Supplementary information

Effect of biphenyl groups on the properties of poly(fluorenylidene piperidinium) based anion exchange membranes for applications to water electrolyzers

Ahmed Mohamed Ahmed Mahmoud,^{1,2} Kenji Miyatake,^{1,3,4*} Fanghua Liu,¹ Vikrant Yadav,¹

Fang Xian,¹ Lin Guo,¹ Chun Yik Wong,¹ Toshio Iwataki,³ Makoto Uchida,³ Katsuyoshi

Kakinuma^{1,3}

1. Clean Energy Research Center, University of Yamanashi, Kofu, 400-8510, Japan.

2. Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt

3. Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, Kofu, 400-8510,

Japan.

4. Department of Applied Chemistry, Waseda University, Tokyo, 169-8555, Japan.

*: Corresponding author E-mail: miyatake@yamanashi.ac.jp

Figures and Tables

Scheme S1 Synthesis of tert-butyl-4-(iodomethyl)piperidine-1-carboxylate.

Fig. S1 ¹H and ¹³C NMR spectra of *tert*-butyl 4-(iodomethyl)piperidine-1-carboxylate.

Scheme S2 Synthesis of 4,4'-((9H-fluorene-9,9-diyl)bis(methylene))bis(piperidin-1-ium)trifluoroacetate (DPF).

Fig. S2 (a) ¹H, (b) ¹³C, and (c) ¹⁹F NMR spectra of 4,4'-((9*H*-fluorene-9,9-diyl)bis(methylene))bis(piperidin-1-ium)trifluoroacetate (DPF).

Fig. S3 (a) 1 H and (b) 19 F NMR spectra of protonated BPh-Pip copolymer.

Fig. S4 (a) ¹H and (b) ¹⁹F NMR spectra of mTPh-Pip copolymer.

Fig. S5 GPC profiles of QBPh-Pip copolymers.

Fig. S6 (a) ¹H and (b) ¹⁹F NMR spectra of QmTPh-Pip copolymer (target IEC = 2.0 mequiv. g⁻¹).

Fig. S7 (a,b,c) Photos of dry QBPh-Pip membranes with different IECs. (d) after contact with water drops at room temperature.

 $\label{eq:IEC_tit} \text{IEC}_{tit} = \text{0.78 mequiv. } g^{\text{-1}} \quad \text{IEC}_{tit} = \text{1.52 mequiv. } g^{\text{-1}} \quad \text{IEC}_{tit} = \text{1.96 mequiv. } g^{\text{-1}}$

Fig. S8 Photos of cracked QmTPh-Pip membranes.

Fig. S9 Molecular volume of the hydrophilic and hydrophobic components of QBPh-Pip estimated from DFT calculations using Dmol³ software.

Fig. S10 Number of water molecules per ammonium group (λ) at 30 °C of QBPh-Pip and 4-QPPAF-TMA [adapted from ref 1] as a function of IEC.

Fig. S11 Hydroxide ion conductivity of QBPh-Pip and some other reported AEMs as a function of number of water molecules per ammonium group (λ) at 30 °C.

Fig. S12 Hydroxide ion conductivity of QBPh-Pip and 4-QPPAF-TMA membranes (adapted from ref. [1]) at 30 °C as a function of the normalized ion diffusion coefficient (D/D_0) .

Table S1 Properties of post-test QBPh-Pip membranes.

IEC _{tit} ^a	Post-test	Post-test	Initial	Remaining	
(mequiv. g ⁻¹)	IEC _{NMR} ^b	IEC _{tit}	conductivity	conductivity	
	(mequiv. g ⁻¹)	(mequiv. g ⁻¹)	$(mS cm^{-1})$	$(mS cm^{-1})$	
0.80	0.68	0.54	16.70	10.40	
1.60	1.47	1.43	140.00	120.00	
1.90	1.80	1.78	160.00	146.00	

a) Estimated from Mohr titration method. b) determined from NMR integral ratios.

Fig. S13 Images of pristine and post-test QBPh-Pip membranes after 1,000 h in 8M KOH at 80 °C.

Fig. S14 Post-test TEM images of QBPh-Pip (IEC = $1.9 \text{ mequiv. } g^{-1}$) membrane after 1,000 h in 8M KOH at 80 °C.

Fig. S15 Alkaline stability of QBPh-Pip and some other reported AEMs as a function of the alkaline concentration (mol L⁻¹).

Fig. S16 Storage modulus and loss modulus of QBPh-Pip membranes as a function of number average molecular weight (M_n) .

Fig. S17 The maximum stress and elongation at break (%) of QBPh-Pip membranes as a function of copolymer composition (n/m). where n/m represent the ratio between DPF to biphenyl.

Fig. S18 Post-test stress-strain curve of QBPh-Pip (1.9 mequiv. g⁻¹) at 60%RH and 80 °C.

Fig. S19 (a) IR-included I-V curves and ohmic resistances, (b) IR-free Tafel plots of QBPh-Pip (1.9 mequiv. g⁻¹) cell with NiFeO anode and QPAF-4 (1.5 mequiv. g⁻¹) cell with NiCoO anode at 80 °C and 1 M KOH aqueous solution. (data of QPAF-4 cell was adapted from ref. [13])

Figure S21 Cross-sectional SEM images fitted with N atom (K α) intensity on the EDS line analysis quantified by backscattered electrons as a function of the distance from the asterisk (μ m) of QBPh-Pip (1.9 mequiv. g⁻¹), (a) before and (b) after 1000 h of durability test.

entr	AEM	Test	Anode	Cathode	Performan	Durability	Rate of	Ref.
у		condition			ce @ 1.0		voltage	
					A cm ⁻²		increase	
1	QBPh-Pip	80 °C, 1M	NiFeCo	Pt/C (1.0	1.70 V	1000h@	70 µV h⁻	This
		КОН	(2.0 mg cm ⁻	mg cm ⁻²)		1.0 A cm ⁻	1	wor
			2)			² , 80°C		k
2	SustanionXA-9	80 °C, 1M	Ni-	Pt/C (0.6	1.69 V	NA	NA	[3]
		КОН	FeOOH/Ni	mg cm ⁻²)				
			foam (1.2					
			mg cm ⁻²)					
3	Aemion+	80 °C, 1M	Ni-	Pt/C (0.6	1.70 V	NA	NA	[3]
		КОН	FeOOH/Ni	mg cm ⁻²)				
			foam (1.2					
			mg cm ⁻²)					
4	Fumion	80 °C, 1M	Ni-	Pt/C (0.6	1.69 V	NA	NA	[3]

Table S2 Comparison of the AEM-WE performance of QBPh-Pip and reported AEM-WEs.

		КОН	FeOOH/Ni	mg cm ⁻²)				
			foam (1.2					
			mg cm ⁻²)					
5	PAP-TP-85	80 °C,	Fe-NiOOH-	Pt/C (1.0	1.90 V	160 h @	560 μV	[14]
		КОН	20F	mg cm ⁻²)		0.5 A cm ⁻	h-1	
						² , 60°C		
6	FAA-3-50	80 °C, 1M	Ni(Fe)OH	Pt/C (3.4	1.80 V	1300 h @	180	[15]
		КОН	(3.36 mg	mg cm ⁻²)		2.0 Ac m ⁻	$\mu V h^{-1}$	
			cm ⁻²)			² , 50 °C		
7	Sustanion X37-	60 °C, 1M	NiFe (2.5	Pt/C (1.0	1.78 V	500 h, (1-	3820 µA	[16]
	50	КОН	mg cm ⁻²)	mg cm ⁻²)		1.8V	cm ⁻² h ⁻¹	
						durability		
						cycle), 25		
						°C		
8	Fumasep®	60 °C, 1M	NiFe ₂ O ₄	Pt/C (0.5	1.76 V	120 h @	1477 μA	[17]
	FAA3-50	КОН	(3.0 mg cm ⁻	mg cm ⁻²)		2.0 V, 60	cm ⁻² h ⁻¹	
			2)			°C		
9	FAA-3-50	70 °C, 1M	$IrO_2(4.0 \text{ mg})$	Pt/C (0.4	1.77 V	NA	NA	[18]
		КОН	cm ⁻²)	mg cm ⁻²)				
10	FAA-3-50	70 °C, 1M	$IrO_2(2.0 \text{ mg})$	Pt/C (0.4	2.00 V	4.2 h @	48300	[19]
		КОН	cm ⁻²)	mg cm ⁻²)		0.2 A cm ⁻	$\mu V h^{-1}$	
						², 70 ℃		
11	PFPB-QA	70 °C, 1M	$IrO_2(2.0 \text{ mg})$	Pt/C (0.4	1.84 V	4.2 h @	32380	[19]
		КОН	cm ⁻²)	mg cm ⁻²)		0.2 A cm ⁻	μV h ⁻¹	
						² , 70 °C		

References

- 1 A. M. A. Mahmoud and K. Miyatake, ACS Appl. Polym. Mater., 2023, 5, 2243–2253.
- 2 N. Chen, H. H. Wang, S. P. Kim, H. M. Kim, W. H. Lee, C. Hu, J. Y. Bae, E. S. Sim, Y. C. Chung, J. -H. Jang, S. J. Yoo, Y. Zhuang and Y. M. Lee, *Nat. Commun.*, 2021, 12, 2367.
- 3 N. Chen, Q. Jiang, F. Song and X. Hu, ACS Energy Lett., 2023, 8, 4043–4051.
- 4 X. Wu, N. Chen, H. A. Klok, Y. M. Lee and X. Hu, Angew. Chem. Int. Ed., 2022, 61, e20211489.
- 5 H. Chen, K.-T. Bang, Y. Tian, C. Hu, R. Tao, Y. Yuan, R. Wang, D.-M. Shin, M. Shao, Y.
 M. Lee and Y. Kim, *Angew. Chem. Int. Ed.*, 2023, 62, e202307690.
- L. Xu, H. Wang, L. Min, W. Xu, Y. Wang and W. Zhang, *Ind. Eng. Chem. Res.*, 2022, 61, 14232–14241.
- 7 M. Liu, X. Hu, B. Hu, L. Liu and N. Li, J. Membr. Sci., 2022, 642, 119966.
- 8 J. S. Olsson, T. H. Pham and P. Jannasch, Adv. Funct. Mater., 2018, 28, 1702758.
- 9 T. H. Pham, J. S. Olsson and P. Jannasch, J. Mater. Chem. A, 2018, 6, 16537-16547.
- 10 T. H. Pham, J. S. Olsson and P. Jannasch, J. Mater. Chem. A, 2019, 7, 15895-15906.
- 11 T. H. Pham, A. Allushi, J. S. Olsson and P. Jannasch, Polym. Chem., 2020, 11, 6953-6963.
- 12 C. Hu, N. Y. Kang, H. W. Kang, J. Y. Lee, X. Zhang, Y. J. Lee, S.W. Jung, J. H. Park, M.-G. Kim, S. J. Yoo, S.Y. Lee, C. H. Park and Y. M. Lee, *Angew. Chem. Int. Ed.*, 2024, 63, e2023166.
- 13 F. Liu, K. Miyatake, M. Tanabe, A. M. A. Mahmoud, V. Yadav, L. Guo, C.Y. Wong, F.

Xian, T. Iwataki, M. Uchida and K. Kakinuma, Adv. Sci., 2024, 11, 29, 2402969.

- 14 J. Xiao, A. M. Oliveira, L. Wang, Y. Zhao, T. Wang, J. Wang, B. P. Setzler and Y. Yan, ACS Catal., 2020, 11, 264.
- 15 J. Wang, C. Liang, X. Ma, P. Liu, W. Pan, H. Zhu, Z. Guo, Y. Sui, H. Liu, L. Liu and C. Yang, *Adv. Mater.*, 2023, **36**, 2307925.
- 16 S.C. Zignani, M. L. Faro, S. Trocino and A. S. Aricò, *Energies*, 2020, 13, 1720.
- 17 A. Caprì, I. Gatto, C. L. Vecchio, S. Trocino, A. Carbone and V. Baglio, ChemElectroChem, 2023, 10, e202201056.
- 18 J. E. Park, S. Y. Kang, S. H. Oh, J. K. Kim, M. S. Lim, C. Y. Ahn, Y. H. Cho and Y. E. Sung, *Electrochim. Acta*, 2019, 295, 99-106.
- 19 H. Lim, I. Jeong, J. Choi, G. Shin, J. Kim, T. H. Kim and T. Park, *Appl. Surf. Sci.*, 2023, 610, 155601.