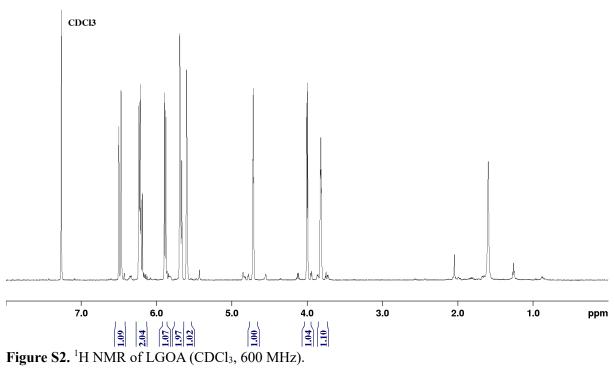
Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

The renewable feedstock levoglucosenone as a building block for the development of bio-derived, functional acrylic polymers

Hannah C. Sheers, Melissa K. Stanfield, Jason A. Smith and Stuart C. Thickett

Table of Contents


Section S1 NMR data for LGO-OH	1
Section S2 NMR data for LGOA monomer	2
Section S3 NMR data for poly(LGOA)	4
Section S4 FT-IR data for starting product, intermediates and polymer	7
Section S5 E-factor calculations for the synthesis of LGOA	8
Section S6 Polymerization kinetics	9
Section S7 GPC Analysis of poly(LGOA)	11
Section S8 Copolymerization thermal data	12
Section S9 Calculation of % addition of monothiol to poly(LGOA)	14
Section S9 FTIR spectra of poly(LGOA) before and after PPM	15
Section S10 Crosslinking density determination using Flory-Rehner analysis	16

Section S1: NMR data for LGO-OH

Figure S1. ¹H NMR of LGO-OH (CDCl₃, 600 MHz).

Section S2: NMR data for LGOA monomer

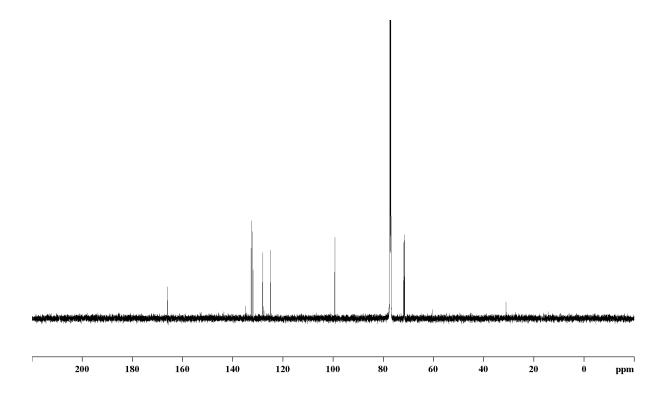
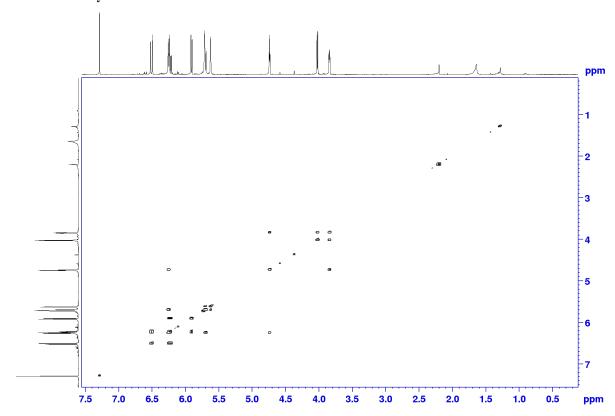
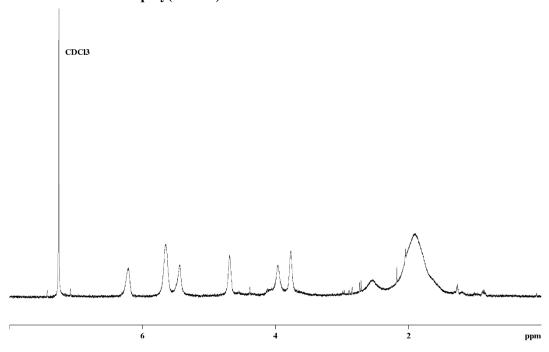
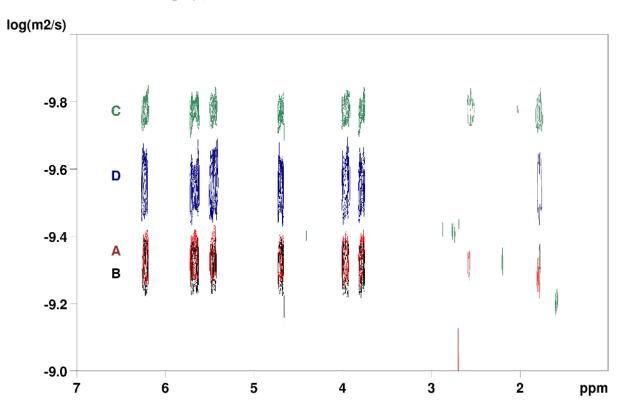


Figure S3. ¹³C NMR of LGOA (CDCl₃, 150 MHz).

COSY: LGO-acrylate


Figure S4. 2D COSY of LGOA (CDCl₃, 600 MHz).

Section S3: NMR data for poly(LGOA)

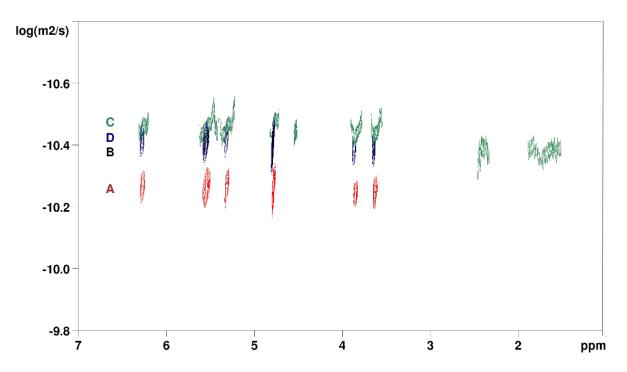


Figure S5. ¹H NMR of poly(LGOA) (CDCl₃, 600 MHz).

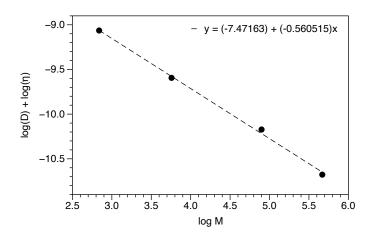

Section S3: NMR data for poly(LGOA)

Figure S6. DOSY NMR of poly(LGOA) (CDCl₃, 600 MHz) where A, B, C and D represent initial [monomer]:[RAFT] ratios of 50, 100, 200 and 300:1 respectively. Fractional conversion of monomer to polymer is provided in the main text.

Figure S7. DOSY NMR of poly(LGOA) (DMSO-d₆, 600 MHz) where A, B, C and D represent initial [monomer]:[RAFT] ratios of 50, 100, 200 and 300:1 ratios respectively.

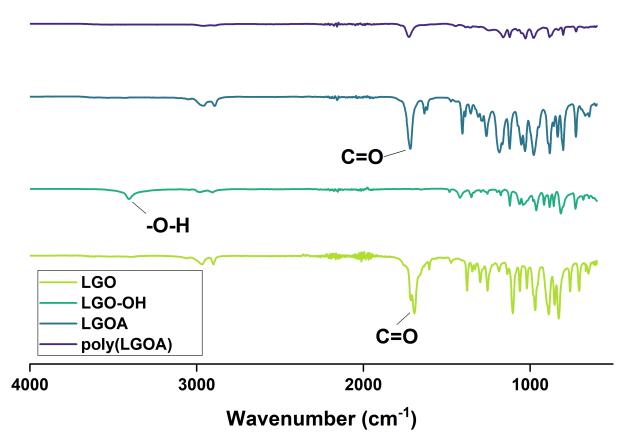


Figure S8. Viscosity-corrected DOSY NMR diffusion coefficient data of commercial PMMA standards (performed in CDCl₃, 600 MHz); the viscosity of CDCl₃ at 298 K was 0.57 mPa s.

Table S1. Diffusion coefficient data of poly(LGOA) samples prepared via PET-RAFT polymerization and molar mass / hydrodynamic diameter data.

Sample	$\begin{array}{c} \log_{10}(D_{\rm h}) \\ \text{CDCl3} \\ \text{(m}^2 \text{ s}^{-1}) \end{array}$	M _{w,DOSY} (kDa) ^a	r _{h, DOSY} (nm) ^b	$\begin{array}{c} \log_{10}(D_{\rm h}) \\ \mathrm{DMSO-d_6} \\ \mathrm{(m^2\ s^{-1})} \end{array}$	M _{w,DOSY} (kDa) ^a	r _{h,DOSY} (nm) ^b
50:1	-9.337	5.8	0.83	-10.257	27.9	2.00
100:1	-9.304	5.1	0.77	-10.409	52.0	2.85
200:1	-9.647	20.7	1.69	-10.455	62.8	3.17
300:1	-9.552	14.0	1.37	-10.404	50.9	2.82

^aAverage molar mass determined from calibration data in Figure S8 relative to PMMA standards; ^bcalculated from the Stokes-Einstein equation.

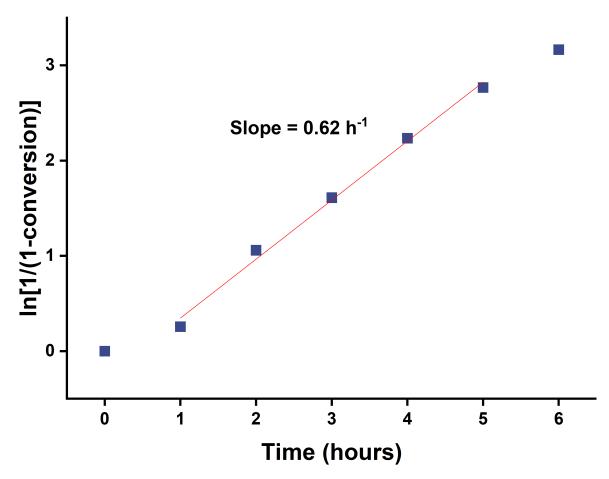


Figure S9. FT-IR spectra of LGO (bottom), LGO-OH (second from the bottom), LGOA (second from the top) and poly(LGOA) (top).

Section S5: E-factor calculations for the synthesis of LGOA

Reaction	Reactants (g)	Final Product (g)	Amount of Waste (g)	E-Factor
Step 1:	43.62	0.703	42.72	60.8
LGO reduction to				
LGO-OH				
Step 2:	106.4	0.215	105.7	151
Conversion of LGO-				
OH to LGOA				

Section S6: Polymerization kinetics

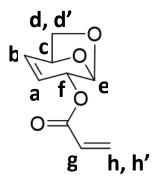
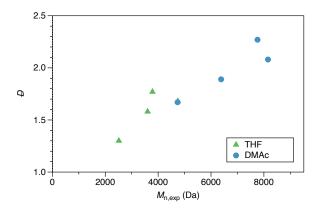

Figure S10. Conversion-time data shows linear relationship of $\ln(1/(1-\text{conversion}))$ against time for the RAFT polymerisation of poly(LGOA). A pseudo- first order rate constant of 0.62 h⁻¹ was obtained from the linear fit of data in the 1-5 h time range.

Table S2. Calculations via ¹H NMR analysis for the degree of consumption of the LGO C=C bond during free radical polymerisation.

Time (h)	Av. Integration h(t)	h(0)-h(t)	Integration b,g(t)	b(t)	% Consumption of b
0	0.256	0.000	0.568	0.312	0
6	0.012	0.244	0.288	0.276	11.5


Table S3. Calculations via ¹H NMR analysis for the degree of consumption of the LGO C=C bond during PET-RAFT polymerisation.

Time (h)	Av. Integration h(t)	h(0)-h(t)	Integration b,g(t)	b(t)	% Consumption of b
0	5.5242	0.000	10.82	5.296	0
6	0.2256	5.299	4.7051	4.480	15.4

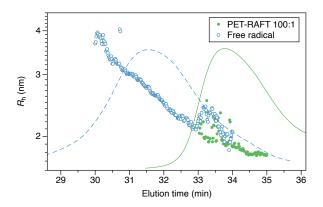


Figure S11. LGOA monomer with corresponding ¹H NMR labels.

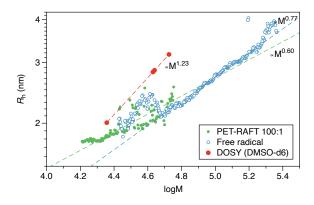
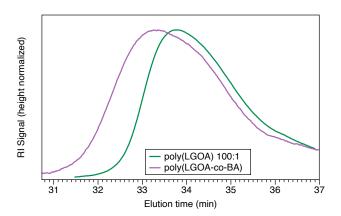

Section S7. GPC Analysis of poly(LGOA)

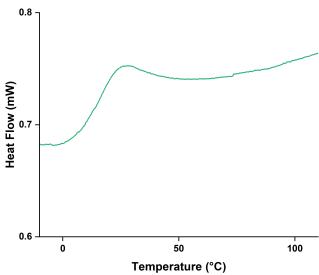
Figure S12. Variation of poly(LGOA) dispersity for samples analysed via both THF and DMAc GPC analysis using conventional calibration (accompanying data in Figure 3 of main manuscript).

Figure S13. Variation of hydrodynamic radius of poly(LGOA) prepared via PET-RAFT polymerization (filled green circles) and free-radical polymerization (open blue circles) as a function of elution time, as determined by triple detection GPC. The refractive index chromatograms of both polymers are overlaid for reference.

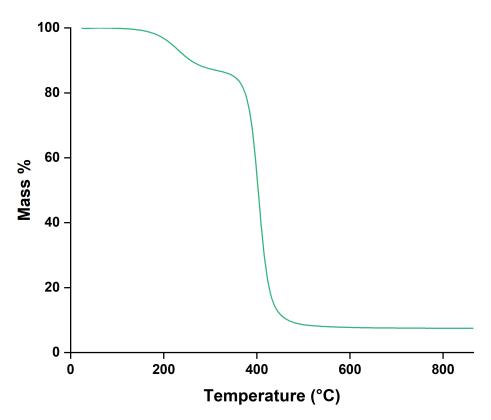
Figure S14. Variation of hydrodynamic radius of poly(LGOA) as a function of log (molar mass) for polymers prepared by PET-RAFT and free-radical polymerization, using absolute molar mass determination. The effective power law dependence of rh with M is shown; given the scatter in the data these trends are highly comparable. Hydrodynamic radius data of our samples as determined by DOSY NMR spectroscopy is provided for comparison (red circles; note these are based on molar mass relative to PMMA standards and performed in DMSO-d₆).

Section S7: Copolymerization thermal data


BTPA-2, Eosin Y, TEOA, DMSO,
$$\lambda = 525 \text{ nm}$$


LGO-acrylate Butyl acrylate $T_g = 108 \,^{\circ}\text{C}$

Barpa-2, Eosin Y, TEOA, DMSO, $\lambda = 525 \,^{\circ}\text{nm}$


Random copolymer Predicted $T_g = \sim 6 \,^{\circ}\text{C}$

Scheme S1. Copolymerisation of LGOA and *n*-butyl acrylate to give a copolymer with a predicted T_g of approximately 6 °C.

Figure S15. (Top panel) GPC chromatogram (THF GPC, conventional calibration) of LGOA-BA copolymer (purple curve); (Bottom panel) DSC curve with a T_g of 9.1 °C for the 50:50 w/w copolymer of LGOA and BA prepared by PET-RAFT polymerization.

Figure S16. TGA thermogram of the 50:50 w/w LGOA/BA copolymer prepared by PET-RAFT polymerization. Note that the residual mass of 8.50% for the copolymer was approximately half that of the residual mass of poly(LGOA) (19.4% for a 100:1 [monomer]:[RAFT] ratio).


Section S8: Calculation of % addition of monothiol to poly(LGOA)

The % addition of the monothiol 1-dodecanethiol to poly(LGO)-acrylate was determined by comparing the total integration of the -CH $_3$ peak (0.90 ppm) to the remaining C=C proton peak (6.20 ppm) (Equation S6). The -CH $_3$ and C=C proton peaks were normalised by dividing through by 3 and 2 respectively.

$$\%Addition = \frac{\int_{0.9}/3}{\int_{0.9}/3 + \int_{6.2}/2} = \frac{18.6/3}{18.6/3 + 1/2} = 92.6$$
 (S1)

: The % addition of monothiol to polymer was 93%.

Section S9: FTIR spectra of poly(LGOA) before and after PPM

Figure S17. FTIR comparison of polymer before and after post-polymerisation modification with thioglycolic acid. The broad stretch between 2900-3300 cm⁻¹ highlights the presence of the O-H bond from the acid group.

TPO, 1,4-dioxane
$$\lambda = 371 \text{ nm}$$
, 10 min $\lambda = 371 \text{ nm}$, 10 min Thioglycolic acid

Scheme S2. PPM of poly(LGOA) with thioglycolic acid.

Section S10: Crosslinking density determination using Flory-Rehner analysis

$$\chi = \beta + \frac{V_s}{RT} (\sigma_t - \sigma_s)^2 \tag{S2}$$

 χ is the polymer-solvent interaction parameter (Flory-Huggins interaction (χ) parameter) $\beta = 0.34$ is the lattice constant, R is the gas constant, T(K) is the absolute temperature, σ_t and σ_s represent the solubility parameters of the polymer and solvent respectively.

$$\phi = \left[1 + \frac{d_p}{d_s} \left(\frac{m_{wet}}{m_{dry}} - 1\right)\right]^{-1} \tag{S3}$$

 ϕ is the volume fraction of the equilibrium swollen polymer, d_p and d_s represent the polymer and solvent densities respectively, m_{wet} and m_{wet} are the masses of the polymer network pre and post swelling. Note that the polymer density was estimated to be approximately 1 gm/cm³.

$$M_c = -d_p V_s \left(\phi^{\frac{1}{3}} - \frac{\phi}{2}\right) \times \frac{1}{\ln(1-\phi) + \phi + \chi \phi^2}$$
 (S4)

 M_c is the average molecular weight of the polymer between the crosslinks, V_s is the molar volume of solvent.

$$q_{eff} = \frac{M_{monomer}}{M_c}$$
 (S5)

 $M_{monomer} = 182.17~gmol^{-1}$ defined as the molar mass of an LGOA repeat unit and q_{eff} represents the effective crosslinking density. Determination of the solubility parameter of poly(LGO)-acrylate, χ can be calculated from Hansen solubility parameters. As poly(LGOA) is a novel polymer, the determination of χ involves estimating the polymer solubility parameter via a group-contribution method. This prediction method is exclusively based on the various bond types and functional groups present within the given molecule.

The total solubility parameter σ_t measured in units of $MPa^{\frac{1}{2}}$ is made up of partial/Hansen solubility parameters σ_d , σ_p and σ_{hb} ,

$$\sigma_t = \sqrt{\sigma_d^2 + \sigma_p^2 + \sigma_{hb}^2} \tag{S6}$$

where σ_d is the dispersion Hansen solubility parameter, σ_p is the polar Hansen solubility parameter, σ_{hb} is the hydrogen-bonding Hansen solubility parameter. This technique involves the grouping of bond types and functional groups, then summing the dispersion, polar and hydrogen bonding contributions (S6-8).

$$\sigma_d = \left(\sum_i N_i C_i + W \sum_j M_j D + 17.3231\right) M P a^{\frac{1}{2}}$$
 (S7)

$$\sigma_p = \left(\sum_i N_i C_i + W \sum_j M_j D + 7.3548\right) M P a^{\frac{1}{2}}$$
 (S8)

$$\sigma_{hb} = (\sum_{i} N_i C_i + W \sum_{j} M_j D + 7.9793) M P a^{\frac{1}{2}}$$
 (S9)

Note: Estimations may vary based on the way in which the functionalities of the monomer are grouped. Only first order contributions were considered in the calculations.

Figure S18. Representation of the poly(LGOA) repeating unit.

Table S4. First-order group contributions to the dispersion, polar partial and hydrogen-bonding partial solubility parameters for the identified functional groups of the poly(LGOA) repeating units.

Group	σ_d	σ_p	σ_{hb}	# of Groups
COO (ester)	0.2039	3.4637	1.1389	1
-СН=СН-	0.00048	-0.2984	-0.04	1
(double bond)				
CH ₂ O (cyclic)	0.2753	0.1994	-0.161	1
CHO (ether)	0.8833	1.6853	0.447	1
-CH<	0.645	0.6491	-0.2018	3
-CH ₂	-0.0269	-0.3045	-0.4119	1
Total	20.60	14.05	8.35	

Predicted total solubility parameter:

$$\sigma_t = \sqrt{20.6^2 + 14.05^2 + 8.35^2} = 26.3 \, MPa^{\frac{1}{2}}$$

Hansen Solubility Parameter data for various solvents used in this work and their distance R_a in the Hansen parameter space are provided below.

Table S5. Distance in the Hansen Solubility Parameter space of poly(LGOA) with various solvents.

Group	σ_d	σ_p	σ_{hb}	$R_{\rm a}^{-1}$
DMSO	18.4	16.4	10.2	5.3
DMAc	16.8	11.05	11.3	8.4
DMF	17.4	13.7	11.3	7.0
THF	16.8	5.7	8.0	11.3

chloroform	18.2	6.2	6.3	9.4

¹ Ra is defined as $\sqrt{4\Delta\sigma_d^2 + \Delta\sigma_p^2 + \Delta\sigma_{hb}^2}$ where $\Delta\sigma_i$ is the difference between each term in the expanded solubility parameter expression (dispersive, polar and hydrogen bonding respectively).

S = Swelling ratio.

$$S = \frac{m_{wet} - m_{dry}}{m_{dry}} \tag{S10}$$

Table S6. Equilibrium swelling ratios and effective crosslink densities of crosslinked polymers prepared from linear poly(LGOA) and the tetrathiol PETMP via thiol-ene click chemistry.

Solvent	S	q_{eff}
DMF	0.909	0.404
DMSO	1.27	0.408

References

1. E. Stefanis and C. Panayiotou, *International Journal of Thermophysics*, 2008, **29**, 568-585.