8Synthesis, Characterization and Efficient Catalytic Ethylene Polymerization Reactions of Phenylphosphine Half-metallocene Zirconium Complexes

Di Wu,^a Xiaohui Mao,^a Biao Li,^b Xianghan Zhang,^a Zihao Jiang,^a Li Pan *^a and Yuesheng Li *^{a,b}

^a School of Materials Science and Engineering, State Key Laboratory of High-Performance Roll Materials and Composite Forming, Tianjin University, Tianjin 300350, China.

^b Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin 300350, China.

Conents

1. Experiment	1
2. Synthesis and characterization of ligands	2
3. Synthesis and characterization of complexes	4
4. The ¹ H NMR spectrum of complexes	6
5. The ¹³ C NMR spectrum of complexes	8
6. The ³¹ P NMR spectrum of complexes	10
6. Density functional theory calculations	12
7. Ethylene polymerization	
8. Ethylene and norbornene copolymerization	
9. Ethylene and 1-hexene copolymerization	21
10. GPC curves of Polymers	
11. DSC curves of Polymers	
Reference	27

1. Experiment

1.1 General Producer and materials

All compounds sensitive to moisture and oxygen were handled in a Vigor glovebox or under nitrogen protection using standard Schlenk techniques. Anhydrous and oxygen-free solvents such as toluene, tetrahydrofuran (THF), dichloromethane, and n-hexane were prepared using a Vigor solvent purification system. Norbornene (NBE) and 1-hexene (HE) were purified under an inert atmosphere by stirring with CaH₂ at 60 °C or room temperature for two days to remove trace amounts of water, followed by distillation under reduced pressure into Schlenk bottles containing 4Å molecular sieves, and stored in the glovebox for future use. The ethylene gas used in the homopolymerization and copolymerization experiments was further purified through a purification column before use. 'Bu₃Al and [Ph₃C][B(C₆F₅)₄] were purchased from Anagene Chemical Reagents Inc. Methylaluminoxane (MAO) and modified methylaluminoxane (MMAO) were procured from Nouryon Chemical Inc. All other reagents, unless otherwise specified, were used as received without further purification.

All new compounds in this study were characterized by ¹H, ¹³C, and ³¹P NMR spectroscopy using a Bruker-500 NMR spectrometer at room temperature, with TMS as the internal standard and deuterated chloroform as the solvent. The ¹³C NMR spectra of the polymers were recorded on a Bruker-400 NMR spectrometer at 120 °C, with TMS as the internal standard and 1,2-dichlorobenzene-d₄ as the solvent. The molecular weight and molecular weight distribution of polyethylene and ethylene copolymers were determined on a PL-GPC 220 at 150 °C, using polystyrene as the standard, with 1,2,4-trichlorobenzene as the mobile phase, to which 0.05 wt% of Butylated hydroxytoluene (BHT) was added as an antioxidant.

1.2 Polymerzation

Initially, the reaction vessel was heated to 150 °C and subjected to vacuum treatment for 5 h. The temperature was then adjusted to the desired polymerization temperature. Once the system cooled and stabilized, the feeding process began. In a 500 mL high-pressure reaction vessel, an appropriate amount of xylene solution was added

to maintain a total polymerization volume of 200 mL. Ethylene gas (1 bar) was introduced at the target temperature until saturation was achieved. An alkyl aluminum reagent was then added, followed by stirring for 5 minutes. Next, a xylene solution containing the catalyst was introduced. After sealing the feeding port, ethylene gas was continuously fed into the reactor at a pressure of 4 bar to initiate the polymerization reaction. The reaction mixture was stirred for 10 minutes at the specified temperature. To quench the reaction, the mixture was poured into ethanol acidified with HCl. The resulting polymer was collected via filtration, washed with ethanol, and dried under vacuum until a constant weight was obtained. For E/NBE and E/HE copolymerization experiments, the required amount of norbornene or 1-hexene was added to the xylene solution in advance, and the remaining experimental procedures followed the same steps as those used for ethylene polymerization.

1.3 Density functional theory calculations

Density Functional Theory (DFT) calculations were performed to optimize the structures of two active species $\{CpZr[O-2-'Bu-4-'Bu-6-(PPh_2)C_6H_2]Et\}^+$ and $\{CpZr[O-2-'Bu-4-OCH_3-6-(PPh_2)C_6H_2]Et\}^+$ (Et = CH_2CH_3). All calculations were conducted using the Gaussian 16, C01 software package^[1]. For these calculations, the Becke three-parameter hybrid exchange functionals and the Lee-Yang-Parr correlation functional^[2] were employed, combined with the D3 version of Grimme's dispersion^[3] (including Becke-Johnson damping for D3BJ dispersion correction^[4]). The SDD^[5] basis set was utilized for Zr during geometry optimization and frequency calculations, while the 6-31G+(d,p)^[6-7] basis set was applied for other elements. The integral-equation-formalism polarizable continuum model (IEF-PCM) was used for solvation modeling related to histological grade. Singlet point energy calculations were executed with the SDD basis for Zr and the 6-311+G(d,p)^[8] basis for other elements, and the Solvation Model Density (SMD) implicit solvation model^[9] accounted for the solvation effects related to histological grade.

2. Synthesis and characterization of ligands

2.1 Synthesis of ligand 2,4-'Bu₂-6-PPh₂-C₆H₂OH (1a)

Under a nitrogen atmosphere, the ligand intermediate (3.56 g, 20 mmol) was dissolved in 30 mL of anhydrous ether. The solution was cooled to -30 °C, and then a solution of n-BuLi (10 mL, 22 mmol) was added slowly. The reaction mixture was gradually warmed to room temperature and stirred for 8 h, resulting in a large amount of white precipitate. The mixture was then cooled again to -30 °C, and PPh₂Cl (4.3 mL, 28 mmol) was added slowly. The reaction was allowed to return to room temperature and stirred overnight. The reaction was terminated by the addition of water. Following extraction and concentration with diethyl ether, the residue was dissolved in 40 mL of dichloromethane. Subsequently, 2 mL of concentrated hydrochloric acid was added, and the mixture was allowed to react for 4 hours to remove the hydroxyl protecting group, with thin layer chromatography (TLC) used to monitor the reaction progress. Upon completion of the reaction, most of the solvent was removed under reduced pressure, and the mixture was extracted again with dichloromethane. The resulting solution was adjusted to pH 7 using a sodium bicarbonate (NaHCO₃) solution, then washed with water (2×40 mL) and dried with anhydrous sodium sulfate (Na₂SO₄). After concentration, column chromatography was performed, yielding a white solid with a 61% yield. ¹H NMR (500 MHz, CDCl₃, 298K): δ 7.37 – 7.31 (m, 10H, Ar-H), 6.88 (dt, J = 5.7, 1.9 Hz, 1H, Ar-H), 6.66 (dd, J = 10.0, 1.3 Hz, 1H, Ar-H), 1.41 (d, J = 10.0, 1H, Ar-H),1.5 Hz, 9H, 'Bu), 1.15 (d, J = 1.4 Hz, 9H, 'Bu). ¹³C NMR (126 MHz, CDCl₃, 298K): δ 156.07, 155.92, 142.29, 142.27, 135.53, 135.50, 135.30, 135.29, 133.45, 133.30, 129.29, 129.26, 128.86, 128.63, 128.57, 126.28, 119.96, 35.14, 35.12, 34.42, 31.46, 29.68. ³¹P NMR (202 MHz, CDCl₃, 298K): δ -30.08.

2.2 Synthesis of ligand 2,4-C(CH₃)₂CH₂CH₃-6-PPh₂-C₆H₂OH (1b)

The preparation method was similar to **1a**, obtaining a transparent oily substance with a yield of 53%. ¹H NMR (500 MHz, CDCl₃, 298K): δ 7.34 – 7.27 (m, 10H, Ar-H), 7.21 (d, J = 2.5 Hz, 1H, Ar-H), 6.78 (dd, J = 5.8, 2.4 Hz, 1H, Ar-H), 6.59 (d, J = 10.0 Hz, 1H, Ar-H), 1.85 (q, J = 7.5 Hz, 3H, CH₃), 1.44 (q, J = 7.4 Hz, 3H, CH₃), 1.37 (s, 5H, CH₂CH₃), 1.10 (s, 5H, CH₂CH₃), 0.64 (t, J = 7.5 Hz, 3H, CH₃), 0.57 (t, J = 7.4

Hz, 3H, CH₃). ¹³C NMR (126 MHz, CDCl₃, 298K): δ 155.92, 155.77, 140.35, 140.33, 135.68, 135.65, 133.53, 133.52, 133.38, 133.24, 130.01, 129.98, 128.82, 128.61, 128.55, 128.35, 119.61, 38.69, 38.68, 37.54, 37.03, 33.07, 28.41, 27.79, 9.57, 9.07. ³¹P NMR (202 MHz, CDCl₃, 298K): δ -30.05.

2.3 Synthesis of ligand 2-^tBu-4-OCH₃-C₆H₂OH (1c)

The preparation method was similar to **1a**, obtaining a transparent oily substance with a yield of 65%. ¹H NMR (500 MHz, CDCl₃, 298K): δ 7.32 (d, *J* = 5.4 Hz, 9H, Ar-H), 6.93 (d, *J* = 3.3 Hz, 1H, Ar-H), 6.43 (dt, *J* = 10.5, 2.4 Hz, 1H, Ar-H), 6.35 (dq, *J* = 5.2, 3.1, 2.4 Hz, 1H, Ar-H), 3.56 (d, *J* = 1.7 Hz, 3H, OCH₃), 1.40 (s, 9H, 'Bu). ¹³C NMR (126 MHz, CDCl₃, 298K): δ 152.89, 152.86, 152.63, 152.48, 137.86, 137.84, 135.13, 135.10, 133.50, 133.36, 129.06, 128.77, 128.71, 121.41, 121.39, 116.67, 115.23, 115.20, 55.54, 35.14, 35.13, 29.55. ³¹P NMR (202 MHz, CDCl₃, 298K): δ -29.32.

2.4 Synthesis of ligand 2-Cumenyl-4-OCH₃-C₆H₂OH (1d)

The preparation method was similar to 1a, obtaining a white crystalline substance with a yield of 68%. ¹H NMR (500 MHz, CDCl₃, 298K) δ 7.33 – 7.07 (m, 15H, Ar-H), 3.58 (s, 3H, OCH₃), 1.68 (s, 9H, CH₃). ¹³C NMR (126 MHz, CDCl₃, 298K): δ 153.39, 153.38, 150.11, 149.98, 148.34, 137.03, 137.02, 136.20, 136.13, 133.76, 133.60, 128.96, 128.75, 128.48, 128.43, 126.71, 125.88, 125.58, 125.50, 115.66, 115.64, 114.95, 55.41, 42.14, 42.12, 29.49. ³¹P NMR (202 MHz, CDCl₃, 298K): δ -18.49.

3. Synthesis and characterization of complexes

3.1 Synthesis of complex CpZr(thf)Cl₂[O-2,4-^tBu-6-(PPh₂)C₆H₂] (2a)

Under a nitrogen atmosphere, ligand A (0.278 g, 1 mmol) was dissolved in 15 mL of anhydrous THF and cooled to -30 °C. NaH (0.048 g, 2 mmol) was then added, and the mixture was allowed to warm to room temperature and stirred for 6 hours. After the reaction, the excess NaH was filtered off, resulting in a golden-yellow filtrate. At -30 °C, this filtrate was slowly added to a THF solution (15 mL) of CpZrCl₃ (0.219 g, 1 mmol). The mixture was then gradually warmed to room temperature and stirred overnight, yielding a white suspension. The solvent was removed under vacuum, and

the residue was dissolved in 20 mL of dichloromethane. The solution was filtered, and the filter cake was washed with additional dichloromethane. The filtrate was concentrated to approximately 5 mL, and then 20 mL of n-hexane was slowly added to induce phase separation. The mixture was allowed to diffuse slowly, resulting in the recrystallization of a white powder, with a yield of 50.0%. ¹H NMR (500 MHz, CDCl₃, 298K): δ 7.73 – 7.66 (m, 4H, Ar-H), 7.42 (dt, *J* = 13.9, 3.5 Hz, 6H, Ar-H), 7.35 – 7.26 (m, 1H, Ar-H), 7.12 (s, 1H, Ar-H), 6.49 (s, 5H, C₅H₅), 3.74 (s, 4H, -OCH₂-), 1.49 (s, 9H, 'Bu-H), 1.30 – 1.17 (m, 9H, 'Bu-H + -CH₂-). ¹³C NMR (126 MHz, CDCl₃, 298K): δ 25.07, 29.89, 31.49, 31.60, 34.68, 35.19, 35.32, 116.01, 127.68, 128.43, 128.60, 128.84, 128.91, 129.81, 130.47, 132.77, 133.24, 134.10, 134.22, 137.34, 137.62, 164.69. ³¹P NMR (202 MHz,CDCl₃, 298K): δ -2.37. Anal. Calc. For C₃₆H₄₆Cl₂O₂PZr: C, 61.03; H, 6.29. Found: C, 61.42; H, 6.59.

3.2 Synthesis of complex CpZr(thf)Cl₂[O-2,4-C(CH₃)₂CH₂CH₃-6-(PPh₂)C₆H₂] (2b)

The preparation method was similar to **2a**, obtaining a white substance with a yield of 68%. ¹H NMR (500 MHz, CDCl₃, 298K): δ 7.31 (dd, J = 23.4, 2.8 Hz, 6H, Ar-H), 7.12 – 7.09 (m, 6H, Ar-H), 6.49 (d, J = 0.9 Hz, 5H, C₅H₅), 1.48 (d, J = 7.9 Hz, 3H, CH₃), 1.26 (s, 3H, CH₃), 1.13 – 0.63 (s, 6H, CH₃), 0.58 (dd, 6H, CH₃). ¹³C NMR (126 MHz, CDCl₃, 298K): δ 142.16, 135.40, 133.81, 133.34, 133.27, 133.17, 129.80, 129.18, 128.79, 128.57, 128.52, 128.43, 128.36, 116.02, 38.68, 37.69, 36.96, 33.18, 33.03, 28.48, 28.36, 27.34, 9.60, 8.99. ³¹P NMR (202 MHz,CDCl₃, 298K): δ -1.19, -4.70, - 7.98. Anal. Calc. For C₃₈H₅₀Cl₂O₂PZr: C, 61.99; H, 6.81. Found: C, 62.36; H, 6.86.

3.3 Synthesis of complex CpZr(thf)Cl₂[O-2-^{*t*}Bu-4-OCH₃-6-(PPh₂)C₆H₂] (2c)

The preparation method was similar to **2a**, obtaining a yellow powdery substance with a yield of 48%. ¹H NMR (500 MHz, CDCl₃, 298K): δ 7.34 - 7.28 (m, 4H, Ar-H), 7.27 (m, 7H, Ar-H), 6.98 (dd, 1H, Ar-H), 6.49 (s, 5H, C₅H₅), 3.62 (s, 3H, OCH₃), 1.33 - 1.26 (s, 6H, CH₃). ¹³C NMR (126 MHz, CDCl₃, 298K): δ 154.07, 139.22, 133.93, 133.33, 133.23, 130.03, 129.80, 128.52, 128.13, 128.06, 118.09, 116.03, 114.61, 55.51, 53.45, 35.20, 31.60, 29.32, 22.67, 14.14. ³¹P NMR (202 MHz,CDCl₃, 298K): δ -1.33, -

4.42, -8.02. Anal. Calc. For C₃₃H₄₀Cl₂O₃PZr: C, 57.99; H, 5.63. Found: C, 58.48; H, 5.95.

3.4 Synthesis of complex CpZr(thf)Cl₂[O-2-Cumenyl-4-OCH₃-6-(PPh₂)C₆H₂] (2d)

The preparation method was similar to **2a**, obtaining a light yellow powdery substance with a yield of 61%. ¹H NMR (500 MHz, CDCl₃, 298K): δ 7.62 (t, J = 8.7 Hz, 1H, Ar-H), 7.58 – 7.37 (m, 3H, Ar-H), 7.40 – 7.34 (m, 4H, Ar-H), 7.30 (d, J = 3.0 Hz, 1H, Ar-H), 7.28 (s, 2H), 7.26 (s, 1H, Ar-H), 7.21 (q, J = 7.6, 6.9 Hz, 2H, Ar-H), 7.02 (t, J = 7.3 Hz, 1H, Ar-H), 6.58 (dd, J = 6.5, 2.9 Hz, 1H, Ar-H), 6.49 (s, 5H, C₅H₅), 3.11 - 2.97 (d, 4H, -OCH₂-), 3.74 (d, J = 6.1 Hz, 3H, OCH₃), 1.85 (s, 3H, CH₃), 1.26 (s, 2H, -CH₂-), 1.60 (s, 2H, -CH₂-), 1.12 (s, 3H, CH₃). ¹³C NMR (126 MHz, CDCl₃, 298K): δ 160.59, 154.58, 154.53, 150.12, 139.36, 128.90, 127.89, 126.59, 125.83, 124.99, 122.08, 121.80, 118.38, 116.00, 114.58, 74.29, 55.80, 42.21, 42.19, 31.59, 29.71, 25.61, 24.62, 22.66, 14.12. ³¹P NMR (202 MHz,CDCl₃, 298K): δ -2.58. Anal. Calc. For C₃₈H₄₂Cl₂O₃PZr: C, C, 61.31; H, 5.42. Found: C, 61.69; H, 5.72.

4. The ¹H NMR spectrum of complexes

Figure S1 The ¹H NMR spectrum of complex 2a

Figure S2 The ¹H NMR spectrum of complex 2b

Figure S3 The ¹H NMR spectrum of complex 2C

Figure S4 The ¹H NMR spectrum of complex 2d

5. The ¹³C NMR spectrum of complexs

Figure S5 The ¹³C NMR spectrum of complex 2a

Figure S7 The ¹³C NMR spectrum of complex 2c

Figure S8 The ¹³C NMR spectrum of complex 2d

6. The ³¹P NMR spectrum of complexes

Figure S9 The ³¹P NMR spectrum of complex 2a

Figure S11 The ³¹P NMR spectrum of complex 2c

Figure S12 The ³¹P NMR spectrum of complex 2d

6. Density functional theory calculations

 $\{CpZr[O-2-{}^{r}Bu-4-{}^{r}Bu-6-(PPh_2)C_6H_2]Et\}^+$

 ${CpZr[O-2-^{t}Bu-4-OCH_3-6-(PPh_2)C_6H_2]Et}^+$

Figure S13 Geometrical parameters and Hishfeld charges for optimized geometries of activity centers at B3LYP level. Bule, orange, red, gray, and white spheres represent the zirconium, phosphorus, oxygen, carbon, and hydrogen atoms, respectively.

(a)			
Symbolic Z-matrix:			
Charge = 1 Multiplicity = 1			
С	2.32604	0.50044	0.01989
С	3.38432	-0.40311	0.15548
С	3.06607	-1.77036	0.18284

C 1.76156 -2.27905 0.08324 C 0.72124 -1.33565 -0.04921 C 1.01111 0.04587 -0.07896 H 2.51723 1.56776 -0.00549 H 3.87432 -2.47893 0.28528 O -0.57621 -1.71502 -0.1686 C 1.47133 -3.78833 0.10672 C 0.80172 -4.20919 -1.22285 H 1.45963 -3.98791 -2.07054 H 0.6077 -5.28771 -1.21548 H -0.14565 -3.69051 -1.37567 C 2.75631 -4.62058 0.26834 H 2.49271 -5.68285 0.28329 H 3.27596 -4.39411 1.20529 C 0.54072 -4.12146 1.29646 H 1.01844 -3.84931 2.24414 H -0.40881 -3.5895 1.22206 C 0.03483 -5.19761 1.31646 </th <th></th> <th></th> <th></th> <th></th>				
C 0.72124 -1.33565 -0.04921 C 1.01111 0.04587 -0.07896 H 2.51723 1.56776 -0.0549 H 3.87432 -2.47893 0.28528 O -0.57621 -1.71502 -0.1686 C 1.47133 -3.78833 0.10672 C 0.80172 -4.20919 -1.22285 H 1.45963 -3.98791 -2.07054 H 0.6077 -5.28771 -1.21548 H -0.14565 -3.69051 -1.37567 C 2.75631 -4.62058 0.28329 H 3.45359 -4.4379 -0.56133 H 2.49271 -5.68285 0.28329 C 0.54072 -4.1216 1.29646 H 1.01844 -3.84931 2.24414 H -0.43427 1.1536 -0.19341 C 0.00316 2.52577 -1.31099 C 0.79745 3.59711 -0.87066 <td>С</td> <td>1.76156</td> <td>-2.27905</td> <td>0.08324</td>	С	1.76156	-2.27905	0.08324
C 1.01111 0.04587 -0.07896 H 2.51723 1.56776 -0.00549 H 3.87432 -2.47893 0.28528 O -0.57621 -1.71502 -0.1686 C 1.47133 -3.78833 0.10672 C 0.80172 -4.20919 -1.22285 H 1.45963 -3.98791 -2.07054 H 0.6077 -5.28771 -1.21548 H -0.14565 -3.69051 -1.37567 C 2.75631 -4.62058 0.26834 H 2.49271 -5.68285 0.28329 H 3.45359 -4.46379 -0.56133 H 3.27596 -4.39411 1.20529 C 0.54072 -4.12146 1.29646 H 1.01844 -3.84931 2.24414 H -0.43827 1.1536 -0.19341 C 0.00316 2.52577 -1.31099 C 0.00316 2.52577 -1.31099 C 0.79745 3.59711 -0.87066	С	0.72124	-1.33565	-0.04921
H 2.51723 1.56776 -0.00549 H 3.87432 -2.47893 0.28528 O -0.57621 -1.71502 -0.1686 C 1.47133 -3.78833 0.10672 C 0.80172 -4.20919 -1.22285 H 1.45963 -3.98791 -2.07054 H 0.6077 -5.28771 -1.21548 H -0.14565 -3.69051 -1.37567 C 2.75631 -4.62058 0.26834 H 2.49271 -5.68285 0.28325 H 3.45359 -4.46379 -0.56133 H 3.27596 -4.39411 1.20529 C 0.54072 -4.12146 1.29646 H 1.01844 -3.84931 2.24414 H -0.43827 1.1536 -0.19341 C 0.03161 2.52577 -1.31099 C 0.03161 2.52577 -1.31099 C 0.79745 3.59711 -0.87066 C 0.79745 3.51305 -3.5258	С	1.01111	0.04587	-0.07896
H 3.87432 -2.47893 0.28528 O -0.57621 -1.71502 -0.1686 C 1.47133 -3.78833 0.10672 C 0.80172 -4.20919 -1.22285 H 1.45963 -3.98791 -2.07054 H 0.6077 -5.28771 -1.21548 H -0.14565 -3.69051 -1.37567 C 2.75631 -4.62058 0.26834 H 2.49271 -5.68285 0.28325 H 3.45359 -4.46379 -0.56133 H 2.49271 -5.68285 0.28325 C 0.54072 -4.12146 1.29646 H 1.01844 -3.84931 2.24414 H -0.4383 -5.19761 1.31646 P -0.43427 1.1536 -0.19341 C 0.0316 2.52577 -1.31099 C 0.79745 3.59711 -0.87066 C 0.79745 3.51305 -3.5258 H 1.1276 3.64388 0.16185 <td< td=""><td>Н</td><td>2.51723</td><td>1.56776</td><td>-0.00549</td></td<>	Н	2.51723	1.56776	-0.00549
O -0.57621 -1.71502 -0.1686 C 1.47133 -3.78833 0.10672 C 0.80172 -4.20919 -1.22285 H 1.45963 -3.98791 -2.07054 H 0.6077 -5.28771 -1.21548 H -0.14565 -3.69051 -1.37567 C 2.75631 -4.62058 0.26834 H 2.49271 -5.68285 0.28325 H 3.45359 -4.46379 -0.56133 H 3.27596 -4.39411 1.20525 C 0.54072 -4.12146 1.29646 H 1.01844 -3.84931 2.24414 H -0.40881 -3.5895 1.2206 H 1.01844 -3.84931 2.24414 H -0.438427 1.1536 -0.19341 C 0.00316 2.52577 -1.31099 C 0.79745 3.59711 -0.87066 C 0.79745 3.51305 -3.5258 <td>Н</td> <td>3.87432</td> <td>-2.47893</td> <td>0.28528</td>	Н	3.87432	-2.47893	0.28528
C 1.47133 -3.78833 0.10672 C 0.80172 -4.20919 -1.22285 H 1.45963 -3.98791 -2.07054 H 0.6077 -5.28771 -1.21548 H -0.14565 -3.69051 -1.37567 C 2.75631 -4.62058 0.26834 H 2.49271 -5.68285 0.28325 H 3.45359 -4.46379 -0.56133 H 3.27596 -4.39411 1.20525 C 0.54072 -4.12146 1.29646 H 1.01844 -3.84931 2.24414 H -0.40881 -3.5895 1.22206 H 0.33483 -5.19761 1.31646 P -0.43427 1.1536 -0.19341 C 0.00316 2.52577 -1.31099 C 0.79745 3.59711 -0.87066 C 0.79745 3.59711 -0.87066 C 0.79745 3.59711 -0.87066 C 0.79745 3.51305 -3.5258 <	0	-0.57621	-1.71502	-0.1686
C 0.80172 -4.20919 -1.22285 H 1.45963 -3.98791 -2.07054 H 0.6077 -5.28771 -1.21548 H -0.14565 -3.69051 -1.37567 C 2.75631 -4.62058 0.26834 H 2.49271 -5.68285 0.28325 H 3.45359 -4.46379 -0.56133 H 3.27596 -4.39411 1.20525 C 0.54072 -4.12146 1.29646 H 1.01844 -3.84931 2.24414 H -0.40881 -3.5895 1.22206 H 0.33483 -5.19761 1.31646 P -0.43427 1.1536 -0.19341 C 0.00316 2.52577 -1.31099 C 0.79745 3.59711 -0.87066 C 0.79745 3.59711 -0.87066 C 0.79745 3.59711 -0.87066 C 0.71624 4.61355 -1.75784 H 1.1276 3.64388 0.16183 <t< td=""><td>С</td><td>1.47133</td><td>-3.78833</td><td>0.10672</td></t<>	С	1.47133	-3.78833	0.10672
H 1.45963 -3.98791 -2.07054 H 0.6077 -5.28771 -1.21548 H -0.14565 -3.69051 -1.37567 C 2.75631 -4.62058 0.26834 H 2.49271 -5.68285 0.28325 H 3.45359 -4.46379 -0.56133 H 3.27596 -4.39411 1.20525 C 0.54072 -4.12146 1.29646 H 1.01844 -3.84931 2.24414 H -0.40881 -3.5895 1.22206 H 0.033483 -5.19761 1.31646 P -0.43427 1.1536 -0.19341 C 0.00316 2.52577 -1.31099 C 0.79745 3.59711 -0.87066 C 0.79745 3.59711 -0.87066 C 0.79745 3.59711 -0.87066 C 0.79745 3.59711 -0.87066 C 0.71624 4.61355 -1.75784 H 1.1276 3.64388 0.16183 <t< td=""><td>С</td><td>0.80172</td><td>-4.20919</td><td>-1.22285</td></t<>	С	0.80172	-4.20919	-1.22285
H 0.6077 -5.28771 -1.21548 H -0.14565 -3.69051 -1.37567 C 2.75631 -4.62058 0.26834 H 2.49271 -5.68285 0.28325 H 3.45359 -4.46379 -0.56133 H 3.27596 -4.39411 1.20529 C 0.54072 -4.12146 1.29646 H 1.01844 -3.84931 2.24414 H -0.40881 -3.5895 1.22206 H 0.33483 -5.19761 1.31646 P -0.43427 1.1536 -0.19341 C 0.00316 2.52577 -1.31099 C 0.79745 3.59711 -0.87066 C 0.79745 3.51305 -3.5258 <td< td=""><td>Н</td><td>1.45963</td><td>-3.98791</td><td>-2.07054</td></td<>	Н	1.45963	-3.98791	-2.07054
H -0.14565 -3.69051 -1.37567 C 2.75631 -4.62058 0.26834 H 2.49271 -5.68285 0.28329 H 3.45359 -4.46379 -0.56133 H 3.27596 -4.39411 1.20529 C 0.54072 -4.12146 1.29646 H 1.01844 -3.84931 2.24414 H -0.40881 -3.5895 1.22206 H 0.033483 -5.19761 1.31646 P -0.43427 1.1536 -0.19341 C 0.00316 2.52577 -1.31099 C 0.79745 3.59711 -0.87066 C 0.03362 3.51305 -3.5258 H 1.1276 3.64388 0.16183 C -0.08362 3.51305 -3.5258 H 1.107332 1.68164 -2.98601 C 0.71624 4.57164 -3.08629 H 1.76903 5.43795 -1.41151 H 0.99223 5.36552 -3.7733	Н	0.6077	-5.28771	-1.21548
C 2.75631 -4.62058 0.26834 H 2.49271 -5.68285 0.28329 H 3.45359 -4.46379 -0.56133 H 3.27596 -4.39411 1.20529 C 0.54072 -4.12146 1.29646 H 1.01844 -3.84931 2.24414 H -0.40881 -3.5895 1.22206 H 0.33483 -5.19761 1.31646 P -0.43427 1.1536 -0.19341 C 0.00316 2.52577 -1.31099 C 0.79745 3.59711 -0.87066 C 0.79745 3.59711 -0.87066 C 0.0316 2.52577 -1.31099 C 0.79745 3.59711 -0.87066 C 0.79745 3.59711 -0.87066 C 0.79745 3.59711 -0.87066 C 0.79745 3.59711 -0.87066 C 0.79745 3.51305 -3.5258 H 1.1276 3.64388 0.16183 C <td>Н</td> <td>-0.14565</td> <td>-3.69051</td> <td>-1.37567</td>	Н	-0.14565	-3.69051	-1.37567
H 2.49271 -5.68285 0.28329 H 3.45359 -4.46379 -0.56133 H 3.27596 -4.39411 1.20529 C 0.54072 -4.12146 1.29646 H 1.01844 -3.84931 2.24414 H -0.40881 -3.5895 1.22206 H 0.33483 -5.19761 1.31646 P -0.43427 1.1536 -0.19341 C 0.00316 2.52577 -1.31099 C 0.00316 2.52577 -1.31099 C 0.00316 2.52577 -1.31099 C 0.079745 3.59711 -0.87066 C 0.0316 2.52577 -1.31099 C 0.04282 2.49387 -2.64046 C 1.15354 4.61355 -1.75784 H 1.1276 3.64388 0.16183 C -0.08362 3.51305 -3.5258 H 1.1676903 5.43795 -1.41151 H 0.99223 5.36552 -3.7733 C	С	2.75631	-4.62058	0.26834
H 3.45359 -4.46379 -0.56133 H 3.27596 -4.39411 1.20529 C 0.54072 -4.12146 1.29646 H 1.01844 -3.84931 2.24414 H -0.40881 -3.5895 1.22206 H 0.33483 -5.19761 1.31646 P -0.43427 1.1536 -0.19341 C 0.00316 2.52577 -1.31099 C 0.79745 3.59711 -0.87066 C 1.15354 4.61355 -1.75784 H 1.1276 3.64388 0.16183 C 0.08362 3.51305 -3.5258 H -1.07332 1.68164 -2.98601 C 0.71624 4.57164 -3.08629 H 0.99223 5.36552 -3.7733 C </td <td>Н</td> <td>2.49271</td> <td>-5.68285</td> <td>0.28329</td>	Н	2.49271	-5.68285	0.28329
H3.27596-4.394111.20529C0.54072-4.121461.29646H1.01844-3.849312.24414H-0.40881-3.58951.22206H0.33483-5.197611.31646P-0.434271.1536-0.19341C0.003162.52577-1.31099C0.797453.59711-0.87066C-0.442822.49387-2.64046C1.153544.61355-1.75784H1.12763.643880.16183C-0.083623.51305-3.5258H-1.073321.68164-2.98601C0.716244.57164-3.08629H1.769035.43795-1.41151H-0.434423.48233-4.55249H0.992235.36552-3.7733C-0.58191.916871.46274C-1.469382.990631.63978C0.089011.382692.57153C-0.125391.919613.84411H0.772770.55072.44429C-1.006622.990194.01675H-2.360964.359343.03823H0.397931.500164.69770H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	Н	3.45359	-4.46379	-0.56133
C 0.54072 -4.12146 1.29646 H 1.01844 -3.84931 2.24414 H -0.40881 -3.5895 1.22206 H 0.33483 -5.19761 1.31646 P -0.43427 1.1536 -0.19341 C 0.00316 2.52577 -1.31099 C 0.79745 3.59711 -0.87066 C 0.71624 4.61355 -1.75784 H 1.1276 3.64388 0.16185 C 0.71624 4.57164 -3.08629 H </td <td>Н</td> <td>3.27596</td> <td>-4.39411</td> <td>1.20529</td>	Н	3.27596	-4.39411	1.20529
H1.01844-3.849312.24414H-0.40881-3.58951.22206H0.33483-5.197611.31646P-0.434271.1536-0.19341C0.003162.52577-1.31099C0.797453.59711-0.87066C-0.442822.49387-2.64046C1.153544.61355-1.75784H1.12763.643880.16183C-0.083623.51305-3.5258H-1.073321.68164-2.98601C0.716244.57164-3.08629H1.769035.43795-1.41151H-0.434423.48233-4.55249H0.992235.36552-3.7733C-0.58191.916871.46274C-1.469382.990631.63978C0.089011.382692.57153C-1.675833.5272.91106H-1.994413.411410.7873C-0.125391.919613.84411H0.772770.55072.44429C-1.006622.990194.01675H-2.360964.359343.03823H0.397931.500164.69776H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	С	0.54072	-4.12146	1.29646
H-0.40881-3.58951.22206H0.33483-5.197611.31646P-0.434271.1536-0.19341C0.003162.52577-1.31099C0.797453.59711-0.87066C-0.442822.49387-2.64046C1.153544.61355-1.75784H1.12763.643880.16185C-0.083623.51305-3.5258H-1.073321.68164-2.98601C0.716244.57164-3.08629H1.769035.43795-1.41151H-0.434423.48233-4.55249H0.992235.36552-3.7733C-0.58191.916871.46274C-1.469382.990631.63978C0.089011.382692.57153C-1.675833.5272.91106H-1.994413.411410.7873C-1.006622.990194.01675H0.397931.500164.69776H0.397931.500164.69776H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	Н	1.01844	-3.84931	2.24414
H0.33483-5.197611.31646P-0.434271.1536-0.19341C0.003162.52577-1.31099C0.797453.59711-0.87066C-0.442822.49387-2.64046C1.153544.61355-1.75784H1.12763.643880.16183C-0.083623.51305-3.5258H-1.073321.68164-2.98601C0.716244.57164-3.08629H1.769035.43795-1.41151H-0.434423.48233-4.55249H0.992235.36552-3.7733C-0.58191.916871.46274C-1.469382.990631.63978C0.089011.382692.57153C-1.675833.5272.91106H-1.994413.411410.7873C-1.06622.990194.01675H0.397931.500164.69776H-2.360964.359343.03823H0.397931.500164.69776H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	Н	-0.40881	-3.5895	1.22206
P -0.43427 1.1536 -0.19341 C 0.00316 2.52577 -1.31099 C 0.79745 3.59711 -0.87066 C -0.44282 2.49387 -2.64046 C 1.15354 4.61355 -1.75784 H 1.1276 3.64388 0.16183 C -0.08362 3.51305 -3.5258 H -1.07332 1.68164 -2.98601 C 0.71624 4.57164 -3.08629 H 1.76903 5.43795 -1.41151 H -0.43442 3.48233 -4.55249 H 0.99223 5.36552 -3.7733 C -0.5819 1.91687 1.46274 C -1.46938 2.99063 1.63978 C 0.08901 1.38269 2.57153 C -1.67583 3.527 2.91106 H -1.99441 3.41141 0.7873 C -1.16753 3.527 2.91106 H 0.12539 1.91961 3.84411 H	Н	0.33483	-5.19761	1.31646
C 0.00316 2.52577 -1.31099 C 0.79745 3.59711 -0.87066 C -0.44282 2.49387 -2.64046 C 1.15354 4.61355 -1.75784 H 1.1276 3.64388 0.16183 C -0.08362 3.51305 -3.5258 H -1.07332 1.68164 -2.98601 C 0.71624 4.57164 -3.08629 H 1.76903 5.43795 -1.41151 H -0.43442 3.48233 -4.55249 H 0.99223 5.36552 -3.7733 C -0.5819 1.91687 1.46274 C -1.46938 2.99063 1.63978 C 0.08901 1.38269 2.57153 C -1.67583 3.527 2.91106 H -1.99441 3.41141 0.7873 C -0.12539 1.91961 3.84411 H 0.77277 0.5507 2.44429 C -1.00662 2.99019 4.01675 H	Р	-0.43427	1.1536	-0.19341
C 0.79745 3.59711 -0.87066 C -0.44282 2.49387 -2.64046 C 1.15354 4.61355 -1.75784 H 1.1276 3.64388 0.16185 C -0.08362 3.51305 -3.5258 H -1.07332 1.68164 -2.98601 C 0.71624 4.57164 -3.08629 H 1.76903 5.43795 -1.41151 H -0.43442 3.48233 -4.55249 H 0.99223 5.36552 -3.7733 C -0.5819 1.91687 1.46274 C -1.46938 2.99063 1.63978 C -0.5819 1.91687 1.46274 C -1.67583 3.527 2.91106 H -1.99441 3.41141 0.7873 C -0.12539 1.91961 3.84411 H 0.77277 0.5507 2.44429 C -1.00662 2.99019 4.01675 H -2.36096 4.35934 3.03823 H	С	0.00316	2.52577	-1.31099
C -0.44282 2.49387 -2.64046 C 1.15354 4.61355 -1.75784 H 1.1276 3.64388 0.16183 C -0.08362 3.51305 -3.5258 H -1.07332 1.68164 -2.98601 C 0.71624 4.57164 -3.08629 H 1.76903 5.43795 -1.41151 H -0.43442 3.48233 -4.55249 H 0.99223 5.36552 -3.7733 C -0.5819 1.91687 1.46274 C -1.46938 2.99063 1.63978 C -0.5819 1.91687 1.46274 C -1.46938 2.99063 1.63978 C -0.15819 1.91687 1.46274 C -1.67583 3.527 2.91106 H -1.99441 3.41141 0.7873 C -0.12539 1.91961 3.84411 H 0.77277 0.5507 2.44429 C -1.00662 2.99019 4.01675 H	С	0.79745	3.59711	-0.87066
C 1.15354 4.61355 -1.75784 H 1.1276 3.64388 0.16185 C -0.08362 3.51305 -3.5258 H -1.07332 1.68164 -2.98601 C 0.71624 4.57164 -3.08629 H 1.76903 5.43795 -1.41151 H -0.43442 3.48233 -4.55249 H 0.99223 5.36552 -3.7733 C -0.5819 1.91687 1.46274 C -1.46938 2.99063 1.63978 C -0.8901 1.38269 2.57153 C -1.67583 3.527 2.91106 H -1.99441 3.41141 0.7873 C -0.12539 1.91961 3.84411 H 0.77277 0.5507 2.44429 C -1.00662 2.99019 4.01675 H -2.36096 4.35934 3.03823 H 0.39793 1.50016 4.69770 H -2.33396 -0.8496 -0.5573 C	С	-0.44282	2.49387	-2.64046
H 1.1276 3.64388 0.16183 C -0.08362 3.51305 -3.5258 H -1.07332 1.68164 -2.98601 C 0.71624 4.57164 -3.08629 H 1.76903 5.43795 -1.41151 H -0.43442 3.48233 -4.55249 H 0.99223 5.36552 -3.7733 C -0.5819 1.91687 1.46274 C -1.46938 2.99063 1.63978 C 0.08901 1.38269 2.57153 C -1.67583 3.527 2.91106 H -1.99441 3.41141 0.7873 C -0.12539 1.91961 3.84411 H 0.77277 0.5507 2.44429 C -1.00662 2.99019 4.01675 H -2.36096 4.35934 3.03823 H 0.39793 1.50016 4.69776 H -1.17222 3.40484 5.00622 Zr -2.33396 -0.8496 -0.5573 C -2.97409 -1.89893 -2.41482	С	1.15354	4.61355	-1.75784
C -0.08362 3.51305 -3.5258 H -1.07332 1.68164 -2.98601 C 0.71624 4.57164 -3.08629 H 1.76903 5.43795 -1.41151 H -0.43442 3.48233 -4.55249 H 0.99223 5.36552 -3.7733 C -0.5819 1.91687 1.46274 C -0.5819 1.91687 1.46274 C -1.46938 2.99063 1.63978 C -0.18901 1.38269 2.57153 C -1.67583 3.527 2.91106 H -1.99441 3.41141 0.7873 C -0.12539 1.91961 3.84411 H 0.77277 0.5507 2.44429 C -1.00662 2.99019 4.01675 H -2.36096 4.35934 3.03823 H 0.39793 1.50016 4.69776 H -1.17222 3.40484 5.00622 Zr -2.33396 -0.8496 -0.5573 C	Н	1.1276	3.64388	0.16185
H-1.073321.68164-2.98601C0.716244.57164-3.08629H1.769035.43795-1.41151H-0.434423.48233-4.55249H0.992235.36552-3.7733C-0.58191.916871.46274C-1.469382.990631.63978C0.089011.382692.57153C-1.675833.5272.91106H-1.994413.411410.7873C-0.125391.919613.84411H0.772770.55072.44429C-1.006622.990194.01675H-2.360964.359343.03823H0.397931.500164.69776H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	С	-0.08362	3.51305	-3.5258
C0.716244.57164-3.08629H1.769035.43795-1.41151H-0.434423.48233-4.55249H0.992235.36552-3.7733C-0.58191.916871.46274C-1.469382.990631.63978C0.089011.382692.57153C-1.675833.5272.91106H-1.994413.411410.7873C-0.125391.919613.84411H0.772770.55072.44429C-1.006622.990194.01675H-2.360964.359343.03823H0.397931.500164.69776H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	Н	-1.07332	1.68164	-2.98601
H1.769035.43795-1.41151H-0.434423.48233-4.55249H0.992235.36552-3.7733C-0.58191.916871.46274C-1.469382.990631.63978C0.089011.382692.57153C-1.675833.5272.91106H-1.994413.411410.7873C-0.125391.919613.84411H0.772770.55072.44429C-1.006622.990194.01675H-2.360964.359343.03823H0.397931.500164.69776H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	С	0.71624	4.57164	-3.08629
H-0.434423.48233-4.55249H0.992235.36552-3.7733C-0.58191.916871.46274C-1.469382.990631.63978C0.089011.382692.57153C-1.675833.5272.91106H-1.994413.411410.7873C-0.125391.919613.84411H0.772770.55072.44429C-1.006622.990194.01675H-2.360964.359343.03823H0.397931.500164.69776H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	Н	1.76903	5.43795	-1.41151
H 0.99223 5.36552 -3.7733 C -0.5819 1.91687 1.46274 C -1.46938 2.99063 1.63978 C 0.08901 1.38269 2.57153 C -1.67583 3.527 2.91106 H -1.99441 3.41141 0.7873 C -0.12539 1.91961 3.84411 H 0.77277 0.5507 2.44429 C -1.00662 2.99019 4.01675 H -2.36096 4.35934 3.03823 H 0.39793 1.50016 4.69776 H -1.17222 3.40484 5.00622 Zr -2.33396 -0.8496 -0.5573 C -2.97409 -1.89893 -2.41482	Н	-0.43442	3.48233	-4.55249
C -0.5819 1.91687 1.46274 C -1.46938 2.99063 1.63978 C 0.08901 1.38269 2.57153 C -1.67583 3.527 2.91106 H -1.99441 3.41141 0.7873 C -0.12539 1.91961 3.84411 H 0.77277 0.5507 2.44429 C -1.00662 2.99019 4.01675 H -2.36096 4.35934 3.03823 H 0.39793 1.50016 4.69776 H -1.17222 3.40484 5.00622 Zr -2.33396 -0.8496 -0.5573 C -2.97409 -1.89893 -2.41482	Н	0.99223	5.36552	-3.7733
C -1.46938 2.99063 1.63978 C 0.08901 1.38269 2.57153 C -1.67583 3.527 2.91106 H -1.99441 3.41141 0.7873 C -0.12539 1.91961 3.84411 H 0.77277 0.5507 2.44429 C -1.00662 2.99019 4.01675 H -2.36096 4.35934 3.03823 H 0.39793 1.50016 4.69776 H -1.17222 3.40484 5.00622 Zr -2.33396 -0.8496 -0.5573 C -2.97409 -1.89893 -2.41482	С	-0.5819	1.91687	1.46274
C0.089011.382692.57153C-1.675833.5272.91106H-1.994413.411410.7873C-0.125391.919613.84411H0.772770.55072.44429C-1.006622.990194.01675H-2.360964.359343.03823H0.397931.500164.69776H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	С	-1.46938	2.99063	1.63978
C-1.675833.5272.91106H-1.994413.411410.7873C-0.125391.919613.84411H0.772770.55072.44429C-1.006622.990194.01675H-2.360964.359343.03823H0.397931.500164.69776H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	С	0.08901	1.38269	2.57153
H-1.994413.411410.7873C-0.125391.919613.84411H0.772770.55072.44429C-1.006622.990194.01675H-2.360964.359343.03823H0.397931.500164.69776H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	С	-1.67583	3.527	2.91106
C-0.125391.919613.84411H0.772770.55072.44429C-1.006622.990194.01675H-2.360964.359343.03823H0.397931.500164.69776H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	Н	-1.99441	3.41141	0.7873
H0.772770.55072.44429C-1.006622.990194.01675H-2.360964.359343.03823H0.397931.500164.69776H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	С	-0.12539	1.91961	3.84411
C-1.006622.990194.01675H-2.360964.359343.03823H0.397931.500164.69776H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	Н	0.77277	0.5507	2.44429
H-2.360964.359343.03823H0.397931.500164.69776H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	С	-1.00662	2.99019	4.01675
H0.397931.500164.69776H-1.172223.404845.00622Zr-2.33396-0.8496-0.5573C-2.97409-1.89893-2.41482	Н	-2.36096	4.35934	3.03823
H -1.17222 3.40484 5.00622 Zr -2.33396 -0.8496 -0.5573 C -2.97409 -1.89893 -2.41482	Н	0.39793	1.50016	4.69776
Zr -2.33396 -0.8496 -0.5573 C -2.97409 -1.89893 -2.41482	Н	-1.17222	3.40484	5.00622
C -2.97409 -1.89893 -2.41482	Zr	-2.33396	-0.8496	-0.5573
	С	-2.97409	-1.89893	-2.41482

Н	-3.94434	-1.56409	-2.78981
С	-3.92172	0.39274	1.02645
С	-4.76838	-0.44068	0.25008
Н	-5.49855	-0.10559	-0.47497
С	-4.43825	-1.79074	0.53141
Н	-4.89675	-2.66505	0.0904
С	-3.08067	-0.44256	1.81713
Н	-2.32308	-0.10606	2.51123
С	-3.39869	-1.78935	1.51249
Н	-2.92371	-2.6657	1.93427
Н	-3.91028	1.4744	1.01982
Н	-2.95421	-2.98861	-2.33858
С	-1.78518	-1.31137	-3.17266
Н	-1.02796	-2.05891	-3.41943
Н	-2.07288	-0.76137	-4.07234
Н	-1.19749	-0.5384	-2.5932
С	4.82124	0.12394	0.28007
С	5.16901	0.96482	-0.96953
С	4.92536	1.01379	1.53987
С	5.85271	-1.01069	0.40193
Н	5.10316	0.35543	-1.87726
Н	4.49346	1.81782	-1.08439
Н	6.19022	1.35367	-0.89021
Н	4.68239	0.44008	2.44078
Н	5.94407	1.4033	1.64528
Н	4.24281	1.86755	1.48849
Н	6.85609	-0.58128	0.48672
Н	5.67802	-1.62517	1.29139
Н	5.84305	-1.66441	-0.47665

Hishfeld Charges :

Atom	1(C):	-0.03453934
Atom	2(C):	0.00428771
Atom	3(C):	-0.03560948
Atom	4(C):	-0.00084217
Atom	5(C):	0.07702031
Atom	6(C):	-0.06895214
Atom	7(H):	0.04193306
Atom	8(H):	0.04113753
Atom	9(O):	-0.24153169
Atom	10(C):	0.03122524
Atom	11(C):	-0.08880369
Atom	12(H):	0.02845389
Atom	13(H):	0.03133201

Atom	14(H):	0.02236903
Atom	15(C):	-0.08238286
Atom	16(H):	0.03465791
Atom	17(H):	0.03244564
Atom	18(H):	0.03192720
Atom	19(C):	-0.08945574
Atom	20(H):	0.02768065
Atom	21(H):	0.02086691
Atom	22(H):	0.03132022
Atom	23(P):	0.24244193
Atom	24(C):	-0.04948994
Atom	25(C):	-0.02637058
Atom	26(C):	-0.03467882
Atom	27(C):	-0.02617249
Atom	28(H):	0.04743283
Atom	29(C):	-0.02937734
Atom	30(H):	0.04382758
Atom	31(C):	-0.02026260
Atom	32(H):	0.05593429
Atom	33(H):	0.05431935
Atom	34(H):	0.05693672
Atom	35(C):	-0.04203113
Atom	36(C):	-0.02717107
Atom	37(C):	-0.02895558
Atom	38(C):	-0.02734732
Atom	39(H):	0.04795994
Atom	40(C):	-0.02738906
Atom	41(H):	0.04332524
Atom	42(C):	-0.02446682
Atom	43(H):	0.05413035
Atom	44(H):	0.05430964
Atom	45(H):	0.05516377
Atom	46(Zr):	0.69473471
Atom	47(C):	-0.18564057
Atom	48(H):	0.03676891
Atom	49(C):	-0.05672365
Atom	50(C):	-0.04894102
Atom	51(H):	0.06553440
Atom	52(C):	-0.04383440
Atom	53(H):	0.06942173
Atom	54(C):	-0.05410798
Atom	55(H):	0.05541571
Atom	56(C):	-0.04674700
Atom	57(H):	0.06962391

Atom	58(H):	0.05616043
Atom	59(H):	0.04282049
Atom	60(C):	-0.05467845
Atom	61(H):	0.06223686
Atom	62(H):	0.05611354
Atom	63(H):	0.02319079
Atom	64(C):	0.02981925
Atom	65(C):	-0.08505734
Atom	66(C):	-0.08538615
Atom	67(C):	-0.08286672
Atom	68(H):	0.02940985
Atom	69(H):	0.02800517
Atom	70(H):	0.03243059
Atom	71(H):	0.02826492
Atom	72(H):	0.03275593
Atom	73(H):	0.02703574
Atom	74(H):	0.03449496
Atom	75(H):	0.03137028
Atom	76(H):	0.03176602

(b)

Symbolic Z-matrix: Charge = 1 Multiplicity = 1

Charge = 1 Multiplicity = 1			
С	1.63445	2.15674	0.02759
С	3.02466	2.14488	0.14813
С	3.70993	0.92253	0.20039
С	3.04945	-0.31383	0.12524
С	1.64422	-0.2874	-0.0073
С	0.95256	0.94325	-0.04706
Н	1.10902	3.10486	-0.00547
Н	4.78501	0.93075	0.2978
0	0.91487	-1.4274	-0.12295
С	3.82255	-1.64133	0.17724
С	3.59847	-2.42431	-1.13784
Н	3.95474	-1.84318	-1.99545
Н	4.15947	-3.36509	-1.10779
Н	2.54389	-2.65614	-1.29086
С	5.33776	-1.4225	0.34051
Н	5.83521	-2.3965	0.38018
Н	5.76513	-0.86703	-0.50095
Н	5.57761	-0.89006	1.2669
С	3.33384	-2.47765	1.38305
Н	3.51249	-1.93884	2.3201
Н	2.26857	-2.70138	1.30941

Н	3.88523	-3.42368	1.42467
Р	-0.86511	0.80873	-0.13482
С	-1.47753	2.08508	-1.28108
С	-1.58941	3.43103	-0.89642
С	-1.83009	1.70431	-2.58454
С	-2.03458	4.384	-1.81359
Н	-1.34351	3.73313	0.1162
С	-2.27389	2.66125	-3.49995
Н	-1.76519	0.66364	-2.88414
С	-2.37482	4.00136	-3.11574
Н	-2.11878	5.42293	-1.51055
Н	-2.5468	2.35838	-4.50588
Н	-2.72455	4.7446	-3.82547
С	-1.45392	1.31158	1.52078
С	-2.8058	1.64679	1.70003
С	-0.60109	1.25551	2.63225
С	-3.2945	1.92856	2.97615
Н	-3.47415	1.69832	0.84582
С	-1.09641	1.5336	3.90897
Н	0.44402	0.99547	2.50327
С	-2.4417	1.86916	4.08387
Н	-4.33974	2.19176	3.10468
Н	-0.42916	1.4889	4.76405
Н	-2.82443	2.0849	5.07646
Zr	-0.97814	-1.95863	-0.51645
С	-0.81531	-3.14244	-2.40806
Н	-1.78161	-3.42951	-2.83031
С	-3.11657	-1.80144	0.89858
С	-3.33436	-2.94477	0.08555
Н	-4.07873	-3.03497	-0.69481
С	-2.35422	-3.91399	0.41172
Н	-2.24221	-4.88809	-0.04401
С	-2.02064	-2.07881	1.76784
Н	-1.61447	-1.4078	2.51222
С	-1.54697	-3.3802	1.46418
Н	-0.71059	-3.87867	1.93807
Н	-3.69098	-0.88593	0.87829
Н	-0.17982	-4.02629	-2.30423
С	-0.14229	-1.98446	-3.14958
Н	0.90596	-2.18701	-3.38215
Н	-0.67184	-1.69068	-4.05941
Н	-0.09128	-1.03122	-2.55743
0	3.63382	3.36905	0.21169
С	5.05473	3.41217	0.35102

Н	5.31707	4.46957	0.38469
Н	5.37561	2.92521	1.27906
Н	5.55062	2.93864	-0.50406

Hishfeld Charges :

Atom	1(C):	-0.05110543
Atom	2(C):	0.06701879
Atom	3(C):	-0.05452864
Atom	4(C):	0.00378017
Atom	5(C):	0.06858239
Atom	6(C):	-0.06400932
Atom	7(H):	0.04804365
Atom	8(H):	0.04374983
Atom	9(O):	-0.24366232
Atom	10(C):	0.03184278
Atom	11(C):	-0.08810990
Atom	12(H):	0.02897954
Atom	13(H):	0.03205123
Atom	14(H):	0.02303668
Atom	15(C):	-0.08227124
Atom	16(H):	0.03589800
Atom	17(H):	0.03218007
Atom	18(H):	0.03164229
Atom	19(C):	-0.08918837
Atom	20(H):	0.02818624
Atom	21(H):	0.02056822
Atom	22(H):	0.03215631
Atom	23(P):	0.24680755
Atom	24(C):	-0.04910004
Atom	25(C):	-0.02354083
Atom	26(C):	-0.03392780
Atom	27(C):	-0.02489955
Atom	28(H):	0.05048451
Atom	29(C):	-0.02966076
Atom	30(H):	0.04362430
Atom	31(C):	-0.01920995
Atom	32(H):	0.05673901
Atom	33(H):	0.05426180
Atom	34(H):	0.05726819
Atom	35(C):	-0.04238106
Atom	36(C):	-0.02729053
Atom	37(C):	-0.02891729
Atom	38(C):	-0.02723105
Atom	39(H):	0.04780107

Atom	40(C):	-0.02736484
Atom	41(H):	0.04340469
Atom	42(C):	-0.02449344
Atom	43(H):	0.05436424
Atom	44(H):	0.05419362
Atom	45(H):	0.05514309
Atom	46(Zr):	0.68994103
Atom	47(C):	-0.18641797
Atom	48(H):	0.03524797
Atom	49(C):	-0.05529630
Atom	50(C):	-0.04895865
Atom	51(H):	0.06489926
Atom	52(C):	-0.04470388
Atom	53(H):	0.06864086
Atom	54(C):	-0.05629138
Atom	55(H):	0.05695266
Atom	56(C):	-0.04863845
Atom	57(H):	0.07011768
Atom	58(H):	0.05473047
Atom	59(H):	0.04144911
Atom	60(C):	-0.05437128
Atom	61(H):	0.06181685
Atom	62(H):	0.05589913
Atom	63(H):	0.02284644
Atom	64(O):	-0.13953685
Atom	65(C):	0.00879653
Atom	66(H):	0.05478549
Atom	67(H):	0.04337997
Atom	68(H):	0.04379541

7. Ethylene polymerization

Run	Cat.	Temp.	Product	Activity	M_w^f	וחם	$T_{\rm m}^{g}$
		(°C)	(g)	$(kg \cdot mol_{Zr}^{-1} \cdot h^{-1})$	(kDa)	PDI	(°C)
1^b	2c	75	8.35	16700	323	2.46	143.3
2^c	2c	75	2.40	4800	1013	2.31	137.1
3^d	2c	75	4.80	9600	412	2.21	142.6
4^e	2c	75	13.80	27600	93	2.11	134.5
5	2c	120	13.25	26500	86	1.66	130.2

^{*a*} Conditions: catalyst 3 µmol, ethylene pressure 4 bar, total polymerization volume 200 mL, polymerization time 10 min. ^{*b*} MAO 3 mmol. ^{*c*} *d*-MAO 3 mmol. ^{*d*} ^{*i*}Bu₃Al 3 mmol, [Ph₃C][B(C₆F₅)₄] 6 µmol. ^{*e*} MMAO 6 mmol. ^{*f*} Weight-average molecular weights and polydispersity indexes determined by high temperature GPC at 150 °C in 1,2,4-C₆Cl₃H₃ vs. narrow polystyrene standards. ^{*s*} The melting temperature of the polymer was measured by DSC, with a heating rate of 10 °C/min.

8. Ethylene and norbornene copolymerization

				1 2	5	, ,	.=)		
Run	Cat.	Temp	NBE	Product	Activity	Incrop. ^b	M_w^c	PDI	T_{g}^{d}
		. (°C)	(mol/L)	(g)	$(kg \cdot mol_{Zr}^{-1} \cdot h^{-1})$	(mol%)	(kDa)		(°C)
1	2a	50	1.0	3.80	3800	26.8	106	1.65	77.3
2	2a	100	1.0	4.43	4430	33.5	73	2.01	92.1
3	2a	75	0.5	3.75	3750	17.4	128	1.98	49.1
4	2b	50	1.0	4.57	4570	26.2	155	1.76	75.4
5	2b	100	1.0	3.00	3000	31.6	102	2.01	87.7
6	2b	75	0.5	7.61	7610	15.4	184	1.51	34.2
7	2d	50	1.0	7.28	7275	22.5	306	1.55	63.4
8	2d	100	1.0	3.30	3300	26.3	135	1.96	77.3
9	2d	75	0.5	2.00	2000	16.6	245	1.50	31.5

Table S2 Results of E/NBE copolymerization catalyzed by 2a, 2b, and 2d^a

^{*a*} Conditions: catalyst 6 µmol, ^{*i*}Bu₃Al 3 mmol, [Ph₃C][B(C₆F₅)₄] 12 µmol, ethylene pressure 4 bar, total polymerization volume 200mL, polymerization time 10 min. ^{*b*} NBE content (mol%) estimated by ¹³C NMR spectra. ^{*c*} Weight-average molecular weights and polydispersity indexes determined by high temperature GPC at 150 °C in 1,2,4-C₆Cl₃H₃ vs. narrow polystyrene standards. ^{*d*} The melting temperature of the polymer was measured by DSC, with a heating rate of 10 °C/min.

Figure S14 ¹³C NMR spectra of E/NBE copolymers (a, Table 2, Run 11, 52.4 %; b, Table 2, Run 11, 56.2%)

9. Ethylene and 1-hexene copolymerization

43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 5 fl (ppm)

Figure S15¹³C NMR spectra of E/HE copolymers from Table 3, Run 1

I3 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 f1 (ppm)

Figure S16 ¹³C NMR spectra of E/HE copolymers from Table 3, Run 3

Figure S17 ¹³C NMR spectra of E/HE copolymers from Table 3, Run 4

43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 f1 (ppm)

Figure S18¹³C NMR spectra of E/HE copolymers from Table 3, Run 6

41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 fl (ppm)

Figure S19 ¹³C NMR spectra of E/HE copolymers from Table 3, Run 7

39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 f1 (ppm)

Figure S20¹³C NMR spectra of E/HE copolymers from Table 3, Run 10

i9 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 fl (ppm)

Figure S21 ¹³C NMR spectra of E/HE copolymers from Table 3, Run 12

10. GPC curves of Polymers

Figure S22 GPC curve of ethylene polymers

Figure S23 GPC curve of E/NBE copolymers

Figure S24 GPC curve of E/HE copolymers

11. DSC curves of Polymers

Figure S25 DSC curve of E/NBE copolymers

Figure S26 DSC curve of ethylene polymers

Figure S27 DSC curve of E-HE copolymers

Reference

- M. J. T. Frisch, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al., Gaussian, Inc., Wallingford, CT, 2019.
- 2. C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
- 3. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132.
- 4. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- 5. P. P. Fuentealba, H.; Stoll, H.; Szentpaly, L. v., Chem. Phys. Lett. 1982, 89, 418.
- 6. J. C. Clark, G. W.; Spitznagel, P. V. R., J. Comput. Chem. 1983, 4, 294.
- 7. M. J. P. Frisch, J. A.; Binkley, J. S., J. Chem. Phys. 1984, 80, 3265.
- 8. R. B. Krishnan, J. S.; Seeger, R.; Pople, J. A., J. Chem. Phys. 1980, 72, 652.
- 9. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.