Biocompatible Two-Dimensional Platelets with Tunable Sizes from Polycarbonate-Based Block Copolymers

Chuanqi Zhao,^{1,#} Hannah Schnicke,^{1,#} J. Diego Garcia-Hernandez,¹ Jiandong Cai,¹

Yifan Zhang, ^{1,3} Charlotte E. Boott^{*,4}, and Ian Manners^{‡1,2}

¹ Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada

² Centre for Advanced Materials and Related Technology (CAMTEC),

University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada

³Present address: Key Laboratory of Photochemistry, CAS Research/Education

Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese

Academy of Sciences, Beijing 100190, China.

⁴Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool, L7 3NY, UK.

*To whom correspondence should be addressed: c.boott@liverpool.ac.uk.

#These authors contributed equally

‡Deceased December 3rd 2023.

Table of Contents

1. General Information	3
1.1 Materials and methods	3
1.2 Instrumentation	3
2. Synthetic Procedures	6
2.1 Monomer syntheses	6
2.2 Synthesis of homopolymers by living ring-opening polymerizations	12
2.3 Block copolymer syntheses by living ring-opening polymerizations	26
3. Self-Assembly Procedures	44
4. Aqueous Stability and Biocompatibility Studies	53
Culture Protocols	55
Cell Viability Assays	55
5. References	57

1. General Information

1.1 Materials and methods

THF and methylene chloride (DCM) solvents were dried by a standard "Grubbs" drying system and were stored over 4 Å molecular sieves. Methoxy PEG (5 kDa) was purchased from Polymer Source. All other commercial reagents were purchased from Sigma-Aldrich, Combi-Blocks, and TCI. They were used without further purification unless noted. Trimethylene carbonate was purchased from Combi-Blocks and dried in the oven for 48 h before use in the nitrogen-filled glovebox. 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU) was dried by stirring over CaH₂ and vacuum distillation. N-(3,5-trifluoromethyl)phenyl-N-cyclohexyl- thiourea (TU) was prepared according to reported procedures.¹

1.2 Instrumentation

NMR spectroscopy

¹H NMR spectra were recorded on Bruker 500 (500 MHz) or Bruker 300 (300 MHz) at the University of Victoria. The peaks were internally referenced to TMS (0.00 ppm) or residual undeuterated solvent signal. Chemical shifts are quoted in parts per million, while the spectra are referenced to the residual solvent peak. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and br = broad.

Ultrasonication

Micelle sonication was carried out using an ultrasonic processor, UP100H. The instrument was operated at an amplitude of 90% at 0 °C.

Gel permeation chromatography (GPC).

GPC measurements were carried out with the Malvern chromatography system equipped with a refractive index (RI), UV/Vis photodiode detector array, and viscometer. Bu_4NBr/THF (1 wt %) was used as the eluent (flow rate = 1 mL/min). Results were calibrated against polystyrene standards (Viscotek). Samples were prepared at 1 mg/mL in the eluent.

Differential scanning calorimetry (DSC)

DSC analysis was performed on a TA Instruments Q100 coupled to a RCS90 refrigerated cooling system with scan rates of 10 °C/min. DSC samples of each homopolymer (5-8 mg) were placed in hermetic aluminium pans The DSC scan was recorded by heating from -60 °C to 180 °C, followed by annealing at 180 °C for 4 min, and subsequently cooling to -60 °C.

UV-vis spectroscopy

UV-vis measurements were performed on an Agilent Cary 60 UV-vis spectrophotometer Xenon flash lamp (80 Hz).

Laser scanning confocal microscopy (LSCM).

Confocal imaging was performed using the ZEISS LSM 880 Axio Observer. Nanoplatelet solutions were aliquoted onto glass coverslips and dried before imaging. Fluorophores were excited using an argon laser operating at 488 nm. Confocal images were obtained using digital detectors with observation windows of 500 - 620 nm. The resulting images were obtained as digital false-color images and then color-coded as green.

Atomic force microscopy (AFM)

AFM analysis was obtained using a 5500 Atomic Force Microscope (Agilent Technologies). The images were recorded in AC mode with a scanning speed of 1.0 μ m/s in an area of 4.0 μ m² at 1024×1024 resolution. The samples for AFM were prepared on a silicon wafer by casting a nanoplatelet solution (in ~ 100% MeOH, 10 μ L, 0.05 mg/mL) onto the silicon wafer.

The X-ray diffraction (XRD)

XRD data was taken using an EMPYREAN diffractometer system. The instrument uses copper $K\alpha$ radiation (1.5 Å). The measurements were performed on thin films cast from nanoplatelet colloidal dispersions.

Transmission electron microscopy (TEM).

TEM measurements were performed on a JEOL 1011 microscope with a CCD camera, operating at an accelerating voltage of 80 kV. Samples were prepared by drop-casting 9 μL of nanoplatelet solutions onto a carbon-coated copper grid, followed by drop-casting 9 μL of uranyl acetate in MeOH (3 wt %) to negatively stain the samples. The sample concentration for TEM analysis was about 0.5 mg/mL based on nanoplatelet concentration. Copper grids (400 mesh) were purchased from Ted Pella, and carbon films of about 8 nm were prepared on mica by carbon sputtering with a Leica ACE 600 carbon coater. Then, the carbon films were deposited onto the copper grids by floatation on water. Images were analyzed with the software Image J (NIH, USA). For the statistical analyses, more than 100 nanoplatelets in several images were traced by the

software to obtain the area or other information. The number average micelle areas (A_n) and weight average micelle areas (A_w) were calculated as shown below from measurements of the contour areas (A). (A, area of the object; n, number).

The distribution of micelle sizes was characterized by $D_A = A_w/A_n$.

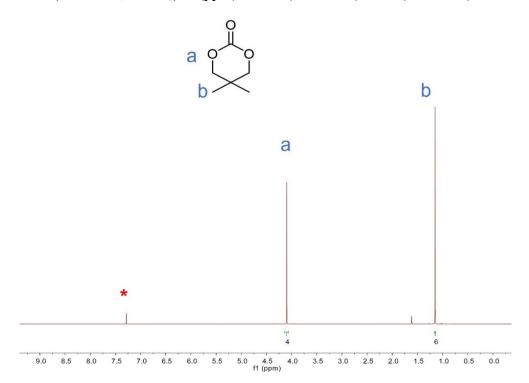
$$A_{n} = \frac{\sum_{i=1}^{n} N_{i} A_{i}}{\sum_{i=1}^{n} A_{i}}$$

$$A_{w} = \frac{\sum_{i=1}^{n} N_{i} A_{i}^{2}}{\sum_{i=1}^{n} N_{i} A_{i}}$$

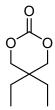
Values of the standard deviation of the size distribution σ were determined.

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (A_i - A_n)^2}{n}}$$

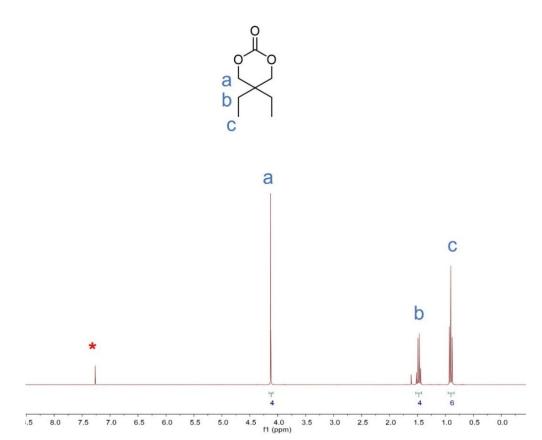
2. Synthetic Procedures


2.1 Monomer syntheses

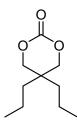
Synthesis of 2,2-dimethyltrimethylene carbonate (DTC)


2,2-dimethyl-1,3-propanediol (4.16 g, 1 equiv) was dissolved in 100 mL of THF and cooled to 0 °C. Ethyl chloroformate (10 mL,10.8 g, 2.5 equiv) was added in one portion, while Et₃N (13.3 mL, 10.1 g, 2.5 equiv) was added dropwise at 0 °C. After stirring at 0 °C for 1 h, the reaction mixture was warmed up to room temperature and stirred overnight. Ethyl acetate and water were added. The organic layer was separated, dried over MgSO₄ and the solvent was evaporated under reduced pressure. After recrystallization in Et₂O, DTC was obtained as a white solid (3.9 g, 75%).

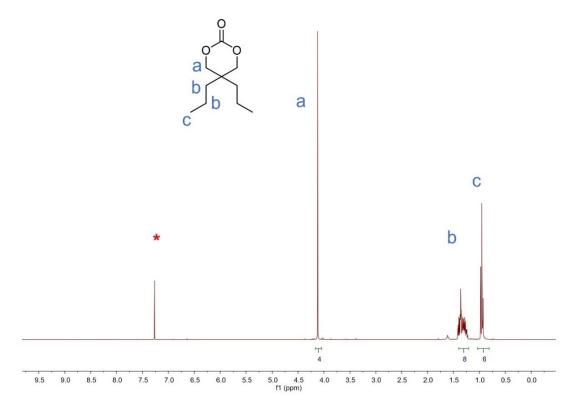
¹H NMR (500 MHz, CDCl₃): δ (ppm) = 4.10 (s, 4H, Ha), 1.15 (s, 6H, Hb).


Figure S1: ¹H NMR spectra (500 MHz, CDCl₃) of 2,2-dimethyltrimethylene carbonate (DTC). Deuterated solvent residual signal denoted by *.

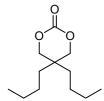
Synthesis of 2,2-diethyltrimethylene carbonate (DEC)


2,2-diethyl-1,3-propanediol (5.28 g, 1 equiv) was dissolved in 100 mL of THF and cooled to 0 °C. Ethyl chloroformate (10 mL,10.8 g, 2.5 equiv) was added in one portion, while Et₃N (13.3 mL, 10.1 g, 2.5 equiv) was added dropwise at 0 °C. After stirring at 0 °C for 1 h, the reaction mixture was warmed up to room temperature and stirred overnight. Ethyl acetate and water were added. The organic layer was separated, dried over MgSO₄ and the solvent was evaporated under reduced pressure. After recrystallization in Et₂O, DEC was obtained as a white solid (4.5 g, 71%).

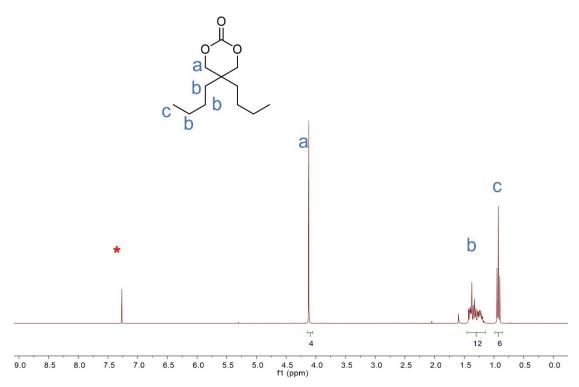
¹H NMR (300 MHz, CDCl₃): δ (ppm) = 4.13 (s, 4H, H_a), 1.53 – 1.42 (m, 4H, H_b), 0.90 (t, 6H, H_c)


Figure S2: ¹H NMR spectra (300 MHz, CDCl₃) of 2,2-diethyltrimethylene carbonate (DEC). Deuterated solvent residual signal denoted by *.

Synthesis of 2,2-dipropyltrimethylene carbonate (DPC)


2,2-dipropyl-1,3-propanediol (4.2 g, 1.0 equiv) was dissolved in 100 mL of THF and cooled to 0 °C. Ethyl chloroformate (7.3 mL,7.9 g, 2.5 equiv) was added in one portion, while Et₃N (9.8 mL, 7.4 g, 2.5 equiv) was added dropwise at 0 °C. After stirring at 0 °C for 1 h, the reaction mixture was warmed up to room temperature and stirred overnight. Ethyl acetate and water were added. The organic layer was separated, dried over MgSO₄ and the solvent was evaporated under reduced pressure. The product was purified by column chromatography using petroleum and ethyl acetate as the eluent. Compound DPC was obtained as a colorless oil (4.7 g, 96%).

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 4.12 (s, 4H, H_a), 1.40 – 1.20 (m, 8H, H_b), 1.03 – 0.81 (t, 6H, H_c).

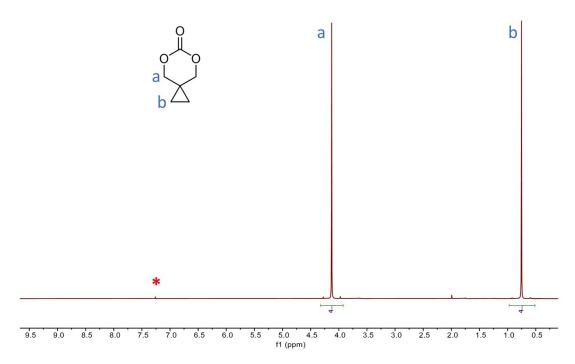

Figure S3: ¹H NMR spectra (300 MHz, CDCl₃) of 2,2-dipropyltrimethylene carbonate (DPC). Deuterated solvent residual signal denoted by *.

Synthesis of 2,2-dibutyltrimethylene carbonate (DBC)

2,2-dibutyl-1,3-propanediol (4.0 g, 1.0 equiv) was dissolved in 100 mL of THF and cooled to 0 °C. Ethyl chloroformate (6.2 mL, 6.9 g, 2.5 equiv) was added in one portion, while Et₃N (8.8 mL, 6.4 g, 2.5 equiv) was added dropwise at 0 °C. After stirring at 0 °C for 1 h, the reaction mixture was warmed up to room temperature and stirred overnight. Ethyl acetate and water was added. The organic layer was separated, dried over MgSO₄ and the solvent was evaporated under reduced pressure. The product was purified by column chromatography using petroleum and ethyl acetate as the eluent. Compound DBC was obtained as a colorless oil (3.7 g, 81%).

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 4.12 (s, 4H, H_a), 1.45 – 1.15 (m, 12H, H_b), 0.93 (t, 6H, H_c).

Figure S4: ¹H NMR spectra (300 MHz, CDCl₃) of 2,2-dibutyltrimethylene carbonate (DBC). Deuterated solvent residual signal denoted by *.


Synthesis of cyclopropane-trimethylene carbonate (CPC)

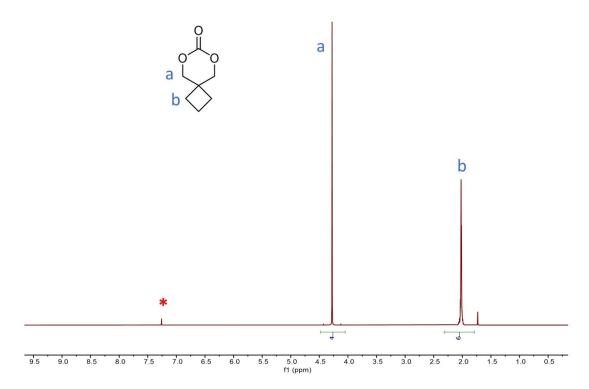
The synthesis of cyclopropane-trimethylene carbonate (CPC) was adapted from the synthesis of DTC.

Cyclopropane-1,3-propanediol (4.0 g, 1 equiv) was dissolved in 100 mL of THF and cooled to 0 °C. Ethyl chloroformate (9.3 mL,10.6 g, 2.5 equiv) was added in one portion, while Et₃N (13.6 mL, 9.9 g, 2.5 equiv) was added dropwise at 0 °C. After stirring at 0 °C for 1 h, the reaction mixture was warmed up to room temperature and stirred overnight. Ethyl acetate and water were added. The organic layer was separated, dried over MgSO₄ and the solvent was evaporated under reduced pressure. After recrystallization in Et₂O, CPC was obtained as a white solid (3.8 g, 76%).

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 4.13 (s, 4H, H_a), 0.75 (s, 4H, H_b).

Figure S5: ¹H NMR spectra (500 MHz, CDCl₃) of cyclopentenetrimethylene carbonate (CPC). Deuterated solvent residual signal denoted by *.

Synthesis of cyclobutane-trimethylene carbonate (CBC)



synthesis of DTC.

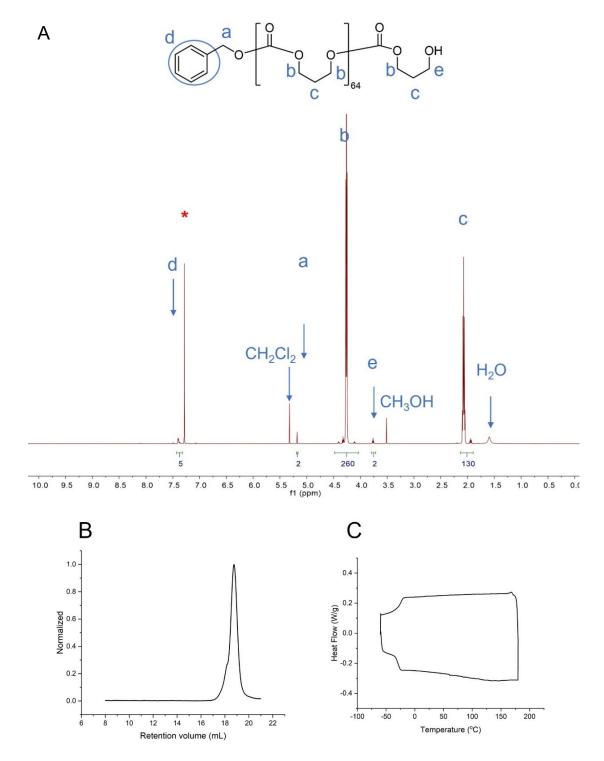
The synthesis of cyclobutene-1,3-diol was adapted from a literature procedure.² The synthesis of cyclobutane-trimethylene carbonate (CBC) was adapted from the

Cyclobutane-1,3-propanediol (4.3 g, 1 equiv) was dissolved in 100 mL of THF and cooled to 0 °C. Ethyl chloroformate (8.7 mL,10.0 g, 2.5 equiv) was added in one portion, while Et₃N (12.9 mL, 9.4 g, 2.5 equiv) was added dropwise at 0 °C. After stirring at 0 °C for 1 h, the reaction mixture was warmed up to room temperature and stirred overnight. Ethyl acetate and water were added. The organic layer was separated, dried over MgSO₄ and the solvent was evaporated under reduced pressure. After recrystallization in Et₂O, CBC was obtained as a white solid (3.4 g, 65%).

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 4.28 (s, 4H, H_a), 2.02 (s, 6H, H_b).

Figure S6: ¹H NMR spectra (500 MHz, CDCl₃) of cyclobutenetrimethylene carbonate (CBC). Deuterated solvent residual signal denoted by *.

2.2 Synthesis of homopolymers by living ring-opening polymerizations


Synthesis of PTMC₆₅

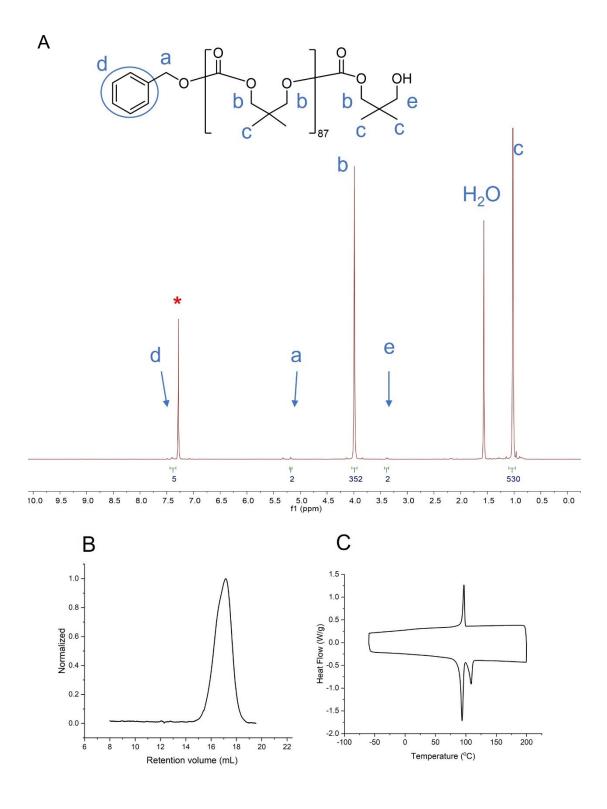
In the nitrogen-filled glovebox, benzyl alcohol (2.2 mg, 1 equiv), TMC (204.0 mg, 100 equiv) and TU (8.9 mg, 1.2 equiv) were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 150 μL of anhydrous DCM. A solution of DBU in DCM (36 μL, 100 mg/mL, 1.2 equiv) was added via pipette and the reaction mixture was stirred for 2 h at room temperature. The polymerization was quenched with an excess of benzoic acid (20 mg). The reaction mixture was precipitated three times into 45 mL of ice-cold MeOH and collected by centrifugation. After drying in vacuo overnight, PTMC was obtained as a viscous colorless oil (121 mg, 58%).

GPC: $M_n = 8,630 \text{ gmol}^{-1}$, $D_M = 1.16$, $M_n (^1\text{H NMR}) = 6,740 \text{ gmol}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.43 – 7.32 (m, 5H, H_d), 5.17 (s, 2H, H_a), 4.26 (t, 260H, H_b), 3.76 (t, 2H, H_e), 2.07 (m, 130H, H_c).

The DP_n value of the PTMC block was determined by comparing the relative integration of the methylene moiety of the benzyl end-group (at 5.17 ppm, H_a) with the integration of the methylene protons adjacent to the carbonate carbons (H_b and H_e) in the PTMC segment.

Figure S7: (A) 1 H NMR spectrum (500 MHz, CDCl₃) of PTMC₆₅. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PTMC₆₅ using Bu₄NBr/THF (1 wt %) as the eluent. (C) DSC thermogram of PTMC₆₅ homopolymer. The scan was recorded at a heating and cooling rate of 10 $^{\circ}$ C/min.


Synthesis of PDTC₈₈

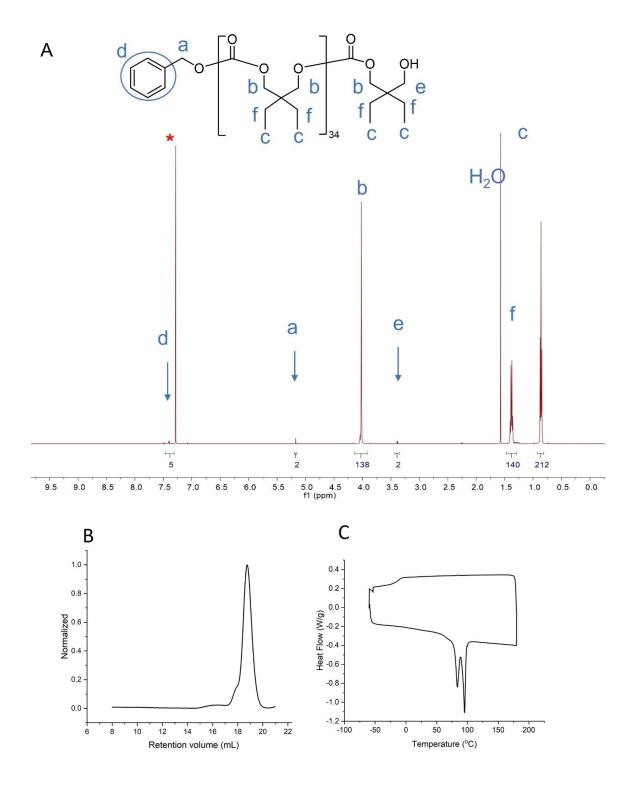
In the nitrogen-filled glovebox, benzyl alcohol (1.1 mg, 1 equiv), DTC (195.0 mg, 150 equiv) and TU (7.4 mg, 2 equiv) were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 250 μL of anhydrous DCM. A solution of DBU in DCM (152 μL, 100 mg/mL, 1 equiv) was added via pipette and the reaction mixture was stirred for 24 h at room temperature. The polymerization was quenched with an excess of benzoic acid (20 mg). The reaction mixture was precipitated three times into 45 mL of ice-cold MeOH and collected by centrifugation. After drying in vacuo overnight, PDTC was obtained as a white solid (115.0 mg, 59%).

GPC: $M_n = 14,550 \text{ gmol}^{-1}$, $D_M = 1.30$, $M_n \text{ (NMR)} = 11,560 \text{ gmol}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.40 (m, 5H, H_d), 5.17 (s, 2H, H_a), 3.99 (s, 352H, H_b), 3.38 (d, 2H, H_e), 1.02 (s, 530H, H_c).

The DP_n value of the PDTC block was determined by comparing the relative integration of the methylene moiety of the benzyl end-group (at 5.17 ppm, H_a) with the integration of the methylene protons adjacent to the carbonate carbons (H_b and H_e) in the PDTC segment.

Figure S8: (A) 1 H NMR spectrum (500 MHz, CDCl₃) of PDTC₈₈. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PDTC₈₈ using Bu₄NBr/THF (1 wt %) as the eluent. (C) DSC thermogram of PDTC₈₈ homopolymer. The scan was recorded at a heating and cooling rate of 10 $^{\circ}$ C/min.


Synthesis of PDEC₃₅

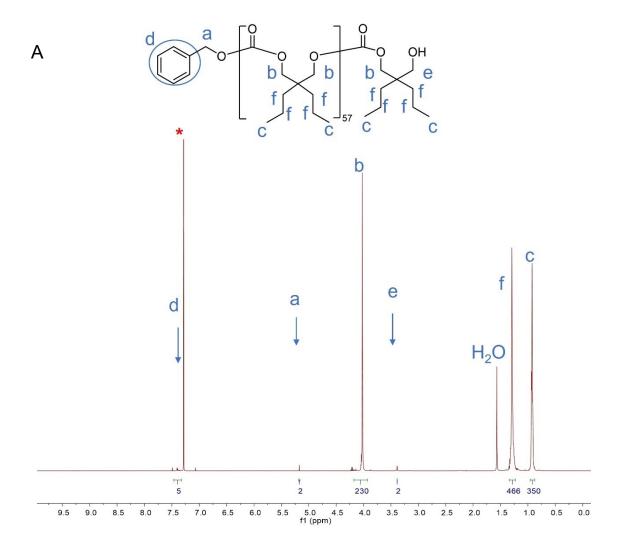
In the nitrogen-filled glovebox, benzyl alcohol (2 mg, 1 equiv), DEC (180 mg, 150 equiv) and TU (4.22 mg, 1.5 equiv) were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 50 μ L of anhydrous DCM. A solution of DBU in DCM (173 μ L, 100 mg/mL, 1.5 equiv) was added via pipette and the reaction mixture was stirred for 24 h at room temperature. The polymerization was quenched with an excess of benzoic acid (20 mg). The reaction mixture was precipitated three times into 45 mL of ice-cold MeOH and collected by centrifugation. After drying in vacuo overnight, the PDEC was obtained as a white solid (42 mg, 23%).

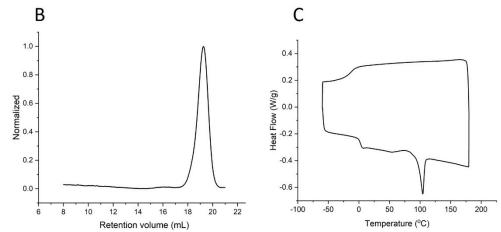
GPC: $M_n = 7,780 \text{ gmol}^{-1}$, $D_M = 1.13$, $M_n \text{ (NMR)} = 5,650 \text{ gmol}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.46 – 7.31 (m, 5H, H_d), 5.17 (s, 2H, H_a), 4.02 (s, 138H, H_b), 3.38 (d, 2H, H_e), 1.38 (m, 140H, H_f), 0.86 (t, 212H, H_c).

The DP_n value of the PDEC block was determined by comparing the relative integration of the methylene moiety of the benzyl end-group (at 5.17 ppm, H_a) with the integration of the methylene protons adjacent to the carbonate carbons (H_b and H_e) in the PDEC segment.

Figure S9: (A) ¹H NMR spectrum (500 MHz, CDCl₃) of PDEC₃₅. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PDEC₃₅ using Bu₄NBr/THF (1 wt%) as the eluent. (C) DSC thermogram of PDEC₃₅ homopolymer. The scan was recorded at a heating and cooling rate of 10 °C/min.


Synthesis of PDPC₅₈

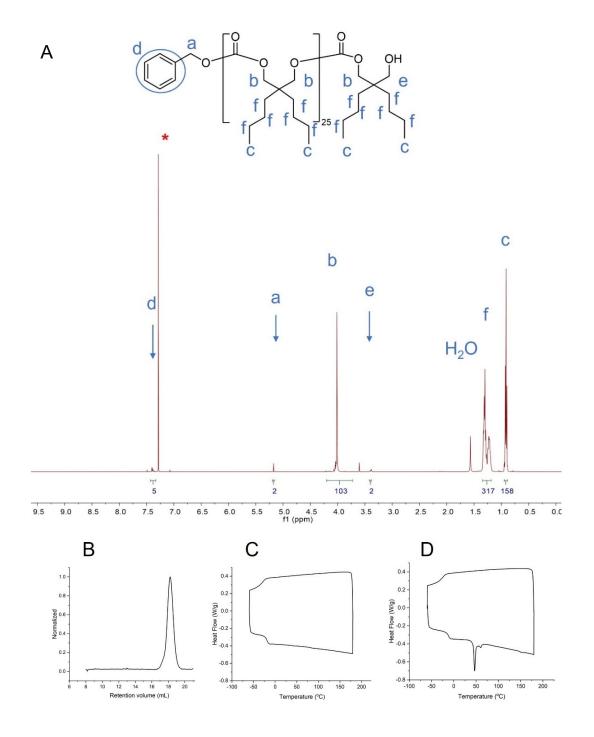

In the nitrogen-filled glovebox, benzyl alcohol (2 mg, 1 equiv) and DPC (344 mg, 100 equiv) were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 100 μL of anhydrous DCM. Diphenyl phosphate (DPP) (23 mg, 5 equiv) was added in one portion and the reaction mixture was stirred for 24 h at 23 °C. The polymerization was quenched with excess benzoic acid (20 mg). The reaction mixture was precipitated three times into 45 mL of ice-cold MeOH and collected by centrifugation. After drying in vacuo overnight, PDPC was obtained as a white solid (175 mg, 51%).

GPC: $M_n = 11,400 \text{ gmol}^{-1}$, $D_M = 1.16$, $M_n \text{ (NMR)} = 10,900 \text{ gmol}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.46 – 7.33 (m, 5H, H_d), 5.17 (s, 2H, H_a), 4.02 (s, 230H, H_b), 3.39 (s, 2H, H_e), 1.29 (d, 466H, H_f), 0.96 – 0.87 (m, 350H, H_c).

The DP_n value of the PDPC block was determined by comparing the relative integration of the methylene moiety of the benzyl end-group (at 5.17 ppm, H_a) with the integration of the methylene protons adjacent to the carbonate carbons (H_b and H_e) in the PDPC segment.

Figure S10: (A) 1 H NMR spectrum (500 MHz, CDCl₃) of PDPC₅₈. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PDPC₅₈ using Bu₄NBr/THF (1 wt %) as the eluent. (C) DSC thermogram of PDPC₅₈ homopolymer. The scan was recorded at a heating and cooling rate of 10 $^{\circ}$ C/min.


Synthesis of PDBC₂₆

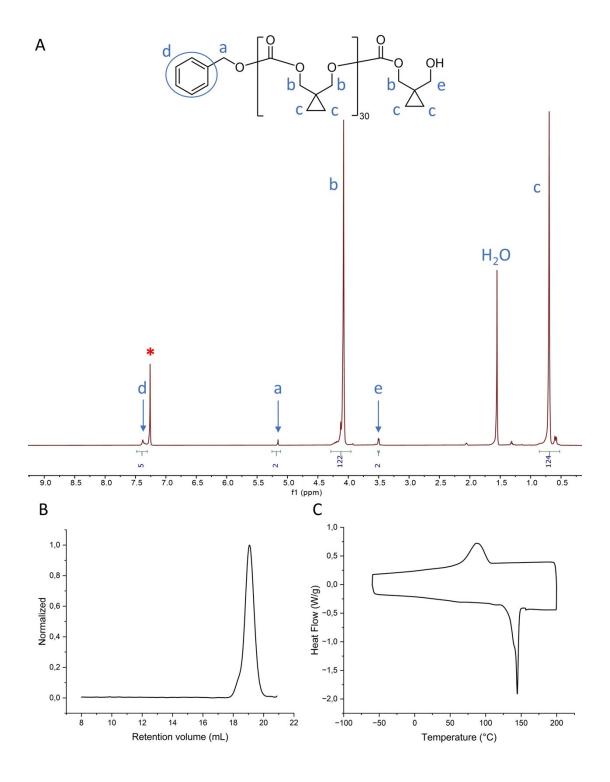
In the nitrogen-filled glovebox, benzyl alcohol (2.7 mg, 1 equiv) and DEC (214 mg, 80 equiv) were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 200 μL of anhydrous DCM. Diphenyl phosphate (DPP) (16.3 mg, 2 equiv) was added in one portion and the reaction mixture was stirred for 24 h at room temperature. The polymerization was quenched with 20 μL of Et₃N. The reaction mixture was precipitated three times into 45 mL of ice-cold MeOH and collected by centrifugation After drying in vacuo overnight, PDBC was obtained as a colorless oil (65 mg, 30%).

GPC: $M_n = 5,210 \text{ gmol}^{-1}$, $D_M = 1.14$, $M_n \text{ (NMR)} = 5,680 \text{ gmol}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.43 – 7.33 (m, 5H, H_d), 5.17 (s, 2H, H_a), 4.01 (s, 103H, H_b), 3.38 (d, 2H, H_e), 1.34 – 1.19 (m, 317H, H_f), 0.92 (t, 158H, H_c).

The DP_n value of the PDBC block was determined by comparing the relative integration of the methylene moiety of the benzyl end-group (at 5.17 ppm, H_a) with the integration of the methylene protons adjacent to the carbonate carbons (H_b and H_e) in the PDBC segment.

Figure S11: (A) ¹H NMR spectrum (500 MHz, CDCl₃) of PDBC₂₆. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PDBC₂₆ using Bu₄NBr/THF (1 wt %) as the eluent. (C) DSC thermogram of PDBC₂₆ freshly prepared homopolymer. (D) DSC thermogram of PDBC₂₆ homopolymer was conducted after storing at room temperature for 3 months. The scan was recorded at a heating and cooling rate of 10 °C/min.


Synthesis of PCPC₃₁

In the nitrogen-filled glovebox, benzyl alcohol (2.7 mg, 1 equiv), CPC (128 mg, 40 equiv) and TU (18.5 mg, 0.05 equiv) were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 300 µL of anhydrous DCM. A solution of DBU in DCM (38 µL, 100 mg/mL, 0.025 equiv) was added via pipette and the reaction mixture was stirred for 24 h at room temperature. The polymerization was quenched with an excess of benzoic acid (15 mg). The reaction mixture was precipitated three times into 45 mL of ice-cold MeOH and collected by centrifugation. After drying in vacuo overnight, the PCPC was obtained as a white solid (105 mg, 81%).

GPC: $M_n = 2,600 \text{ gmol}^{-1}$, $D_M = 1.10$, $M_n \text{ (NMR)} = 4,100 \text{ gmol}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.37 (m, 5H, H_d), 5.16 (s, 2H, H_a), 4.08 (s, 122H, H_b), 3.50 (d, 2H, H_e), 0.70 (m, 124H, H_c).

The DP_n value of the PCPC block was determined by comparing the relative integration of the methylene moiety of the benzyl end-group (at 5.16 ppm, H_a) with the integration of the methylene protons adjacent to the carbonate carbons (H_b and H_e) in the PCPC segment.

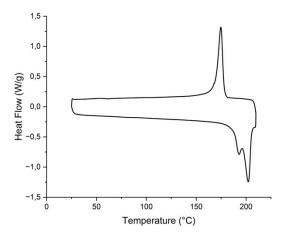


Figure S12: (A) ¹H NMR spectrum (500 MHz, CDCl₃) of PCPC₃₁. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PCPC₃₁ using Bu₄NBr/THF (1 wt %) as the eluent. (C) DSC thermogram of PCPC₃₁ freshly prepared homopolymer. (D) DSC thermogram of PDBC₃₁ homopolymer. The scan was recorded at a heating and cooling rate of 10 °C/min.

Synthesis of PCBC_n

In the nitrogen-filled glovebox, benzyl alcohol (2.7 mg, 1 equiv), CBC (142 mg, 40 equiv) and TU (18.5 mg, 0.05 equiv) were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 300 μL of anhydrous DCM. A solution of DBU in DCM (38 μL, 100 mg/mL, 0.025 equiv) was added via pipette and the reaction mixture was stirred for 24 h at room temperature. The polymerization was quenched with an excess of benzoic acid (15 mg). The reaction mixture was precipitated three times into 45 mL of ice-cold MeOH and collected by centrifugation. After drying in vacuo overnight, the PCBC was obtained as a white solid (90 mg, 62%).

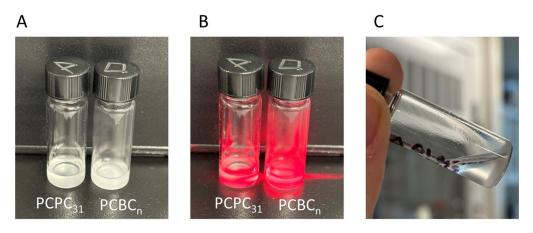

No ¹H-NMR and GPC characterization of PCPC_n could be performed as the homopolymer is insoluble.

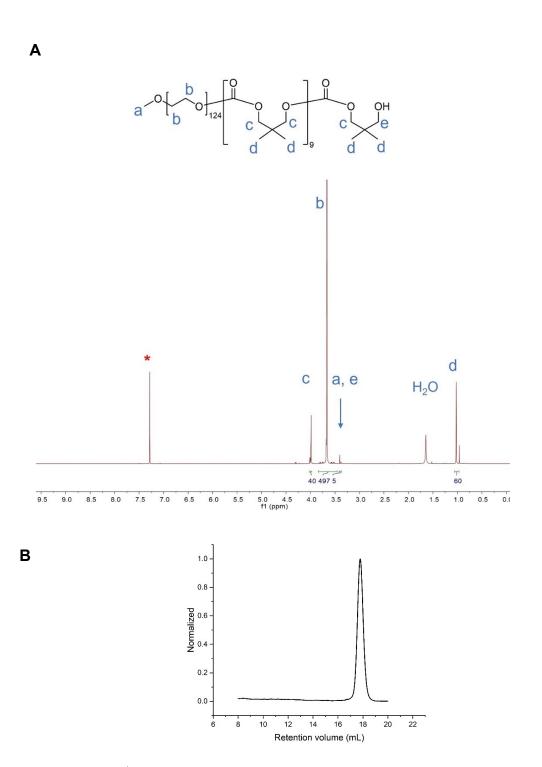
Figure S13: DSC thermogram of PDBC₃₁ homopolymer. The scan was recorded at a heating and cooling rate of 10 °C/min.

Table S1: Synthesis of polycarbonate homopolymers with cyclic side groups via ROP.

^aTU (N-(3,5-trifluoromethyl)phenyl-N-cyclohexyl- thiourea) was used as the catalyst, DBU (1,8-Diazabicyclo[5.4.0]undec-7-ene) was used as base for the polymerization. ^bDetermined by ¹H NMR spectroscopy. ^cDetermined by GPC versus polystyrene standards. ^dDetermined from the DSC thermogram. ^eTwo temperatures indicate two distinct peaks in the DSC data, suggesting coexistence of two crystal forms. ^eThe absence of the T_g value is due to annealing of the polymer. ^eNo ¹H-NMR spectroscopy and GPC characterization due to insolubility of the homopolymer.

Figure S14: (A) Photo of attempt to solubilize $PCPC_{31}$ and $PCBC_n$ in THF (10 mg/mL). (B) Photo of the tyndall effect of $PCPC_{31}$ and $PCBC_n$ in THF (10 mg/mL) showing poor solubility of the homopolymers. A red laser pointer as used as a light source. (C) Close up of $PCPC_{31}$ in THF (10 mg/mL) after heating to 70 °C, showing that the homopolymer is insoluble.

2.3 Block copolymer syntheses by living ring-opening polymerizations

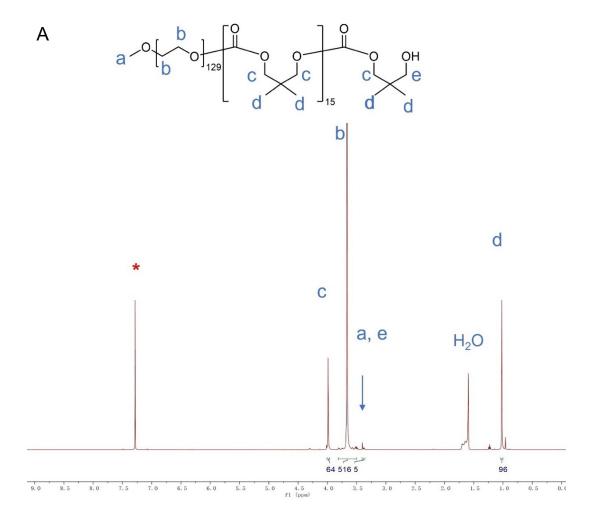

Synthesis of PDTC₁₀-b-PEG₁₂₄

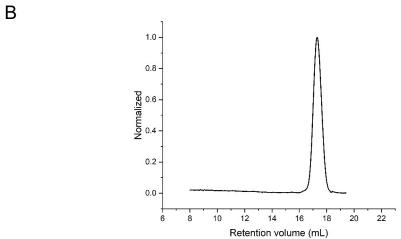
$$\begin{array}{c|c} O & O & O & H \\ \hline O &$$

In the nitrogen-filled glovebox, PEG₁₃₅ (50 mg, 1 equiv) and DTC (26 mg, 20 equiv) were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 300 μL of anhydrous DCM. A solution of DBU in DCM (15 μL, 100 mg/mL, 1 equiv) was added via pipette and the vial was capped. The reaction mixture was stirred for 24 h at room temperature and quenched with an excess of benzoic acid (15 mg). The reaction mixture was precipitated three times into 45 mL of ice-cold MeOH and collected by centrifugation. After drying in vacuo overnight, the block polymer was obtained as a white solid (67 mg, 83%).

GPC: $M_n = 7,770 \text{ gmol}^{-1}$, $D_M = 1.05$, $M_n \text{ (NMR)} = 6,800 \text{ gmol}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 4.00 (d, 40H, H_c), 3.67 (s, 497H, H_b), 3.40 (m, 5H, H_a and H_e), 1.02 (m, 60H, H_d).

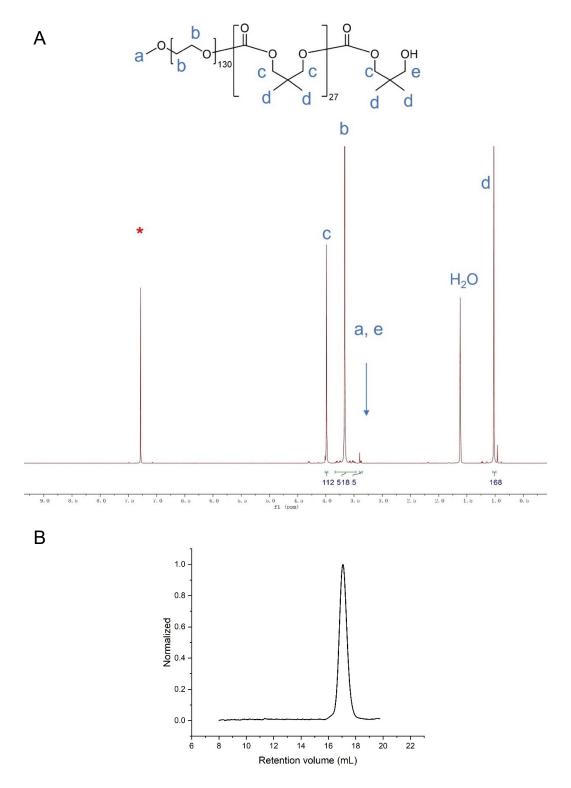

Figure S15: (A) ¹H NMR spectrum (500 MHz, CDCl₃) of PDTC₁₀-*b*-PEG₁₂₄. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PDTC₁₀-*b*-PEG₁₂₄ using Bu₄NBr/THF (1% v/v) as the eluent.


Synthesis of PDTC₁₆-b-PEG₁₂₉

In the nitrogen-filled glovebox, PEG₁₃₅ (50 mg, 1 equiv) and DTC (39 mg, 30 equiv), were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 300 μL of anhydrous DCM. A solution of DBU in DCM (15 μL, 100 mg/mL, 1 equiv) was added via pipette and the vial was capped. After stirring the reaction mixture for 24 h at room temperature the polymerization was quenched with an excess of benzoic acid (15 mg). The reaction mixture was precipitated three times into 45 mL of ice-cold MeOH and collected by centrifugation. After drying in vacuo overnight, the block polymer was obtained as a white solid (76 mg, 80%).

GPC: $M_n = 9,600 \text{ gmol}^{-1}$, $D_M = 1.07$, $M_n \text{ (NMR)} = 7,780 \text{ gmol}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 3.99 (s, 64H, H_c), 3.67 (s, 516H, H_b), 3.40 (m, 5H, H_a and H_e), 1.02 (s, 96H, H_d).

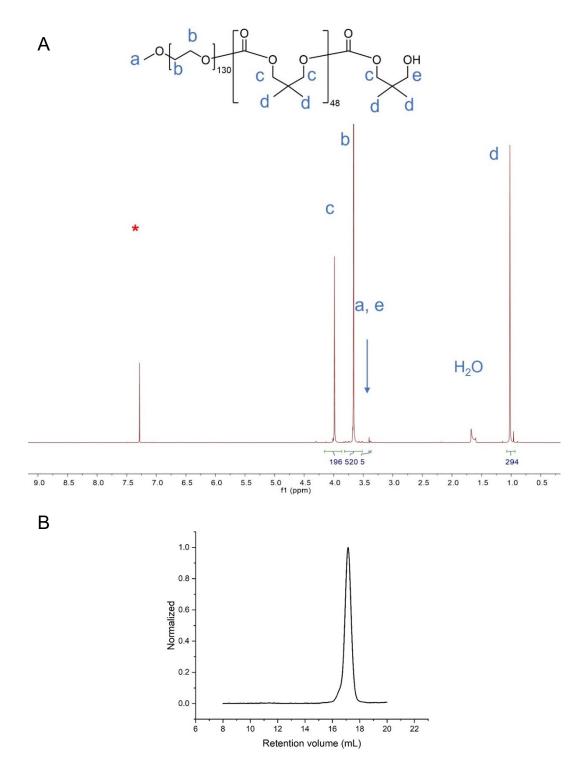

Figure S16: (A) ¹H NMR spectrum (500 MHz, CDCl₃) of PDTC₁₆-b-PEG₁₂₉. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PDTC₁₆-b-PEG₁₂₉ using Bu₄NBr/THF (1% v/v) as the eluent.

Synthesis of PDTC₂₈-b-PEG₁₃₀

In the nitrogen-filled glovebox, PEG₁₃₅ (50 mg, 1 equiv) and DTC (39 mg, 40 equiv), were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 300 μL of anhydrous DCM. A solution of DBU in DCM (15 μL, 100 mg/mL, 1 equiv) was added via pipette and the vial was capped. The reaction mixture was stirred for 24 h at room temperature and then quenched with an excess of benzoic acid (15 mg). The reaction mixture was precipitated three times into 45 mL of ice-cold MeOH and collected by centrifugation. After drying in vacuo overnight, the block polymer was obtained as a white solid (77 mg, 94%).

GPC: $M_n = 11,750 \text{ gmol}^{-1}$, $D_M = 1.07 M_n \text{ (NMR)} = 9,400 \text{ gmol}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 3.99 (s, 112H, H_c), 3.67 (s, 518H, H_b), 3.40 (m, 5H, H_a and H_e), 1.02 (s, 168H, H_d).

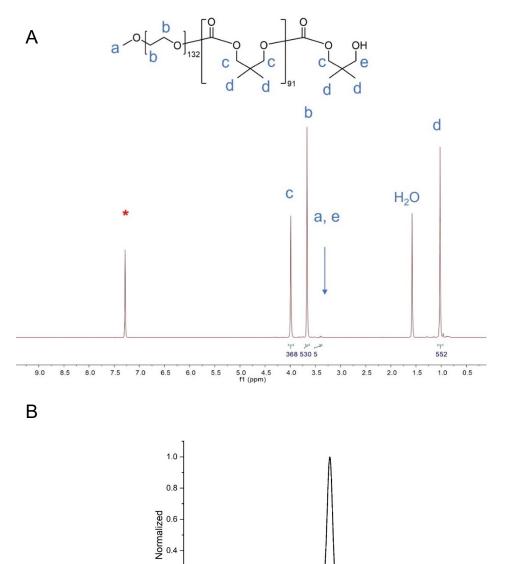

Figure S17: (A) ¹H NMR spectrum (500 MHz, CDCl₃) of PDTC₂₈-b-PEG₁₃₀. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PDTC₂₈-b-PEG₁₃₀ using Bu₄NBr/THF (1% v/v) as the eluent.

Synthesis of PDTC₄₉-b-PEG₁₃₀

In the nitrogen-filled glovebox, PEG₁₃₅ (50 mg, 1 equiv) and DTC (104 mg, 80 equiv) were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 300 μL of anhydrous DCM. A solution of DBU in DCM (15 μL, 100 mg/mL, 1 equiv) was added via pipette and the vial was capped. The reaction mixture was stirred for 24 h at room temperature and then quenched with an excess of benzoic acid (15 mg). The reaction mixture was precipitated three times into 45 mL of ice-cold MeOH and collected by centrifugation. After drying in vacuo overnight, the block polymer was obtained as a white solid (94 mg, 58%).

GPC: $M_n = 13,700 \text{ gmol}^{-1}$, $D_M = 1.06$, $M_n \text{ (NMR)} = 12,140 \text{ gmol}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 3.99 (s, 196H, H_c), 3.67 (s, 520H, H_b), 3.40 (m, 5H, H_a and H_e), 1.02 (s, 294H, H_d).


Figure S18: (A) ¹H NMR spectrum (500 MHz, CDCl₃) of PDTC₄₉-*b*-PEG₁₃₀. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PDTC₄₉-*b*-PEG₁₃₀ using Bu₄NBr/THF (1% v/v) as the eluent.

Synthesis of PDTC₉₂-b-PEG₁₃₂

In the nitrogen-filled glovebox, PEG₁₃₅ (85 mg, 1 equiv) and DTC (330 mg, 150 equiv) were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 480 μL of anhydrous DCM. A solution of DBU in DCM (20 μL, 100 mg/mL, 0.8 equiv) was added via pipette and the vial was capped. The reaction mixture was stirred for 24 h at room temperature and then quenched with an excess of benzoic acid (15 mg). The reaction mixture was precipitated three times into 45 mL of ice-cold MeOH and collected by centrifugation. After drying in vacuo overnight, the block polymer was obtained as a white solid (270 mg, 63%).

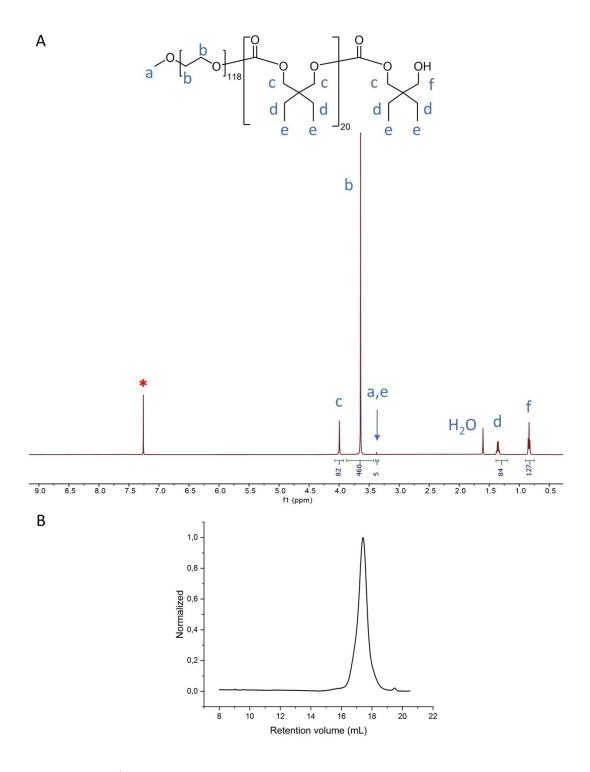
GPC: $M_n = 20{,}310 \text{ gmol}^{-1}$, $D_M = 1.06$, $M_n \text{ (NMR)} = 17{,}820 \text{ gmol}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 3.99 (s, 368H, H_c), 3.67 (s, 530H, H_b), 3.40 (m, 5H, H_a and H_e), 1.02 (s, 550H, H_d).

0.2

0.0

Figure S19: (A) ¹H NMR spectrum (500 MHz, CDCl₃) of PDTC₉₂-b-PEG₁₃₂. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PDTC₉₂-b-PEG₁₃₂ using Bu₄NBr/THF (1% v/v) as the eluent.


Retention volume (mL)

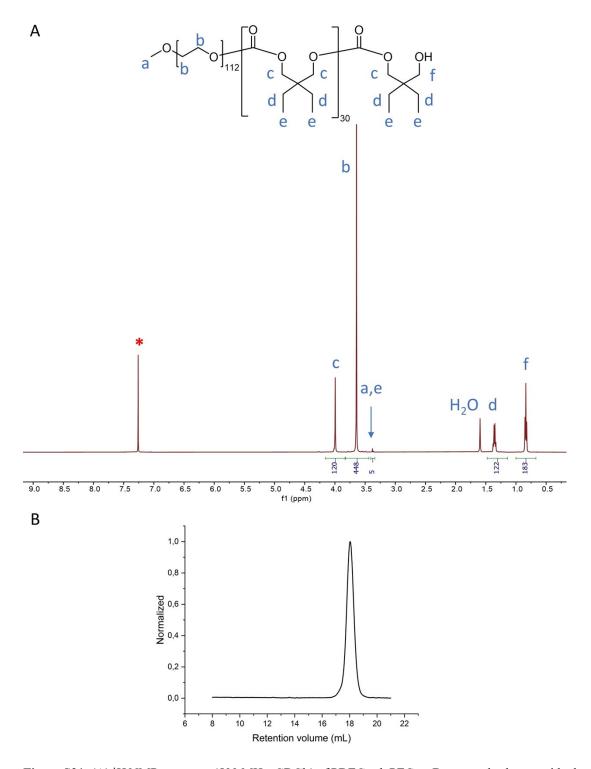
Synthesis of PDEC₂₁-b-PEG₁₁₈

In the nitrogen-filled glovebox, PEG₁₃₅ (50 mg, 1 equiv), ETC (48 mg, 30 equiv) and TU (4 mg, 1.2 equiv) were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 150 μL of anhydrous DCM. A solution of DBU in DCM (18 μL, 100 mg/mL, 1.2 equiv) was added via pipette and the vial was capped. The reaction mixture was stirred for 24 h at room temperature and then quenched with an excess of benzoic acid (15 mg). The reaction mixture was precipitated three times into 45 mL of ice-cold Et₂O and collected by centrifugation. After drying in vacuo overnight, the block polymer was obtained as a white solid (81 mg, 76%).

GPC: $M_n = 12,100 \text{ gmol}^{-1}$, $D_M = 1.05$, $M_n \text{ (NMR)} = 8,550 \text{ gmol}^{-1}$.

¹**H NMR (500 MHz, CDCl₃)**: δ (ppm) = 4.00 (s, 82H, H_c), 3.64 (s, 460H, H_b), 3.38 (m, 5H, H_a and H_f), 1.36 (s, 84H, H_d), 0.84 (s, 127H, H_d).

Figure S20: (A) ¹H NMR spectrum (500 MHz, CDCl₃) of PDEC₂₁-b-PEG₁₁₈. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PDEC₂₁-b-PEG₁₁₈ using Bu₄NBr/THF (1% v/v) as the eluent.


Synthesis of PDEC₃₁-b-PEG₁₁₂

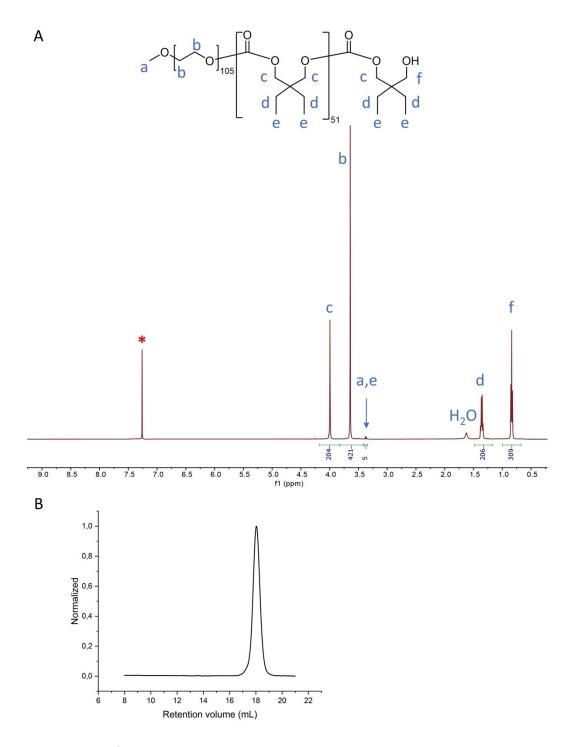
In the nitrogen-filled glovebox, PEG₁₃₅ (50 mg, 1 equiv), ETC (79 mg, 50 equiv) and TU (4 mg, 1 equiv) were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 150 μL of anhydrous DCM. A solution of DBU in DCM (18 μL, 100 mg/mL, 1.2 equiv) was added via pipette and the vial was capped. The reaction mixture was stirred for 24 h at room temperature and then quenched with an excess of benzoic acid (15 mg). The reaction mixture was precipitated three times into 45 mL of ice-cold Et₂O and collected by centrifugation. After drying in vacuo overnight, the block polymer was obtained as a white solid (99 mg, 72%).

GPC: $M_n = 13,700 \text{ gmol}^{-1}$, $D_M = 1.05$, $M_n \text{ (NMR)} = 9,900 \text{ gmol}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 4.00 (s, 120H, H_c), 3.64 (s, 448H, H_b), 3.37 (m, 5H, H_a and H_f), 1.36 (s, 122H, H_d), 0.84 (s, 183H, H_d).

The DP_n value of the PDEC block was determined by comparing the relative integration of the methoxy end-group of PEG (at 3.37 ppm, H_a) with the integration of the methylene protons adjacent to the carbonate carbons (at 4.00 ppm) in the PDEC segment.

Figure S21: (A) ¹H NMR spectrum (500 MHz, CDCl₃) of PDEC₃₁-b-PEG₁₁₂. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PDEC₃₁-b-PEG₁₁₂ using Bu₄NBr/THF (1% v/v) as the eluent.


Synthesis of PDEC₅₂-b-PEG₁₀₅

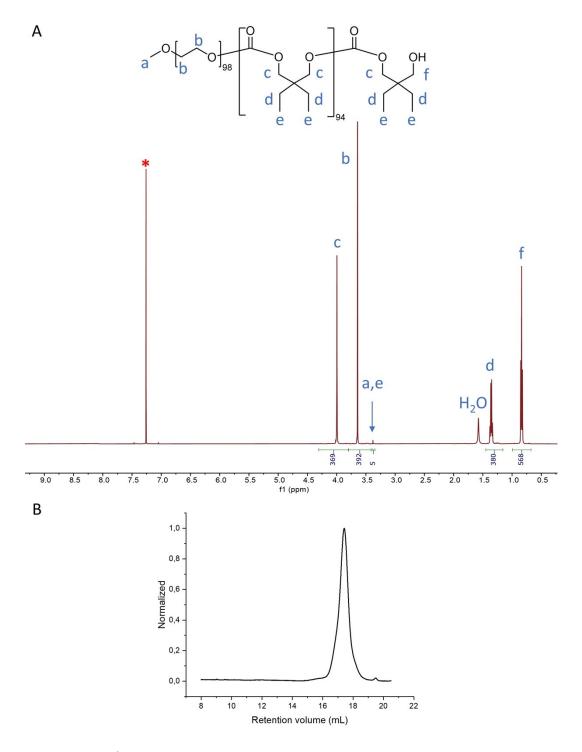
In the nitrogen-filled glovebox, PEG₁₃₅ (50 mg, 1 equiv), ETC (126 mg, 80 equiv) and TU (4 mg, 1 equiv) were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 150 μL of anhydrous DCM. A solution of DBU in DCM (18 μL, 100 mg/mL, 1.2 equiv) was added via pipette and the vial was capped. The reaction mixture was stirred for 24 h at room temperature and then quenched with an excess of benzoic acid (15 mg). The reaction mixture was precipitated three times into 45 mL of ice-cold Et₂O and collected by centrifugation. After drying in vacuo overnight, the block polymer was obtained as a white solid (140 mg, 75%).

GPC: $M_n = 16,800 \text{ gmol}^{-1}$, $D_M = 1.07$, $M_n \text{ (NMR)} = 12,900 \text{ gmol}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 3.99 (s, 204H, H_c), 3.64 (s, 421H, H_b), 3.37 (m, 5H, H_a and H_f), 1.36 (s, 206H, H_d), 0.84 (s, 309H, H_d).

The DP_n value of the PDEC block was determined by comparing the relative integration of the methoxy end-group of PEG (at 3.37 ppm, H_a) with the integration of the methylene protons adjacent to the carbonate carbons (at 3.99 ppm) in the PDEC segment.

Figure S22: (A) ¹H NMR spectrum (500 MHz, CDCl₃) of PDEC₅₂-b-PEG₁₀₅. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PDEC₅₂-b-PEG₁₀₅ using Bu₄NBr/THF (1% v/v) as the eluent.


Synthesis of PDEC₉₅-b-PEG₉₈

In the nitrogen-filled glovebox, PEG₁₃₅ (50 mg, 1 equiv), ETC (237 mg, 150 equiv) and TU (6 mg, 1.5 equiv) were added to an oven-dried 2 mL vial equipped with a magnetic bar and dissolved in 200 μ L of anhydrous DCM. A solution of DBU in DCM (23 μ L, 100 mg/mL, 1.5 equiv) was added via pipette and the vial was capped. The reaction mixture was stirred for 24 h at room temperature and then quenched with an excess of benzoic acid (15 mg). The reaction mixture was precipitated three times into 45 mL of ice-cold Et₂O and collected by centrifugation. After drying in vacuo overnight, the block polymer was obtained as a white solid (227 mg, 76%).

GPC: $M_n = 22,200 \text{ gmol}^{-1}$, $D_M = 1.09$, $M_n \text{ (NMR)} = 19,400 \text{ gmol}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 4.00 (s, 369H, H_c), 3.64 (s, 392H, H_b), 3.37 (m, 5H, H_a and H_f), 1.36 (s, 380H, H_d), 0.84 (s, 568H, H_d).

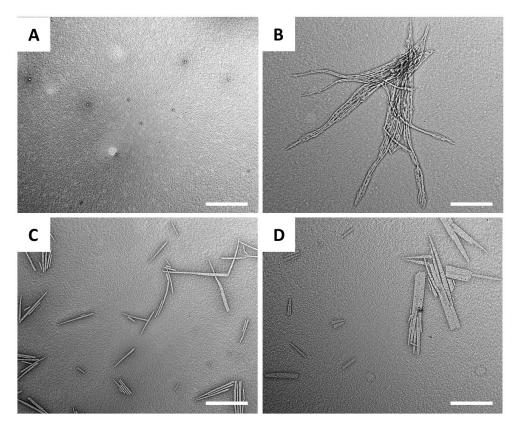
The DP_n value of the PDEC block was determined by comparing the relative integration of the methoxy end-group of PEG (at 3.37 ppm, H_a) with the integration of the methylene protons adjacent to the carbonate carbons (at 4.00ppm) in the PDEC segment.

Figure S23: (A) ¹H NMR spectrum (500 MHz, CDCl₃) of PDEC₉₅-b-PEG₉₈. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PDEC₉₅-b-PEG₉₈ using Bu₄NBr/THF (1% v/v) as the eluent.

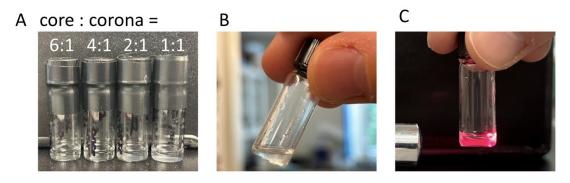
Table S2: Synthesis of PDEC-b-PEG BCPs via organometallic ROP

Block Polymer	PDEC DP _n ^a	M _n (g/mol) ^b	$\mathcal{D}_m{}^b$	PDEC:PEG block ratio ^a
PDEC ₂₁ -b-PEG ₁₁₈	21	12 100	1.05	1:6
PDEC ₃₁ -b-PEG ₁₁₂	31	13 700	1.05	1:4
PDEC ₅₂ -b-PEG ₁₀₅	52	16 800	1.07	1:2
PDEC ₉₅ -b-PEG ₉₈	95	22 200	1.09	1:1

^aDetermined by ¹H NMR spectroscopy. ^bDetermined by GPC versus polystyrene standards.


3. Self-Assembly Procedures

Compositions of all solvents for self-assembly are given as v:v. All of TEM images were obtained after the nanoplatelets were negatively stained with uranyl acetate (3 wt % in MeOH).


Self-Assembly Procedure of PDEC-*b*-PEG Block Polymer in 15:85 THF: MeOH 20 μL of THF and 10 μL of a 10 mg/mL solution PDEC₂₁-*b*-PEG₁₁₈ in THF were added to 170 μL of MeOH in a vial. The resulting solution (0.5 mg/mL in 15:85 THF: MeOH) was manually shaken for ~10 s and annealed for 2 h at 70 °C. Then, the solution was cooled to 23 °C over 2 h, and aged for 24h. The resulting solution was analyzed by TEM. A similar procedure was conducted with other block polymers, including PDEC₃₁-*b*-PEG₁₁₂, PDEC₅₂-*b*-PEG₁₀₅ and PDEC₉₅-*b*-PEG₉₈.

Self-Assembly Procedure of PDTC-*b*-PEG Block Polymer in 15:85 THF: MeOH $100~\mu L$ of THF and $50~\mu L$ of a 10~mg/mL solution PDTC₁₀-*b*-PEG₁₂₄ in THF were added to $8500~\mu L$ of MeOH in a vial. The resulting solution (0.5 mg/mL in 15:85 THF: MeOH) was manually shaken for ~10 s and annealed for 2 h at 70 °C. Then, the solution was cooled to 23 °C over 2 h, and aged for 24 h. The resulting solution was analyzed

by TEM. A similar procedure was conducted with other block polymers, including PDTC₁₆-b-PEG₁₂₉, PDTC₂₈-b-PEG₁₃₀, PDTC₄₉-b-PEG₁₃₀, PDTC₉₂-b-PEG₁₃₂.

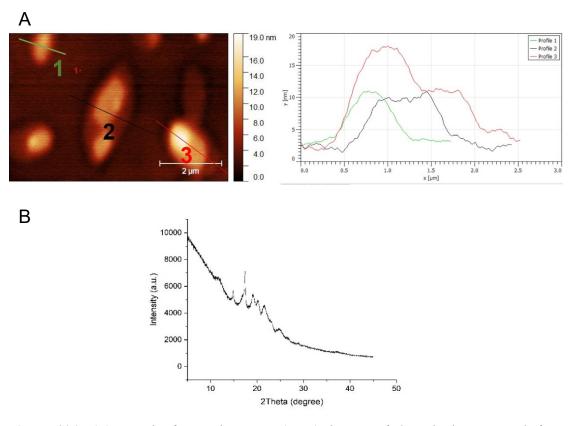
Figure S24: TEM images of micelles prepared via homogeneous nucleation in MeOH:THF (v:v) 85:15 at 0.5 mg/mL by heating polymer samples to 70 °C for 2 h before cooling to 23 °C over a period of 2 h and aging over 24 h. (A) PDEC₂₁-b-PEG₁₁₈ (B) PDEC₃₁-b-PEG₁₁₂. (C) PDEC₅₂-b-PEG₁₀₅. (D) PDEC₉₅-b-PEG₉₈. Scale bars = 1000 nm. TEM images were stained with uranyl acetate (3 wt % in MeOH)

Figure S25: (A) Photos of the homogeneous nucleation experiments in MeOH:THF (v:v) 85:15 at 0.5 mg/mL by heating polymer samples to 70 °C for 2 h before cooling to 23 °C over a period of 2 h and aging over 24 h. (B) Visible precipitation of PDEC₉₅-b-PEG₉₈ (core:corona = 1:1). (C) Tyndall effect of 0.5 mg/mL PDEC₉₅-b-PEG₉₈ in MeOH:THF (v:v) 85:15 by using a red laser pointer as a light source, highlighting the poor colloidal stability of the nanostructures.

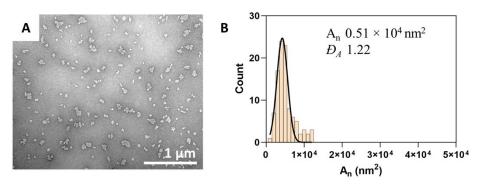
Self-assembly procedure of PDTC-b-PEG block polymer in 5:95 THF: MeOH

50 μ L of a 10 mg/mL solution PDTC₉₂-*b*-PEG₁₃₂ in THF were added to the 950 μ L of MeOH in a vial. The resulting solution (0.5 mg/mL in 5:95 THF: MeOH) was manually shaken for ~10 s and annealed for 2 h at 70 °C. Then, the solution was cooled to 23 °C over 2 h and aged for 24 h. The resulting solution was analyzed by TEM.

Preparation of PDTC₉₂-b-PEG₁₃₂ seed micelles by sonication


The polydisperse 2D platelet micelles derived from PDTC₉₂-b-PEG₁₃₂ were fragmented by ultrasonication at 0 °C for 3 h using an ultrasonication processor. The resulting seed micelles were imaged by TEM.

Preparation of PDTC₉₂-b-PEG₁₃₂ low disperse platelets with controlled area by seeded growth (living CDSA)


For seeded growth micelles with $m_{\text{unimer}}/m_{\text{seed}} \leq 50$: aliquots of PDTC₉₂-b-PEG₁₃₂ unimer (10 mg/mL in THF), equivalent to corresponding $m_{\text{unimer}}/m_{\text{seed}}$, were added to diluted seed platelet solutions in 5:95 THF: MeOH (400 μ L) at 40 °C. The solution was shaken for about 10 s and aged for 24 h at 23 °C.

For seeded growth micelles with $m_{\text{unimer}}/m_{\text{seed}}$ ratios of 100, 200: aliquots of PDTC₉₂-b-PEG₁₃₂ unimer (10 mg/mL in THF), equivalent to corresponding $m_{\text{unimer}}/m_{\text{seed}}$, were added to diluted seed nanofiber solution in 5:95 THF: MeOH (400 μ L) at 40 °C. The unimer was added in intervals of 50 $m_{\text{unimer}}/m_{\text{seed}}$ every 24 h.

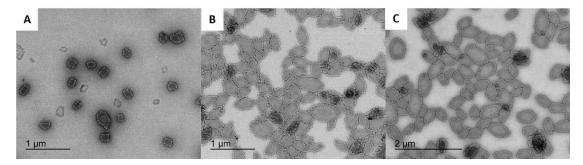

The statistical analysis of contour areas measurements for $PDTC_{92}$ -b- PEG_{132} nanoplatelets is shown in **Figure 3**.

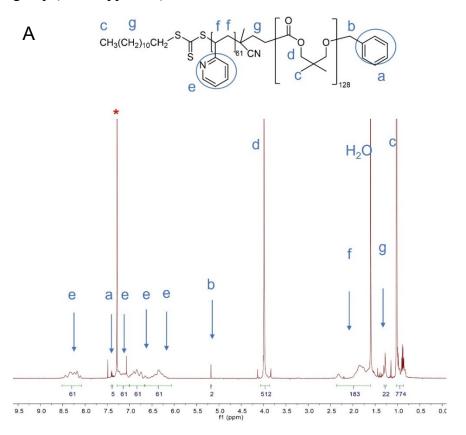
Figure S26: (A) Atomic force microscopy (AFM) images of 2D platelets prepared from MeOH:THF = 95:5 at 0.5 mg/mL by heating polymer samples to 70 °C before cooling to 23 °C over a period of 2 h and aging for 24 h. The profile showed a height of about 8 nm. (B) The X-ray diffraction (XRD) measurement was performed on thin films cast from nanoplatelet solutions.

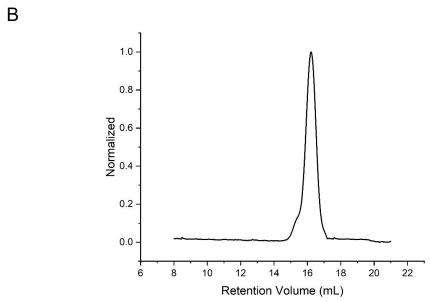
Figure S27: (A) TEM image of 2D seeds with an area of 0.51×10^4 nm² ($\mathcal{D}_A = 1.22$) and a concentration of 0.5 mg/ml in MeOH: THF = 95: 5 prepared by sonication of disperse platelets from PDTC₉₂-b-PEG₁₃₂ for 3 h at 0 °C and (B) the contour area histogram for the corresponding platelets.

Figure S28: TEM images of 2D platelet micelles of PDTC₉₂-b-PEG₁₃₂ prepared by a seeded growth approach with unimer-to-seed mass ratios of 20 at different temperatures. PDTC₉₂-b-PEG₁₃₂ unimer (10 mg/mL) in THF was added to the seed micelles in MeOH (0.025 mg/mL, 0.4 mL) at different temperatures of (A) 23 °C, (B) 30 °C, (C) 40 °C. The samples were stained with uranyl acetate (3 wt % in MeOH).

Synthesis of PDTC₁₂₈-b-P2VP₆₁

PDTC₁₂₈-CTA (50 mg, 1 equiv), 2-vinylpyridine (189 mg, 400 equiv), and AIBN (0.3 mg, 0.2 equiv) were dissolved in dioxane (2 mL) in a Schlenk tube. The reaction mixture was stirred for 20 min at 23 °C followed by three freeze-pump-thaw cycles. The reaction mixture was placed in a preheated heating oil bath at 70 °C and stirred for 6.5 h. Then, the reaction was quenched by submersion in liquid nitrogen. The product was precipitated three times in ice-cold hexane. The product was dried overnight in vacuo to yield PDTC₁₂₈-b-P2VP₆₁ as a light-yellow solid (70 mg, 15%).

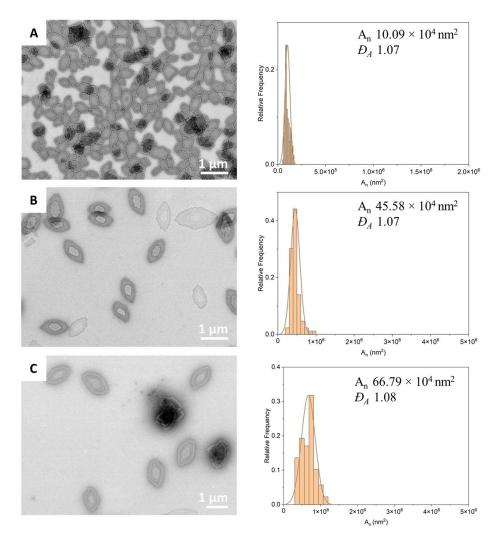

(CTA = 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid)


GPC: $M_n = 29~080~\text{gmol}^{-1}$, $D_M = 1.10$, $M_n~\text{(NMR)} = 26~390~\text{gmol}^{-1}$.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.52 – 8.08 (m, 61H, H_e), 7.42 – 7.37 (m, 5H, H_a), 7.16 (m, J = 88.8 Hz, 61H, H_e), 6.83 (m, J = 40.2 Hz, 61H, H_e), 6.50 (m, 61H, H_e), 5.18 (s, 2H, H_b), 3.99 (s, 512H, H_d), 2.09 (d, 183H, H_f), 1.28 (s, 22H, H_g), 1.02 (s, 774H, H_c).

The DP_n of the PDTC block was determined by comparing the relative integrations of the methylene proton adjacent to the carbonate carbons (H_d) in the PDTC segment with the integration of the methylene group of benzyl end-group (at 5.17 ppm, H_a). The DP_n of the P2VP block was determined by comparing the integrations of the pyridyl protons

 (H_e) in the P2VP segment with the integration of the methylene group of benzyl end-group (at 5.17 ppm, H_a).


Figure S29: (A) ¹H NMR spectrum (500 MHz, CDCl₃) of PDTC₁₂₈-*b*-P2VP₆₁. Deuterated solvent residual signal denoted by *. (B) GPC chromatogram of PDTC₁₂₈-*b*-P2VP₆₁ using Bu₄NBr/THF (1% v/v) was used as the eluent.

PDTC₉₂-b-PEG₁₃₂-m- PDTC₁₂₈-b-P2VP₆₁ Coblock Comicelles

To 400 μ L of preformed PDTC₉₂-b-PEG₁₃₂ platelet solution (A_n = 10.09×10⁴ nm², D_A = 1.07, 0.067 mg/mL, MeOH: THF 95:5 v:v), 25 μ L of a of PDTC₁₂₈-b-P2VP₆₁ unimer solution (10 mg/mL in THF) were added at 40 °C. The solution was manually shaken for ~10 s and aged for 24 h at 23 °C. The resulting 2D platelets were analyzed by TEM after staining as shown in **Figure S30B.**

PDTC₉₂-b-PEG₁₃₂ -m- PDTC₁₂₈-b-P2VP₆₁ -m- PDTC₉₂-b-PEG₁₃₂-Dy Triblock Comicelles

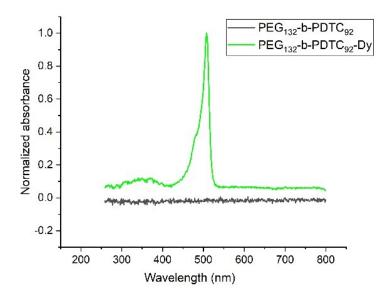

To 400 μ L of a prepared PDTC₉₂-b-PEG₁₃₂-m-PDTC₁₂₈-b-P2VP₆₁ coblock comicelles solution ($A_n = 45.58 \times 10^4 \,\mathrm{nm^2}$, $D_A = 1.07$, 0.15 mg/mL, MeOH:THF 95:5 v:v) was added 1.56 μ L of a PDTC₉₂-b-PEG₁₃₂-Dy unimer solution (10 mg/mL in THF) at 40 °C. The solution was manually shaken for ~10 s and aged for 24 h at 23 °C. The resulting 2D platelets were analyzed by TEM after staining as shown in **Figure 30C.**

Figure S30: (A) TEM image of PDTC₉₂-b-PEG₁₃₂ 2D platelets with an area of 10.09×10^4 nm² ($D_A = 1.07$) in MeOH: THF = 95:5 and the contour area histogram for the corresponding platelets. (B) TEM image of PEG-b-P2VP block comicelles with an area of 45.58×10^4 nm² ($D_A = 1.07$) in MeOH: THF = 95:5 prepared from preformed PDTC₉₂-b-PEG₁₃₂ platelets ($A_n = 10.09 \times 10^4$ nm², $D_A = 1.07$) and PDTC₁₂₈-b-P2VP₆₁ unimer and the contour area histogram for the corresponding platelets. (C) TEM image of PEG-b-P2VP-b-PEG-Dy triblock comicelles with an area of 66.79×10^4 nm² ($D_A = 1.08$) in MeOH: THF = 95:5 prepared from PEG-b-P2VP block comicelles and PDTC₉₂-b-PEG₁₃₂-Dy unimer and the contour area histogram for the corresponding platelets.

Synthesis of PDTC₉₂-b-PEG₁₃₂-Dy (Dy = BODIPY)

PDTC₉₂-b-PEG₁₃₂ (60 mg, 1 equiv), BODIPY-FL carboxylic acid (2.1 mg, 2 equiv) and DMAP (0.04 mg, 0.1 equiv) were added to an oven-dried 10 mL vial equipped with a magnetic bar and dissolved in 3 mL of DCM. The reaction mixture was stirred for 20 min at 23 °C. Then, DCC (3.4 mg, 2.5 equiv) was added and the reaction mixture was stirred overnight at 23 °C. The reaction mixture was precipitated three times into ice-cold Et₂O and collected by centrifugation. After drying in vacuo PDTC-b-PEG₁₂₃-Dy was obtained as an orange solid (52 mg, 87%). UV-vis measurements were used to confirm the attachment of the BODIPY dye to the block copolymer.³ The UV-vis spectrum of the dye-labeled block polymer showed strong absorbance at about 500 nm. In contrast, the starting materials PDTC₉₂-b-PEG₁₃₂ did not show any obvious absorbance at a wavelength from 250 nm to 800 nm, indicating PDTC₉₂-b-PEG₁₃₂ was labeled with the dye BODIPY successfully.

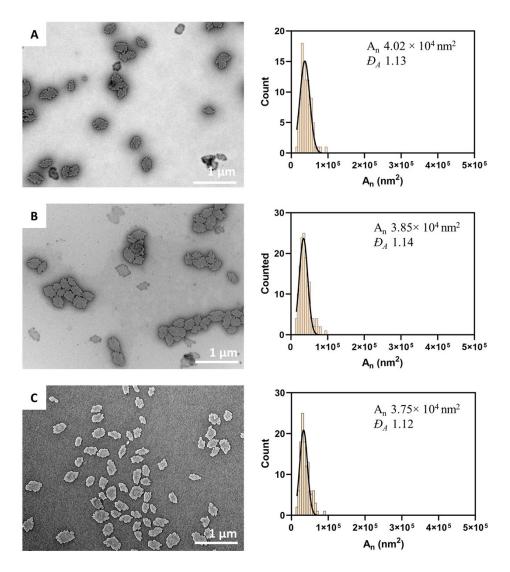


Figure S31: UV-vis spectrum of PDTC₉₂-b-PEG₁₃₂-Dy in CHCl₃ (green trace) and PDTC₉₂-b-PEG₁₃₂ in CHCl₃ (black trace).

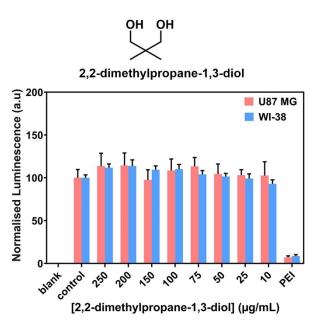
4. Aqueous Stability and Biocompatibility Studies

To a 0.42 mL solution of PDTC₉₂-b-PEG₁₃₂ seed micelles ($A_n = 0.23 \times 10^4$ nm², $D_A = 1.35$, 0.48 mg/mL, MeOH) was added 80 μ L of a 10 mg/mL THF solution of PDTC₉₂-b-PEG₁₃₂ at 40 °C. The solution was manually shaken for ~10 s and aged for 24 h at 23 °C. The resulting 2D platelets (0.5 mL, 2 mg/mL in MeOH:THF 10:1 v:v) were analyzed by TEM as shown in **Figure S32A**.

A nanoplatelet solution (0.5 mL, 2 mg/mL in MeOH: THF 10:1) was dialyzed against water for 72 h (molecular weight cut-off (MWCO = 12,000-14,000 Da Spectra/Por). The water was replaced five times. The resulting platelets were analyzed by TEM as shown in **Figure S32B**. The micelles were stored at room temperature for 1 month and then analyzed by TEM as shown in **Figure S32C**.

Figure S32: (A) TEM image of 2D platelets with an area of 4.02×10^4 nm² ($D_A = 1.13$) at a concentration of 2 mg/ml in MeOH: THF = 95: 5 prepared by living CDSA from PDTC₉₂-b-PEG₁₃₂ and the contour area histogram for the corresponding platelets. (B) TEM image of 2D platelets with an area of 3.85×10^4 nm² ($D_A = 1.14$) after dialysis into water and the contour area histogram for the corresponding platelets. (C) TEM image of 2D platelets with an area of 3.75×10^4 nm² ($D_A = 1.12$) in water stored for 1 month at 23 °C and the contour area histogram for the corresponding platelets.

Culture Protocols


U-87 MG (Human glioblastoma cell line) was grown in Dulbecco's Minimal Essential Medium (DMEM) and WI-38 (Caucasian fibroblast-like fetal lung cells) was grown in Minimal Essential Medium (MEM). All growth media were supplemented with 10% fetal bovine serum (FBS). Confluent cultures (80% or less) were detached from the surface using trypsin (Tryp LE Express) and plated at 1x10⁴ cells/well (1x10⁵ cells/mL) in 96-well plates. Cell culture media and additives were purchased from ThermoFisher Scientific.

Cell Viability Assays

The of PDTC₉₂-b-PEG₁₃₂ based 2D biocompatibility platelet micelles ($A_{\rm n}$ = 3.85×10⁴ nm², $D_{\rm A}$ = 1.14) and 2,2-dimethylpropane-1,3-diole on U-87 MG and WI-38 was evaluated after 24 h of incubation and analyzed with the cell viability assay CellTiter-Glo 2.0 (Promega). CellTiter-Glo 2.0 determines the number of viable cells by quantifying ATP, which indicates the presence of metabolically active cells. The resulting luminescence signal is directly proportional to the number of viable cells. U-87 MG and WI-38 were incubated with $0-100 \,\mu\text{g/mL}$ of 2D platelet micelles $(A_n = 3.85 \times 10^4 \text{ nm}^2, D_A = 1.14)$ and 0 - 250 µg/mL of 2,2-dimethylpropane-1,3-diol for 24 h. Polyethyleneimine (PEI) homopolymer (0.5 μM/mL) was used as a positive control. Each experiment was repeated in triplicate and each data point was repeated in triplicate. The cell viability assay was used according to the manufacturer protocol (Promega). For the addition of the assay, 50 µL of the growth media was removed from each well and 50 μL of CellTiter-Glo 2.0 was added (total volume 100 μL). After 30 min of incubation and stabilization of the luminescence signal, the luminescence was measured using a plate reader. The results were expressed as a percentage compared to the control cells without 2D platelet micelles or 2,2-dimethylpropane-1,3diole present using GraphPad Prism 10 (Table S2 and S3).

Table S3: Cell viability of U-87 MG and WI-38 cells after the addition of 2D platelets (BCP = PDTC₉₂-b-PEG₁₃₂) at different concentrations ranging from 1-100 μ g/mL. PEI was used as a positive control.

2D platelet micelles										PEI
$(\mu g/ml)$		100	75	50	25	10	5	2.5	1	(1 μg/mL)
U-87	Mean (% of control)	94	89	90	97	93	83	84	85	5
MG	σ (% of control)	14	16	11	12	13	16	7	16	1
	Mean (% of control)	106	116	108	107	100	105	103	103	10
WI-38	σ (% of control)	13	19	19	15	13	20	19	21	3

Figure S33: (A) Biocompatibility study of 2,2-dimethylpropane-1,3-diol towards U-87 MG and WI-38 after 24 h exposure with concentrations ranging from 10-250 μ g/mL. PEI was used as a positive control (500 μ g/mL). Cell viability was analyzed using CellTiter-Glo 2.0.

Table S4: Cell viability of WI-38 and U-87 MG cells after the addition of 2,2-dimethylpropane-1,3-diol at different concentrations ranging from 10-250 μ L/mL. PEI was used as a positive control.

2,2-dimethylpropane-1,3-diol										PEI
	$(\mu g/ml)$		200	150	100	75	50	25	10	(1 μg/mL)
U-87	Mean (% of control)	114	115	98	109	1113	104	103	103	7
MG	σ (% of control)	24	23	19	21	16	18	10	25	3
	Mean (% of control)	112	114	110	110	104	102	99	93	9
WI-38	σ (% of control)	6	10	6	8	6	5	8	6	2

5. References

- (1) R. C. Pratt, B. G. G. Lohmeijer, D. A. Long, P. N. P. Lundberg, A. P. Dove, H. Li, C. G. Wade, R. M. Waymouth, and J. L. Hedrick, *Macromolecules*, 2006, **39**, 7863–7871.
- (2) Eisai R & D Management Co., Ltd. World Intellectual Property Organization, WO2007122686 A1, 2007.
- (3) R. Ridolfo, S. Tavakoli, V. Junnuthula, D. S. Williams, A. Urtti and J. C. M Van Hest, *Biomacromolecules*, 2021, **22**, 126–133.