Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Tuning the properties of polysulfides using functionalised cardanol crosslinkers

Mahsaalsadat Rokni,^{ab} Manon Lambert,^{ac} and Erin M Leitao *^{ab}

^a School of Chemical Sciences, University of Auckland, 1010, New Zealand E-mail: erin.leitao@auckland.ac.nz ^b The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand ° Polytech Université Claude Bernard, Lyon, France

Figure S1. Appearance of the cardanol-based crosslinkers, C (left), C_{TMS} (middle), and C_{APS} (right)

Figure S2. ¹H NMR spectra of cardanol-based crosslinkers, C (bottom), C_{APS} (middle) and C_{TMS} (top), in CDCl₃, and ¹H–¹³C HSQC NMR spectra to further confirm the identification of the protons attached to the amine group in Cardanol-APS.

Figure S3. FT-IR spectrum of Cardanol

Figure S4. FT-IR spectrum of Cardanol-APS

Figure S5. FT-IR spectrum of Cardanol-TMS

Figure S6. FT-IR spectra combined of Cardanol (orange), Cardanol-APS (green), Cardanol-TMS (blue)

Figure S7. FT-IR spectra of APTES (orange) and Cardanol-APS (blue)

Figure S8. Stacked ¹H NMR spectra of Cardanol (blue), Cardanol-TMS (red), and poly-(S-r-C_{TMS}) (green) in CDCl₃

Figure S9. Top: Stacked ¹H NMR spectra of Cardanol (blue), Cardanol-APS (red), and poly-(S-r-C_{APS}) (green), in CDCl₃.

Figure S10. Comparison of vinyl peak integrations at 5.30 ppm for Cardanol-APS (top) and poly-(S-r- C_{APS}) (bottom), in CDCl₃

Figure S11. Stacked ¹H NMR spectra of Cardanol (blue) and poly-(S-r-C) (red), in CDCl₃

Figure S12. FT-IR spectrum of poly-(S-r-C) showing the presence of hydroxyl group after polymerisation

Figure S13. ¹H-¹³C HSQC NMR of poly-(S-r-C_{APS})

Mv/Mn

Peak#:1 (Detector B Channel 1)	
[Average Molecular Weight]	
Number Average Molecular Weight(Mn)	14672
Weight Average Molecular Weight(Mw)	16261
Z Average Molecular Weight(Mz)	18020
Z+1 Average Molecular Weight(Mz1)	20110
Viscosity Average Molecular Weight(Mv)	0
Mw/Mn	1.10833
Mv/Mn	0.00000
Detector B Channel 1	
[Average Molecular Weight(Total)]	
Number Average Molecular Weight(Mn)	14672
Weight Average Molecular Weight(Mw)	16261
Z Average Molecular Weight(Mz)	18020
Z+1 Average Molecular Weight(Mz1)	20110
Viscosity Average Molecular Weight(Mv)	0
Mw/Mn	1.10833
Mv/Mn	0.00000

Figure S14. Representative GPC chromatogram from a single injection of poly-(S-r-C) in THF.

Figure S15. Representative GPC chromatogram from a single injection of poly-(S-r-C_{APS}) in THF.

Figure S16. Representative GPC chromatogram from a single injection of poly-(S-r-C_{TMS}) in THF.

Figure S17. Representative GPC chromatogram from a single injection of the CAPS monomer in THF.

Figure S18. Images of contact angles for the cardanol-based polysulfides poly-(S-r-C) (top), poly-(S-r- C_{APS}) (middle), poly-(S-r- C_{TMS}) (bottom). Final values are the mean of three measurements per sample.

Solvent	poly-(S- <i>r</i> -C)	poly-(S- <i>r</i> -C _{APS})	poly-(S- <i>r</i> -C _{TMS})
Water	Insoluble	Insoluble	Insoluble
Toluene	Soluble	Soluble	Soluble
THF	Soluble	Soluble	Soluble
Ethyl Acetate	Soluble	Soluble	Soluble
Acetone	Soluble	Soluble	Soluble
Chloroform (CHCl ₃)	Soluble	Soluble	Soluble
DCM	Soluble	Soluble	Soluble
DMF	Soluble	Soluble	Soluble
ACN (Acetonitrile)	Soluble	Insoluble	Insoluble
Methanol	Insoluble	Soluble	Insoluble
Ethanol	Soluble	Soluble	Insoluble
Hexane	Insoluble	Insoluble	Soluble

Table S1. Solubility profile of cardanol-based polysulfides in common solvents

Table S2. EDX data resulted from SEM analysis.

	poly-(S- <i>r</i> -C)	poly-(S- <i>r</i> -C _{APS})	poly-(S- <i>r</i> -C _{TMS})
Weight C (%)	68.52	63.49	67.04
Weight S (%)	31.48	32.68	28.65
Weight Si (%)	0	3.7	4.3
Weight N (%)	0	0.13	0

Figure S19. Thermogravimetric analysis (TGA) thermograms of poly-(S-r-C) (green) and its corresponding DTG curve (blue).

Figure S20. Thermogravimetric analysis (TGA) thermograms of poly-(S-r-C_{APS}) (green) and its corresponding DTG curve (blue).

Figure S21. Thermogravimetric analysis (TGA) thermograms of poly-(S-r- C_{TMS}) (green) and its corresponding DTG curve (blue).

Figure S22. DSC thermogram of poly-(S-r-C)

Figure S23. DSC thermogram of poly-(S-r-C_{APS})

Figure S24. DSC thermogram of poly-(S-r- C_{TMS})