane-1,5-diylbis(azanediyl))bis(propane-3,1-diyl))dicarbamate (24c). A 3.6 M solution of Red-Al in toluene (2.0 mL, 7.2 mmol) was slowly added to a solution of diamide 23c (267 mg, 0.6 mmol) in toluene/THF (2:1, 10 mL) at 0 °C. The reaction mixture was stirred at 40 °C for 3 h. After cooling to 0 °C, 1.0 M aqueous NaOH (10 mL) was added slowly. The mixture was stirred for 5 min and extracted with toluene (20 mL). The organic layer was washed with H₂O (5 mL) and brine (5 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting pale yellow oil 24c (234 mg, 93.7%) was used in the next step without further purification. 1 H NMR (400 MHz, CDCl₃) δ 5.24 (br s, 2H), 3.13–3.12 (m, 4H), 2.59 (t, J = 6.8 Hz, 4H), 2.53–2.50 (m, 4H), 1.61–1.53 (m, 4H), 1.47–1.38 (m, 24H); NH protons (2H) were not observed; 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 156.0, 78.7, 49.7, 47.7, 39.1, 29.9, 29.8, 28.3, 24.9; HRMS (ESI-TOF) m/z calcd for C₂₁H₄₅N₄O₄ [M+H] $^{+}$ 417.3435, found 417.3438.

Synthesis of 24d

di-tert-Butyl ((propane-1,3-diylbis(azanediyl))bis(butane-4,1-diyl))dicarbamate (24d). A 3.6 M solution of Red-Al in toluene (2.0 mL, 7.2 mmol) was slowly added to a solution of diamide 23d (267 mg, 0.6 mmol) in toluene/THF (2:1, 10 mL) at 0 °C. The reaction mixture was stirred at 40 °C for 3 h. After cooling to 0 °C, 1.0 M aqueous NaOH (10 mL) was added slowly. The mixture was stirred for 5 min and extracted with toluene (20 mL). The organic layer was washed with H_2O (5 mL) and brine (5 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting colorless oil 24d (245 mg, 98.1%) was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 5.01 (br s, 2H), 3.04–3.02 (m, 4H), 2.57 (t, J = 6.4 Hz, 4H), 2.54–2.48 (m, 4H), 1.62–1.55

(m, 2H), 1.43–1.42 (m, 8H), 1.35 (s, 18H); NH protons (2H) were not observed; $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) δ 155.9, 78.7, 49.4, 48.3, 40.3, 30.1, 28.3, 27.8, 27.3; HRMS (ESI-TOF) m/z calcd for $C_{21}H_{45}N_4O_4$ [M+H]⁺ 417.3435, found 417.3434.

Synthesis of 24e

di-tert-Butyl ((butane-1,4-diylbis(azanediyl))bis(butane-4,1-diyl))dicarbamate (24e). A 3.6 M solution of Red-Al in toluene (2.0 mL, 7.2 mmol) was slowly added to a solution of diamide 23e (275 mg, 0.6 mmol) in toluene/THF (2:1, 10 mL) at 0 °C. The reaction mixture was stirred at 40 °C for 3 h. After cooling to 0 °C, 1.0 M aqueous NaOH (10 mL) was added slowly. The mixture was stirred for 5 min and extracted with toluene (20 mL). The organic layer was washed with H₂O (5 mL) and brine (5 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting colorless solid 24e (225 mg, 87.2%) was used in the next step without further purification. 1 H NMR (400 MHz, CDCl₃) δ 5.01 (br s, 2H), 3.04–3.03 (m, 4H), 2.54–2.49 (m, 8H), 1.47–1.39 (m, 12H), 1.36 (s, 18H); NH protons (2H) were not observed; 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 155.9, 78.7, 49.6, 49.3, 40.3, 28.3, 27.74, 27.68, 27.2; HRMS (ESI-TOF) m/z calcd for C₂₂H₄₇N₄O₄ [M] ⁺ 431.3592, found 431.3591.

Synthesis of 6

Norspermine tetrahydrochloride (6). A 4.0 M solution of HCl in 1,4-dioxane (0.75 mL, 3.0 mmol) was added to a solution of the di-Boc compound **24a** (116 mg, 0.3 mmol) in 1,4-dioxane (5.0 mL) at 0 °C. The reaction mixture was stirred at 50 °C for 3 h. After removal of the solvent under reduced pressure, the crude residue was recrystallized from MeOH to afford a colorless solid **6** (73 mg, 73.3%). 1 H NMR (400 MHz, D₂O) δ 3.21 (m, 8H), 3.13 (m, 4H), 2.20–2.08 (m, 6H); 13 C{ 1 H} NMR (100 MHz, D₂O) δ 44.7, 44.6, 36.6, 23.7, 22.7; HRMS (ESI-TOF) m/z calcd for C₉H₂₅N₄ [M+H]⁺ 189.2074, found 189.2072.

Synthesis of 7

$$H_2N$$
 N
 H_2N
 H_3
 H_4
 H_2
 H_3
 H_4
 H_4

Spermine tetrahydrochloride (7). A 4.0 M solution of HCl in 1,4-dioxane (0.75 mL, 3.0 mmol) was added to a solution of the di-Boc compound **24b** (121 mg, 0.3 mmol) in 1,4-dioxane (5.0 mL) at 0 °C. The reaction mixture was stirred at 50 °C for 3 h. After removal of the solvent under reduced pressure, the crude residue was recrystallized from MeOH to afford a colorless solid **7** (58 mg, 55.7%). ¹H NMR

 $(400 \text{ MHz}, D_2O) \ \delta \ 3.18-3.09 \ (m, 12H), \ 2.13-2.06 \ (m, 4H), \ 1.85-1.74 \ (m, 4H); \ ^{13}C\{^1H\} \ NMR \ (100 \text{ MHz}, D_2O) \ \delta \ 47.0, 44.6, 36.6, 23.8, 22.8; HRMS \ (ESI-TOF) \ \textit{m/z} \ calcd for \ C_{10}H_{27}N_4 \ [M+H]^+ \ 203.2230, found \ 203.2228.$

Synthesis of 8

bis(Aminopropyl)cadaverine tetrahydrochloride (8). A 4.0 M solution of HCl in 1,4-dioxane (0.75 mL, 3.0 mmol) was added to a solution of the di-Boc compound **24c** (125 mg, 0.3 mmol) in 1,4-dioxane (5.0 mL) at 0 °C. The reaction mixture was stirred at 50 °C for 12 h. After removal of the solvent under reduced pressure, the crude residue was recrystallized from MeOH to afford a colorless solid **8** (78 mg, 71.4%). 1 H NMR (400 MHz, D₂O) δ 3.18–3.07 (m, 12H), 2.14–2.06 (m, 4H), 1.78–1.71 (m, 4H), 1.51–1.43 (m, 2H); 13 C{ 1 H} NMR (100 MHz, D₂O) δ 47.5, 44.5, 36.6, 25.1, 23.8, 22.8; HRMS (ESI-TOF) m/z calcd for C₁₁H₂₉N₄ [M+H]⁺ 217.2387, found 217.2389.

Synthesis of 9

Canavalmine tetrahydrochloride (9). A 4.0 M solution of HCl in 1,4-dioxane (0.75 mL, 3.0 mmol) was added to a solution of the di-Boc compound **24d** (208 mg, 0.5 mmol) in 1,4-dioxane (5.0 mL) at 0 °C. The reaction mixture was stirred at 50 °C for 3 h. After removal of the solvent under reduced pressure, the crude residue was recrystallized from MeOH to afford a colorless solid **9** (76 mg, 70.1%). 1 H NMR (400 MHz, D₂O) δ 3.19–3.04 (m, 12H), 2.17–2.09 (m, 2H), 1.85–1.70 (m, 8H); 13 C{ 1 H} NMR (100 MHz, D₂O) δ 47.1, 44.5, 38.8, 23.9, 22.8, 22.7; HRMS (ESI-TOF) m/z calcd for C₁₁H₂₉N₄ [M+H]⁺ 217.2387, found 217.2389.

Synthesis of 10

$$H_2N$$
 N
 H_2N
 H_2

Homospermine tetrahydrochloride (10). A 4.0 M solution of HCl in 1,4-dioxane (1.0 mL, 4.0 mmol) was added to a solution of the di-Boc compound 24e (172 mg, 0.4 mmol) in 1,4-dioxane (3.0 mL) at 0 °C. The reaction mixture was stirred at 50 °C for 3 h. After removal of the solvent under reduced pressure, the crude residue was recrystallized from MeOH to afford a colorless solid 10 (100 mg, 66.6%). 1 H NMR (400 MHz, D₂O) δ 3.12–3.03 (m, 12H), 1.83–1.82 (m, 12H); 13 C{ 1 H} NMR (100 MHz, D₂O) δ 46.9, 46.9, 38.8, 23.9, 22.80, 22.76; HRMS (ESI-TOF) m/z calcd for C₁₂H₃₁N₄ [M+H]⁺

231.2543, found 231.2548.

Synthesis of 26a

tert-Butyl (3-(((benzyloxy)carbonyl)amino)propyl)amino)-3-oxopropyl)carbamate (26a). A mixture of N-Cbz-propane-1,3-diamine hydrochloride (25a) (734 mg, 3.0 mmol), N-Boc-β-alanine (21a) (851 mg, 4.5 mmol), EDC·HCl (863 mg, 4.5 mmol), and DMAP (36 mg, 0.3 mmol) in Et₃N (0.6 mL, 4.3 mmol), DMF (10 mL) was stirred at 50 °C for 3 h. After cooling in an ice bath, 5% aqueous NaHCO₃ (30 mL) was added, stirred for 10 min at the same temperature, and the precipitate was collected by filtration using a Kiriyama funnel and washed with hexane/diethyl ether (10:1). The resulting colorless solid 26a (1086 mg, 95.4%) was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.30 (m, 5H), 6.30 (br s, 1H), 5.29 (br s, 1H), 5.19 (br s, 1H), 5.10 (s, 2H), 3.41–3.21 (m, 6H), 2.41–2.39 (m, 2H), 1.67–1.61 (m, 2H), 1.43 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.9, 157.0, 156.2, 136.5, 128.5, 128.1, 128.0, 79.4, 66.7, 37.6, 36.7, 36.3, 35.9, 29.8, 28.3; HRMS (ESI-TOF) m/z calcd for C₁₉H₃₀N₃O₅ [M+H]⁺ 380.2180, found 380.2183.

Synthesis of 26b

tert-Butyl (4-((4-(((benzyloxy)carbonyl)amino)butyl)amino)-4-oxobutyl)carbamate (26b). A mixture of *N*-Cbz-butane-1,4-diamine hydrochloride (25b) (776 mg, 3.0 mmol), *N*-Boc-γ-aminobutyric acid (21b) (915 mg, 4.5 mmol), EDC·HCl (863 mg, 4.5 mmol), and DMAP (36 mg, 0.3 mmol) in Et₃N (0.6 mL, 4.3 mmol), DMF (10 mL) was stirred at 50 °C for 3 h. After cooling in an ice bath, 5% aqueous NaHCO₃ (30 mL) was added, stirred for 10 min at the same temperature, and the precipitate was collected by filtration using a Kiriyama funnel and washed with hexane/diethyl ether (10:1). The resulting colorless solid 26b (1163 mg, 95.1%) was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) 7.38–7.29 (m, 5H), 6.32 (br s, 1H), 5.09 (s, 2H), 4.98 (br s, 1H), 4.78 (br s, 1H), 3.28–3.13 (m, 6H), 2.20 (t, J = 6.8 Hz, 2H), 1.82–1.76 (m, 2H), 1.58–1.52 (m, 4H), 1.43 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.7, 156.5 (2C), 136.6, 128.5 (2C), 128.1, 79.4, 66.6, 40.6, 39.6, 39.0, 33.6, 28.4, 27.3, 26.6, 26.5; HRMS (ESI-TOF) m/z calcd for C₂₁H₃₄N₃O₅ [M+H]⁺ 408.2493, found 408.2487.

Synthesis of 27a

tert-Butyl (3-((3-aminopropyl)amino)-3-oxopropyl)carbamate (27a). A mixture of amide 26a (759 mg, 2.0 mmol) and 10% Pd/C (76 mg, 10 wt%) in MeOH (10 mL) was stirred at room temperature for 5 h under hydrogen atmosphere. The mixture was filtered through Celite and concentrated under reduced pressure to give the desired compound as a colorless solid 27a (487 mg, 99.3%), which was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.00 (br s, 1H), 5.43 (br s, 1H), 3.33–3.24 (m, 4H), 2.71 (t, J = 6.4 Hz, 2H), 2.32 (t, J = 6.0 Hz, 2H), 1.61–1.51 (m, 4H), 1.35 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.4, 156.1, 79.0, 39.8, 37.5, 36.7, 36.2, 32.1, 28.3; HRMS (ESI-TOF) m/z calcd for C₁₁H₂₄N₃O₃ [M+H]⁺ 246.1812, found 246.1816.

Synthesis of 27b

tert-Butyl (4-((4-aminobutyl)amino)-4-oxobutyl)carbamate (27b). A mixture of amide 26b (815 mg, 2.0 mmol) and 10% Pd/C (76 mg, 10 wt%) in MeOH (10 mL) was stirred at room temperature for 5 h under hydrogen atmosphere. The mixture was filtered through Celite and concentrated under reduced pressure to give the desired compound as a colorless solid 27b (543 mg, 99.3%), which was used in the next step without further purification. 1 H NMR (400 MHz, CDCl₃) δ 6.82 (br s, 1H), 4.98 (br s, 1H), 3.28–2.70 (m, 8H), 2.20 (t, J = 6.8 Hz, 2H), 1.81–1.74 (m, 2H), 1.60–1.50 (m, 4H), 1.41 (s, 9H); 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 172.8, 156.5, 79.3, 41.2, 39.8, 39.2, 33.6, 29.7, 28.4, 26.8, 26.4; HRMS (ESI-TOF) m/z calcd for C₁₃H₂₈N₃O₃ [M+H] $^{+}$ 274.2125, found 274.2127.

Synthesis of 28a

tert-Butyl (2,2-dimethyl-4,8,14-trioxo-3-oxa-5,9,13-triazaheptadecan-17-yl)carbamate (28a). A mixture of amine 27a (487 mg, 2.0 mmol), *N*-Boc-4-aminobutylic acid (21b) (610 mg, 3.0 mmol), EDC·HCl (575 mg, 3.0 mmol), and DMAP (24 mg, 0.2 mmol) in DMF (10 mL) was stirred at 50 °C for 3 h. After cooling in an ice bath, 5% aqueous NaHCO₃ (30 mL) was added, stirred for 10 min at the same temperature, and the precipitate was collected by filtration using a Kiriyama funnel and washed with hexane/ethyl acetate (10:1). The resulting colorless solid 28a (820 mg, 95.3%) was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 6.92–6.85 (m, 2H), 5.33 (br s, 1H), 4.99 (br s, 1H), 3.37–3.34 (m, 2H), 3.25–3.24 (m, 4H), 3.13–3.12 (m, 2H), 2.41–2.20 (m, 4H), 1.81–1.75 (m, 2H), 1.64–1.61 (m, 2H), 1.41 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.4, 172.0, 156.5, 156.2, 79.3 (2C), 39.7, 36.8, 36.4, 35.9, 33.6, 29.5, 29.4, 28.4 (2C), 26.3; HRMS (ESI-TOF) *m/z* calcd for C₂₀H₃₉N₄O₆ [M+H]⁺ 431.2864, found 431.2859.

Synthesis of 28b

tert-Butyl (2,2-dimethyl-4,8,14-trioxo-3-oxa-5,9,13-triazaoctadecan-18-yl)carbamate (28b). A mixture of amine 27a (491 mg, 2.0 mmol), *N*-Boc-5-aminopentanoic acid (21c) (652 mg, 3.0 mmol), EDC·HCl (575 mg, 3.0 mmol), and DMAP (24 mg, 0.2 mmol) in DMF (10 mL) was stirred at 50 °C for 3 h. After cooling in an ice bath, 5% aqueous NaHCO₃ (30 mL) was added, stirred for 10 min at the same temperature, and the precipitate was collected by filtration using a Kiriyama funnel and washed with hexane/ethyl acetate (10:1). The resulting colorless solid 28b (852 mg, 95.8%) was used in the next step without further purification. 1 H NMR (400 MHz, CDCl₃) δ 6.68 (br s, 1H), 6.45 (br s, 1H), 5.27 (br s, 1H), 4.78 (br s, 1H), 3.41–3.10 (m, 8H), 2.43–2.40 (m, 2H), 2.24–2.21 (m, 2H), 1.70–1.58 (m, 4H), 1.54–1.42 (m, 20H); 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 173.6, 172.0, 156.19, 156.15, 79.3, 79.2, 39.8, 36.7, 36.4, 35.9, 35.8, 29.62, 29.58, 29.5, 28.39, 28.37, 22.7; HRMS (ESI-TOF) m/z calcd for C₂₁H₄₁N₄O₆ [M+H]⁺ 445.3021, found 445.3013.

Synthesis of 28c

tert-Butyl (2,2-dimethyl-4,8,15-trioxo-3-oxa-5,9,14-triazaoctadecan-18-yl)carbamate (28c). A mixture of amine 27b (543 mg, 2.0 mmol), *N*-Boc-β-alanine (21a) (566 mg, 3.0 mmol), EDC·HCl (575 mg, 3.0 mmol), and DMAP (24 mg, 0.2 mmol) in DMF (10 mL) was stirred at 50 °C for 3 h. After cooling in an ice bath, 5% aqueous NaHCO₃ (30 mL) was added, stirred for 10 min at the same temperature, and the precipitate was collected by filtration using a Kiriyama funnel and washed with hexane/ethyl acetate (10:1). The resulting colorless solid 28c (847 mg, 95.3%) was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 6.77–6.68 (m, 2H), 5.36 (br s, 1H), 5.05 (br s, 1H), 3.36–3.10 (m, 8H), 2.41–2.13 (m, 4H), 1.81–1.70 (m, 2H), 1.54–1.32 (m, 22H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.9, 171.7, 156.5, 156.2, 79.2 (2C), 39.7, 38.9 (2C), 36.8, 36.2, 33.5 (2C), 28.3, 26.8, 26.6, 26.4; HRMS (ESI-TOF) *m/z* calcd for C₂₁H₄₁N₄O₆ [M+H]⁺ 445.3021, found 445.3013.

Synthesis of 29a

tert-Butyl (2,2-dimethyl-4-oxo-3-oxa-5,10,14-triazaheptadecan-17-yl)carbamate (29a). A 3.6 M solution of Red-Al in toluene (5.0 mL, 18 mmol) was slowly added to a solution of diamide 28a (431 mg, 1.0 mmol) in toluene/THF (2:1, 10 mL) at 0 °C. The reaction mixture was stirred at 40 °C for 3 h. After cooling to 0 °C, 1 M aqueous NaOH (10 mL) was added slowly. The mixture was stirred for 5

min and extracted with toluene (20 mL). The organic layer was washed with H_2O (10 mL) and brine (5 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting colorless solid (353 mg, 87.6%) was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 5.25 (br s, 1H), 5.04 (br s, 1H), 3.12–3.00 (m, 4H), 2.58–2.50 (m, 8H), 1.60–1.52 (m, 4H), 1.43–1.34 (m, 22H); NH protons (2H) were not observed; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.94, 155.89, 78.6 (2C), 49.4, 48.21, 48.19, 47.6, 40.3, 39.0, 30.1, 29.8, 28.3 (2C), 27.7, 27.3; HRMS (ESITOF) m/z calcd for $C_{20}H_{43}N_4O_4$ [M+H]⁺ 403.3279, found 403.3272.

Synthesis of 29b

tert-butyl (2,2-dimethyl-4-oxo-3-oxa-5,9,13-triazaoctadecan-18-yl)carbamate (29b). A 3.6 M solution of Red-Al in toluene (5.0 mL, 18 mmol) was slowly added to a solution of diamide 28b (445 mg, 1.0 mmol) in toluene/THF (2:1, 20 mL) at 0 °C. The reaction mixture was stirred at 40 °C for 3 h. After cooling to 0 °C, 1 M aqueous NaOH (10 mL) was added slowly. The mixture was stirred for 5 min and extracted with toluene (20 mL). The organic layer was washed with H₂O (10 mL) and brine (10 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting colorless solid (395 mg, 94.9%) was used in the next step without further purification. 1 H NMR (400 MHz, CDCl₃) δ 5.19 (br s, 1H), 4.66 (br s, 1H), 3.15–3.06 (m, 4H), 2.63–2.50 (m, 8H), 1.69–1.51 (m, 4H), 1.45–1.33 (m, 24H); NH protons (2H) were not observed; 13 C(1 H) NMR (100 MHz, CDCl₃) δ 156.1, 156.0, 78.9, 78.8, 49.8, 48.3 (2C), 47.6, 40.4, 39.1, 30.2, 29.9 (2C), 29.6, 28.4 (2C), 24.5; HRMS (ESI-TOF) m/z calcd for C₂₁H₄₅N₄O₄ [M+H]⁺ 417.3435, found 417.3428.

Synthesis of 29c

tert-butyl (2,2-dimethyl-4-oxo-3-oxa-5,9,14-triazaoctadecan-18-yl)carbamate (29c). A 3.6 M solution of Red-Al in toluene (7.5 mL, 27 mmol) was slowly added to a solution of diamide 28c (667 mg, 1.5 mmol) in toluene/THF (2:1, 20 mL) at 0 °C. The reaction mixture was stirred at 40 °C for 3 h. After cooling to 0 °C, 1 M aqueous NaOH (10 mL) was added slowly. The mixture was stirred for 5 min and extracted with toluene (20 mL). The organic layer was washed with H₂O (10 mL) and brine (5 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting colorless solid (595 mg, 95.2%) was used in the next step without further purification. 1 H NMR (400 MHz, CDCl₃) δ 5.19 (br s, 1H), 4.94 (br s, 1H), 3.62–3.60 (m, 1H), 3.24–3.23 (m, 1H), 3.18–3.07 (m, 4H), 2.64–2.54 (m, 8H), 1.64–1.56 (m, 2H), 1.48–1.46 (m, 8H), 1.40 (m, 18H); NH protons (2H) were not observed; 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 156.04, 155.98, 78.8 (2C), 49.8, 49.7, 49.5, 47.7, 40.4, 39.2, 32.8, 29.9, 28.4, 28.3, 27.83, 27.81, 27.4; HRMS (ESI-TOF) m/z calcd for C₂₁H₄₅N₄O₄ [M+H]⁺ 417.3435, found 417.3436.

Synthesis of 11

Thermospermine tetrahydrochloride (11). A 4.0 M solution of HCl in 1,4-dioxane (1.0 mL, 4.0 mmol) was added to a solution of the di-Boc compound 29a (242 mg, 0.6 mmol) in 1,4-dioxane (5.0 mL) at 0 °C. The reaction mixture was stirred at 50 °C for 3 h. After removal of the solvent under reduced pressure, the crude residue was recrystallized from MeOH to afford a colorless solid 11 (134 mg, 64.0%). 1 H NMR (400 MHz, D₂O) δ 3.22–3.03 (m, 12H), 2.18–2.07 (m, 4H), 1.84–1.72 (m, 4H); 13 C{ 1 H} NMR (100 MHz, D₂O) δ 47.1, 44.7, 44.6, 44.5, 38.8, 36.6, 23.9, 23.8, 22.8, 22.7; HRMS (ESI-TOF) m/z calcd for C₁₀H₂₇N₄ [M+H]⁺ 203.2230, found 203.2231.

Synthesis of 12

$$H_2N$$
 H_2N
 H_2N

Aminopentylnorspermidine tetrahydrochloride (12). A 4.0 M solution of HCl in 1,4-dioxane (1.0 mL, 4.0 mmol) was added to a solution of the di-Boc compound **29b** (250 mg, 0.6 mmol) in 1,4-dioxane (5.0 mL) at 0 °C. The reaction mixture was stirred at 50 °C for 3 h. After removal of the solvent under reduced pressure, the crude residue was recrystallized from MeOH to afford a colorless solid **12** (161 mg, 74.1%). 1 H NMR (400 MHz, D₂O) δ 3.21–2.99 (m, 12H), 2.17–2.07 (m, 4H), 1.78–1.68 (m, 4H), 1.50–1.43 (m, 2H); 13 C{ 1 H} NMR (100 MHz, D₂O) δ 47.5, 44.73, 44.65, 44.4, 39.2, 36.5, 26.3, 25.1, 23.8, 22.8, 22.7; HRMS (ESI-TOF) m/z calcd for C₁₁H₂₉N₄ [M+H]⁺ 217.2387, found 217.2386.

Synthesis of 13

Aminopropylhomospermidine tetrahydrochloride (13). A 4.0 M solution of HCl in 1,4-dioxane (1.5 mL, 6.0 mmol) was added to a solution of the di-Boc compound **29c** (417 mg, 0.6 mmol) in 1,4-dioxane (10.0 mL) at 0 °C. The reaction mixture was stirred at 50 °C for 3 h. After removal of the solvent under reduced pressure, the crude residue was recrystallized from MeOH to afford a colorless solid **13** (304 mg, 83.8%). 1 H NMR (400 MHz, D₂O) δ 3.19–3.03 (m, 12H), 2.14–2.06 (m, 2H), 1.83–1.70 (m, 8H); 13 C{ 1 H} NMR (100 MHz, D₂O) δ 47.0, 46.93, 46.86, 44.6, 38.8, 36.6, 23.9, 23.8, 22.80, 22.78, 22.76; HRMS (ESI-TOF) m/z calcd for C₁₁H₂₉N₄ [M+H]⁺ 217.2387, found 217.2389.

Synthesis of 31

tert-butyl (3-((3-((tert-butoxycarbonyl)amino)propyl)amino)-3-oxopropyl)carbamate (31). A mixture of *N*-Boc-propane-1,3-diamine (30) (174 mg, 1.0 mmol), *N*-Boc-β-alanine (21a) (227 mg, 1.2 mmol), EDC·HCl (230 mg, 1.2 mmol), and DMAP (12 mg, 0.1 mmol) in DMF (5.0 mL) was stirred at 50 °C for 3 h. After cooling in an ice bath, 5% aqueous NaHCO₃ (20 mL) was added, stirred for 10 min at the same temperature, and the precipitate was collected by filtration using a Kiriyama funnel and washed with hexane/ethyl acetate (10:1). The resulting colorless solid 31 (332 mg, 96.0%) was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 6.53 (br s, 1H), 5.29 (br s, 1H), 5.00 (br s, 1H), 3.38 (dd, J = 12.0, 6.0 Hz, 2H), 3.27 (dd, J = 12.4, 6.0 Hz, 2H), 3.14 (dd, J = 12.0, 6.0 Hz, 2H), 2.39 (t, J = 6.0 Hz, 2H), 1.62–1.56 (m, 2H), 1.42 (s, 9H), 1.41 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.7, 156.6, 156.1, 79.4, 79.2, 37.0, 36.7, 36.2, 35.8, 30.1, 28.3 (2C); HRMS (ESI-TOF) m/z calcd for C₁₆H₃₂N₃O₅ [M+H]⁺ 346.2337, found 346.2345.

Synthesis of 32

di-tert-butyl (*azanediylbis*(*propane-1,3-diyl*))*dicarbamate* (*32*). A 3.6 M solution of Red-Al in toluene (1.5 mL, 5.4 mmol) was slowly added to a solution of amide *31* (345 mg, 4.0 mmol) in toluene/THF (2:1, 15 mL) at 0 °C. The reaction mixture was stirred at 40 °C for 3 h. After cooling to 0 °C, 1 M aqueous NaOH (10 mL) was added slowly. The mixture was stirred for 5 min and extracted with toluene (20 mL). The organic layer was washed with H₂O (10 mL) and brine (5 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting colorless solid *32* (312 mg, 94.2%) was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 5.35 (br s, 2H), 3.13–3.06 (m, 4H), 2.53 (t, J = 6.4 Hz, 4H), 1.57–1.48 (m, 4H), 1.48 (s, 18H); NH proton (1H) was not observed; ¹³C{ ¹H} NMR (100 MHz, CDCl₃) δ 156.0, 78.6, 47.1, 38.6, 29.5, 28.2; HRMS (ESI-TOF) m/z calcd for C₁₆H₃₄N₃O₄ [M+H]⁺ 332.2544, found 332.2547.

Synthesis of 1

$$H_2N$$
 N
 NH_2
 NH_2

Norspermidine trihydrochloride (1). A 4.0 M solution of HCl in 1,4-dioxane (1.0 mL, 4.0 mmol) was added to a solution of the di-Boc compound 32 (265 mg, 0.8 mmol) in 1,4-dioxane (3.0 mL) at 0 °C. The reaction mixture was stirred at 50 °C for 2 h. After removal of the solvent under reduced pressure, the crude residue was recrystallized from MeOH/iPrOH to afford a colorless solid 1 (111 mg, 71.9%). 1 H NMR (400 MHz, D₂O) δ 3.10–2.90 (m, 8H), 2.12–1.88 (m, 4H); 13 C{ 1 H} NMR (100 MHz, D₂O)

 δ 44.6, 36.5, 23.7; HRMS (ESI-TOF) m/z calcd for C₆H₁₈N₃ [M+H]⁺ 132.1495, found 132.1492.

Synthesis of 33

$$H_2N$$
 N
 N
 NH_2
 NH_2

3-amino-N-(3-aminopropyl)propanamide dihydrochloride (*33*). A 4.0 M solution of HCl in 1,4-dioxane (3.0 mL, 12.0 mmol) was added to a solution of the di-Boc compound *31* (1038 mg, 3.0 mmol) in 1,4-dioxane (3.0 mL) at 0 °C. The reaction mixture was stirred at 50 °C for 2 h. After removal of the solvent under reduced pressure. The resulting colorless solid *33* (648 mg, 99.1%) was used in the next step without further purification. ¹H NMR (400 MHz, D₂O) δ 3.31 (t, J = 6.8 Hz, 2H), 3.27 (t, J = 6.8 Hz, 2H), 3.01 (t, J = 7.6 Hz, 2H), 2.68 (t, J = 6.8 Hz, 2H), 1.91–1.84 (m, 2H); ¹³C{¹H} NMR (100 MHz, D₂O) δ 172.5, 37.0, 36.1, 35.7, 31.9, 26.6; HRMS (ESI-TOF) m/z calcd for C₆H₁₆N₃O [M+H]⁺ 146.1288, found 146.1285.

Synthesis of 34

tert-butyl (2,2-dimethyl-4,8,12,18-tetraoxo-3-oxa-5,9,13,17-tetraozaicosan-20-yl)carbamate (34). A mixture of diamine (33) (218 mg, 1.0 mmol), *N*-Boc-β-alanine (21a) (454 mg, 2.4 mmol), EDC·HCl (460 mg, 2.4 mmol), and DMAP (12 mg, 0.1 mmol) in DMF (10 mL) and Et₃N (0.35 mL, 2.5 mmol) was stirred at 50 °C for 3 h. After cooling in an ice bath, 5% aqueous NaHCO₃ (20 mL) was added, stirred for 10 min at the same temperature, and the precipitate was collected by filtration using a Kiriyama funnel and washed with hexane/ethyl acetate (10:1). The resulting colorless solid 34 (410 mg, 84.1%) was used in the next step without further purification. ¹H NMR (400 MHz, DMSO-*d*6) δ 7.92–7.85 (m, 3H), 6.78–6.75 (m, 2H), 3.22–3.03 (m, 10H), 2.22–2.19 (m, 6H), 1.52–1.49 (m, 2H), 1.37 (s, 18H); 13 C{ 1 H} NMR (100 MHz, DMSO-*d*6) δ 170.31 (2C), 170.27, 155.5 (2C), 77.6 (2C), 36.81, 36.78, 36.2 (2C), 35.9, 35.8, 35.5, 35.3, 29.1, 28.3 (2C); HRMS (ESI-TOF) *m/z* calcd for C₂₂H₄₂N₅O₇ [M+H]⁺ 488.3079, found 488.3071.

Synthesis of 35

di-tert-butyl (((azanediylbis(propane-3,1-diyl))bis(azanediyl))bis(propane-3,1-diyl))dicarbamate (35). A 3.6 M solution of Red-Al in toluene (2.8 mL, 10.1 mmol) was slowly added to a solution of amide 34 (322 mg, 0.66 mmol) in toluene/THF (2:1, 15 mL) at 0 °C. The reaction mixture was stirred at 40 °C for 3 h. After cooling to 0 °C, 1 M aqueous NaOH (10 mL) was added slowly. The mixture was

stirred for 5 min and extracted with CH₂Cl₂ (20 mL×2). The organic layer was washed with H₂O (10 mL) and brine (5 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting colorless solid **35** (232 mg, 79.1%) was used in the next step without further purification. ¹H NMR (400 MHz, CD₃OD) δ 3.09 (t, J = 6.4 Hz, 4H), 2.66–2.58 (m, 12H), 1.75–1.63 (m, 8H), 1.43 (s, 18H); ¹³C{¹H} NMR (100 MHz, CD₃OD) δ 158.6, 79.9, 47.8, 39.1, 30.7, 29.9, 28.8; Two carbon signals overlap with the solvent signal; HRMS (ESI-TOF) m/z calcd for C₂₂H₄₈N₅O₄ [M+H]⁺ 446.3701, found 446.3705.

Synthesis of 14

Caldopentamine pentahydrochloride (14). A 4.0 M solution of HCl in 1,4-dioxane (0.5 mL, 2.0 mmol) was added to a solution of the di-Boc compound 35 (265 mg, 0.4 mmol) in 1,4-dioxane (2.0 mL) at 0 °C. The reaction mixture was stirred at 50 °C for 2 h. After removal of the solvent under reduced pressure, the crude residue was recrystallized from EtOH/H₂O to afford a colorless solid 14 (110 mg, 64.3%). 1 H NMR (400 MHz, D₂O) δ 3.20–3.08 (m, 16H), 2.16–2.05 (m, 8H); 13 C{ 1 H} NMR (100 MHz, D₂O) δ 44.7, 44.6, 44.5, 36.5, 23.7, 22.6; HRMS (ESI-TOF) m/z calcd for C₁₂H₃₂N₅ [M+H]⁺ 246.2652, found 246.2657.

The ¹H NMR (400 MHz, D₂O) and ¹³C NMR (100 MHz, D₂O) data of caldopentamine pentahydrochloride were in good agreement with those reported in the literature (ref. 49).

Synthesis of 36

$$\begin{array}{c|c} H_2N & \begin{array}{c} H & H \\ N & N \end{array} & \begin{array}{c} NH_2 \\ O \end{array} \\ \begin{array}{c} 2HCI \end{array}$$

N,N'-(propane-1,3-diyl)bis(3-aminopropanamide) dihydrochloride (36). A 4.0 M solution of HCl in 1,4-dioxane (1.5 mL, 6.0 mmol) was added to a solution of the di-Boc compound 23a (416 mg, 1.0 mmol) in 1,4-dioxane (10 mL) at 0 °C. The reaction mixture was stirred at 50 °C for 3 h. After removal of the solvent under reduced pressure, the resulting colorless solid 36 (281 mg, 97.2%) was used in the next step without further purification. 1 H NMR (400 MHz, D₂O) δ 3.28–3.15 (m, 8H), 2.61 (t, J = 6.4 Hz, 4H), 1.70–1.63 (m, 2H); 13 C{ 1 H} NMR (100 MHz, D₂O) δ 172.0, 36.5, 35.7, 32.0, 27.7; HRMS (ESI-TOF) m/z calcd for C₉H₂₀N₄O₂ [M+H]⁺ 217.1659, found 217.1656.

Synthesis of 37

di-tert-butyl (3,7,13,17-tetraoxo-4,8,12,16-tetraazanonadecane-1,19-diyl)dicarbamate (37). A

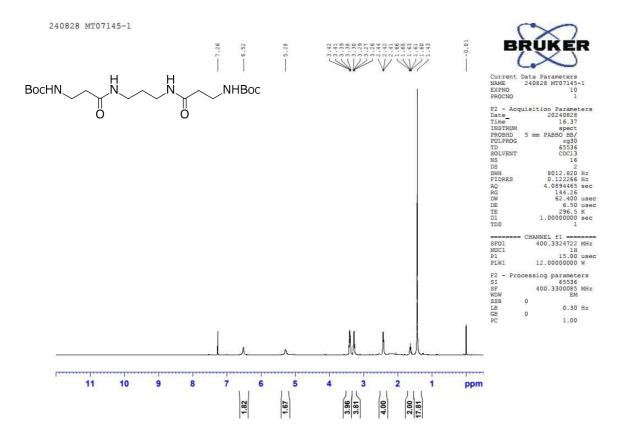
mixture of diamine (**36**) (578 mg, 2.0 mmol), *N*-Boc-β-alanine (**21a**) (1135 mg, 6.0 mmol), EDC·HCl (1150 mg, 6.0 mmol), and DMAP (24 mg, 0.2 mmol) in EtOH (12 mL) and 1 M aqueous NaOH (6.0 mL, 6.0 mmol) was stirred at 50 °C for 12 h. After removal of the EtOH under reduced pressure, and the precipitate was collected by filtration using a Kiriyama funnel and washed with H₂O and hexane/ethyl acetate (10:1). The resulting colorless solid **37** (969 mg, 86.7%) was used in the next step without further purification. 1 H NMR (400 MHz, DMSO-*d6*) δ 7.91–7.83 (m, 4H), 6.75–6.72 (m, 2H), 3.24–3.20 (m, 4H), 3.13–3.02 (m, 8H), 2.23–2.18 (m, 8H), 1.55–1.48 (m, 2H), 1.37 (s, 18H); 13 C{ 1 H} NMR (100 MHz, DMSO-*d6*) δ 170.3 (2C), 155.4, 77.6, 36.7, 36.1, 35.7, 35.5, 35.3, 29.1, 28.2; HRMS (ESI-TOF) *m/z* calcd for C₂₅H₄₇N₆O₈ [M+H]⁺ 559.3450, found 559.3455.

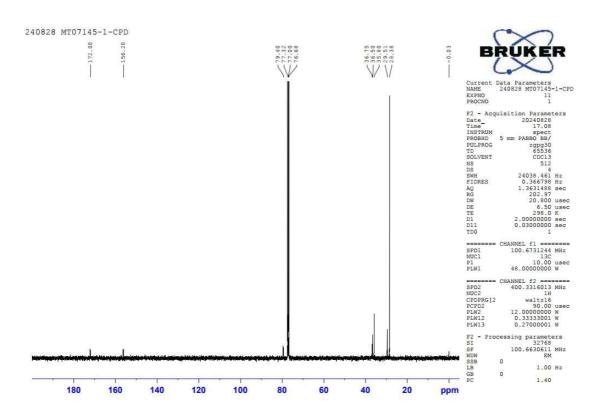
Synthesis of 38

di-tert-butyl (4,8,12,16-tetraazanonadecane-1,19-diyl)dicarbamate (38). A 3.6 M solution of Red-Al in toluene (5.6 mL, 20.2 mmol) was slowly added to a solution of amide 37 (559 mg, 1.0 mmol) in toluene/THF (2:1, 20 mL) at 0 °C. The reaction mixture was stirred at 40 °C for 5 h. After cooling to 0 °C, 1 M aqueous NaOH (10 mL) was added slowly. The mixture was stirred for 5 min and extracted with CH₂Cl₂ (20 mL×2). The organic layer was washed with H₂O (10 mL) and brine (5 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting colorless solid (374 mg, 74.4%) was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 5.35–5.09 (m, 4H), 3.18–3.17 (m, 4H), 2.66–2.59 (m, 16H), 1.70–1.62 (m, 10H), 1.43 (s, 18H); 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 156.1, 79.0, 48.44, 48.36, 48.3, 47.7, 39.1, 30.2, 29.9, 28.4, 22.2; HRMS (ESI-TOF) m/z calcd for C₂₅H₅₅N₆O₄ [M+H]⁺ 503.4279, found 503.4270.

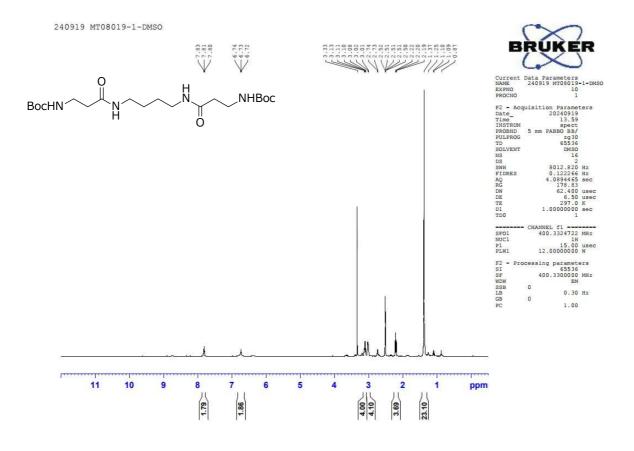
Synthesis of 17

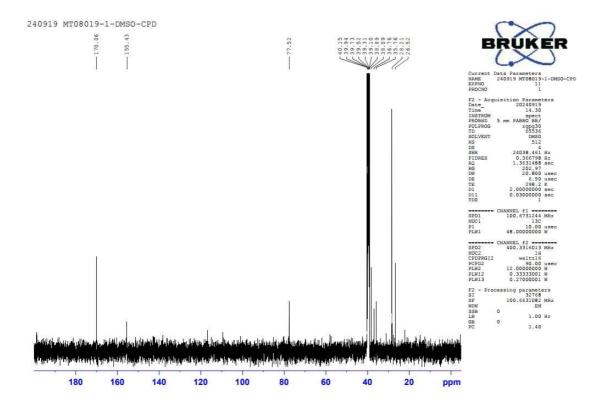
Caldohexamine hexahydrochloride (17). A 4.0 M solution of HCl in 1,4-dioxane (1.0 mL, 4.0 mmol) was added to a solution of the di-Boc compound 38 (251 mg, 0.50 mmol) in 1,4-dioxane (5.0 mL) at 0 °C. The reaction mixture was stirred at 50 °C for 3 h. After removal of the solvent under reduced pressure, the crude residue was recrystallized from EtOH/H₂O to afford a colorless solid 17 (143 mg, 54.8%). 1 H NMR (400 MHz, D₂O) δ 3.09–2.98 (m, 20H), 2.06–1.95 (m, 10H); 13 C{ 1 H} NMR (100 MHz, D₂O) δ 66.6, 44.7, 44.60 (2C), 44.58, 36.5, 23.7, 22.7; HRMS (ESI-TOF) m/z calcd for C₁₅H₃₉N₆ [M+H]⁺ 303.3231, found 303.3221.

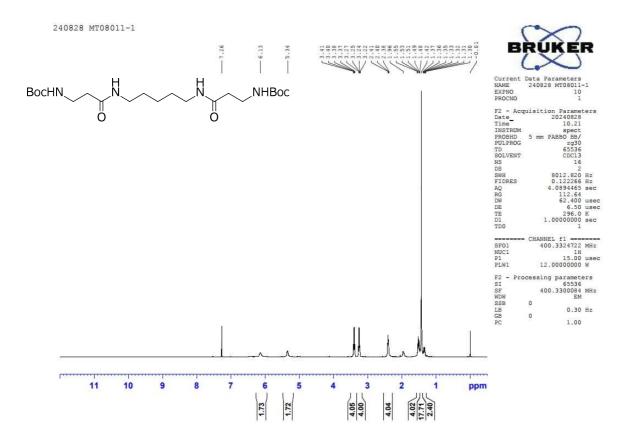

The ¹H NMR (400 MHz, D₂O) data of caldohexamine hexahydrochloride was in good agreement with those reported in the literature (ref. 49).

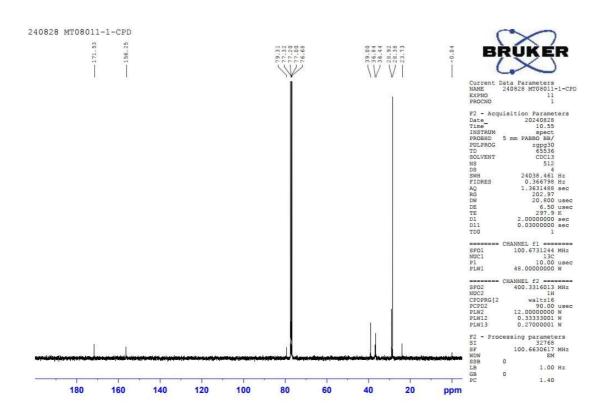

Table S1. Comparison of the present polyamine synthesis with previously reported methods.

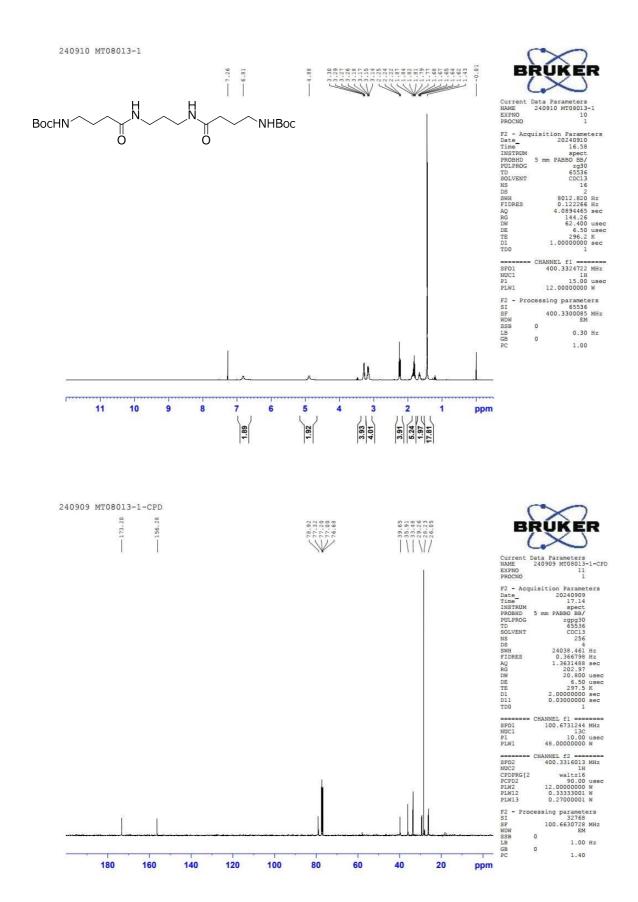
Method	Key reagents / steps	Number of steps	purification	Notes
Niitsu, M. et al.	Gabriel synthesis	14 : 8 steps	Column chromatography,	First chemical synthesis of compounds 14 and
(ref. 12)	(phthalimide alkylation,	15 : 7 steps	recrystallisation	15; establishment of a series of ten pentaamines
	hydrazinolysis)			
Oshima, T. et al.	Gabriel synthesis	14 : 3 steps	Column chromatography,	Compound 14 synthesized in 3 steps from
(ref. 49)	(phthalimide alkylation,	17 : 10 steps	recrystallisation	commercially available compound 6; costly
	hydrazinolysis)			starting material; compound 17 with synthetic
				route and ¹ H NMR only
Kariya, Y. et al.	Ns chemistry (nosyl-	6,7 : 5 steps	Column chromatography,	High purity via solid-phase workflow; simple
(ref. 13)	protected amines,	11 : 11 steps	solid-phase final	final purification
	reductive removal)		purification	
This work	EDC amidation and	1 , 6–10 : 3 steps	Recrystallisation	Chromatography-free synthesis;
	Red-Al reduction	11–14 , 17 : 5 steps		short and modular routes;
				first full characterization of compound 17


Compound names and numbers (same as in the main text): norspermidine (1); norspermine (6); spermine (7); bis(aminopropyl)cadaverine (8); canavalmine (9); homospermine (10); thermospermine (11); aminopentylnorspermidine (12); aminopropylhomospermidine (13); caldopentamine (14); homocaldopentamine (15); caldohexamine (17).

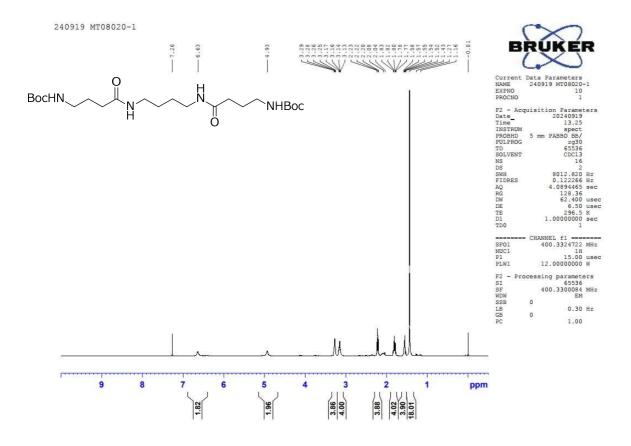

NMR chart of 23a

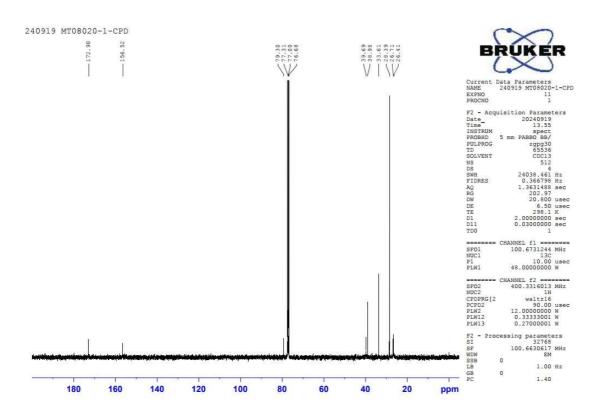



NMR chart of 23b



NMR chart of 23c



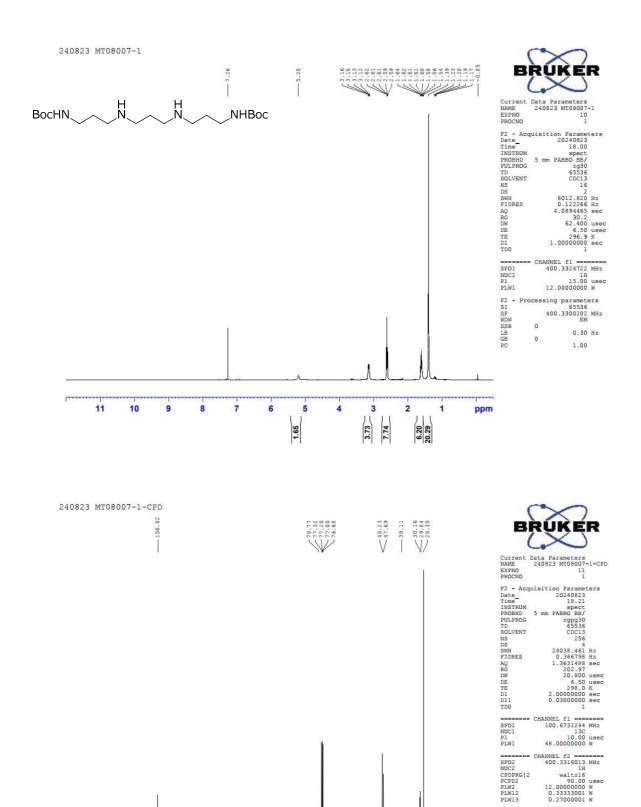


NMR chart of 23d

NMR chart of 23e

NMR chart of 24a

180


160

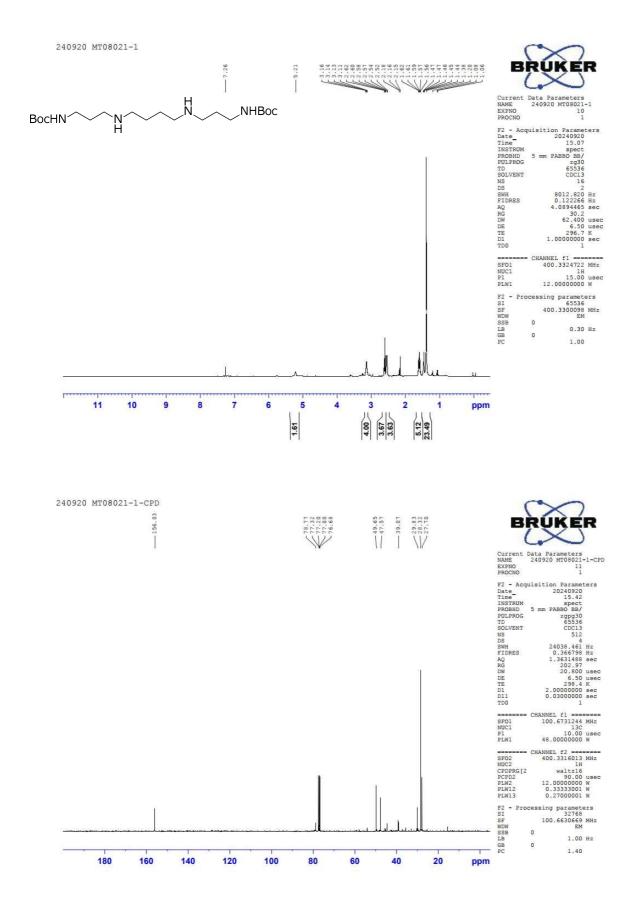
140

120

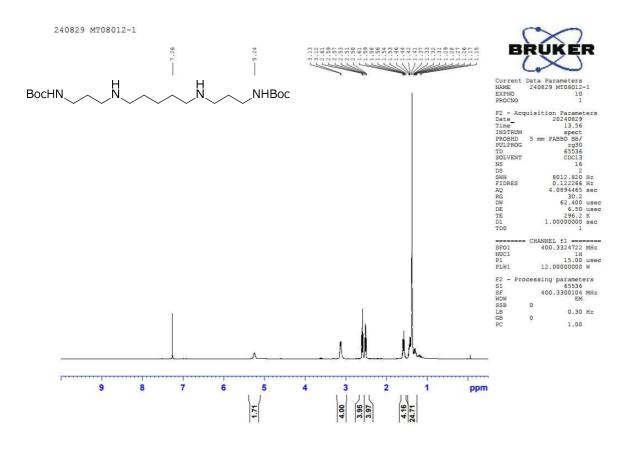
100

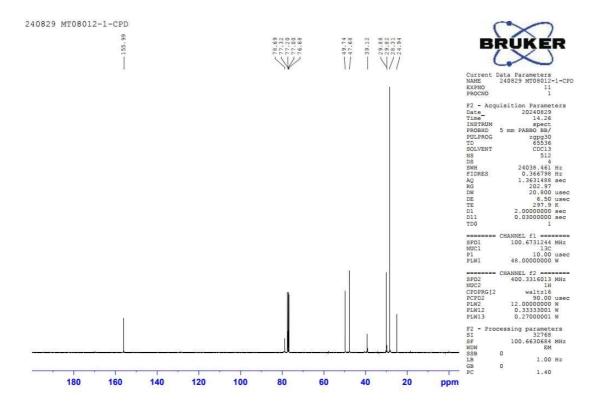
80

60

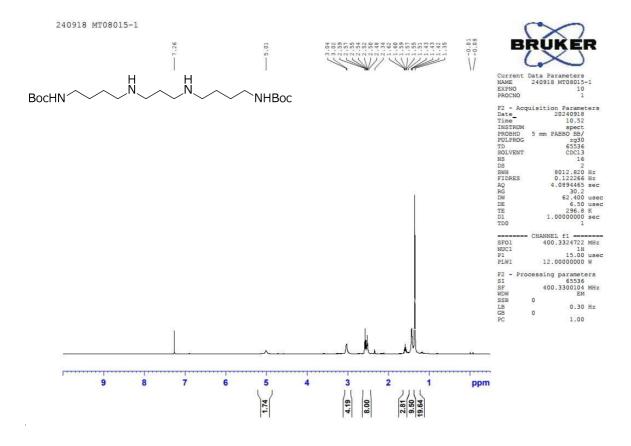

40

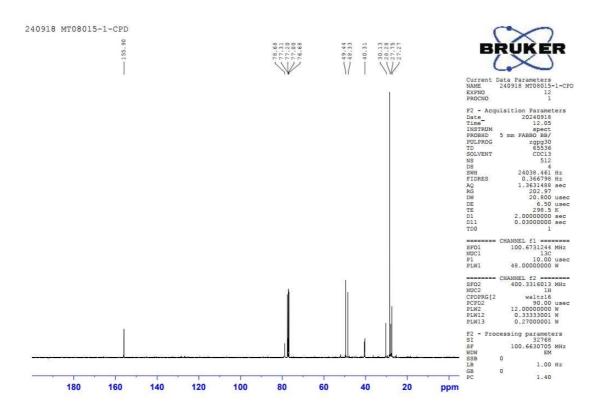
20

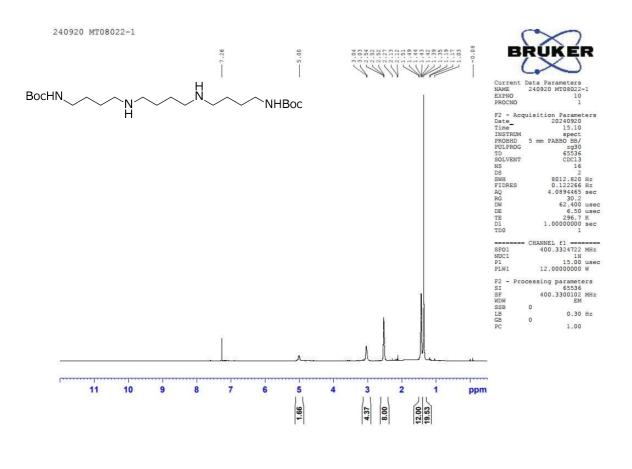

ppm

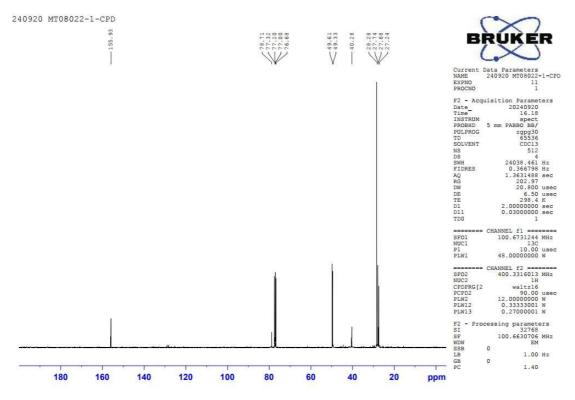

F2 - Processing parameters SI 32768 SF 100.6630662 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 1.40

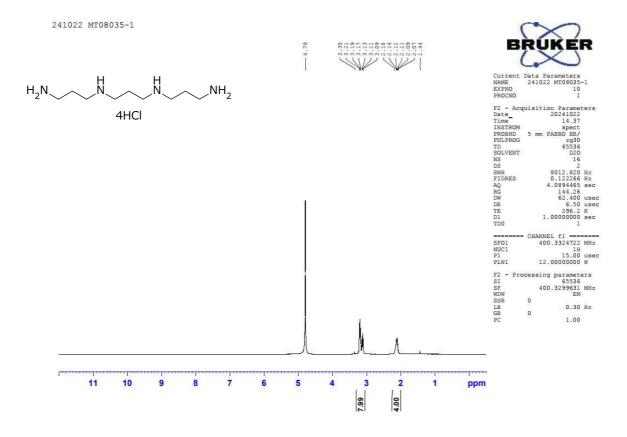
NMR chart of 24b

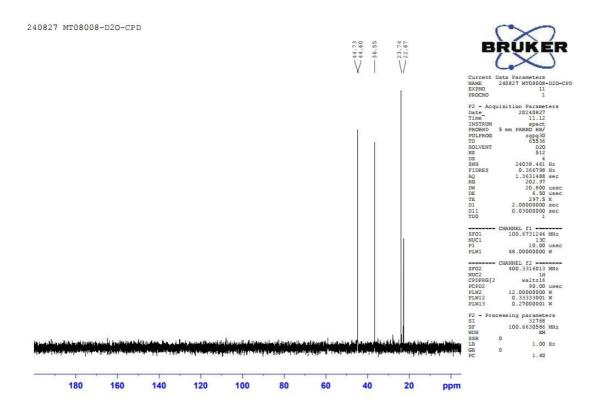


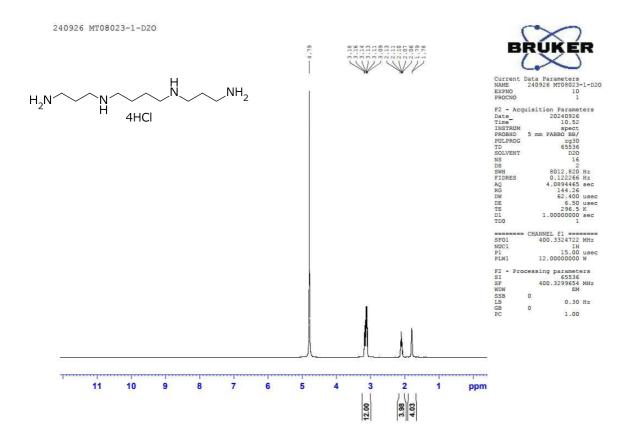

NMR chart of 24c

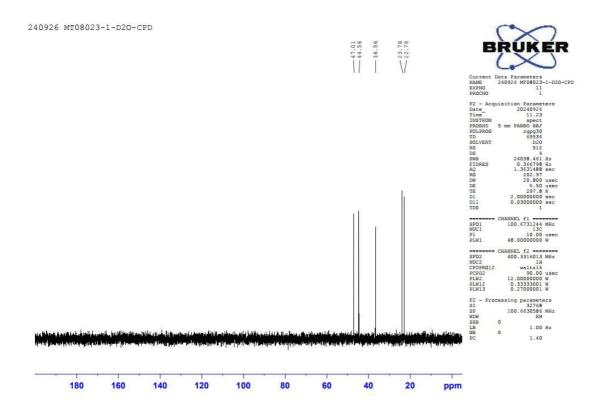


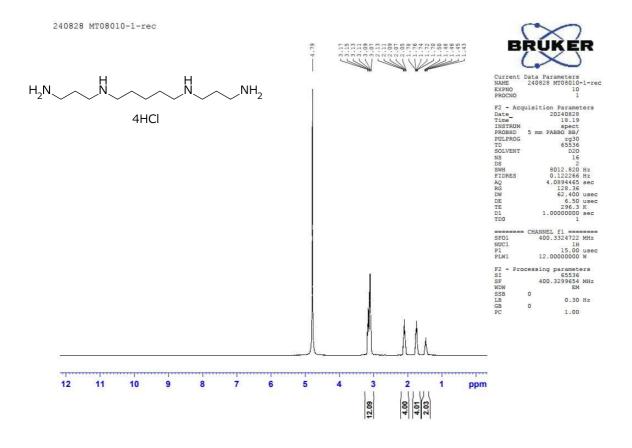

NMR chart of 24d

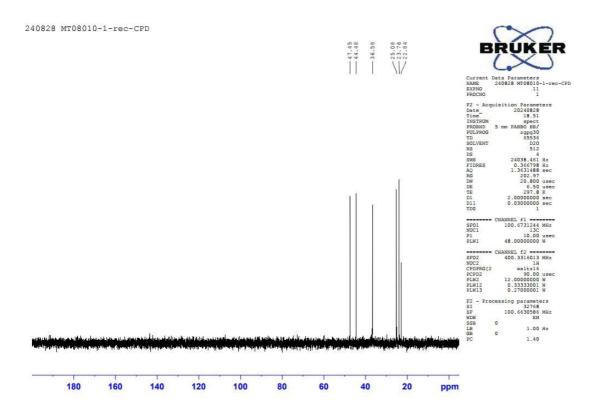


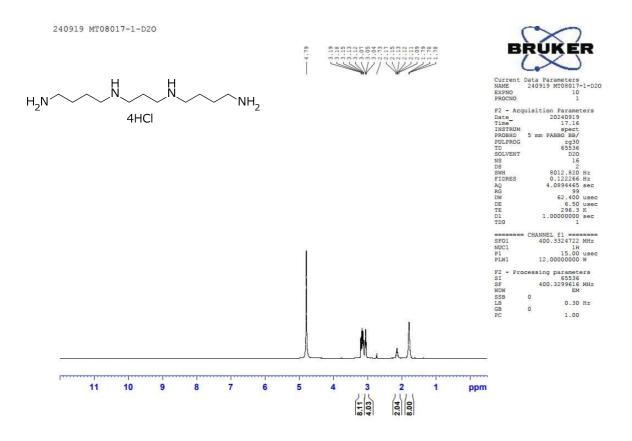


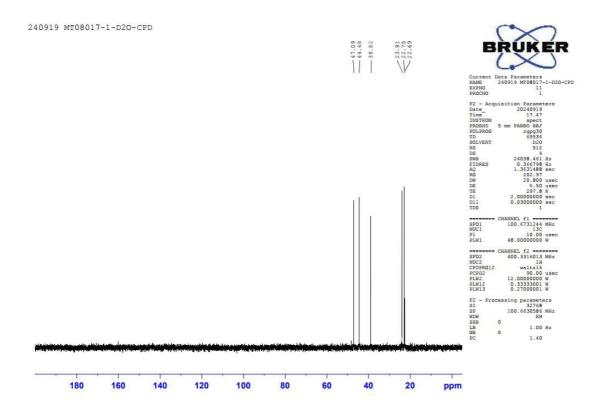

NMR chart of 24e

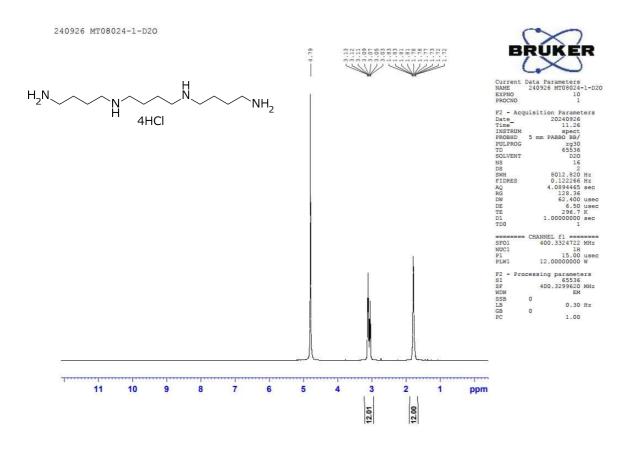


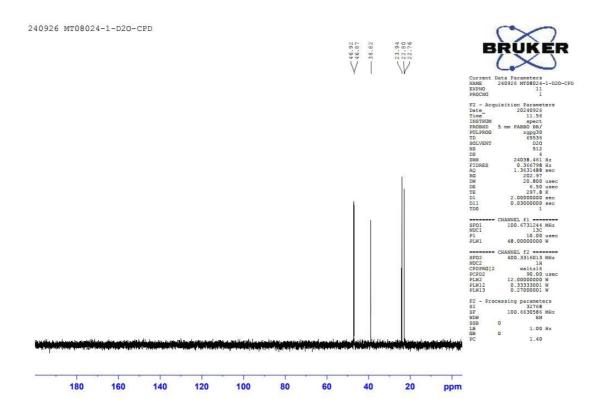


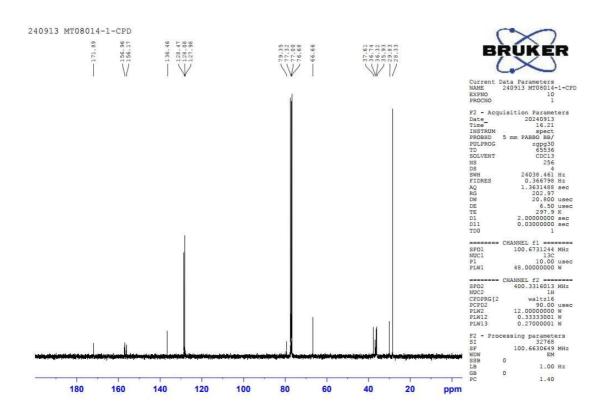


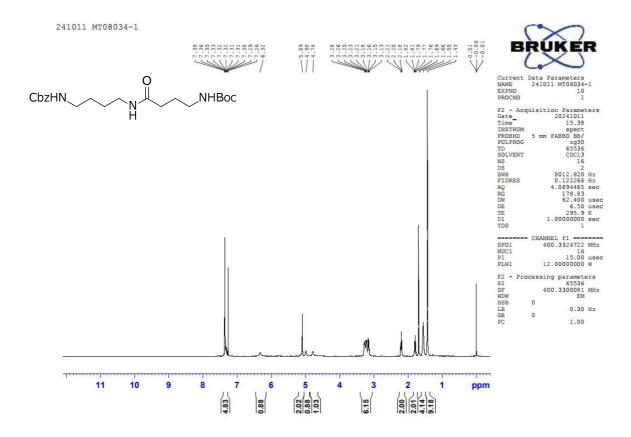


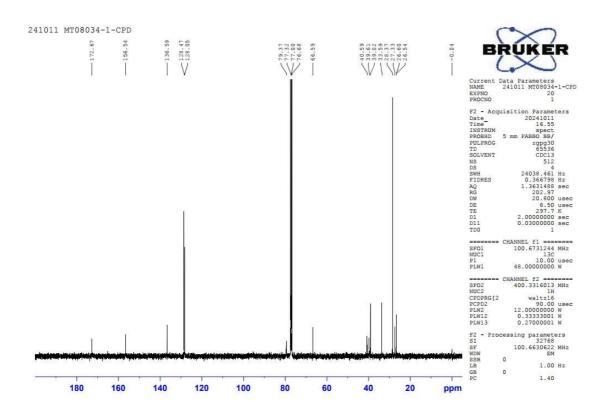


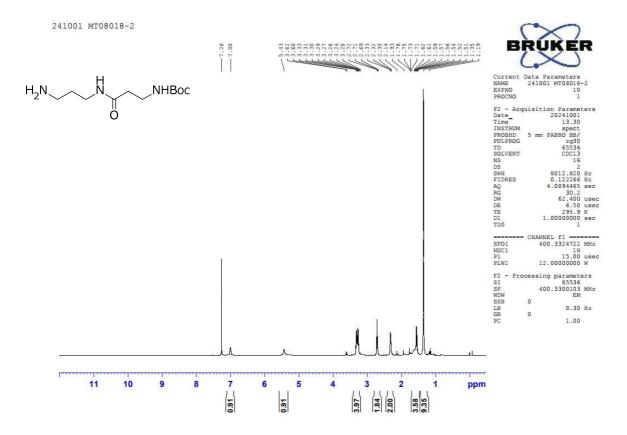


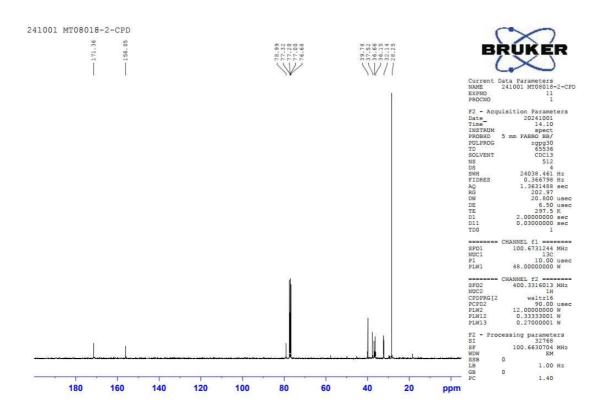


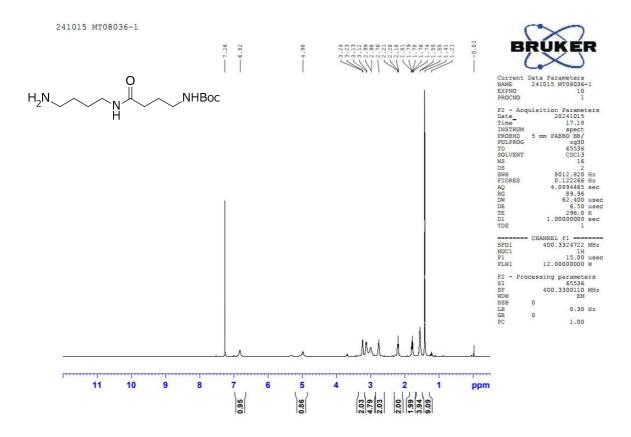


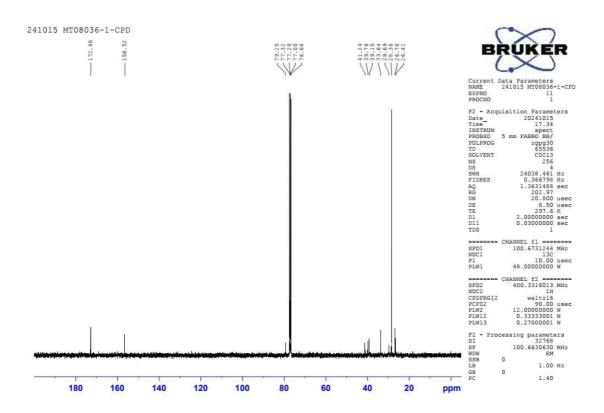


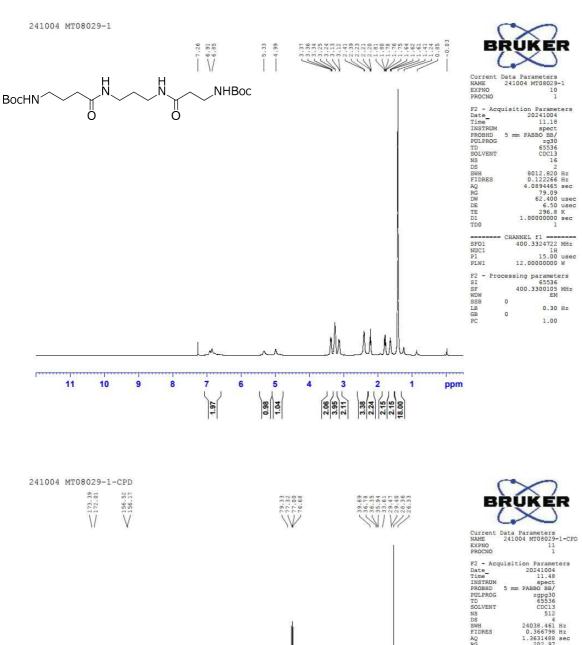

NMR chart of 26a



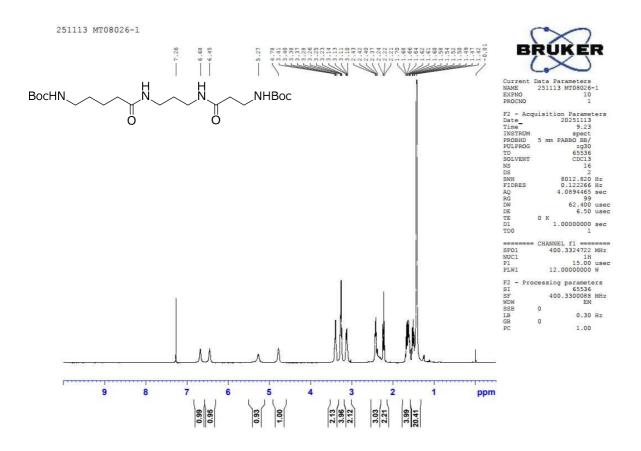

NMR chart of 26b

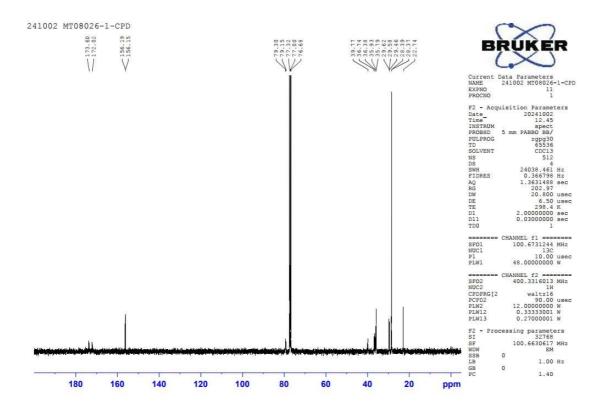



NMR chart of 27a

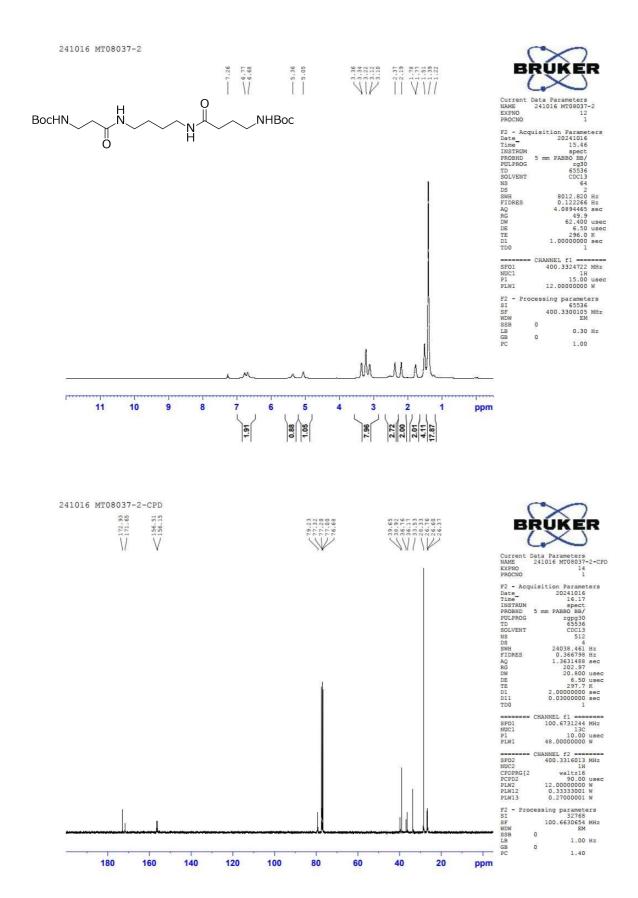


NMR chart of 27b

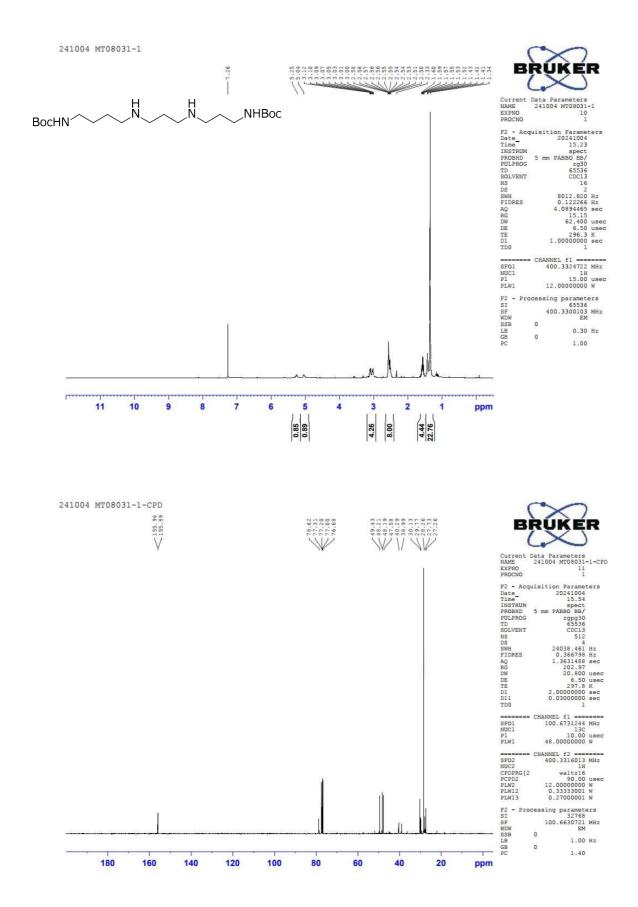


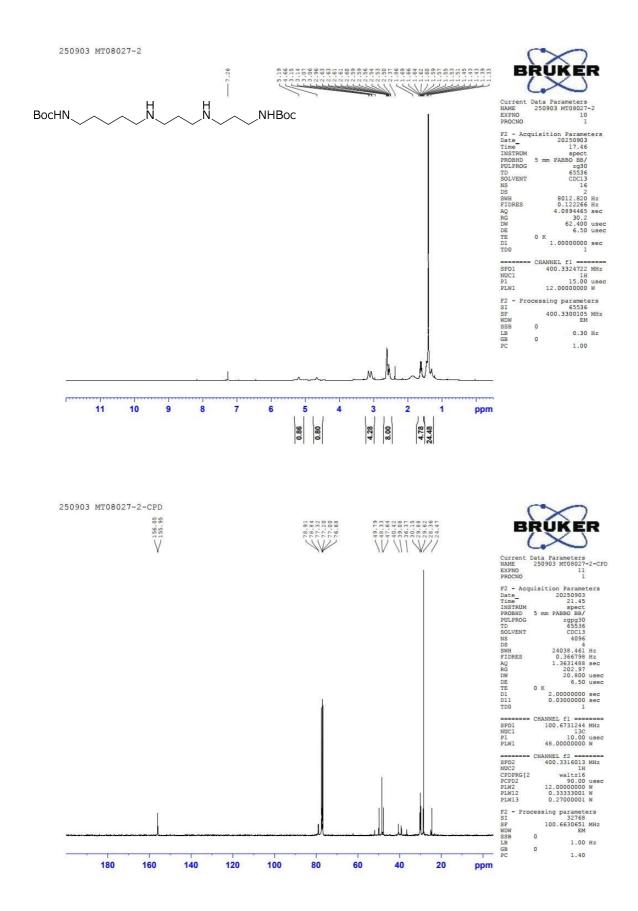


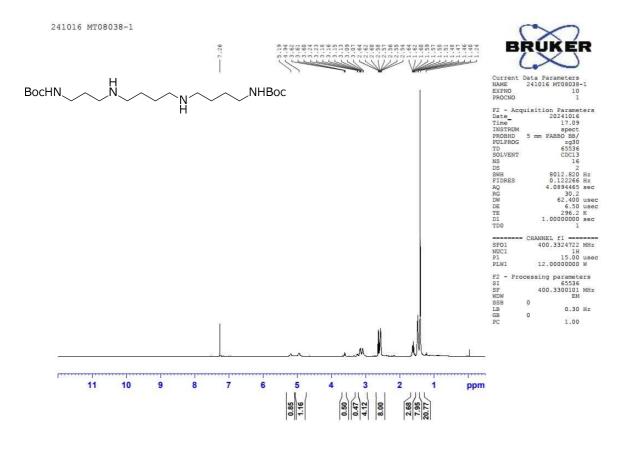
NMR chart of 28a

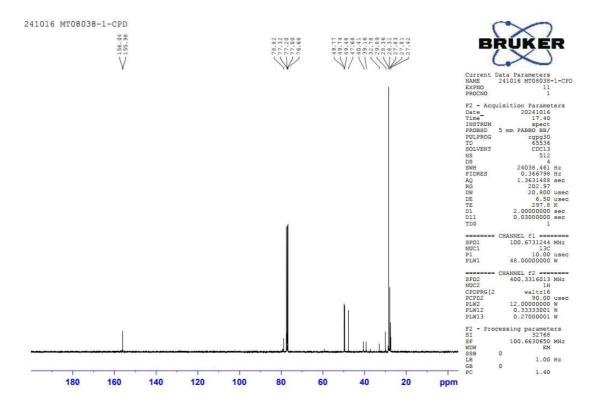


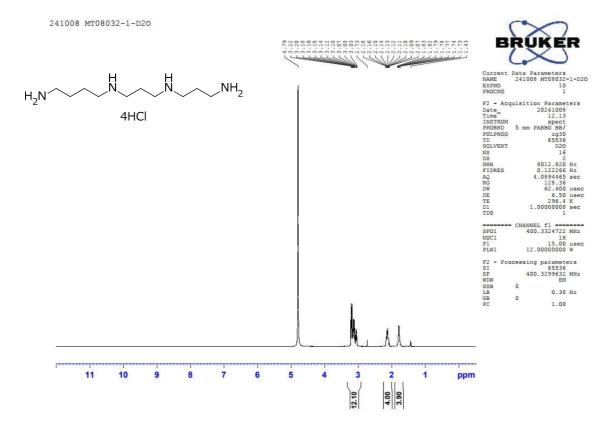
NMR chart of 28b

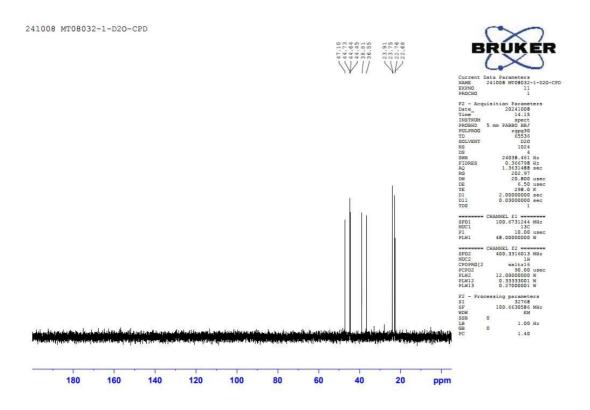


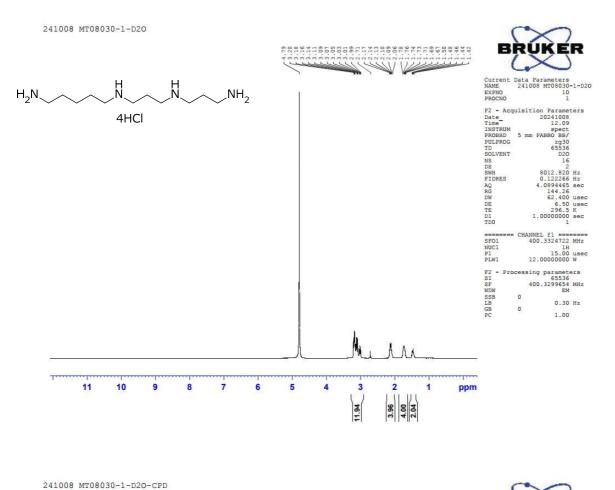

NMR chart of 28c

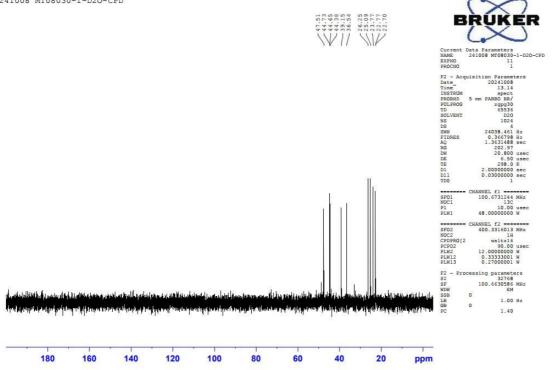

NMR chart of 29a

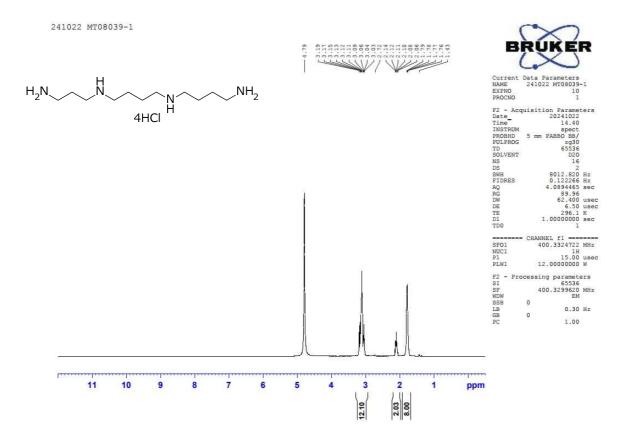


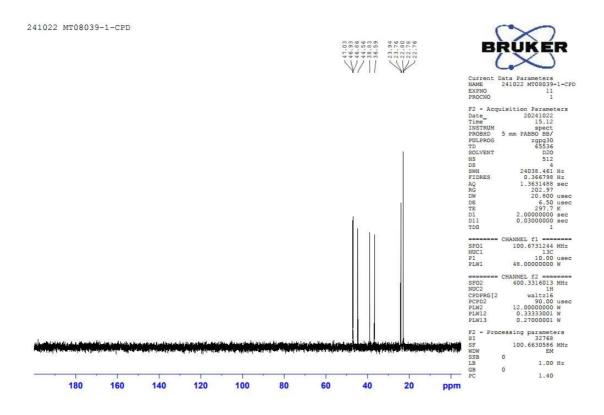

NMR chart of 29b

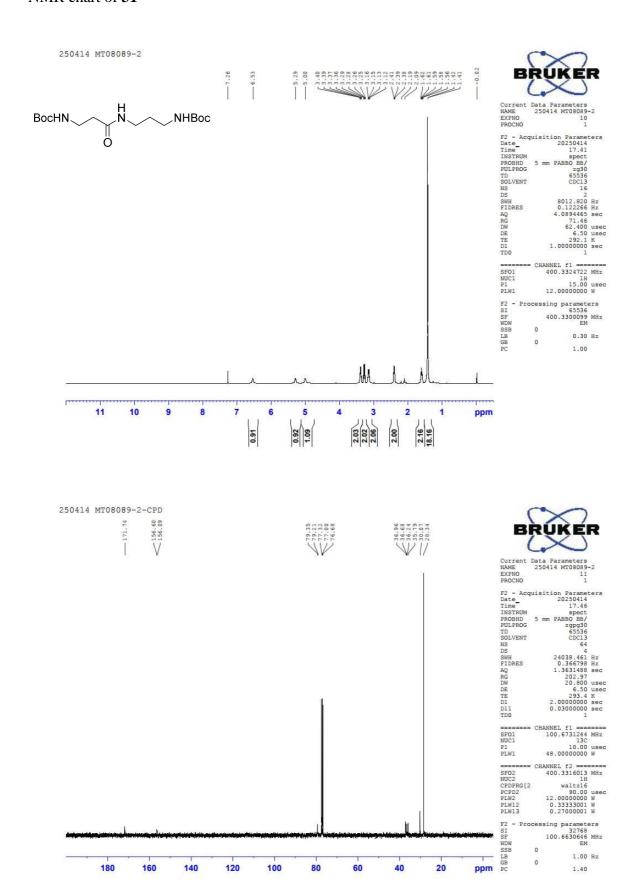


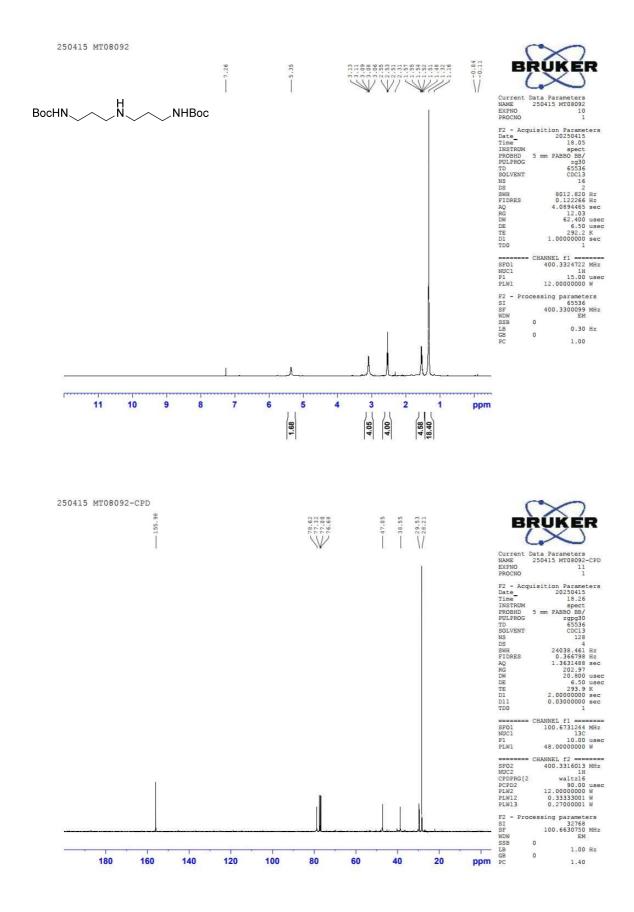

NMR chart of 29c

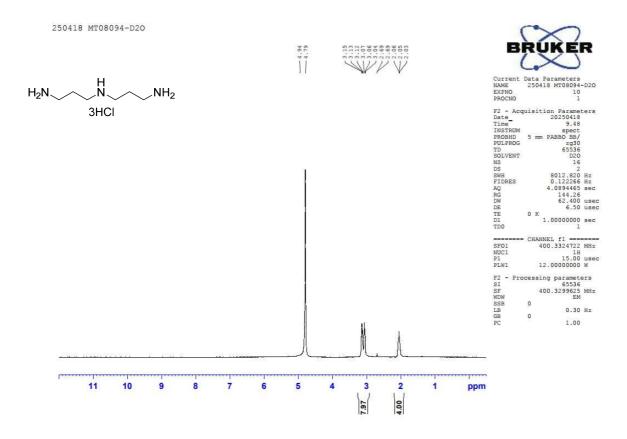


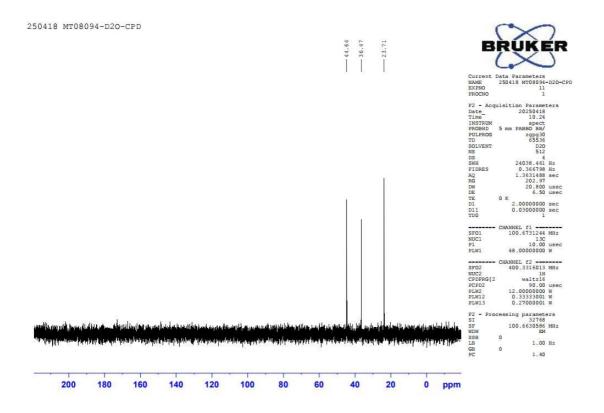


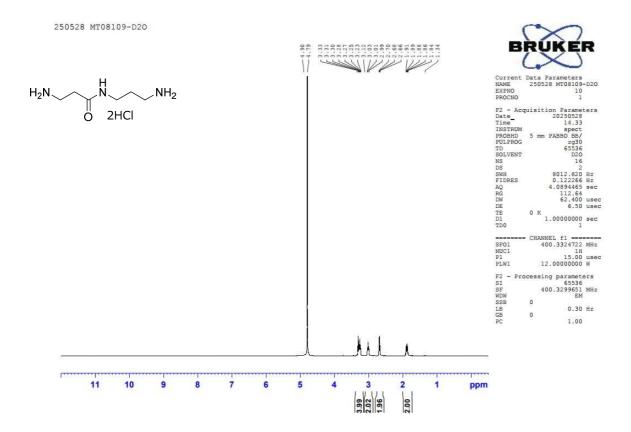


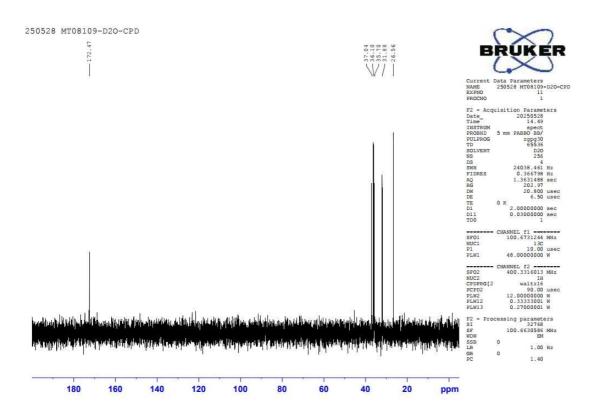


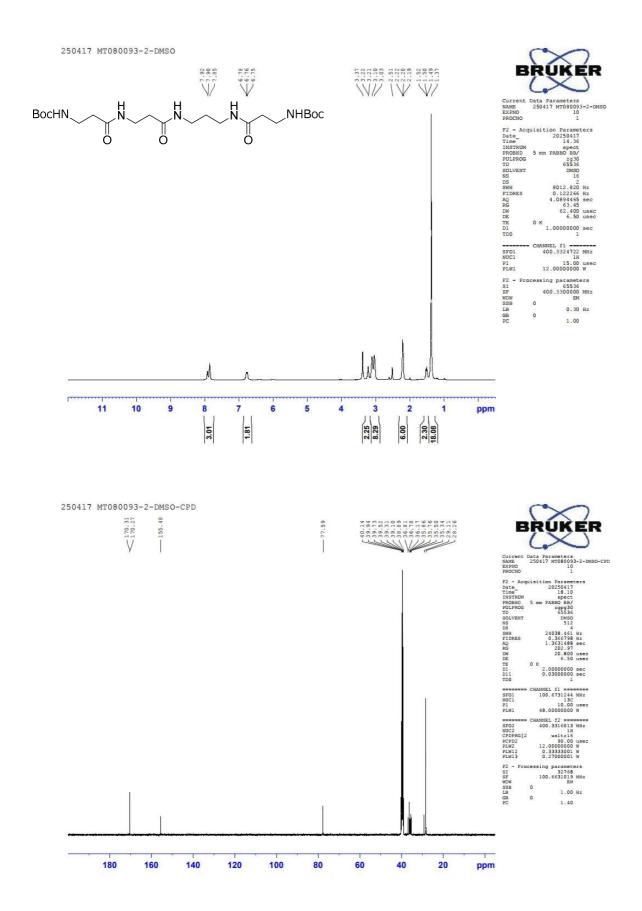


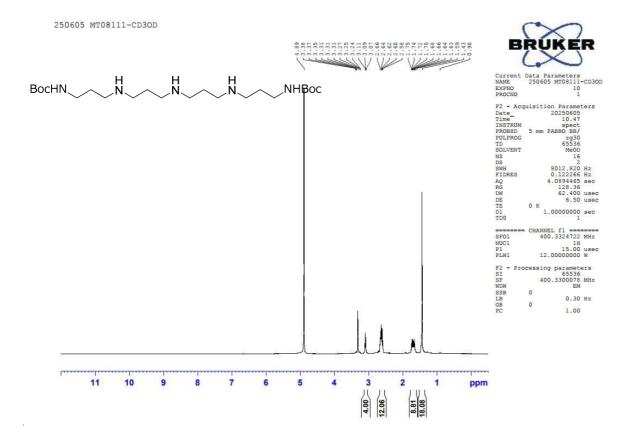


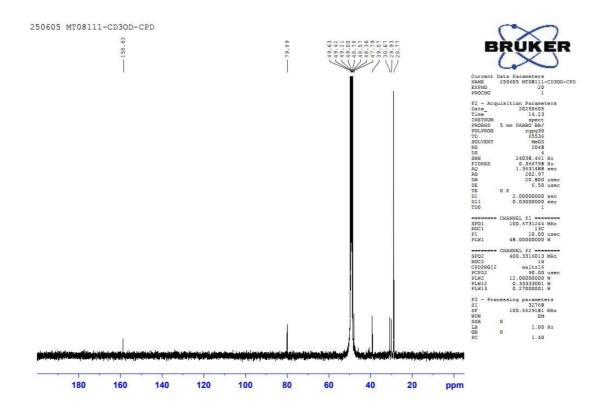


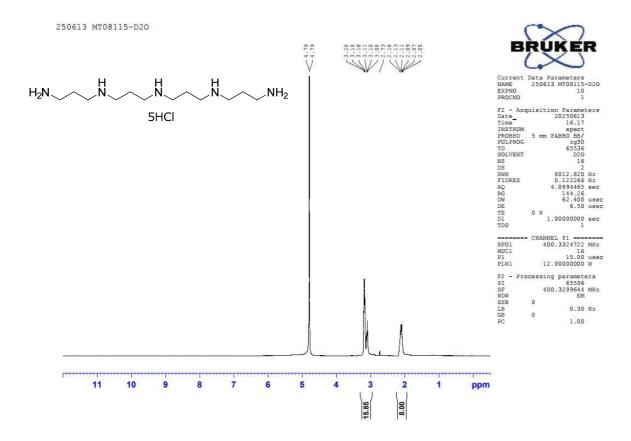


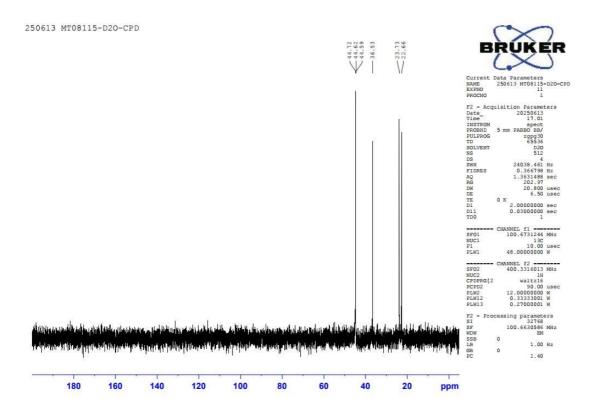


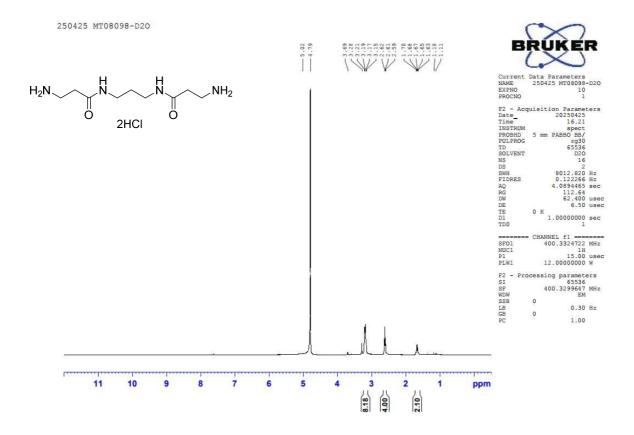


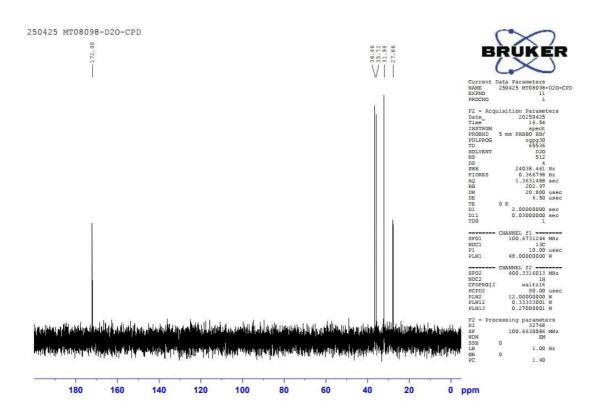


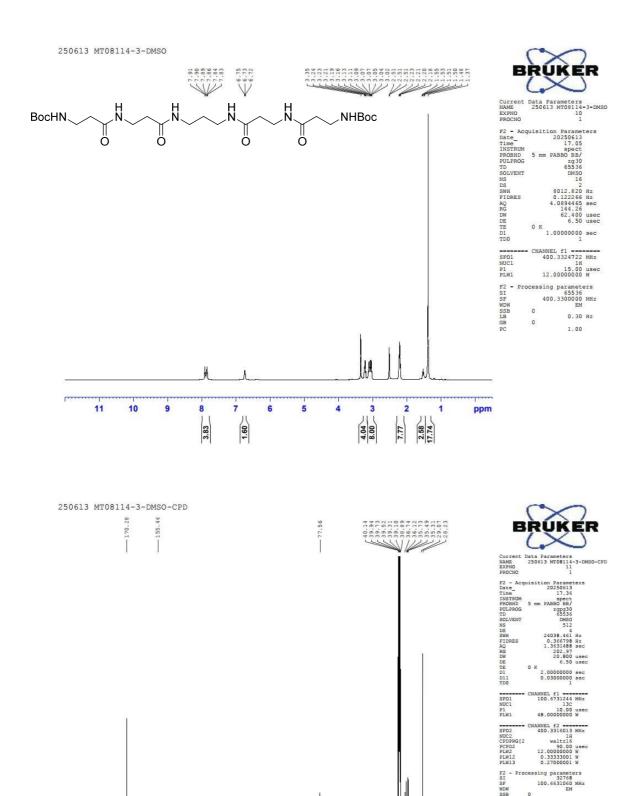


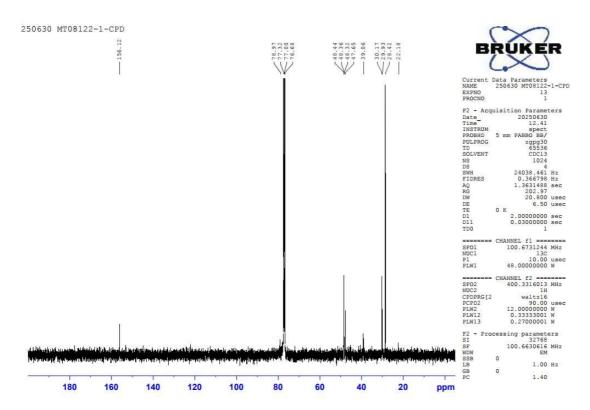


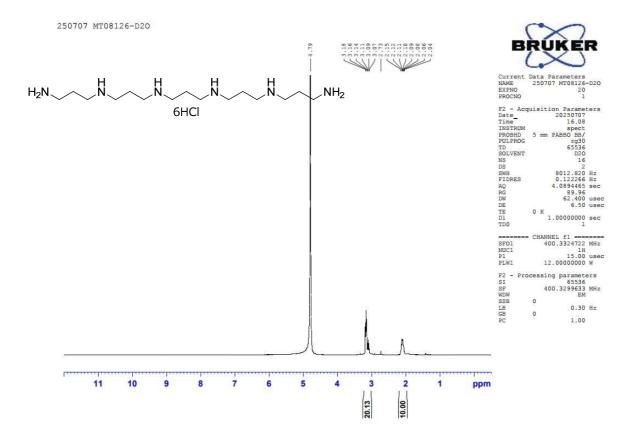


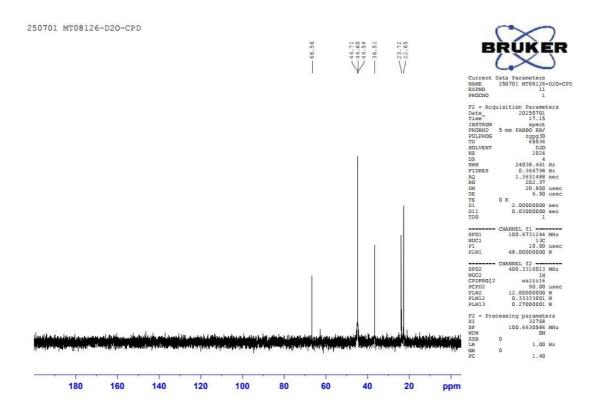












1.00 Hz 1.40

