Supporting Information

Ugi Five-component Polymerizations of CO₂ and 5hydroxymethylfurfural Derivatives toward Functional Polyfurans

Ziliang Wang, † Chang Liu, † Li Xu, Baixue Li, Jie Liu, Xue Wang*, Yusheng Qin*

School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China

† Both authors have made equal contributions.

* E-mail for X.W.: <u>wangxue@ytu.edu.cn</u>

* E-mail for Y.Q.: <u>ysqin@ytu.edu.cn</u>

Table of Contents

I. Experimental Section
II. GPC curves and solubility of Ugi-5CP5
III. Model reaction of Ugi-5CP6
IV. ESI-MS mass spectrometry of model compound A6
V. ¹ H NMR and ¹³ C NMR of model compound A7
VI. ¹ H NMR and ¹³ C NMR of P2
VII. ¹ H NMR and ¹³ C NMR of P39
VIII. ¹ H NMR and ¹³ C NMR of P410
IX. ¹ H NMR and ¹³ C NMR of P511
X. ¹ H NMR and ¹³ C NMR of P612
XI. MALDI-TOF-MS spectrum of P113
XII. FT-IR spectra and the assignment of the subpeaks14
XIII. TGA data of P1-P617
XIV. Fluorescence spectra of P5 and P617

Experimental Section

Materials

2,5-diformylfurane, glutaraldehyde, 1,8-diaminooctane, 1,10-diaminodecane, 1,12diaminododecane, furfural, *n*-butylamine, and *tert*-butyl isocyanide were purchased from Energy Chemical. 2,5-bis (aminomethyl) furan was obtained from Macklin reagent. The purity of carbon dioxide (CO_2) was 99.999%. Dichloromethane (CH_2Cl_2) and methanol (MeOH) was purchased from Tianjin Fuyu Fine Chemical Co., Ltd. Deuterated chloroform ($CDCl_3$) was provided by Energy Chemical. Other solvents like *n*-hexane, ethyl acetate, and petroleum ether were used without further purification.

Ugi five-component model reaction (Ugi-5CR)

n-butylamine (87.8 mg, 1.2 mmol) and furfural (115.3 mg, 1.2 mmol) were dissolved in a mixed solution of 2.4 mL of MeOH and 2.4 mL of CH_2Cl_2 . The reaction mixture was stirred at room temperature for 1 h. Then, *tert*-butyl isocyanide (99.8 mg, 1.2 mmol) was added. The reaction was carried out in a high-pressure reactor under a carbon dioxide pressure of 1.5 MPa at room temperature for 24 h. After evaporation of the solvent, the crude product was purified through silica-gel chromatography using petroleum ether/ethyl acetate (v/v = 5/1) as the eluent.

Ugi five-component polymerization (Ugi-5CP)

1,10-diaminodecane (206.8 mg, 1.2 mmol) and 2,5-diformylfurane (148.9 mg, 1.2 mmol) were dissolved in a mixed solution of 2.4 mL of MeOH and 2.4 mL of CH_2Cl_2 . The reaction mixture was stirred at room temperature for 1 h. Then, *tert*-butyl isocyanide (299.3 mg, 3.6 mmol) was added. The reaction was carried out in a high-pressure reactor under a carbon dioxide pressure of 1.5 MPa at room temperature for 48 h. Subsequently, the polymerization product remained soluble in the MeOH/CH₂Cl₂ mixture. The reaction mixture was concentrated in vacuum and dissolved in CH_2Cl_2 , and precipitated in *n*-hexane, yielding a sticky brown polymer. The reaction conditions were optimized by varying the diamine, dialdehyde, solvent,

and pressure of carbon dioxide.

Characterization

The structure of Ugi-5CP products was analyzed by FT-IR spectroscopy (IRAffinity-1S, Shimadzu, Japan). ¹H NMR and ¹³C NMR spectra were collected by JEOL 400 MHz spectrometer using CDCl₃ as solvent. Differential scanning calorimetry (DSC) was characterized by a TA Instruments, DSC 250 system in a nitrogen atmosphere with heating/cooling rates of 10 °C min⁻¹ from -25 to 150°C. Thermogravimetric analysis (TGA) was recorded on a Germany NETZSCH TG 209 F3 Tarsus at a heating rate of 10 °C min⁻¹ under nitrogen.

The average molecular weights and polydispersities were recorded on a Waters GPC system equipped with a Waters 1515 HPLC solvent pump and a Waters 2414 refractive index detector. Chloroform was utilized as eluent at a flow rate of 1 mL/min at 35°C. ESI High resolution mass spectroscopic (HRMS) were measured using Thermo Q Exactive Focus mass spectrometer. Matrix-assisted laser desorption/ionization-time of flight mass spectroscopy (MALDI-TOF-MS) analysis was carried out in positive ion mode using a Bruker Autoflex Speed TOF/TOF mass spectrometer with a 337 nm nitrogen laser. Trans-2-[3-(4-tert-butylphenyl) -2-methyl-2-propenylidene] malononitrile (DCTB) was used as the matrix and chloroform as the solvent. X-ray diffraction patterns were measured by A Rigaku SmartLab III X-ray diffractometer (German). The mechanical properties were tested by SUNS UTM4103 universal test machine, which was carried out at room temperature with a tensile rate of 5 mm min⁻¹. Photoluminescence (PL) spectra were measured with a Shimadzu RF-6000 fluorescence spectrophotometer at room temperature. All calculations were carried out using the Gaussian 16 software.¹ The B3LYP functional² was adopted for all calculations in combination with the D3BJ dispersion correction.³ For geometry optimization and frequency calculations, 6-31G (d, p) basis set was used for all atmos.4,5

Figure S2. The solubility of polymer P1 (1 mg/mL) after being dissolved at room temperature

Scheme S1. Model reaction of Ugi-5CR (CO₂, MeOH, furfural, *n*-butylamine, and *tert*-butyl isocyanide).

Figure S3. ESI-MS mass spectrometry of model compound A.

Figure S6. (A) 1 H and (B) 13 C NMR spectra of P3.

Figure S8. (A) 1 H and (B) 13 C NMR spectra of P5.

Figure S10. MALDI-TOF-MS spectrum of P1; the spacing between the peaks corresponds to the molar masses of the repeating unit.

Figure S11. FT-IR spectra of the P2-P6 in the C=O stretching vibration region.

Table S1	Summary	of the	assignment	of the	deconvolute	d subpea	ks in th	e FTIR	C=O a	absorption
bands for	P1-P6.									

Assignment			υ (C=O) ureth	υ (C=O) amide		
		Free	H-bonded (disordered)	H-bonded	Free	H-bonded
P1	Wavenumber (cm ⁻¹)	1720	1702	1683	1670	1641
P2	Wavenumber (cm ⁻¹)	1721	1708	1690	1670	1644
P3	Wavenumber (cm ⁻¹)	1721	1706	1687	1672	1643
P4	Wavenumber (cm ⁻¹)	1719	1703	1690	1670	1641
P5	Wavenumber (cm ⁻¹)	1719	1704	1686	1669	1641
P6	Wavenumber (cm ⁻¹)	1720	1703	1685	1670	1640

Table S2 TGA data of P1-P6 at a heating rate of 10 °C/min in nitrogen.

Samples	P1	P2	P3	P4	P5	P6
T _{5%} (°C)	176.7	131.0	234.7	146.6	121.7	193.9
T _{50%} (°C)	452.6	448.2	458.7	623.9	388.3	328.2
Char yield (%)	12.5	15.1	19.5	47.4	4.5	13.3

Figure S12. (A) Fluorescence spectra of P5 and P6 (10^{-3} and 10^{-2} M) in chloroform ($\lambda_{ex} = 496$ nm), (B) Fluorescence images of P5 and P6 (10^{-3} and 10^{-2} M) in chloroform under a 365 nm UV lamp.

References:

- Gaussian 16, Revision A.01, M. J. Frisch, G. W. Trucks, et al, Gaussian, Inc., Wallingford CT, 2016. https://gaussian.com
- 2. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem., 1994, 98, 11623.
- 3. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 4. P. C. Hariharan, J. A. Pople, Theor. Chim. Acta, 1973, 28, 213.
- 5. W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys., 1972, 56, 2257.