Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Expanding the chemical functionality of levoglucosenone-based monomers for degradable thiol-ene thermosets with high bio-derived content

Mahesh Prasad Timilsina, Melissa K. Stanfield, Jason A. Smith, and Stuart C. Thickett *

Table of Contents

Analytical data of all compounds	2
1D and 2D NMR Spectra	6
1H NMR spectra of intermediates)
Mass spectra	2
FTIR of monomers	5
Preparation of thiol-ene networks	8
Polymerization kinetic study of monomers 1, 2, 3, 5, 6 and 7 using FTIR2	8
FTIR of polymerization check of monomer 4	1
Comparison of ¹ H NMR spectrum of monomer 4 and polymerization check	2
Stress-Strain curve for tensile testing of polymers	2
Dynamic mechanical analysis (DMA) data3	5
Polymer Samples of each respective monomer showing optical transparency and colour3	6
Degradation analysis of four different thermosets in alkaline medium	7

Analytical data of all compounds

Monomer 1

 $[\alpha]_{D}^{23}$ -30.7° (*c* 0.021 molL⁻¹ in C₂H₅OH). **IR (film)** v_{max} 2928, 2856, 1735, 1639, 1356, 1242, 1165, 1123, 1033, 983, 907, 886 cm⁻¹. ¹H NMR (600 MHz, CDCl₃), δ : 6.13 (dd, 1H, *J* =3.6, 3.5 Hz), 5.70-5.77 (m, 1H), 5.54-5.57 (m, 2H), 5.45 (br. s, 1H), 4.85-4.93 (m 2H), 4.62 (t, 1H, *J* =4.1 Hz), 3.91(d, 1H, *J* =6.6 Hz), 3.73 (m, 1H), 2.30-2.33 (td, 2H, *J* =7.6 Hz), 1.96 (q, 2H, *J* =7.1 Hz), 1.57 (m, 2H), 1.21-1.30 (m, 10H). ¹³C NMR (150 MHz, CDCl₃), δ : 173.6, 139.2, 132.3, 124.9, 114.1, 99.2, 71.5, 71.4, 71.3, 34.2, 33.7, 30.9, 29.2, 29.1, 29.0, 28.8, 24.8 ppm. HRMS calc. for C₁₇H₂₆O₄ [M+Na]⁺: 317.1729, found 317.1731.

Monomer 2

[α]_D²³-30.5° (*c* 0.021 molL⁻¹ in C₂H₅OH). **IR (film)** v_{max} 2966, 2916, 1732, 1458, 1378, 1259, 1164, 1124, 1035, 985, 885, 838, 803 cm⁻¹. ¹H NMR (600 MHz, CDCl₃), δ: 6.12 (dd, 1H, *J* =9.7, 6.0 Hz), 5.54-5.57 (m, 2H), 5.46 (br. s, 1H), 5.01 (t, 1H, *J*=6.3 Hz), 4.62 (s, 1H), 3.91(d, 1H, *J*=6.5 Hz), 3.73 (t, 1H, *J*=4.1 Hz), 2.30-2.35 (m, 1H), 2.11-2.16 (m, 1H), 1.87-1.92 (m, 3H), 1.61 (s, 3H), 1.52 (s, 3H), 1.28 (m, 1H), 1.13-1.19 (m, 1H), 0.90 (d, 3H, *J*=6.2 Hz). ¹³C NMR (150 MHz, CDCl₃), δ: 173.0, 172.9, 132.3, 131.5, 124.97, 124.94, 124.2, 99.2, 71.46,

71.41, 71.39, 71.33, 41.62, 36.7, 30.0, 29.9, 25.6, 25.3, 19.5, 17.6 ppm. **HRMS** calc. for C₁₆H₂₄O₄, [M+Na]⁺: 303.1572, found 303.1573.

Monomer 3

[*α*]_D²³-22.2° (*c* 0.016 molL⁻¹ in C₂H₅OH). **IR (film) v**_{max} 2925, 2855, 1737, 1466, 1361, 1246, 1165, 1124, 1036, 986, 886, 803, 724 cm⁻¹. ¹H NMR (600 MHz, CDCl₃), δ: 6.13 (dd, 1H, *J* =9.7, 5.8 Hz), 5.55-5.57 (m, 2H), 5.45 (br. s, 1H), 5.27 (m, 2H), 4.62 (t, 1H, *J*=4.1 Hz), 3.91(d, 1H, *J* =6.6 Hz), 3.73 (t, 1H, *J* =4.7 Hz), 2.30-2.33 (m, 2H), 1.94 (q, 2H, *J* =6.4 Hz), 1.57 (t, 2H, *J* =6.9), 1.18-1.23 (m, 22H), 0.81 (t, 3H, *J* =6.7 Hz). ¹³C NMR (150 MHz, CDCl₃), δ: 173.6, 132.3, 130.0, 129.7, 124.9, 99.2, 71.4, 71.4, 71.3, 34.2, 31.9, 29.7, 29.6, 29.5, 29.3, 29.2, 29.1, 29.1, 29.0, 27.2, 27.1, 24.9, 22.7, 14.1 ppm. HRMS calc. for C₂₄H₄₀O₄, [M+Na]⁺: 415.2824, found 415.2844.

Monomer 4

¹**H NMR (600 MHz, CDCl₃)**, δ : 6.12 (dd, 1H, *J* =9.7, 5.8 Hz), 5.54-5.57 (m, 2H), 5.45 (br. s, 1H), 5.23-5.33 (m, 4H), 4.62 (t, 1H, *J*=4.1 Hz), 3.91(d, 1H, *J*=6.6 Hz), 3.73 (t, 1H, *J*=4.5 Hz), 2.70 (t, 2H, *J* =6.8 Hz), 2.30-2.33 (m, 2H), 1.98 (m, 4H), 1.57 (m, 2H), 1.21-1.30 (m, 14H), 0.82 (t, 3H, *J* =6.7 Hz). ¹³**C NMR (150 MHz, CDCl₃)**, δ : 173.6, 132.3, 130.2, 130.0, 128.0, 127.9, 124.9, 99.2, 71.5, 71.4, 71.3, 34.2, 31.5, 29.6, 29.3, 29.2, 29.1, 29.0, 27.2, 25.6, 24.9, 22.5, 14.10 ppm. **HRMS** calc. for C₂₄H₃₈O₄, [M+Na]⁺: 413.2668, found 413.2674.

Monomer 5

[*α*]_D²³-21.8° (*c* 0.028 molL⁻¹ in C₂H₅OH). IR (film) v_{max} 2964, 2895, 1740, 1370, 1317, 1241, 1124, 1023, 981, 928, 885, 803, 788 cm⁻¹. ¹H NMR (600 MHz, CDCl₃), δ: 6.16 (m, 1H), 5.83-5.89 (m, 1H), 5.64 (t, 1H, *J* =2.1 Hz), 5.61-5.63 (dt, 1H, *J* =2.3, 2.2 Hz), 5.28-5.32 (m, 2H), 5.19-5.21 (dd, 1H, *J* =10.4, 1.1 Hz), 4.63 (t, 1H, *J* =4.2 Hz), 4.58 (d, 2H, *J* =5.8 Hz), 3.91 (d, 1H, *J* =6.6 Hz), 3.74 (m, 1H). ¹³C NMR (150 MHz, CDCl₃), δ: 154.6, 133.0, 131.3, 124.1, 119.1, 98.8, 74.6, 71.3, 71.3, 68.8 ppm. HRMS calc. for C₁₀H₁₂O₅, [M+Na]⁺: 235.0582, found 235.0586.

Monomer 6

[α]_D²³-38.8° (*c* 0.025 molL⁻¹ in C₂H₅OH). **IR (film)** v_{max} 2960, 2894, 1740, 1641, 1389, 1320, 1250, 1124, 1023, 987, 928, 884, 803, 716 cm⁻¹. ¹H NMR (600 MHz, CDCl₃), δ: 6.25 (dd, 1H, J = 9.5, 4.0 Hz), 5.78-5.84 (m, 1H), 5.70-5.73 (m, 2H), 5.39 (br. s, 1H), 5.05-5.08 (dd, 1H, J = 17.1, 1.5 Hz), 5.01-5.03 (dd, 1H, J = 10.2, 0.7 Hz), 4.72 (t, 1H, J =4.1 Hz), 4.19 (t, 2H, J =6.6 Hz), 3.99 (d, 1H, J =6.6 Hz), 3.83 (m, 1H), 2.17 (q, 2H, J = 7.1 Hz), 1.80 (qun., 2H, J =6.7 Hz). ¹³C NMR (150 MHz, CDCl₃), δ: 154.8, 137.2, 132.9, 124.2, 115.5, 98.9, 74.4, 71.3, 71.3, 67.7, 29.7, 27.7 ppm. HRMS calc. for C₁₂H₁₆O₅, [M+Na]⁺: 263.0895, found 263.0919.

Monomer 7

[α]_D²³-29.3° (*c* 0.028 molL⁻¹ in C₂H₅OH). **IR (film)** v_{max} 3338, 2958, 2893, 1701, 1526, 1240, 1122, 1032, 980, 924, 884, 803 cm⁻¹.¹H NMR (600 MHz, CDCl₃), δ: 6.11 (dd, 1H, *J*=10.3, 4.1 Hz), 5.74-5.80 (m, 1H), 5.59 (m, 2H), 5.40 (br. s, 1H), 5.12-5.15 (d, 1H, *J*=17.1 Hz), 5.07 (d, 1H, *J*=10.3 Hz), 4.88 (br. s, 1H), 4.62 (t, 1H, *J*=4.0 Hz), 3.89 (d, 1H, *J*=6.6 Hz), 3.72-3.75 (m, 3H). ¹³C NMR (150 MHz, CDCl₃), δ: 155.5, 134.0, 132.0, 125.3, 116.3, 99.6, 71.8, 71.4, 71.3, 43.5 ppm. HRMS calc. for C₁₀H₁₃NO₄, [M+Na]⁺: 234.0742, found 234.0739.

Fig. S2. ¹³C NMR spectrum of Monomer 1 (CDCl₃, 150 MHz)

Fig. S3. COSY spectrum of monomer 1 (CDCl₃, 600 MHz)

Fig. S4. HBMC spectrum of monomer 1 (CDCl₃, 600 MHz)

Fig. S6. ¹³C NMR spectrum of Monomer 2 (CDCl₃, 150 MHz)

Fig. S7. COSY spectrum of monomer 2 (CDCl₃, 600 MHz)

Fig. S8. HBMC spectrum of monomer 2 (CDCl₃, 600 MHz)

Fig. S11. COSY spectrum of monomer 3 (CDCl₃, 600 MHz)

Fig. S12. HMBC spectrum of monomer 3 (CDCl₃, 600 MHz)

Fig. S13. ¹H NMR spectrum of Monomer 4 (CDCl₃, 600 MHz)

Fig. S15. COSY spectrum of monomer 4 (CDCl₃, 600 MHz)

Fig. S16. HMBC spectrum of monomer 4 (CDCl₃, 600 MHz)

Fig. S17. ¹H NMR spectrum of Monomer 5 (CDCl₃, 600 MHz)

Fig. S18. ¹³C NMR spectrum of Monomer 5 (CDCl₃, 150 MHz)

Fig. S19. COSY spectrum of monomer 5 (CDCl₃, 600 MHz)

Fig. S20. HMBC spectrum of monomer 5 (CDCl₃, 600 MHz)

Fig. S22. ¹³C NMR spectrum of Monomer 6 (CDCl₃, 150 MHz)

Fig. S23. COSY spectrum of monomer 6 (CDCl₃, 600 MHz)

Fig. S24. HMBC spectrum of monomer 6 (CDCl₃, 600 MHz)

Fig. S26. ¹³C NMR spectrum of Monomer 7 (CDCl₃, 150 MHz)

Fig. S27. COSY spectrum of monomer 7 (CDCl₃, 600 MHz)

Fig. S28. HMBC spectrum of monomer 7 (CDCl₃, 600 MHz)

Fig. S30. ¹H NMR spectrum of crude intermediate *b* (CDCl₃, 600 MHz)

Fig. S32. ¹H NMR spectrum of crude intermediate *d* (CDCl₃, 600 MHz)

Fig. S33. ¹H NMR spectrum of levoglucosenone and CDI intermediate (CDCl₃, 600 MHz)

Fig. S34. MS of monomer 1.

Fig. S38. MS of monomer 5.

Fig. S40. MS of monomer 7.

Fig. S41. FTIR of monomer 1.

Fig. S42. FTIR of monomer 2.

Fig. S43. FTIR of monomer 3.

Fig. S44. FTIR of monomer 5.

Fig. S45. FTIR of monomer 6.

Fig. S46. FTIR of monomer 7.

Monomer	[SH]:[C=C]	Photoinitiator	Cure time	Polymer code
		(DPO) (%)	(s)	
1	1:2	0.2	60	Poly(1-co-4SH)
2	1:2	0.2	60	Poly(2-co-4SH)
3	1:2	0.5	480	Poly(3-co-4SH)
5	1:2	0.2	60	Poly(5-co-4SH)
6	1:2	0.2	60	Poly(6-co-4SH)
7	1:2	0.2	60	Poly(7-co-4SH)

Table S1. Preparation of thiol-ene networks.

Fig. S47. FTIR of Poly(1-co-4SH) at 0 sec (before UV irradiation) and at 120 sec (after UV irradiation).

Fig. S48. FTIR of Poly(2-co-4SH) at 0 sec (before UV irradiation) and at 120 sec (after UV irradiation).

Fig. S49. FTIR of Poly(3-co-4SH) at 0 sec (before UV irradiation) and at 120 sec (after UV irradiation).

Fig. S50. FTIR of Poly(5-co-4SH) at 0 sec (before UV irradiation) and at 120 sec (after UV irradiation).

Fig. S51. FTIR of Poly(6-co-4SH) at 0 sec (before UV irradiation) and at 120 sec (after UV irradiation).

Fig. S52. FTIR of Poly(6-co-4SH) at 0 sec (before UV irradiation) and at 120 sec (after UV irradiation).

Fig. S53. FTIR of polymerization check (UV cured for 7 minutes) of monomer 4 with tetrathiol (4SH).

Fig. S54. Comparison of ¹H NMR spectrum of Monomer 4 and polymerization check (after UV cured for 7 min) (CDCl₃, 600 MHz).

Fig. S55. Stress-strain curve for tensile testing of Poly(1-co-4SH).

Fig. S56. Stress-strain curve for tensile testing of Poly(2-co-4SH).

Fig. S57. Stress-strain curve for tensile testing of Poly(3-co-4SH).

Fig. S58. Stress-strain curve for tensile testing of Poly(5-co-4SH).

Fig. S59. Stress-strain curve for tensile testing of Poly(6-co-4SH).

Fig. S60. Stress-strain curve for tensile testing of Poly(7-co-4SH).

Fig S61. DMA loss modulus data

Table S2. DMA characterisation of thermosets (based on loss modulus data).

Polymer Code	Alternative T_g DMA (°C) ^a
Poly(1-co-4SH)	17.1
Poly(2-co-4SH)	13.5
Poly(3-co-4SH)	n.d. ^b
Poly(5-co-4SH)	50.5
Poly(6-co-4SH)	37.5
Poly(7-co-4SH)	41.1

^a Based on the temperature at which the loss modulus *E*" passes through a maximum value. no maximum was determined.

Fig. S62. Polymer samples of each respective monomer showing optical transparency and colour.

Table S3. Degradation analysis of four different thermosets in alkaline medium (1M NaOH).

Time	Initial and Remaining weight (g)				
(Days)	Poly(3-co-4SH)	Poly(5-co-4SH)	Poly(6-co-4SH)	Poly(7-co-4SH)	
Initial wt.	0.2166	0.1510	0.1421	0.2609	
1	0.0972	0.0162	0.1032	0.0027	
2	0.0611	0.0030	0.0909	0.0016	
3	0.0356	0.0009	0.0799	0.0009	
4	0.0198	0.0005	0.0727	0.0002	
5	0.0075	0.0002	0.0669	0	

Fig. S63. Comparison of ¹H NMR spectra (CDCl₃, 600 MHz) of degraded crude acidified extract (extracted with ethyl acetate) with retrieved major fraction and remaining fractions of Poly(3-co-4SH) in 1M NaOH.

Fig. S64. ¹H NMR spectrum (CDCl₃, 600 MHz) of retrieved major fraction of degraded Poly(3-co-4SH) in 1M NaOH.

Fig. S65. ¹³C NMR spectrum (CDCl₃, 150 MHz) of retrieved major fraction of degraded Poly(3-co-4SH) in 1M NaOH.

Fig. S66. Comparison of FTIR spectra of degraded crude acidified extract (extracted with ethyl acetate) with retrieved major fraction and remaining fractions of Poly(3-co-4SH) in 1M NaOH.

Fig. S67. Comparison of ¹H NMR spectra (CDCl₃, 600 MHz) of degraded (in 1M NaOH) crude acidified extract (extracted with ethyl acetate) with retrieved all fractions of Poly(7-co-4SH).

Fig. S68. ¹³C NMR spectrum (CDCl₃, 150 MHz) of retrieved 1st fraction of degraded Poly(7co-4SH).

Fig. S69. Comparison of FTIR spectra of degraded crude acidified extracts (extracted with ethyl acetate) of Poly(7-co-4SH).

Fig. S70. Comparison of ¹H NMR spectrum (CDCl₃ and D₂O, 600 MHz) of retrieved fraction (basic form) of degraded Poly(7-co-4SH) in 1M NaOH.

Fig. S71. ¹³C NMR spectrum (CDCl₃, 150 MHz) of retrieved major fraction (basic form-ethyl acetate extract) of degraded Poly(7-co-4SH) in 1M NaOH.