Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Information for

Understanding the Competition Between Hydrodechlorination and Friedel-Crafts Alkylation in PVC Dechlorination with Silylium Ions

Nicholas J. Roubineau,^{a†} Eunice C. Castro,^{a†} Kaustubh Rane,^b Zachary A. Wood,^a Angelyn N. Nguyen,^a Nancy G. Bush,^a Ayon Das,^a Shaama Mallikarjun Sharada,^{a,b*} Megan E. Fieser^{a,c*}

^aDepartment of Chemistry, University of Southern California, Los Angeles, CA 90089

^bMork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089

[°]Wrigley Institute for Environment and Sustainability, University of Southern California, Los Angeles, CA 90089

[†]N.J.R. and E.C.C. contributed equally

Email: fieser@usc.edu

1.	General Considerations	S9
1.1	Methods	S10
2.	General Procedures for Hydrodechlorination and Friedel Crafts Alkylation of PVC	S 11
2.1	Optimized benchtop synthesis of Poly(ethylene-co-toluene) (Table 1, Entry 1, 4-6. Table S1)	S 11
2.2	Studying the stability of [Ph ₃ C][B(C ₆ F ₅) ₄] (Table S2)	S11
2.3	Benchtop Synthesis of poly(ethylene-co-toluene) – Studying the effects of the slow addition of Et ₃ SiH (Table 1, Entry 2. Table S3, Entry 5a-5b)	S12
2.4	Benchtop Synthesis of poly(ethylene-co-toluene) – Studying the effects of increasing toluene equivalents (Table 1, Entry 3. Table S3, Entry 6a-6b)	S12
2.5	Synthesis of Poly(ethylene-co-toluene) Using TMDS (Table 2. Table S4)	S13
2.6	Synthesis of Poly(ethylene-co-o-xylene) (Table S5)	S13
2.7	Synthesis of Poly(ethylene-co-m-xylene) (Table S6)	S13
2.8	Synthesis of Poly(ethylene-co-p-xylene) (Table S7)	S13
2.9	Synthesis of Poly(ethylene-co-benzene) (Table S8)	S14

2.10	Synthesis of Poly(ethylene-co-benzene) – prepared air-free with higher catalyst loading (Table S8, Entry 1a-1b)	S14
2.11	Synthesis of Poly(ethylene-co-mesitylene) (Table S9)	S14
2.12	Synthesis of Poly(ethylene-co-mesitylene) – higher catalyst loading (Table S9, Entry 3a-3b)	S15
2.13	Synthesis of Poly(ethylene-co-toluene) from 35 kg/mol PVC (Table S10, Entry 1a- 3b)	S15
2.14	Synthesis of Poly(ethylene-co-toluene) from 99 kg/mol PVC (Table S10, Entry 4a- 5b)	S15
2.15	Synthesis of Poly(ethylene-co-toluene) from 99 kg/mol PVC – higher catalyst and silane loading (Table S10, Entry 6a-6b)	S15
3.	Tabulated Reaction Data	S16
	Table S1 Optimization of silvlium catalyzed dechlorination of PVC on the benchtop	S16
	Table S2 Probing the benchtop stability of the catalyst	S17
	Table S3 Additional replicate runs of PVC to poly(ethylene-co-toluene)	S18
	Table S4 Additional replicate runs using TMDS as silane source	S19
	Table S5 Conversion of PVC to poly(ethylene-co-o-xylene)	S20
	Table S6 Conversion of PVC to poly(ethylene-co-m-xylene)	S21
	Table S7 Conversion of PVC to poly(ethylene-co-p-xylene)	S22
	Table S8 Conversion of PVC to poly(ethylene-co-benzene)	S23
	Table S9 Conversion of PVC to poly(ethylene-co-mesitylene)	S23
	Table S10 Conversion of PVC to poly(ethylene-co-toluene) from different MW PVC substrates	S24
4.	¹ H NMR Data	S25
	Fig. S1 ¹ H NMR spectrum in CDCl ₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S1, Entry 1	S25
	Fig. S2 ¹ H NMR spectrum in CDCl ₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S1, Entry 2	S25
	Fig. S3 ¹ H NMR spectrum in CDCl ₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S1, Entry 3	S25
	Fig. S4 ¹ H NMR spectrum in CDCl ₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S1, Entry 4 and Table S3, Entry 1a	S26

Fig. S5 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) **S26** product in Table S1, Entry 5

Fig. S6 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S1, **S26** Entry 6

Fig. S7 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S1, S27 Entry 7

Fig. S8 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S2, S27 Entry 1

Fig. S9 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S2, S27 Entry 2

Fig. S10 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S2, **S28** Entry 3

Fig. S11 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S2, **S28** Entry 4

Fig. S12 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S2, **S28** Entry 5

Fig. S13 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S2, **S29** Entry 6

Fig. S14 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S2, **S29** Entry 7

Fig. S15 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S3, **S29** Entry 1b

Fig. S16 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table **S30** S3, Entry 2a (left) and 2b (right)

Fig. S17 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table **S30** S3, Entry 2c

Fig. S18 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table **S30** S3, Entry 3a (left) and 3b (right)

Fig. S19 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table **S31** S3, Entry 3c

Fig. S20 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table **S31** S3, Entry 4a (left) and 4b (right)

Fig. S21 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table **S31** S3, Entry 4c

Fig. S22 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) **S32** product in Table S3, Entry 5a (left) and 5b (right)

Fig. S23 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-toluene) product in Table S3, Entry 6a (left) and 6b (right)	S32
Fig. S24 ¹ H NMR spectrum in CDCl ₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 1a (left) and 1b (right)	S32
Fig. S25 ¹ H NMR spectrum in CDCl ₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 2a (left) and 2b (right)	S33
Fig. S26 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-toluene) product in Table S4, Entry 3a (left) and 3b (right)	S33
Fig. S27 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-toluene) product in Table S4, Entry 4a (left) and 4b (right)	S33
Fig. S28 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-toluene) product in Table S4, Entry 4c	S34
Fig. S29 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-toluene) product in Table S4, Entry 5	S34
Fig. S30 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-toluene) product in Table S4, Entry 6	S34
Fig. S31 ¹ H NMR spectrum in CDCl ₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 7 and Table 2, Entry 1	S35
Fig. S32 ¹ H NMR spectrum in CDCl ₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 8 and Table 2, Entry 2	S35
Fig. S33 ¹ H NMR spectrum in CDCl ₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 9 and Table 2, Entry 7	S35
Fig. S34 ¹ H NMR spectrum in CDCl ₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 10 and Table 2, Entry 8	S36
Fig. S35 ¹ H NMR spectrum in CDCl ₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 11 and Table 2, Entry 9	S36
Fig. S36 ¹ H NMR spectrum in CDCl ₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 12 and Table 2, Entry 10	S36
Fig. S37 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-o-xylene) product in Table S5, Entry 1a (left) and 1b (right)	S37
Fig. S38 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-o-xylene) product in Table S5, Entry 1c	S37
Fig. S39 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-o-xylene) product in Table S5, Entry 2a (left) and 2b (right)	S 37
Fig. S40 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-o-xylene) product in Table S5, Entry 2c	S38

Fig. S41 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-o-xylene) product in Table S5, Entry 3a (left) and 3b (right)	S38
Fig. S42 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-o-xylene) product in Table S5, Entry 3c	S38
Fig. S43 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-m-xylene) product in Table S6, Entry 1a (left) and 1b (right)	S39
Fig. S44 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-m-xylene) product in Table S6, Entry 1c	S39
Fig. S45 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-m-xylene) product in Table S6, Entry 2a (left) and 2b (right)	S39
Fig. S46 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-m-xylene) product in Table S6, Entry 2c	S40
Fig. S47 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-m-xylene) product in Table S6, Entry 3a (left) and 3b (right)	S40
Fig. S48 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-m-xylene) product in Table S6, Entry 3c	S40
Fig. S49 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-p-xylene) product in Table S7, Entry 1a (left) and 1b (right)	S41
Fig. S50 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-p-xylene) product in Table S7, Entry 2a (left) and 2b (right)	S41
Fig. S51 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-p-xylene) product in Table S7, Entry 2c	S41
Fig. S52 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-p-xylene) product in Table S7, Entry 3a (left) and 3b (right)	S42
Fig. S53 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-benzene) product in Table S8, Entry 1a (left) and 1b (right)	S42
Fig. S54 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-benzene) product in Table S8, Entry 2a (left) and 2b (right)	S42
Fig. S55 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-benzene) product in Table S8, Entry 3a (left) and 3b (right)	S43
Fig. S56 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-mesitylene) product in Table S9, Entry 1a (left) and 1b (right)	S43
Fig. S57 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-mesitylene) product in Table S9, Entry 2a (left) and 2b (right)	S43
Fig. S58 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-mesitylene) product in Table S9, Entry 3a (left) and 3b (right)	S44

Fig. S59 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-toluene) product in Table S10, Entry 1a (left) and 1b (right)	S44
Fig. S60 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-toluene) product in Table S10, Entry 2a (left) and 2b (right)	S44
Fig. S61 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-toluene) product in Table S10, Entry 3a (left) and 3b (right)	S45
Fig. S62 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-toluene) product in Table S10, Entry 4a (left) and 4b (right)	S45
Fig. S63 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-toluene) product in Table S10, Entry 5a (left) and 5b (right)	S45
Fig. S64 ¹ H NMR spectrum in CDCl ₃ of poly(ethylene-co-toluene) product in Table S10, Entry 6a (left) and 6b (right)	S46
FT-IR Spectroscopy	S46
Fig. S65 FT-IR spectrum of Table S1, Entry 1	S46
Fig. S66 FT-IR spectrum of Table S1, Entry 2	S46
Fig. S67 FT-IR spectrum of Table S1, Entry 3	S47
Fig. S68 FT-IR spectrum of Table S1, Entry 4	S47
Fig. S69 FT-IR spectrum of Table S1, Entry 7	S47
Fig. S70 FT-IR spectrum of Table S2, Entry 1	S47
Fig. S71 FT-IR spectrum of Table S2, Entry 2	S48
Fig. S72 FT-IR spectrum of Table S2, Entry 3	S48
Fig. S73 FT-IR spectrum of Table S2, Entry 4	S48
Fig. S74 FT-IR spectrum of Table S2, Entry 5	S48
Fig. S75 FT-IR spectrum of Table S2, Entry 6	S49
Fig. S76 FT-IR spectrum of Table S3, Entry 1b	S49
Fig. S77 FT-IR spectrum of Table S3, Entry 2a (left) and 2c (right)	S49
Fig. S78 FT-IR spectrum of Table S3, Entry 3a (left) and 3c (right)	S49
Fig. S79 FT-IR spectrum of Table S3, Entry 4a (left) and 4c (right)	S50
Fig. S80 FT-IR spectrum of Table 2, Entry 9	S50
Fig. S81 FT-IR spectrum of Table S5, Entry 1b (left) and 1c (right)	S50
Fig. S82 FT-IR spectrum of Table S5, Entry 2b (left) and 2c (right)	S50
Fig. S83 FT-IR spectrum of Table S5, Entry 3b (left) and 3c (right)	S51

5.

Fig. S84 FT-IR spectrum of Table S6, Entry 1b (left) and 1c (right)	S51
Fig. S85 FT-IR spectrum of Table S6, Entry 2b (left) and 2c (right)	S51
Fig. S86 FT-IR spectrum of Table S7, Entry 1b	S51
Fig. S87 FT-IR spectrum of Table S7, Entry 2b	S52
Fig. S88 FT-IR spectrum of Table S8, Entry 1b	S52
Fig. S89 FT-IR spectrum of Table S8, Entry 2a	S52
Fig. S90 FT-IR spectrum of Table S9, Entry 1a	S52
Fig. S91 FT-IR spectrum of Table S10, Entry 2b	S53
Fig. S92 FT-IR spectrum of Table S10, Entry 5a	S53
Differential Scanning Calorimetry (DSC)	S53
Fig. S93 DSC (2 nd heating curve) of Table S3, Entry 1a (left) and 1b (right)	S53
Fig. S94 DSC (2 nd heating curve) of Table S3, Entry 2a (left) and 2c (right)	S54
Fig. S95 DSC (2 nd heating curve) of Table S3, Entry 3a (left) and 3c (right)	S54
Fig. S96 DSC (2 nd heating curve) of Table S3, Entry 4a (left) and 4c (right)	S54
Fig. S97 DSC (2 nd heating curve) of Table S3, Entry 6a	S54
Fig. S98 DSC (2 nd heating curve) of Table S4, Entry 2b	S55
Fig. S99 DSC (2 nd heating curve) of Table S4, Entry 4a	S55
Fig. S100 DSC (2 nd heating curve) of Table S4, Entry 5	S55
Fig. S101 DSC (2 nd heating curve) of Table S4, Entry 6	S55
Fig. S102 DSC (2 nd heating curve) of Table S5, Entry 1a (left) and 1c (right)	S56
Fig. S103 DSC (2 nd heating curve) of Table S5, Entry 2a (left) and 2b (right)	S56
Fig. S104 DSC (2 nd heating curve) of Table S5, Entry 3a (left) and 3c (right)	S56
Fig. S105 DSC (2 nd heating curve) of Table S6, Entry 1a (left) and 1c (right)	S56
Fig. S106 DSC (2 nd heating curve) of Table S6, Entry 2a (left) and 2c (right)	S57
Fig. S107 DSC (2 nd heating curve) of Table S6, Entry 3a (left) and 3c (right)	S57
Fig. S108 DSC (2 nd heating curve) of Table S7, Entry 1a (left) and 1b (right)	S57
Fig. S109 DSC (2 nd heating curve) of Table S7, Entry 2a (left) and 2b (right)	S57
Fig. S110 DSC (2 nd heating curve) of Table S7, Entry 3a (left) and 3b (right)	S58
Fig. S111 DSC (2 nd heating curve) of Table S8, Entry 1a (left) and 1b (right)	S58
	 Fig. S85 FT-IR spectrum of Table S6, Entry 2b (left) and 2c (right) Fig. S86 FT-IR spectrum of Table S7, Entry 1b Fig. S87 FT-IR spectrum of Table S7, Entry 2b Fig. S88 FT-IR spectrum of Table S8, Entry 1b Fig. S89 FT-IR spectrum of Table S8, Entry 2a Fig. S90 FT-IR spectrum of Table S9, Entry 1a Fig. S91 FT-IR spectrum of Table S10, Entry 2b Fig. S91 FT-IR spectrum of Table S10, Entry 5a Differential Scanning Calorimetry (DSC) Fig. S93 DSC (2nd heating curve) of Table S3, Entry 1a (left) and 1b (right) Fig. S94 DSC (2nd heating curve) of Table S3, Entry 2a (left) and 2c (right) Fig. S95 DSC (2nd heating curve) of Table S3, Entry 3a (left) and 3c (right) Fig. S96 DSC (2nd heating curve) of Table S3, Entry 4a (left) and 4c (right) Fig. S97 DSC (2nd heating curve) of Table S3, Entry 4a Fig. S98 DSC (2nd heating curve) of Table S3, Entry 4a (left) and 4c (right) Fig. S97 DSC (2nd heating curve) of Table S4, Entry 2b Fig. S98 DSC (2nd heating curve) of Table S4, Entry 5 Fig. S100 DSC (2nd heating curve) of Table S4, Entry 5 Fig. S101 DSC (2nd heating curve) of Table S4, Entry 5 Fig. S102 DSC (2nd heating curve) of Table S5, Entry 1a (left) and 1c (right) Fig. S103 DSC (2nd heating curve) of Table S5, Entry 3a (left) and 3c (right) Fig. S105 DSC (2nd heating curve) of Table S5, Entry 3a (left) and 2c (right) Fig. S105 DSC (2nd heating curve) of Table S6, Entry 1a (left) and 1c (right) Fig. S105 DSC (2nd heating curve) of Table S6, Entry 3a (left) and 3c (right) Fig. S105 DSC (2nd heating curve) of Table S6, Entry 3a (left) and 3c (right) Fig. S106 DSC (2nd heating curve) of Table S6, Entry 3a (left) and 3c (right) Fig. S108 DSC (2nd heating curve) of Table S7, Entry 3a (left) and 3c (right) Fig. S108 DSC (2nd heating curve) of Tabl

	Fig. S112 DSC (2 nd heating curve) of Table S8, Entry 2a (left) and 2b (right)	S58
	Fig. S113 DSC (2 nd heating curve) of Table S8, Entry 3a (left) and 3b (right)	S58
	Fig. S114 DSC (2 nd heating curve) of Table S9, Entry 1a (left) and 1b (right)	S59
	Fig. S115 DSC (2 nd heating curve) of Table S9, Entry 2a (left) and 2b (right)	S59
	Fig. S116 DSC (2 nd heating curve) of Table S9, Entry 3a (left) and 3b (right)	S59
	Fig. S117 DSC (2 nd heating curve) of Table S10, Entry 1a (left) and 1b (right)	S59
	Fig. S118 DSC (2 nd heating curve) of Table S10, Entry 2a (left) and 2b (right)	S60
	Fig. S119 DSC (2 nd heating curve) of Table S10, Entry 3a (left) and 3b (right)	S60
	Fig. S120 DSC (2 nd heating curve) of Table S10, Entry 4a (left) and 4b (right)	S60
	Fig. S121 DSC (2 nd heating curve) of Table S10, Entry 5a (left) and 5b (right)	S60
	Fig. S122 DSC (2 nd heating curve) of Table S10, Entry 6a (left) and 6b (right)	S61
7.	Thermogravimetric Analysis (TGA)	S61
	Fig. S123 TGA heating curve of Table S3, Entry 1b (left) and 2c (right)	S61
	Fig. S124 TGA heating curve of Table S5, Entry 1b (left) and 2b (right)	S61
	Fig. S125 TGA heating curve of Table S6, Entry 1b (left) and 2c (right)	S62
	Fig. S126 TGA heating curve of Table S8, Entry 3a	S62
8.	Computational Details	S63
	Table S11 Relative free energies of states representing hydride transfer from TMDS to the model propyl cation/2-chloropropane (2CP) and their diagrammatic representations. TMDS_x_x is TMDS where x represents the bond to Si either H or Cl, TMDS_cation represents a Si ⁺ formed in the TMDS.	S64
	Table S12 Free energy changes associated with hydride addition, FC alkylation, and polyindene formation upon dechlorination of model PVC compounds.	S64
	Fig. S127 Structures constituting states described on Fig. 4 of the paper and Table S12 of the SI.	S65
9.	References	S65

1. General Considerations

Most polymerization reactions were performed on the benchtop once conditions were optimized, unless noted otherwise. Any air-free polymerization reaction was set up in a nitrogen-containing glovebox before the reaction vessel is closed and the polymerization reaction is brought out of the glovebox and conducted closed in a fume hood. $[Ph_3C][B(C_6F_5)_4]$ was purchased from Fisher Chemical (Fisher, Product #: T28635G), anhydrous grade triethylsilane (Et₃SiH) (Aldrich. Product #: 230197) was purchased from Aldrich, and 1,1,3,3-tetramethyldisiloxane (TMDS) was purchased from Fischer Chemical and used as received. $[Ph_3C][B(C_6F_5)_4]$, anhydrous grade triethyl silane, benzene, toluene, ortho-, meta- and para-xylene were all stored and transferred out of the glovebox in a 20 mL scintillation vial to be properly used under benchtop conditions. All reagents were used within the same week of being brought out of the glovebox with the exception of the trityl borate lifetime studies in which the dried toluene, dried poly(vinyl chloride) (PVC), and Et₃SiH were all brought out on the same day of the reaction. "Low M_n " PVC ($M_n = 43 \text{ kg/mol}$), $M_{\rm n} = 35$ kg/mol PVC, and $M_{\rm n} = 99$ kg/mol PVC purchased from Aldrich were readily available on benchtop and used as received. Mesitylene and TMDS were readily available on benchtop and used as received. NMR solvent CDCl₃ was purchased from Cambridge Isotope Laboratories and used as received. Product yields for the synthesized vinyl aromatic copolymers were estimated using the following theoretical yield formula: mmolPVC x {(mol%_{PVC} x MW_{PVC}) + (mol%_{PE} x MW_{PE}) + mol%_{P"A"} x MW_{P"A"})}.

To calculate:

mol%P"A" -

$$PE_{relative amount} = \frac{(PE_{int} - (PVC_{int} \times 2)) - (\# \text{ of } H \text{ unaccounted for in PA unit})}{4}$$
$$mol \% P'A' = \frac{1}{1 + PVC_{int} + PE_{relative amount}} \times 100$$

mol%PE -

$$PE_{relative amount} = \frac{(PE_{int} - (PVC_{int} \times 2)) - (\# \text{ of } H \text{ unaccounted for in PA unit)}}{4}$$

mol % PE = $\frac{PE_{relative amount}}{1+PVC_{int}+PE_{relative amount}} \times 100$

mol % P"VC = 100 - (mol% PE + mol% P'A')

Where "A" is the aromatic solvent being used.

1.1. Methods

¹H nuclear magnetic resonance (NMR) spectra were recorded on a Varian Mercury 400 Magnetic Resonance Spectrometer and referenced to residual solvent resonances. Thermogravimetric analysis (TGA) data were collected using a Mettler-Toledo STARe System TGA/DSC3+ with a heating rate of 10 °C/min. Fourier Transform Infrared Spectroscopy (FT-IR) data was collected using an Agilent Cary 630 FTIR spectrometer equipped with a single reflection diamond (Di) attenuated total reflectance (ATR) module. DSC traces were recorded using a TA Instruments Discovery DSC 250 Auto, equipped with a Discovery LN₂ Pump, and processed with TRIOS software. The DSC measurements were made at a heating rate of 10 °C/min and N₂ flow rate of 20 ml/min, and T_g values were obtained from the peak of the glass transition in the second heating curve. No T_m values were observed.

DFT calculations are performed using the quantum chemistry software Q-Chem¹ at ω B97X-D/def2-SVP^{2,3} level of theory. These calculations employ the conductor-like polarizable continuum model (C-PCM) for implicit solvation to capture the effect of the solvent THF (dielectric constant = 7.58).⁴⁻⁶ The minima are verified using the vibrational analysis and the free energies computed using the rigid rotor harmonic oscillator approximation at 298K.⁷ 1,3,5,7-tetrachloroheptane is chosen as the model PVC system which is dechlorinated by triethylsilane (TES). This computational study investigates the relative thermodynamic feasibilities of competing hydrodechlorination, Friedel-Crafts (FC) alkylation, and polyindene formation reactions.

2. General Procedures for Hydrodechlorination and Friedel Crafts Alkylation of PVC

2.1. Optimized benchtop synthesis of Poly(ethylene-co-toluene) (Table 1, Entry 1, 4-6. Table S1)

 $[Ph_3C][B(C_6F_5)_4]$ (5.0 mg, 0.005 mmol, 0.25 mol%), Et₃SiH (0.52 mL, 3.26 mmol, 1.5 equiv), dry toluene (2.53 mL, 23.9 mmol, 11 equiv) (all previously stored under N₂ atmosphere in a glovebox) and a stir bar were transferred into a 2 dram vial equipped with an aluminum lined cap. The mixture was allowed to stir for 5 minutes at room temperature before being pipetted into another 2-dram vial, equipped with a Teflon coated cap, that contained pre-weighed low molecular weight PVC (136.0 mg, 2.18 mmol, 1 equiv). The vial was then sealed with electrical tape and, immediately after, placed inside a Chemglass high-throughput tray that was preheated at 110 °C. After stirring at 600 rpm for 30 minutes, the reaction mixture was transferred into a 20 mL scintillation vial and then quenched with isopropanol (~15 mL), which resulted in the precipitation of white solids. The solids were left to settle overnight before decanting the supernatant and drying under vacuum at 80 °C overnight.

2.2. Studying the stability of [Ph₃C][B(C₆F₅)₄] (Table S2)

 $[Ph_3C][B(C_6F_5)_4]$ was first stored outside the desiccator for up to 71 days. On each dedicated day of the reaction, Et₃SiH, dried toluene, and dried low molecular PVC were all transferred outside of the glovebox before being weighed and prepared on the benchtop. $[Ph_3C][B(C_6F_5)_4]$ (5.0 mg, 0.005 mmol, 0.25 mol%), Et₃SiH (0.52 mL, 3.26 mmol 1.5 equiv), toluene (2.53 mL, 23.9 mmol 11 equiv), and a stir bar were first transferred into a 2-dram vial equipped with an aluminum lined cap. The mixture was then allowed to stir for approximately 5 minutes before being pipetted into another 2-dram vial with a Teflon-coated cap that contained the dried low molecular weight PVC (136.0 mg, 2.18 mmol, 1 equiv). Note that the dried PVC was also weighed on the benchtop. The vial was then sealed with electrical tape and, immediately after, placed on a Chemglass high-throughput tray preheated at 110°C. After stirring at 600 rpm for 30 minutes, the reaction mixture was transferred into a 20 mL scintillation vial and quenched with isopropanol (15 mL), which resulted in the precipitation of white solids. The solids were left to settle overnight before the supernatant was decanted. An alternative and quicker process is to centrifuge the solution before decanting

the supernatant. Prior to characterization, the polymer was also dried at approximately 80 °C over 14 hours under dynamic vacuum.

2.3 Benchtop Synthesis of poly(ethylene-co-toluene) – Studying the effects of the slow addition of Et₃SiH (Table 1, Entry 2. Table S3, Entry 5a-5b)

An addition funnel was first prepared with a mixture of Et_3SiH (0.42 mL, 2.63 mmol, 1.2 equiv) and toluene (2.00 mL, 18.9 mmol, 8.7 equiv). [Ph₃C][B(C₆F₅)₄] (5.0 mg, 0.005 mmol, 0.25 mol%), toluene (2.53 mL, 23.9 mmol, 11 equiv), Et_3SiH (0.05 mL, 0.313 mmol, 0.15 equiv), and a stir bar were first transferred into a 2 dram vial equipped with an aluminum lined cap. The mixture was then allowed to stir for 5 minutes before pipetted into a 50 mL round bottom flask containing pre-weighed low molecular weight PVC (136.0 mg, 2.18 mmol, 1 equiv). The round bottom flask was then secured onto the addition funnel and, immediately after, lowered into an oil bath that was preheated at 60 °C. The Et_3SiH in the separatory funnel was then added in a slow and constant stream over 10 minutes. After adding all of the Et_3SiH , the reaction mixture was left to stir for 2 hours before being quenched with isopropanol (15 mL). This resulted in the precipitation of white solids. The solids were left to settle for several hours before decanting the supernatant. Prior to characterization, the polymer was also dried at approximately 80 °C over 14 hours under dynamic vacuum.

2.4 Benchtop Synthesis of poly(ethylene-co-toluene) – Studying the effects of increasing toluene equivalents (Table 1, Entry 3. Table S3, Entry 6a-6b)

 $[Ph_3C][B(C_6F_5)_4]$ (5.0 mg, 0.005 mmol, 0.25 mol%), Et₃SiH (0.52 mL, 3.26 mmol, 1.5 equiv), toluene (5.06 mL, 47.9 mmol, 22 equiv), and a stir bar were transferred into a 2 dram vial equipped with an aluminum lined cap. The mixture was then allowed to stir for approximately 5 minutes before being pipetted into another 2-dram vial, equipped with a Teflon-coated cap, that contained low molecular weight PVC (136.0 mg, 2.18 mmol, 1 equiv). The vial was then sealed with electrical tape and, immediately after, placed on a Chemglass high-throughput tray preheated at 110°C. After stirring at 600 rpm for 18 hours, the reaction mixture was transferred into a 20 mL scintillation vial and then quenched with isopropanol (15 mL), which resulted in the precipitation of white solids. The solids were left to settle overnight before decanting the

supernatant. An alternative and quicker process is to centrifuge the solution before decanting the supernatant. Prior to characterization, the polymer was also dried at approximately 80 °C over 14 hours under dynamic vacuum.

2.5. Synthesis of Poly(ethylene-co-toluene) Using TMDS (Table 2. Table S4)

 $[Ph_3C][B(C_6F_5)_4]$ (5.0 mg, 0.005 mmol, 0.25 mol%), TMDS (0.21-0.58 mL, 1.20-3.26 mmol, 0.55-1.5 equiv), toluene stored on the benchtop (2.53 mL, 23.9 mmol, 11 equiv) and a stir bar were transferred into a 2 dram vial equipped with an aluminum lined cap. The mixture was allowed to stir for 5 minutes at room temperature before being pipetted into another 2-dram vial, equipped with a Teflon coated cap, that contained pre-weighed low molecular weight PVC (136.0 mg, 2.18 mmol, 1 equiv). The vial was then sealed with electrical tape and, immediately after, placed inside a Chemglass high-throughput tray that was preheated at 110 °C. After stirring at 600 rpm for 30 minutes, the reaction mixture was transferred into a 20 mL scintillation vial and then quenched with isopropanol (~15 mL), which resulted in the precipitation of white solids. The solids were left to settle overnight before decanting the supernatant and drying under vacuum at 80 °C overnight.

2.6 Synthesis of Poly(ethylene-co-o-xylene) (Table S5)

Reaction was performed following similar procedure as that for poly(ethylene-co-toluene), in which the volume of ortho-xylene was kept constant, thus the equivalents were lower (2.53 mL, 20.9 mmol, 9.6 equiv).

2.7 Synthesis of Poly(ethylene-co-m-xylene) (Table S6)

Reaction was performed following similar procedure as that for poly(ethylene-co-toluene), in which the volume of meta-xylene was kept constant, thus the equivalents were lower (2.53 mL, 20.7 mmol, 9.5 equiv).

2.8 Synthesis of Poly(ethylene-co-p-xylene) (Table S7)

Reaction was performed following similar procedure as that for poly(ethylene-co-toluene), in which the volume of para-xylene was kept constant, thus the equivalents were lower (2.53 mL, 20.5 mmol, 9.4 equiv).

2.9 Synthesis of Poly(ethylene-co-benzene) (Table S8)

Reaction was performed following similar procedure as that for poly(ethylene-co-toluene), in which the volume of benzene was kept constant, thus the equivalents were higher (2.53 mL, 28.3 mmol, 13 equiv).

2.10 Synthesis of Poly(ethylene-co-benzene) – prepared airfree with higher catalyst loading (Table S8, Entry 1a-1b)

 $[Ph_3C][B(C_6F_5)_4]$ (10.0 mg, 0.011 mmol, 0.5 mol%), Et₃SiH (0.52 mL, 3.26 mmol, 1.5 equiv), dry benzene (2.53 mL, 28.3 mmol, 13 equiv) and a stir bar were transferred into a 2 dram vial equipped with an aluminum lined cap. The mixture was allowed to stir for 5 minutes at room temperature before being pipetted into another 2-dram vial, equipped with a Teflon coated cap, that contained pre-weighed low molecular weight PVC (136.0 mg, 2.18 mmol, 1 equiv). Previous steps performed under N₂ atmosphere in a glovebox. The vial was then sealed with electrical tape and, immediately after, placed inside a Chemglass high-throughput tray that was preheated at 110 °C. After stirring at 600 rpm for 30 minutes, the reaction mixture was transferred into a 20 mL scintillation vial and then quenched with isopropanol (~15 mL), which resulted in the precipitation of white solids. The solids were left to settle overnight before decanting the supernatant and drying under vacuum at 80 °C overnight.

2.11 Synthesis of Poly(ethylene-co-mesitylene) (Table S9)

 $[Ph_{3}C][B(C_{6}F_{5})_{4}]$ (5.0 mg, 0.005 mmol, 0.25 mol%) (previously stored under N₂ atmosphere in a glovebox), Et₃SiH (0.52 mL, 3.26 mmol, 1.5 equiv) and mesitylene (2.53 mL, 18.2 mmol, 8.4 equiv) (both from the benchtop) and a stir bar were transferred into a 2 dram vial equipped with an aluminum lined cap. The mixture was allowed to stir for 5 minutes at room temperature before being pipetted into another 2-dram vial, equipped with a Teflon coated cap, that contained pre-weighed low molecular weight PVC (136.0 mg, 2.18 mmol, 1 equiv). The vial was then sealed with electrical tape and, immediately after, placed inside a Chemglass high-throughput tray that was preheated at 110 °C. After stirring at 600 rpm for 30 minutes, the reaction mixture was transferred into a 20 mL scintillation vial and then quenched with isopropanol (~15 mL), which resulted in the precipitation of white solids. The reaction mixture was then cooled to 0°C, centrifuged, and the supernatant was decanted. The were dried under vacuum at 80 °C overnight.

2.12 Synthesis of Poly(ethylene-co-mesitylene) – higher catalyst loading (Table S9, Entry 3a-3b)

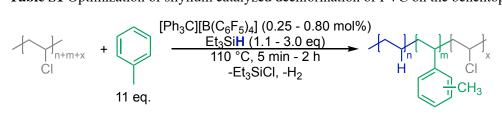
 $[Ph_3C][B(C_6F_5)_4]$ (10.0 mg, 0.011 mmol, 0.5 mol%) (previously stored under N₂ atmosphere in a glovebox), Et₃SiH (0.52 mL, 3.26 mmol, 1.5 equiv) and mesitylene (2.53 mL, 18.2 mmol, 8.4 equiv) (both from the benchtop) and a stir bar were transferred into a 2 dram vial equipped with an aluminum lined cap. The mixture was allowed to stir for 5 minutes at room temperature before being pipetted into another 2-dram vial, equipped with a Teflon coated cap, that contained pre-weighed low molecular weight PVC (136.0 mg, 2.18 mmol, 1 equiv). The vial was then sealed with electrical tape and, immediately after, placed inside a Chemglass high-throughput tray that was preheated at 110 °C. After stirring at 600 rpm for 30 minutes, the reaction mixture was transferred into a 20 mL scintillation vial and then quenched with isopropanol (~15 mL), which resulted in the precipitation of white solids. The reaction mixture was then cooled to 0°C, centrifuged, and the supernatant was decanted. The were dried under vacuum at 80 °C overnight.

2.13 Synthesis of Poly(ethylene-co-toluene) from 35 kg/mol PVC (Table S10, Entry 1a-3b)

Reaction was performed following similar procedure as that for poly(ethylene-co-toluene) using 43 kg/mol PVC.

2.14 Synthesis of Poly(ethylene-co-toluene) from 99 kg/mol PVC (Table S10, Entry 4a-5b)

Reaction was performed following similar procedure as that for poly(ethylene-co-toluene) using 99 kg/mol PVC.


2.15 Synthesis of Poly(ethylene-co-toluene) from 99 kg/mol PVC – higher catalyst and silane loading (Table S10, Entry 6a-6b)

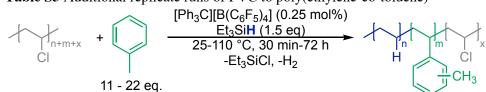
 $[Ph_3C][B(C_6F_5)_4]$ (10.0 mg, 0.011 mmol, 0.5 mol%), Et₃SiH (0.69 mL, 4.4 mmol, 2.0 equiv), dry toluene (2.53 mL, 23.9 mmol, 11 equiv) (all previously stored under N₂ atmosphere in a glovebox) and a stir bar were transferred into a 2 dram vial equipped with an aluminum lined cap. The mixture was allowed to stir for 5 minutes at room temperature before being pipetted into another 2-dram vial, equipped with a Teflon coated cap, that contained pre-weighed 99 kg/mol PVC (136.0 mg, 2.18 mmol, 1 equiv). The vial was then

sealed with electrical tape and, immediately after, placed inside a Chemglass high-throughput tray that was preheated at 110 °C. After stirring at 600 rpm for 30 minutes, the reaction mixture was transferred into a 20 mL scintillation vial and then quenched with isopropanol (~15 mL), which resulted in the precipitation of white solids. The solids were left to settle overnight before decanting the supernatant and drying under vacuum at 80 °C overnight.

3. Tabulated Reaction Data

Table S1 Optimization of silylium catalyzed dechlorination of PVC on the benchtop

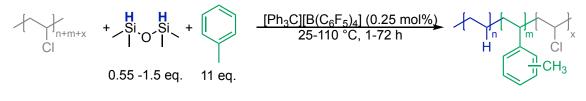
Entry	[Ph ₃ C][B(C ₆ F ₅) ₄] loading (mol %) ^a	Et ₃ SiH (eq) ^b	Time (min)	PE mol% ^c	Aryl mol% ^c	PVC mol% ^c	Variation from Standard
1	0.25	1.1	5	70	18	12	None
2	0.25	1.1	5	58	17	25	Air-exposed
3	0.25	1.1	120	75	19	6	Air-exposed, longer time (2 h)
4	0.80	1.1	120	76	14	10	Air-exposed, higher initiator loading (0.8 mol%), longer time (2 h)
5	0.25	1.1	5	77	22	1	Air-exposed, dried toluene
6	0.25	3.0	120	82	18	0	Air-exposed, higher silane amount (3 eq.), longer time (2 h)
7	0.25	1.5	30	79	21	0	Air-exposed, dried toluene, longer time (30 min), higher silane amount (1.5 eq.)


^aInitiator mol% relative to moles of PVC. ^bEt₃SiH equivalence relative to PVC. ^cCalculated from ¹H NMR spectra taken in CDCl₃.

Entry ^a	# of days [Ph ₃ C][B(C ₆ F ₅) ₄] is stored on benchtop	Aryl mol % ^b	PE mol % ^b
1	0	20	80
2	1	20	80
3	3	19	81
4	7	19	81
5	14	18	82
6	30	13	87
7	71	20	80

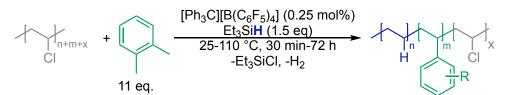
Table S2 Probing the benchtop stability of the catalyst

^a30-minute reactions were performed with 0.25 mol% of the catalyst and 1.5eq of Et₃SiH at 110°C using dried toluene as the aromatic solvent. Initiator mol% relative to moles of PVC. Et₃SiH equivalence relative to PVC. ^bCalculated from ¹H NMR spectra taken in CDCl₃.


 Table S3 Additional replicate runs of PVC to poly(ethylene-co-toluene)

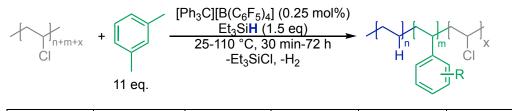
Entry ^a	Reaction time (h)	Temp (°C)	PE mol % ^b	Aryl mol % ^b	PVC mol % ^b	<i>T</i> _g (°C) ^c
1a	0.5	110	79	21	0	69
1b	0.5	110	81	19	0	79
2a	1	80	79	21	0	83
2b	1	80	83	17	0	-
2c	1	80	80	20	0	79
3a	1	60	79	21	0	91
3b	1	60	78	22	0	-
3c	1	60	81	19	0	81
4a	72	25	85	16	0	112
4b	72	25	86	14	0	-
4c	72	25	80	20	0	106
5a ^d	2	110	42	13	45	-
5b ^d	2	110	54	10	36	-
6a ^e	18	110	78	22	0	80
6b ^e	18	110	79	21	0	-

^aReactions were performed with 0.25 mol% of the catalyst, Et₃SiH at 110°C using dried toluene as the aromatic solvent. Initiator mol% relative to moles of PVC. Et₃SiH equivalence relative to PVC. ^bCalculated from ¹H NMR spectra taken in CDCl₃. ^cGlass transition peak in second heating curve of DSC. ^dSilane was added slowly throughout the reaction. ^e22 equiv. toluene was used.


Table S4 Additional replicate runs using TMDS as silane source

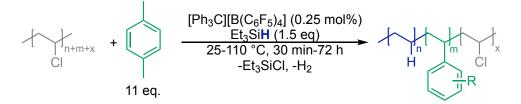
Entry ^a	TMDS eq.	Reaction time (h)	Temp (°C)	PE mol% ^b	Aryl mol% ^b	PVC mol% ^b	$T_{\rm g} (^{\circ}{ m C})^{ m c}$
1a	0.75	1	110	25	17	58	-
1b	0.75	1	110	49	16	35	-
2a	1	1	110	74	24	2	-
2b	1	1	110	79	21	0	69
3a	1.1	1	110	78	22	0	74
3b	1.1	1	110	77	23	0	-
4a	1.5	1	110	77	23	0	72
4b	1.5	1	110	78	22	0	-
4c	1.5	1	110	78	22	0	-
5	1.1	1	60	78	22	0	88
6	1.1	72	25	82	18	0	101
7	0.55	22	110	44	13	43	-
8	0.55	1	110	39	11	50	-
9	0.55	1	60	45	16	41	-
10	0.55	2	60	34	11	55	-
11	0.55	6	60	43	13	44	-
12	0.55	18	60	39	12	49	-

^aReactions were performed using low molecular weight PVC with 0.25 mol% of the catalyst and 0.55-1.5 equivalents of TMDS in benchtop toluene as the aromatic solvent. ^bCalculated from ¹H NMR spectra taken in CDCl₃. ^cGlass transition peak in second heating curve of DSC.


Table S5 Conversion of PVC to poly(ethylene-co-o-xylene)

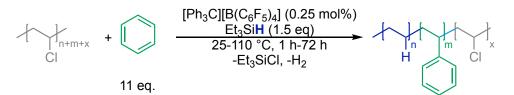
Entry ^a	Reaction time	Temp (°C)	PE mol% ^b	Aryl mol% ^b	PVC mol% ^b	$T_{\rm g} (^{\rm o}{ m C})^{ m c}$
1a	30 min	110	79	21	0	65
1b	30 min	110	80	20	0	-
1c	30 min	110	80	20	0	79
2a	1 h	60	78	22	0	76
2b	1 h	60	77	23	0	80
2c	1 h	60	77	23	0	-
3a	72 h	25	79	21	0	85
3b	72 h	25	78	22	0	-
3c	72 h	25	77	23	0	87

^aReactions were performed using low molecular weight PVC with 0.25 mol% of the catalyst and 1.5 equivalents of Et₃SiH in dried ortho-xylene as the aromatic solvent. ^bCalculated from ¹H NMR spectra taken in CDCl₃. ^cGlass transition peak in second heating curve of DSC.


Table S6 Conversion of PVC to poly(ethylene-co-m-xylene)

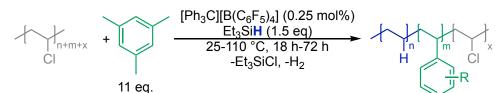
Entry ^a	Reaction time	Temp (°C)	PE mol% ^b	Aryl mol% ^b	PVC mol% ^b	$T_{\rm g}~(^{\circ}{ m C})^{ m c}$
1a	30 min	110	81	19	0	69
1b	30 min	110	80	20	0	-
1c	30 min	110	80	20	0	77
2a	1 h	60	81	19	0	78
2b	1 h	60	79	21	0	-
2c	2 h	60	80	20	0	75
3a	72 h	25	78	22	0	77
3b	72 h	25	77	23	0	-
3c	72 h	25	87	13	0	90

^aReactions were performed using low molecular weight PVC with 0.25 mol% of the catalyst and 1.5 equivalents of Et₃SiH in dried meta-xylene as the aromatic solvent. ^bCalculated from ¹H NMR spectra taken in CDCl₃. ^cGlass transition peak in second heating curve of DSC.


Table S7 Conversion of PVC to poly(ethylene-co-p-xylene)

Entry ^a	Reaction time	Temp (°C)	PE mol% ^b	Aryl mol% ^b	PVC mol% ^b	$T_{\rm g}(^{\rm o}{ m C})^{ m c}$
1a	30 min	110	84	16	0	60
1b	30 min	110	83	17	0	71
2a	5 h	60	84	16	0	80
2b	5 h	60	83	17	0	93
2c	5 h	60	83	17	0	-
3a	72 h	25	86	14	0	108
3b	72 h	25	90	10	0	108

^aReactions were performed using low molecular weight PVC with 0.25 mol% of the catalyst and 1.5 equivalents of Et₃SiH in dried para-xylene as the aromatic solvent. ^bCalculated from ¹H NMR spectra taken in CDCl₃. ^cGlass transition peak in second heating curve of DSC.


Table S8 Conversion of PVC to poly(ethylene-co-benzene)

Entry ^a	Reaction time (h)	Temp (°C)	PE mol% ^b	Aryl mol% ^b	PVC mol% ^b	$T_{\rm g}(^{\rm o}{ m C})^{ m c}$
1a ^d	1	110	86	14	0	70
1b ^d	1	110	87	13	0	79
2a	1	60	88	12	0	103
2b	1	60	88	12	0	91
3a	72	25	89	11	0	124
3b	72	25	91	9	0	125

^aReactions were performed using low molecular weight PVC with 0.25 mol% of the catalyst and 1.5 equivalents of Et₃SiH in dried benzene as the aromatic solvent. ^bCalculated from ¹H NMR spectra taken in CDCl₃. ^cGlass transition peak in second heating curve of DSC. ^dReaction prepared in glovebox, performed in N2 atomosphere. 0.5 mol% of catalyst was used instead of 0.25 mol%.

Table S9 Conversion of PVC to poly(ethylene-co-mesitylene)

Entry ^a	Reaction time (h)	Temp (°C)	PE mol% ^b	Aryl mol% ^b	PVC mol% ^b	$T_{\rm g}(^{\rm o}{ m C})^{ m c}$
1a	18	110	88	12	0	52
1b	18	110	88	12	0	49
2a	18	60	86	14	0	64
2b	18	60	87	13	0	63
3a ^d	72	25	86	14	0	73
3b ^d	72	25	85	15	0	77

^aReactions were performed using low molecular weight PVC with 0.25 mol% of the catalyst and 1.5 equivalents of Et₃SiH in dried benzene as the aromatic solvent. ^bCalculated from ¹H NMR spectra taken in CDCl₃. ^cGlass transition peak in second heating curve of DSC. ^d0.5 mol% of catalyst was used instead of 0.25 mol%

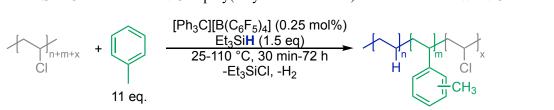
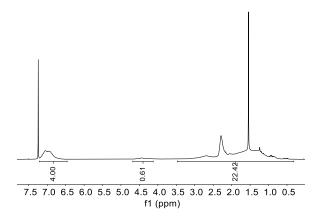
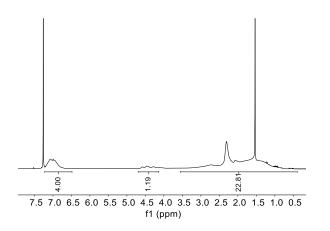
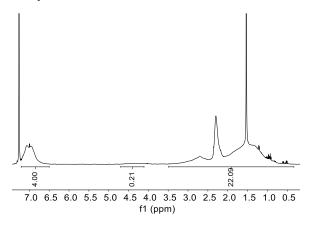
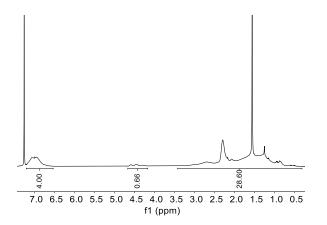



Table S10 Conversion of PVC to poly(ethylene-co-toluene) from different MW PVC substrates


	·				\sim		
Entry ^a	Reaction time	Temp (°C)	PVC substrate	PE mol% ^b	Aryl mol% ^b	PVC mol% ^b	$T_{\rm g}$ (°C) ^c
1a	30 min	110	35 kg/mol	81	19	0	81
1b	30 min	110	35 kg/mol	80	20	0	77
2a	1 h	60	35 kg/mol	83	17	0	91
2b	1 h	60	35 kg/mol	79	21	0	93
3a	72 h	25	35 kg/mol	81	19	0	102
3b	72 h	25	35 kg/mol	79	21	0	106
4a	30 min	110	99 kg/mol	83	17	0	59
4b	30 min	110	99 kg/mol	80	20	0	64
5a	2 h	60	99 kg/mol	79	21	0	102
5b	2 h	60	99 kg/mol	79	21	0	97
6a ^d	72 h	25	99 kg/mol	92	8	0	123
6b ^d	72 h	25	99 kg/mol	92	8	0	116

^aReactions were performed using desired PVC substrate with 0.25 mol% of the catalyst and 1.5 equivalents of Et₃SiH in dried toluene as the aromatic solvent. ^bCalculated from ¹H NMR spectra taken in CDCl₃. ^cGlass transition peak in second heating curve of DSC. ^d0.5 mol% of catalyst and 2.0 equiv of Et₃SiH were used instead of 0.25 mol% and 1.5 equiv, respectively.


4.¹H NMR Data


Fig. S1 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S1, Entry 1

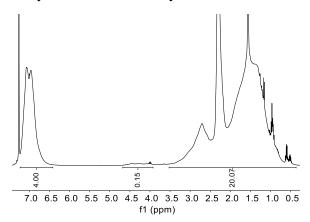

Fig. S2 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S1, Entry 2

Fig. S3 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S1, Entry 3

Fig. S4 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S1, Entry 4 and Table S3, Entry 1a

Fig. S5 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S1, Entry 5

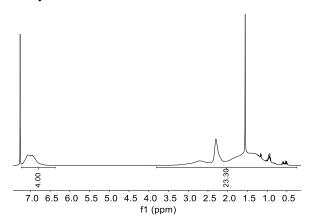


Fig. S6 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S1, Entry 6

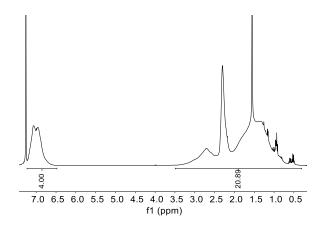


Fig. S7 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S1, Entry 7

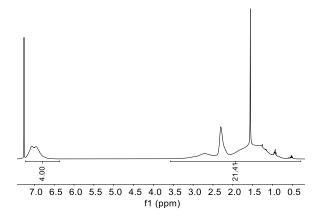


Fig. S8 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S2, Entry 1

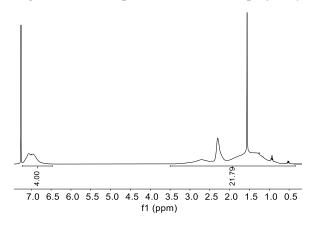


Fig. S9 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S2, Entry 2

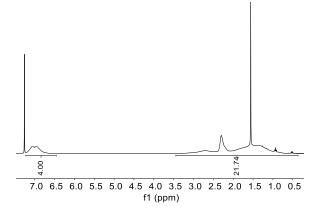


Fig. S10 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S2, Entry 3

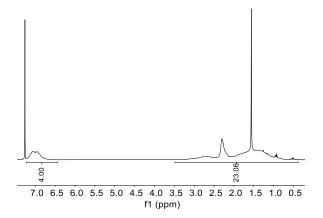


Fig. S11 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S2, Entry 4

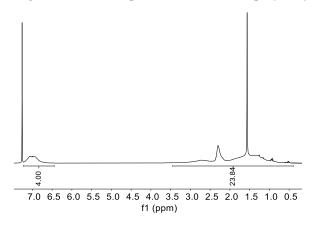


Fig. S12 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S2, Entry 5

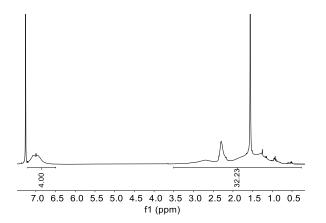


Fig. S13 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S2, Entry 6

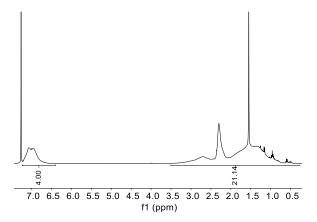


Fig. S14 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S2, Entry 7

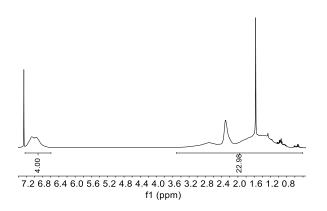
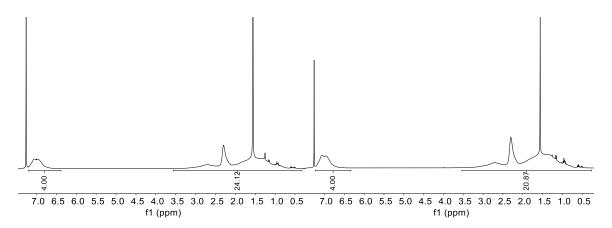



Fig. S15 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S3, Entry 1b

Fig. S16 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S3, Entry 2a (left) and 2b (right)

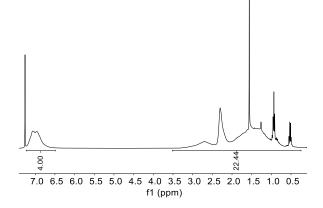
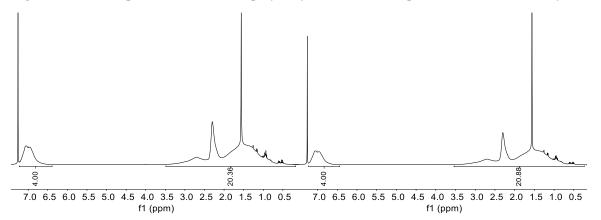



Fig. S17 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S3, Entry 2c

Fig. S18 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S3, Entry 3a (left) and 3b (right)

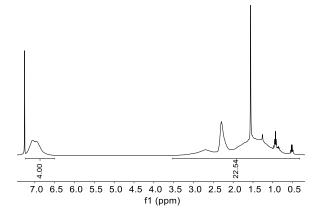
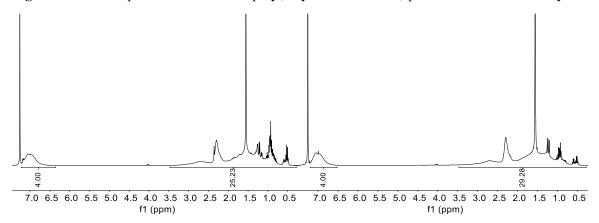
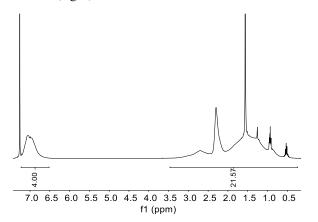
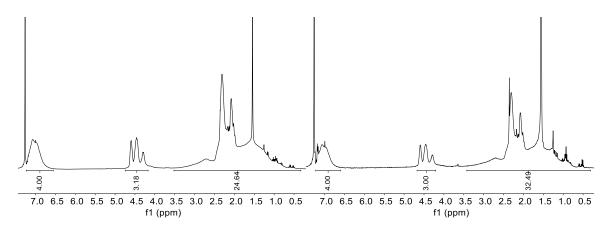
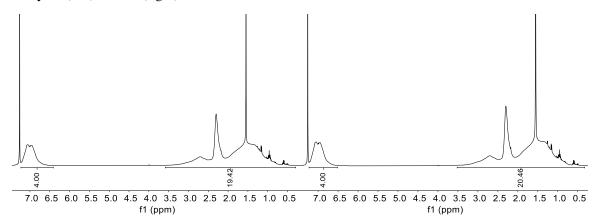
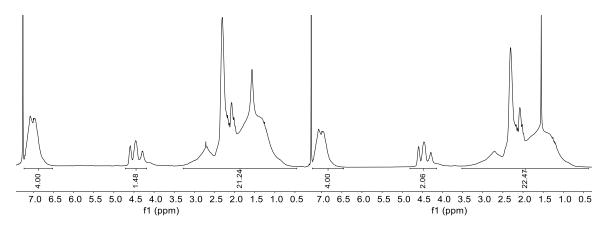
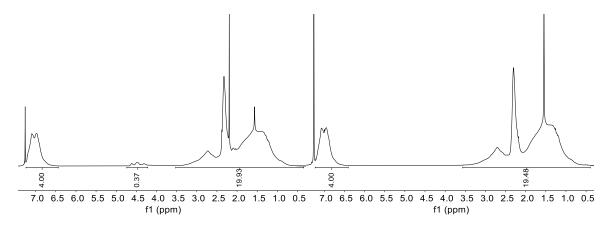



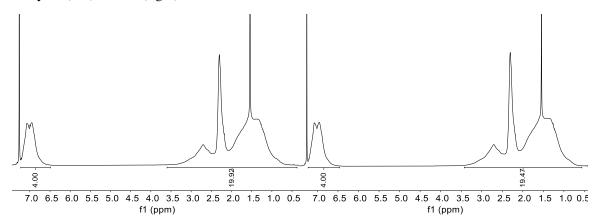
Fig. S19 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S3, Entry 3c

Fig. S20 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S3, Entry 4a (left) and 4b (right)


Fig. S21 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S3, Entry 4c


Fig. S22 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S3, Entry 5a (left) and 5b (right)


Fig. S23 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S3, Entry 6a (left) and 6b (right)

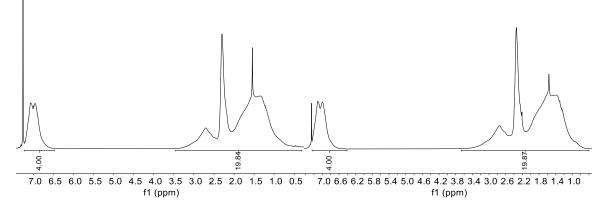

Fig. S24 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 1a (left) and 1b (right)

Fig. S25 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 2a (left) and 2b (right)

Fig. S26 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S4, Entry 3a (left) and 3b (right)

Fig. S27 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S4, Entry 4a (left) and 4b (right)

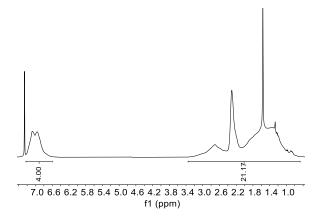


Fig. S28 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S4, Entry 4c

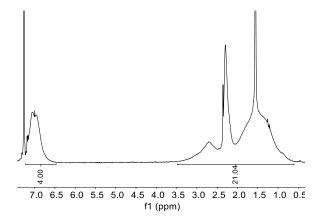
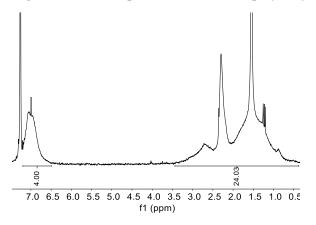
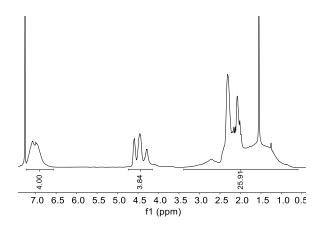
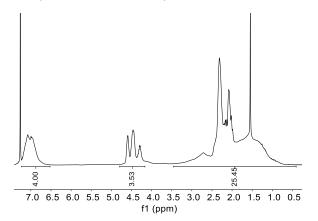
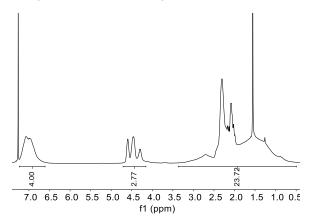
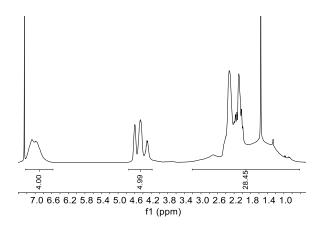
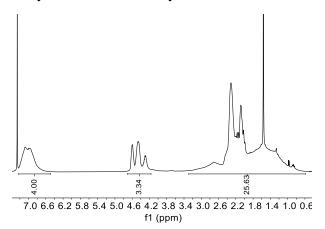


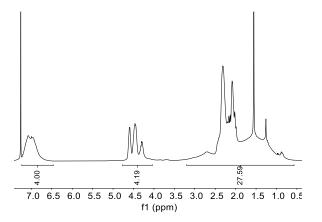
Fig. S29 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S4, Entry 5


Fig. S30 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S4, Entry 6


Fig. S31 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 7 and Table 2, Entry 1


Fig. S32 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 8 and Table 2, Entry 2


Fig. S33 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 9 and Table 2, Entry 7

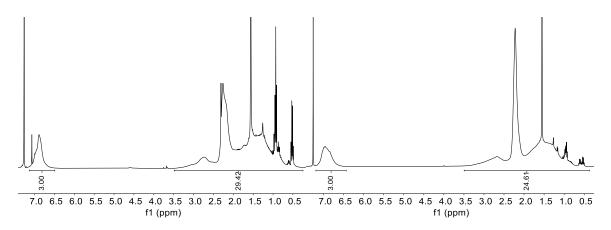

Fig. S34 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 10 and Table 2, Entry 8

Fig. S35 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 11 and Table 2, Entry 9

Fig. S36 ¹H NMR spectrum in CDCl₃ of poly(vinyl chloride-co-ethylene-co-toluene) product in Table S4, Entry 12 and Table 2, Entry 10

Fig. S37 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-o-xylene) product in Table S5, Entry 1a (left) and 1b (right)

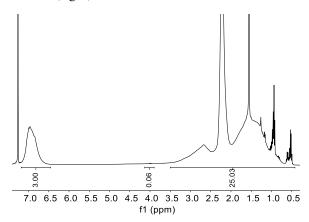
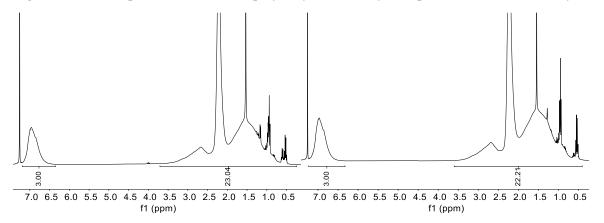



Fig. S38 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-o-xylene) product in Table S5, Entry 1c

Fig. S39 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-o-xylene) product in Table S5, Entry 2a (left) and 2b (right)

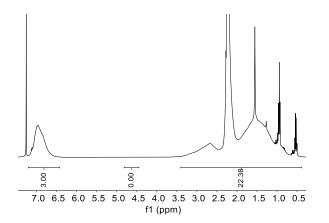
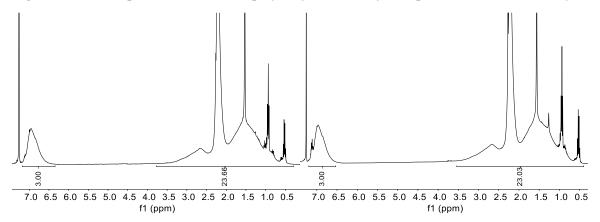



Fig. S40 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-o-xylene) product in Table S5, Entry 2c

Fig. S41 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-o-xylene) product in Table S5, Entry 3a (left) and 3b (right)

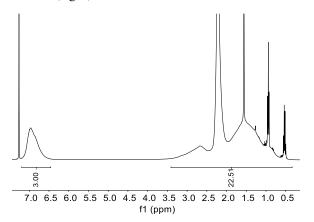
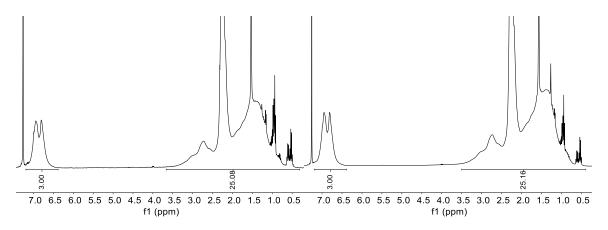



Fig. S42 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-o-xylene) product in Table S5, Entry 3c

Fig. S43 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-m-xylene) product in Table S6, Entry 1a (left) and 1b (right)

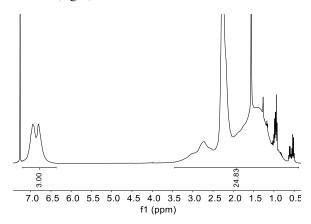
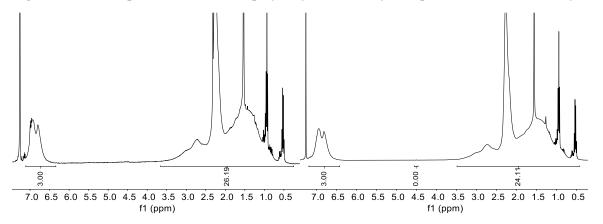



Fig. S44 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-m-xylene) product in Table S6, Entry 1c

Fig. S45 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-m-xylene) product in Table S6, Entry 2a (left) and 2b (right)

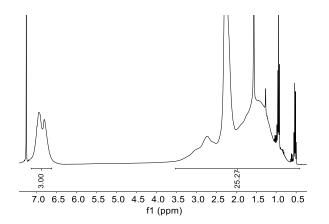
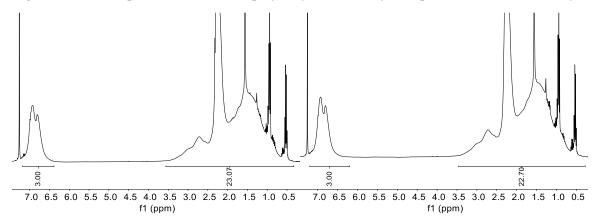



Fig. S46 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-m-xylene) product in Table S6, Entry 2c

Fig. S47 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-m-xylene) product in Table S6, Entry 3a (left) and 3b (right)

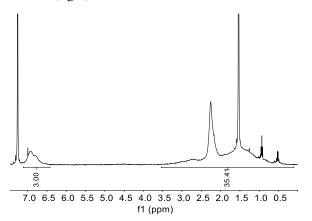
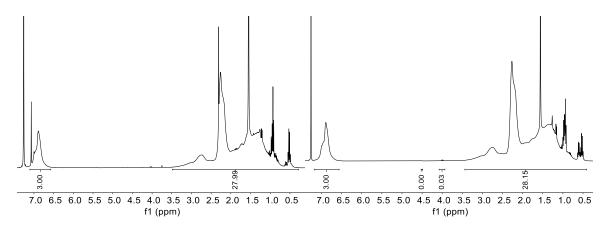
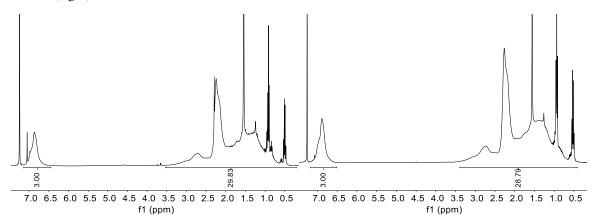
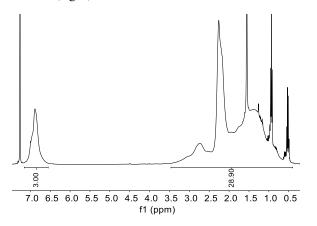
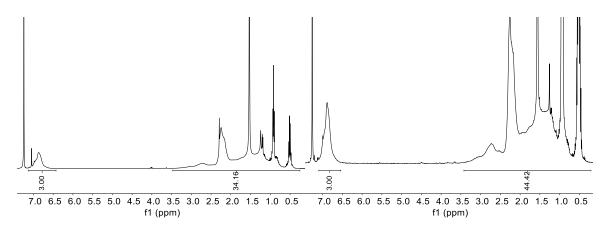
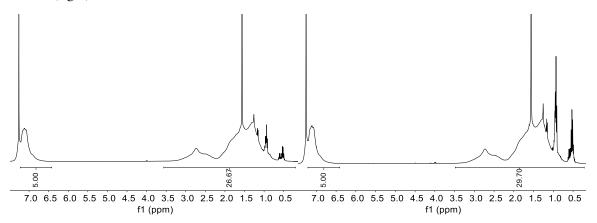
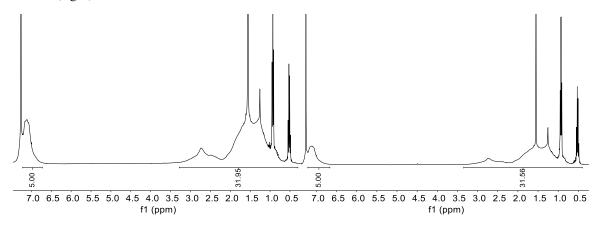




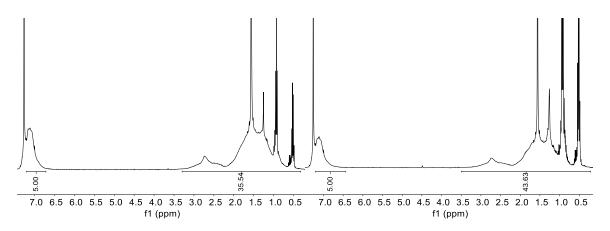
Fig. S48 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-m-xylene) product in Table S6, Entry 3c

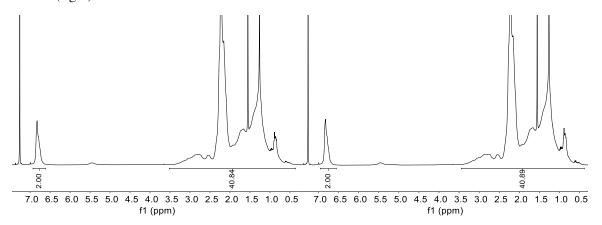
Fig. S49 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-p-xylene) product in Table S7, Entry 1a (left) and 1b (right)

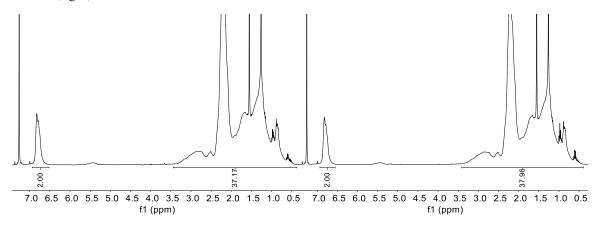
Fig. S50 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-p-xylene) product in Table S7, Entry 2a (left) and 2b (right)

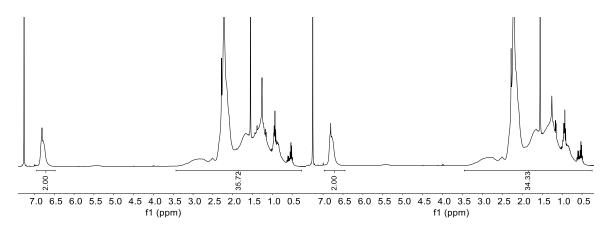




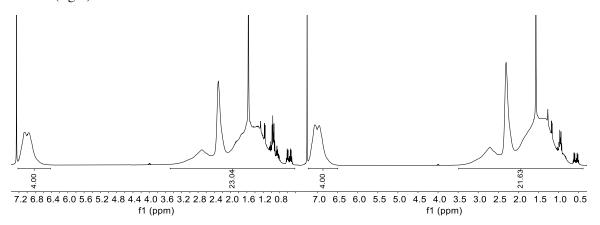

Fig. S51 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-p-xylene) product in Table S7, Entry 2c

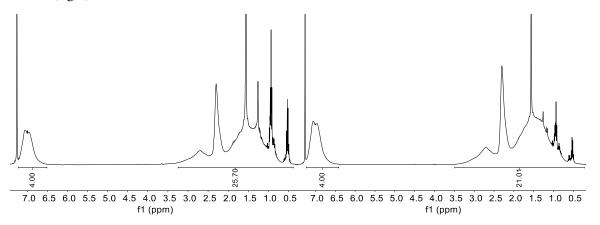

Fig. S52 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-p-xylene) product in Table S7, Entry 3a (left) and 3b (right)

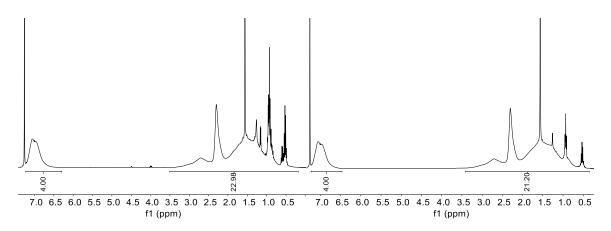

Fig. S53 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-benzene) product in Table S8, Entry 1a (left) and 1b (right)

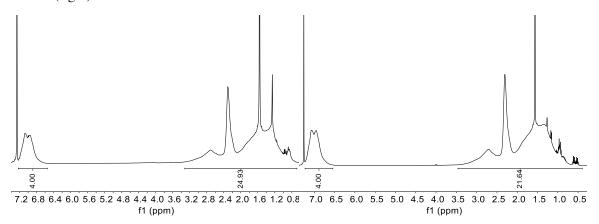

Fig. S54 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-benzene) product in Table S8, Entry 2a (left) and 2b (right)

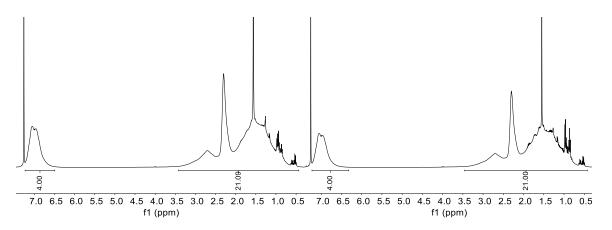

Fig. S55 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-benzene) product in Table S8, Entry 3a (left) and 3b (right)


Fig. S56 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-mesitylene) product in Table S9, Entry 1a (left) and 1b (right)


Fig. S57 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-mesitylene) product in Table S9, Entry 2a (left) and 2b (right)


Fig. S58 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-mesitylene) product in Table S9, Entry 3a (left) and 3b (right)


Fig. S59 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S10, Entry 1a (left) and 1b (right)


Fig. S60 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S10, Entry 2a (left) and 2b (right)

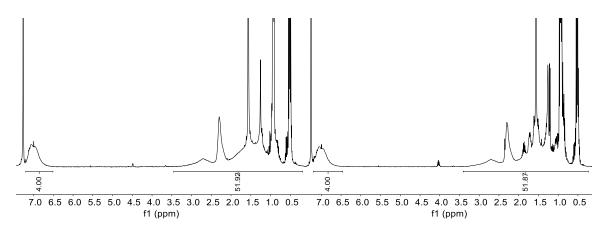

Fig. S61 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S10, Entry 3a (left) and 3b (right)

Fig. S62 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S10, Entry 4a (left) and 4b (right)

Fig. S63 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S10, Entry 5a (left) and 5b (right)

Fig. S64 ¹H NMR spectrum in CDCl₃ of poly(ethylene-co-toluene) product in Table S10, Entry 6a (left) and 6b (right)

5. FT-IR Spectroscopy

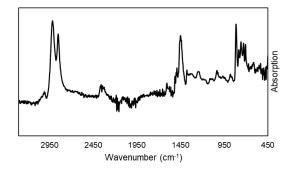


Fig. S65 FT-IR spectrum of Table S1, Entry 1

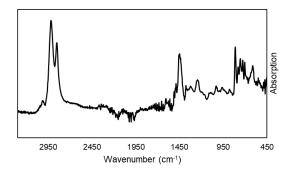


Fig. S66 FT-IR spectrum of Table S1, Entry 2

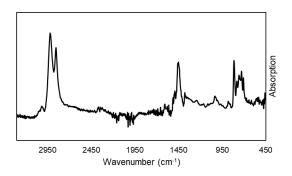


Fig. S67 FT-IR spectrum of Table S1, Entry 3

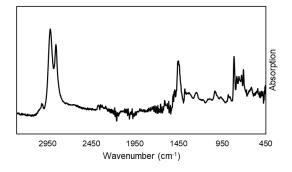


Fig. S68 FT-IR spectrum of Table S1, Entry 4

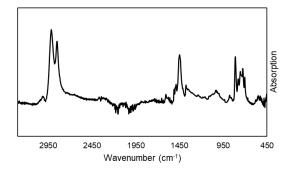


Fig. S69 FT-IR spectrum of Table S1, Entry 7

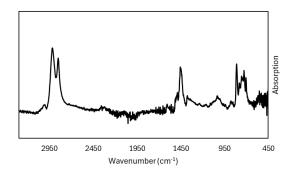


Fig. S70 FT-IR spectrum of Table S2, Entry 1

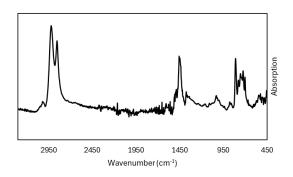


Fig. S71 FT-IR spectrum of Table S2, Entry 2

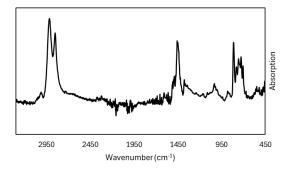


Fig. S72 FT-IR spectrum of Table S2, Entry 3

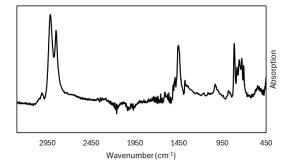


Fig. S73 FT-IR spectrum of Table S2, Entry 4

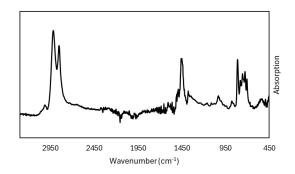


Fig. S74 FT-IR spectrum of Table S2, Entry 5

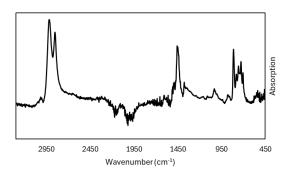


Fig. S75 FT-IR spectrum of Table S2, Entry 6

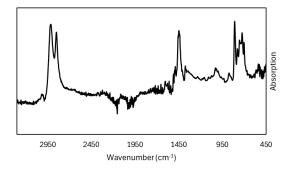


Fig. S76 FT-IR spectrum of Table S3, Entry 1b

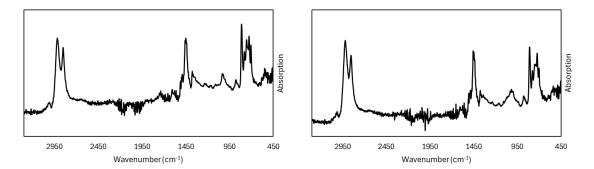


Fig. S77 FT-IR spectrum of Table S3, Entry 2a (left) and 2c (right)

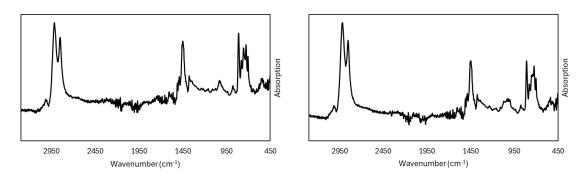


Fig. S78 FT-IR spectrum of Table S3, Entry 3a (left) and 3c (right)

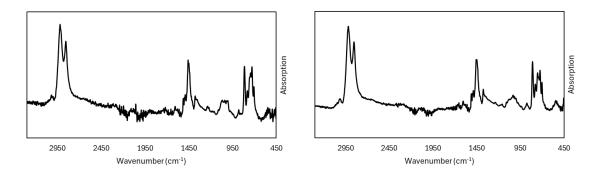


Fig. S79 FT-IR spectrum of Table S3, Entry 4a (left) and 4c (right)

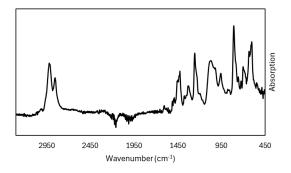


Fig. S80 FT-IR spectrum of Table 2, Entry 9

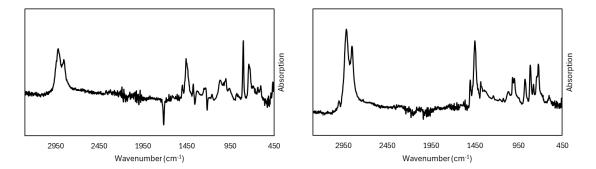


Fig. S81 FT-IR spectrum of Table S5, Entry 1b (left) and 1c (right)

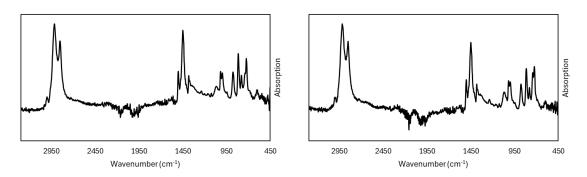


Fig. S82 FT-IR spectrum of Table S5, Entry 2b (left) and 2c (right)

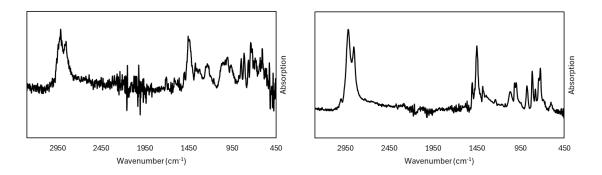


Fig. S83 FT-IR spectrum of Table S5, Entry 3b (left) and 3c (right)

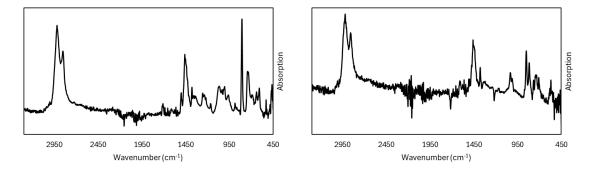


Fig. S84 FT-IR spectrum of Table S6, Entry 1b (left) and 1c (right)

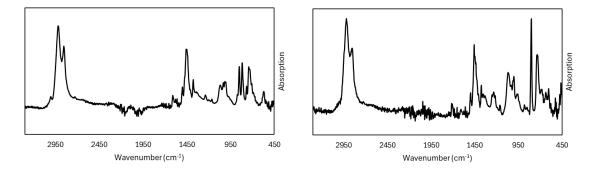


Fig. S85 FT-IR spectrum of Table S6, Entry 2b (left) and 2c (right)

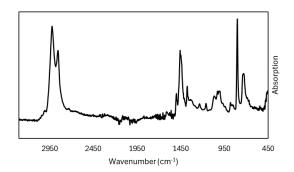


Fig. S86 FT-IR spectrum of Table S7, Entry 1b

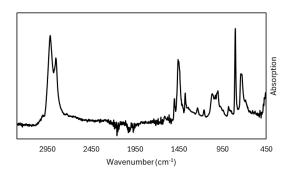


Fig. S87 FT-IR spectrum of Table S7, Entry 2b

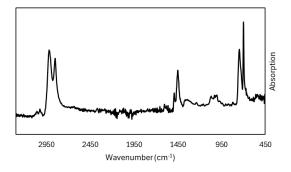


Fig. S88 FT-IR spectrum of Table S8, Entry 1b

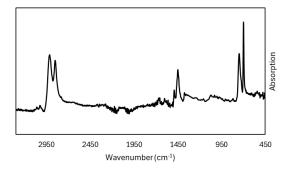


Fig. S89 FT-IR spectrum of Table S8, Entry 2a

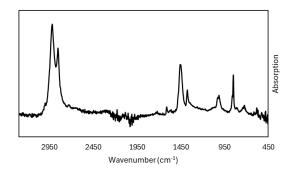


Fig. S90 FT-IR spectrum of Table S9, Entry 1a

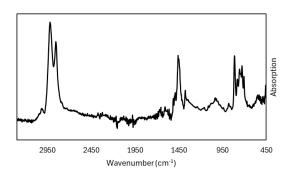


Fig. S91 FT-IR spectrum of Table S10, Entry 2b

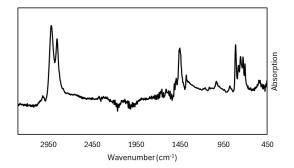


Fig. S92 FT-IR spectrum of Table S10, Entry 5a

6. Differential Scanning Calorimetry (DSC)

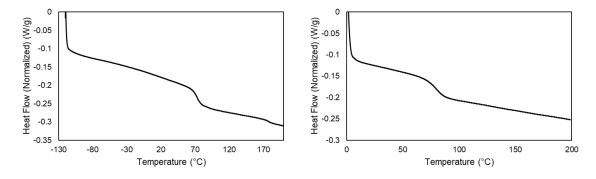


Fig. S93 DSC (2nd heating curve) of Table S3, Entry 1a (left) and 1b (right)

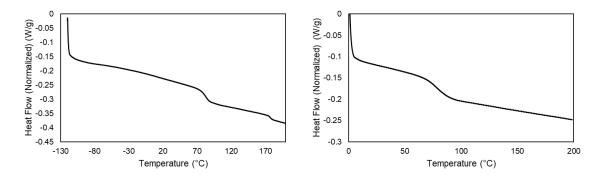


Fig. S94 DSC (2nd heating curve) of Table S3, Entry 2a (left) and 2c (right)

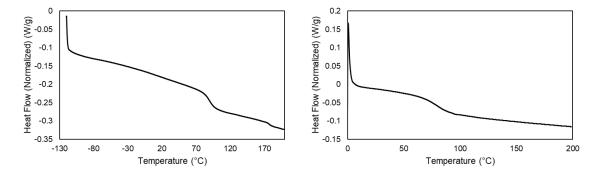


Fig. S95 DSC (2nd heating curve) of Table S3, Entry 3a (left) and 3c (right)

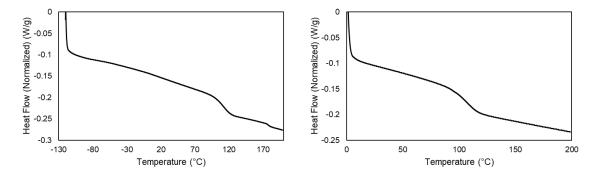


Fig. S96 DSC (2nd heating curve) of Table S3, Entry 4a (left) and 4c (right)

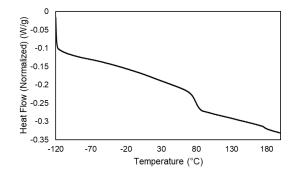


Fig. S97 DSC (2nd heating curve) of Table S3, Entry 6a

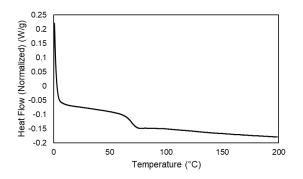


Fig. S98 DSC (2nd heating curve) of Table S4, Entry 2b

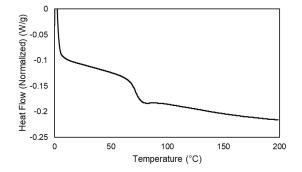


Fig. S99 DSC (2nd heating curve) of Table S4, Entry 4a

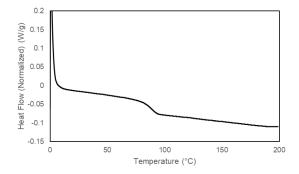


Fig. S100 DSC (2nd heating curve) of Table S4, Entry 5

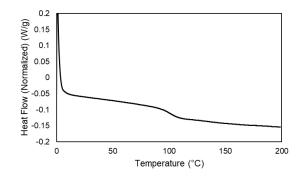


Fig. S101 DSC (2nd heating curve) of Table S4, Entry 6

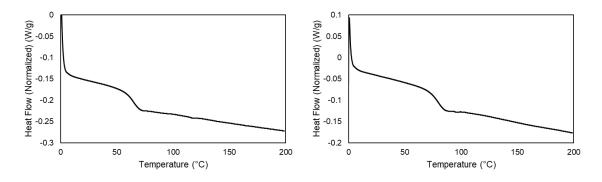


Fig. S102 DSC (2nd heating curve) of Table S5, Entry 1a (left) and 1c (right)

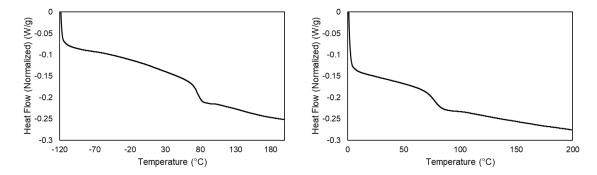


Fig. S103 DSC (2nd heating curve) of Table S5, Entry 2a (left) and 2b (right)

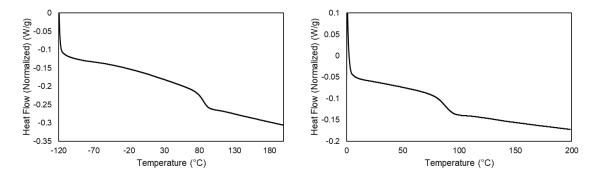


Fig. S104 DSC (2nd heating curve) of Table S5, Entry 3a (left) and 3c (right)

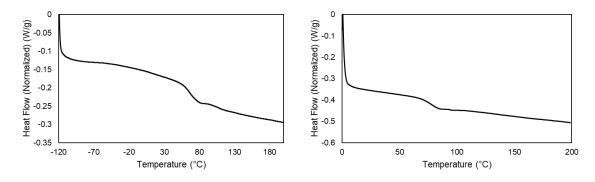


Fig. S105 DSC (2nd heating curve) of Table S6, Entry 1a (left) and 1c (right)

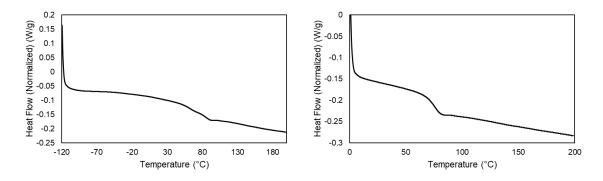


Fig. S106 DSC (2nd heating curve) of Table S6, Entry 2a (left) and 2c (right)

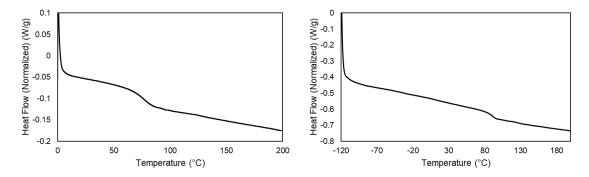


Fig. S107 DSC (2nd heating curve) of Table S6, Entry 3a (left) and 3c (right)

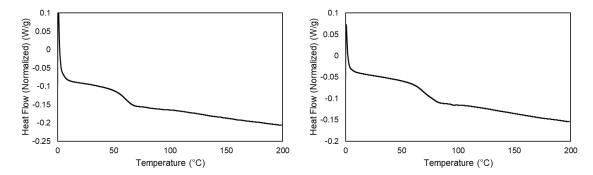


Fig. S108 DSC (2nd heating curve) of Table S7, Entry 1a (left) and 1b (right)

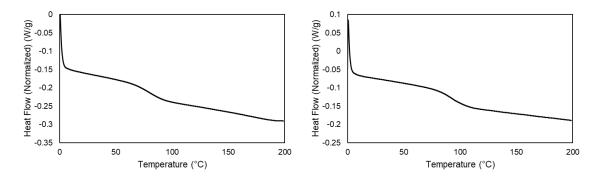


Fig. S109 DSC (2nd heating curve) of Table S7, Entry 2a (left) and 2b (right)

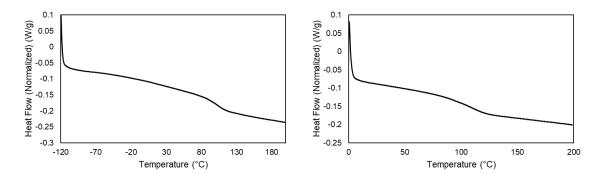


Fig. S110 DSC (2nd heating curve) of Table S7, Entry 3a (left) and 3b (right)

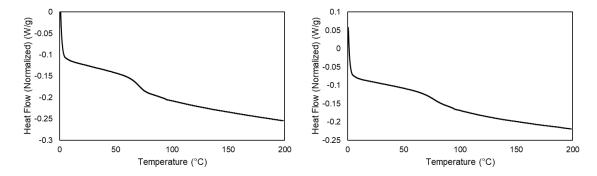


Fig. S111 DSC (2nd heating curve) of Table S8, Entry 1a (left) and 1b (right)

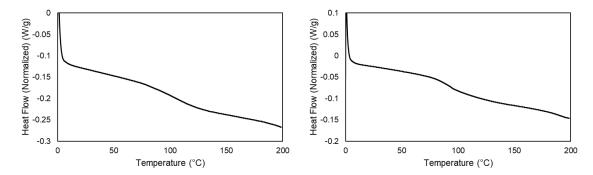


Fig. S112 DSC (2nd heating curve) of Table S8, Entry 2a (left) and 2b (right)

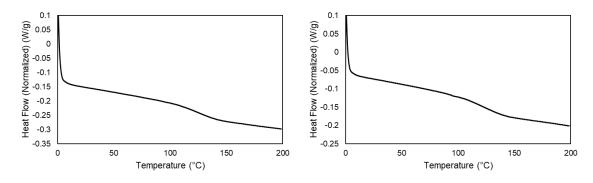


Fig. S113 DSC (2nd heating curve) of Table S8, Entry 3a (left) and 3b (right)

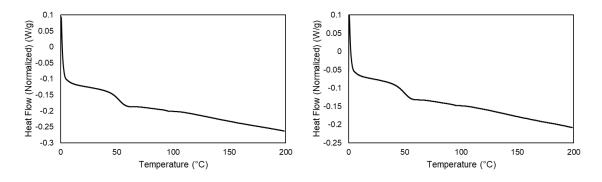


Fig. S114 DSC (2nd heating curve) of Table S9, Entry 1a (left) and 1b (right)

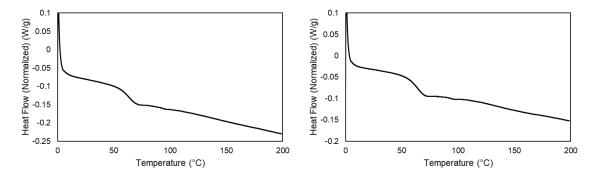


Fig. S115 DSC (2nd heating curve) of Table S9, Entry 2a (left) and 2b (right)

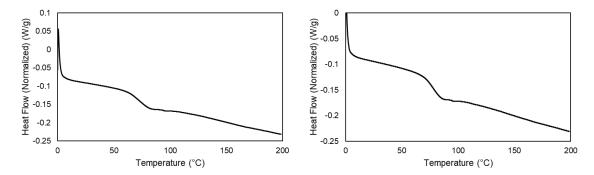


Fig. S116 DSC (2nd heating curve) of Table S9, Entry 3a (left) and 3b (right)

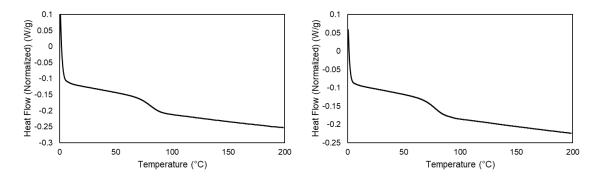


Fig. S117 DSC (2nd heating curve) of Table S10, Entry 1a (left) and 1b (right)

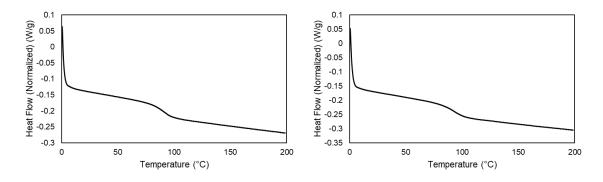


Fig. S118 DSC (2nd heating curve) of Table S10, Entry 2a (left) and 2b (right)

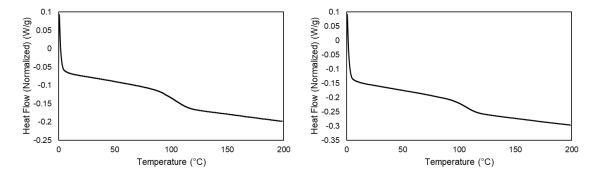


Fig. S119 DSC (2nd heating curve) of Table S10, Entry 3a (left) and 3b (right)

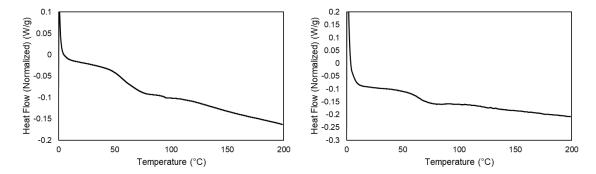


Fig. S120 DSC (2nd heating curve) of Table S10, Entry 4a (left) and 4b (right)

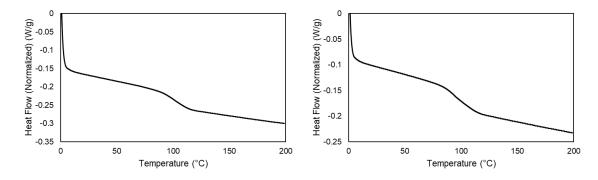


Fig. S121 DSC (2nd heating curve) of Table S10, Entry 5a (left) and 5b (right)

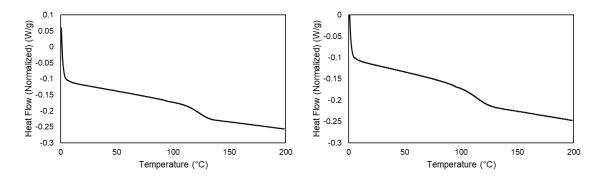


Fig. S122 DSC (2nd heating curve) of Table S10, Entry 6a (left) and 6b (right)

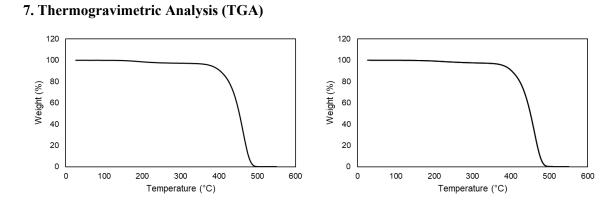


Fig. S123 TGA heating curve of Table S3, Entry 1b (left) and 2c (right)

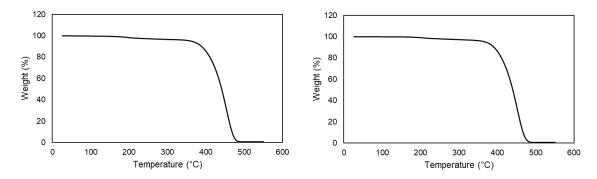


Fig. S124 TGA heating curve of Table S5, Entry 1b (left) and 2b (right)

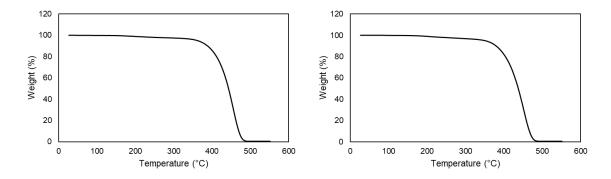


Fig. S125 TGA heating curve of Table S6, Entry 1b (left) and 2c (right)

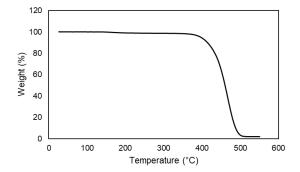
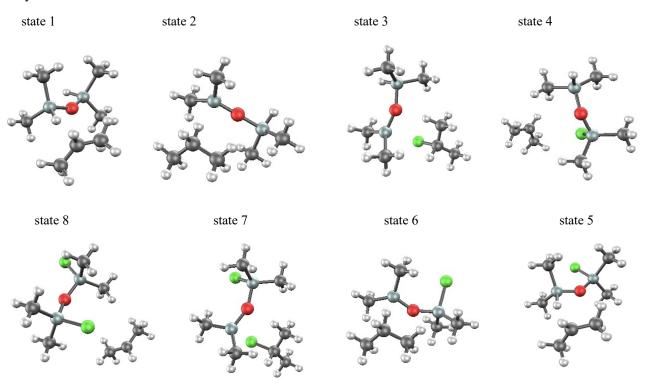



Fig. S126 TGA heating curve of Table S8, Entry 3a

8. Computational Details

Identifying if TMDS could contribute two hydrides

Replacement of the first hydride in TMDS with a chloride from PVC substrate (2-chloropropane) occurs from State 1 to 4. Although, the net energy change from 1 to 4 is negative suggesting thermodynamic feasibility of this replacement, the energy change from 3 to 4 is slightly uphill. States 5 to 8 represent the replacement of second hydride within the same TMDS with a chloride from another PVC molecule. As in case of the first hydride replacement, the net energy change for second replacement is negative with the final step of chloride abstraction (7 to 8) being slightly uphill. Thus, it may be energetically feasible for TMDS to donate both of its hydrides and dechlorinate two C-Cl bonds in PVC.

Table S11 Relative free energies of states representing hydride transfer from TMDS to the model propyl cation/2-chloropropane (2CP) and their diagrammatic representations. TMDS_x_x is TMDS where x represents the bond to Si either H or Cl, TMDS_cation represents a Si⁺ formed in the TMDS.

States	Constituent species	ΔG (kJ/mol)
1	Isopropyl cation + TMDS_H_H + 2*2CP	0.00
2	propane + TMDS_cation + 2*2CP	-85.40
3	TMDS_cation + 2*2CP + propane	-119.07
4	Isopropyl cation + TMDS_H_Cl + propane + 2CP	-113.29
5	Isopropyl cation + TMDS_H_Cl + propane +2CP	-161.15
6	TMDS_cation + 2*propane + 2CP	-234.80
7	TMDS_cation + 2CP + 2*propane	-264.24
8	TMDS_Cl_Cl + isopropyl cation + 2*propane	-261.91

Comparing Hydrodechlorination with Inter- and Intramolecular Friedel Crafts Alkylation

Table S12 Free energy changes associated with hydride addition, FC alkylation, and polyindene formation upon dechlorination of model PVC compounds.

States	Constituent species	ΔG (kJ/mol)
REF	REF + 2*benzene + 2*(HSiEt ₃)	0.00
Ph	$Ph + HSiEt_3 + Et_3Si^+ + benzene + H_2$	-103.69
Н	$H + HSiEt_3 + Et_3Si^+ + 2*benzene$	-153.6
Ph,Ph	$Ph_{2}Ph + ClSiEt_{3} + 2*H_{2} + Et_{3}Si^{+}$	-222.22
POLY	$POLY + 2* H_2 + Et_3Si^+ + ClSiEt_3 + Benzene$	-231.11
H,Ph	$H,Ph + ClSiEt_3 + Et_3Si^+ + benzene + H_2$	-267.19
Ph,H	$Ph_{2}H + ClSiEt_{3} + Et_{3}Si^{+} + benzene + H_{2}$	-273.48
Н,Н	$H,H + ClSiEt_3 + Et_3Si^+ + 2*benzene$	-313.83

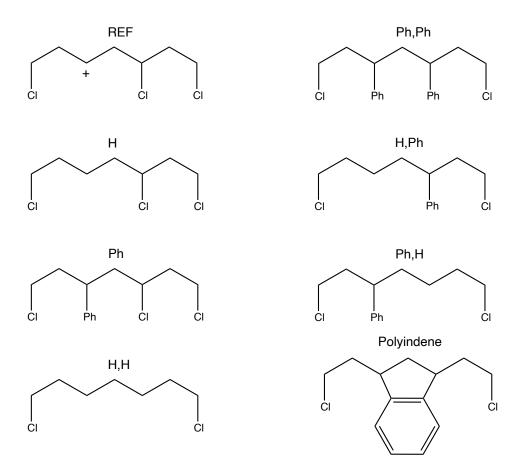


Fig. S127 Structures constituting states described on Fig. 4 of the paper and Table S12 of the SI.

9. References

¹ E. Epifanovsky, A. T. B. Gilbert, X. Feng, J. Lee, Y. Mao, N. Mardirossian, P. Pokhilko, A. F. White, M. P. Coons, A. L. Dempwolff, Z. Gan, D. Hait, P. R. Horn, L. D. Jacobson, I. Kaliman, J. Kussmann, A. W. Lange, K. U. Lao, D. S. Levine, J. Liu, S. C. McKenzie, A. F. Morrison, K. D. Nanda, F. Plasser, D. R. Rehn, M. L. Vidal, Z.-Q. You, Y. Zhu, B. Alam, B. J. Albrecht, A. Aldossary, E. Alguire, J. H. Andersen, V. Athavale, D. Barton, K. Begam, A. Behn, N. Bellonzi, Y. A. Bernard, E. J. Berquist, H. G. A. Burton, A. Carreras, K. Carter-Fenk, R. Chakraborty, A. D. Chien, K. D. Closser, V. Cofer-Shabica, S. Dasgupta, M. de Wergifosse, J. Deng, M. Diedenhofen, H. Do, S. Ehlert, P.-T. Fang, S. Fatehi, Q. Feng, T. Friedhoff, J. Gayvert, Q. Ge, G. Gidofalvi, M. Goldey, J. Gomes, C. E. González-Espinoza, S. Gulania, A. O. Gunina, M. W. D. Hanson-Heine, P. H. P. Harbach, A. Hauser, M. F. Herbst, M. Hernández Vera, M. Hodecker, Z. C. Holden, S. Houck, X. Huang, K. Hui, B. C. Huynh, M. Ivanov, A. Jász, H. Ji, H. Jiang, B. Kaduk, S. Kähler, K. Khistyaev, J. Kim, G. Kis, P. Klunzinger, Z. Koczor-Benda, J. H. Koh, D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, K. Kue, A. Kunitsa, T. Kus, I. Ladjánszki, A. Landau, K. V. Lawler, D. Lefrancois, S. Lehtola, R. R. Li, Y.-P. Li, J. Liang, M. Liebenthal, H.-H. Lin, Y.-S. Lin, F. Liu, K.-Y. Liu, M. Loipersberger, A. Luenser, A. Manjanath, P. Manohar, E. Mansoor, S. F. Manzer, S.-P. Mao, A. V. Marenich, T. Markovich, S. Mason, S. A. Maurer, P. F. McLaughlin, M. F. S. J. Menger, J.-M. Mewes, S. A. Mewes, P. Morgante, J. W. Mullinax, K. J. Oosterbaan, G. Paran, A. C. Paul, S. K. Paul, F. Pavošević, Z. Pei, S. Prager, E. I. Proynov, A. Rák, E. Ramos-Cordoba, B. Rana, A. E. Rask, A. Rettig, R. M. Richard, F. Rob, E. Rossomme, T. Scheele, M. Scheurer, M. Schneider, N. Sergueev, S. M. Sharada, W. Skomorowski, D. W. Small, C. J. Stein, Y.-C. Su, E. J.

Sundstrom, Z. Tao, J. Thirman, G. J. Tornai, T. Tsuchimochi, N. M. Tubman, S. P. Veccham, O. Vydrov, J. Wenzel, J. Witte, A. Yamada, K. Yao, S. Yeganeh, S. R. Yost, A. Zech, I. Y. Zhang, X. Zhang, Y. Zhang, D. Zuev, A. Aspuru-Guzik, A. T. Bell, N. A. Besley, K. B. Bravaya, B. R. Brooks, D. Casanova, J.-D. Chai, S. Coriani, C. J. Cramer, G. Cserey, A. E. DePrince, R. A. DiStasio, A. Dreuw, B. D. Dunietz, T. R. Furlani, W. A. Goddard, S. Hammes-Schiffer, T. Head-Gordon, W. J. Hehre, C.-P. Hsu, T.-C. Jagau, Y. Jung, A. Klamt, J. Kong, D. S. Lambrecht, W. Liang, N. J. Mayhall, C. W. McCurdy, J. B. Neaton, C. Ochsenfeld, J. A. Parkhill, R. Peverati, V. A. Rassolov, Y. Shao, L. V. Slipchenko, T. Stauch, R. P. Steele, J. E. Subotnik, A. J. W. Thom, A. Tkatchenko, D. G. Truhlar, T. Van Voorhis, T. A. Wesolowski, K. B. Whaley, H. L. Woodcock, P. M. Zimmerman, S. Faraji, P. M. W. Gill, M. Head-Gordon, J. M. Herbert and A. I. Krylov, *J. Chem. Phys.*, 2021, **155**, 084801.

² J.-D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.* 2008, **10**, 6615-6620.

³ J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 2008, **128**, 084106.

⁴ T. N. Truong and E. V. Stefanovich, Chem. Phys. Lett. 1995, 240, 253-260.

⁵ V. Barone and M. Cossi, J. Phys. Chem. A 1998, **102**, 1995-2001.

⁶ M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem. 2003, 24, 669-681.

⁷ McQuarrie, D. A. Ideal polyatomic gas, In *Statistical Mechanics*, University Science Books, pp. 129-141.