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Materials and instruments 

1,4-Phenylenediacetonitrile (2a), 1,3-phenylenediacetonitrile (2b), terephthalaldehyde, 4,4'-

biphenyldicarboxaldehyde, chalcone (3), 4-methylbenzyl cyanide (4), acetophenone (6), m-

phthalaldehyde (7), terephthalaldehyde (8), 4,4’-biphenyldicarboxaldehyde (9), 4-

methoxyacetophenone (10), disodium edetate dihydrate (Na2EDTA), iron(III) chloride hexahydrate, 

1,8-diazabicyclo[5.4.0]undecane-7-ene (DBU), dichloromethane (DCM) and N,N-

dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMAc), 

tetrahydrofuran (THF), and acetonitrile (MeCN) were purchased from Energy Chemical. 5-Methyl-

1,3-benzenediacetonitrile (2c), 1,2-phenylenediacetonitrile (2d) were purchased from Macklin 

reagent. Other solvents were commercially available from Tansoole. All the commercial chemicals 

were used as received without further purification. 

All NMR spectra were measured on a Brucker Avance 400 MHz NMR spectrometer using 

deuterated chloroform as solvent and tetramethylsilane (TMS, δ = 0) as internal reference. FT-IR 

spectra were recorded on a PerkinElmer FT-IR spectrometer Spectrum 3. The number- (Mn) and 

weight- (Mw) average molecular weights and polydispersity indices (PDI = Mw/Mn) of the polymers 

were estimated by a Waters 1515_2707_2414 gel permeation chromatography system. DMF/LiBr 

solution (0.05 M LiBr) was used as eluent at a flow rate of 1 mL/min. A set of monodispersed 

poly(methyl methacrylate) (PMMA), covering the Mw range of 103 - 107 g/mol, were utilized as 

standards for molecular weight calibration. Thermogravimetric analysis was carried out on a Mettler 

Toledo TGA/DSC3+ under nitrogen atmosphere at a heating rate of 20 oC/min. Differential scanning 

calorimetry was carried out on a MDSC Q100 TA under nitrogen atmosphere at a heating rate of 20 

oC/min. UV-vis absorption spectra were recorded on a Thermo Scientific Evolution 201/220. 

Fluorescence spectra were recorded on a Spectrofluorometer (Edinburgh FS5) fluorescence. PL 

quantum yields were measured using a Hamamatsu absolute PL quantum yield spectrometer 

C11347 Quantaurus_QY. High-Resolution Mass Spectrometry (HRMS) was measured by the 

instrument of waters G2-XS Qtof. Positive mode: voltage 3.5 kv, ion source temperature 110 oC, 

solvent removal temperature 400 oC, nitrogen flow rate: 800 L/h. Dynamic light scattering was 

measured on the MICROTRAC MRB Nanotrac wave II. 

We conducted a comprehensive study of molecular conformations by integrating the Molclus 

program [1] with XTB v 6.6.1 [2], employing the precise GFN0-xTB method [3]. For structural 

optimization, vibrational analysis, and energy calculations, we utilized the Gaussian 16 software 

package [4], applying the B3LYP functional [5-7] along with the D3BJ dispersion correction [6]. The 

optimized molecular structures and their corresponding vibrational frequencies were determined 

using the 6-31G* basis set [8,9]. Excited state energy calculations were carried out using the PBE0 

functional [10] and def2-SVP basis sets [11]. Additionally, we conducted an in-depth analysis of 

excited states with Multiwfn 3.8 [12, 13]. To visualize the structure and weak interactions within the 

system, we employed VMD [14]. 

Synthesis of monomers and model compounds 

Synthesis of monomer (2E,2'E)-3,3'-(1,3-phenylene)bis(1-phenylprop-2-en-1-one) 1a (Scheme 

S1): Magnetic stir bar, m-phthalaldehyde (1.34 g, 10 mmol), NaOH (1.00 g, 25 mmol), and 40 mL 

of methanol were added into a 100 mL double necked flask. Then, 40 mL of methanol solution of 
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acetophenone (2.40 g, 20 mmol) was dropwise added into the reaction mixture by a pressure-

equalizing dropping funnel. After reacting for 12 h, the mixture was filtered to get the filter cake, 

and purified by silica gel using petroleum ether/CH2Cl2 mixture (v/v, 1/1) as eluent. A white solid 

was obtained in 81.4% yield. IR (KBr disk), ν (cm-1): 3035, 1662, 1607, 1446, 1328, 1276, 1211, 

1173, 1018, 973, 765, 685. 1H NMR (400 MHz, chloroform-d) δ 8.09 – 8.01 (m, 4H), 7.88 (s, 1H), 

7.83 (d, J = 15.8 Hz, 2H), 7.68 (s, 2H), 7.65 – 7.41 (m, 9H). 13C NMR (100 MHz, chloroform-d) δ 

190.30, 143.79, 138.04, 135.75, 132.95, 130.07, 129.61, 128.70, 128.56, 128.26, 123.08.  

Scheme S1. The synthetic route to monomer 1a. 

 

Synthesis of monomer (2E,2'E)-3,3'-(1,4-phenylene)bis(1-phenylprop-2-en-1-one) 1b (Scheme 

S2): Magnetic stir bar, terephthalaldehyde (1.34 g, 10 mmol), NaOH (1.00 g, 25 mmol), and 40 mL 

of methanol were added into a 100 mL double necked flask. Then, 40 mL of methanol solution of 

acetophenone (2.40 g, 20 mmol) was dropwise added into the reaction mixture by a pressure-

equalizing dropping funnel. After reacting for 12 h, the mixture was filtered to get the filter cake, 

and purified by silica gel using petroleum ether/CH2Cl2 mixture (v/v, 1/1) as eluent. A yellow solid 

was obtained in 66.3% yield. IR (KBr disk), ν (cm-1): 3053, 1655, 1606, 1445, 1336, 1292, 1225, 

1037, 978, 832, 692. 1H NMR (400 MHz, Chloroform-d) δ 8.10 – 7.98 (m, 4H), 7.81 (d, J = 15.7 

Hz, 2H), 7.69 (s, 4H), 7.64 – 7.46 (m, 8H). 13C NMR (100 MHz, Chloroform-d) δ 190.24, 143.53, 

138.08, 136.91, 132.95, 128.96, 128.69, 128.53, 123.10. 

Scheme S2. The synthetic route to monomer 1b. 

 

Synthesis of monomer (2E,2'E)-3,3'-([1,1'-biphenyl]-4,4'-diyl)bis(1-phenylprop-2-en-1-one) 1c: 

(Scheme S3): Magnetic stir bar, 4,4'-biphenyldicarboxaldehyde (2.10 g, 10 mmol), NaOH (1.00 g, 

25 mmol), and 40 mL of methanol were added into a 100 mL double necked flask. Then, 40 mL of 

methanol solution of acetophenone (2.40 g, 20 mmol) was dropwise added into the reaction mixture 

by a pressure-equalizing dropping funnel. After reacting for 12 h, the mixture was filtered to get the 

filter cake, and purified by silica gel using petroleum ether/CH2Cl2 mixture (v/v, 1/1) as eluent. A 

yellow solid was obtained in 76.8% yield. IR (KBr disk), ν (cm-1): 3052, 1659, 1634, 1603, 1346, 

1218, 1035, 980, 821, 772. 1H NMR (400 MHz, Chloroform-d) δ 8.09 – 8.01 (m, 4H), 7.86 (d, J = 

15.7 Hz, 2H), 7.78 – 7.65 (m, 8H), 7.64 – 7.45 (m, 8H). 13C NMR (100 MHz, Chloroform-d) δ 

190.40, 144.08, 142.10, 138.24, 134.50, 132.83, 129.08, 128.66, 128.52, 127.52, 122.29.  

Scheme S3. The synthetic route to monomer 1c. 

 

Synthesis of monomer (2E,2'E)-3,3'-(1,3-phenylene)bis(1-(4-methoxyphenyl)prop-2-en-1-one) 

1d: (Scheme S4): Magnetic stir bar, m-phthalaldehyde (1.34 g, 10 mmol), NaOH (1.00 g, 25 mmol), 

and 40 mL of methanol were added into a 100 mL double necked flask. Then, 40 mL of methanol 
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solution of 4'-methoxyacetophenone (3.0 g, 20 mmol) was dropwise added into the reaction mixture 

by a pressure-equalizing dropping funnel. After reacting for 12 h, the mixture was filtered to get the 

filter cake, and purified by silica gel using petroleum ether/CH2Cl2 mixture (v/v, 1/1) as eluent. A 

white solid was obtained in 68.2% yield. IR (KBr disk), ν (cm-1): 3064, 3002, 2936, 2839, 1656, 

1606, 1339, 1272, 1214, 1165, 1023, 975, 794. 1H NMR (400 MHz, Chloroform-d) δ 8.10 – 8.02 

(m, 4H), 7.90 – 7.77 (m, 3H), 7.71 – 7.64 (m, 2H), 7.59 (d, J = 15.7 Hz, 2H), 7.51 – 7.42 (m, 1H), 

7.05 – 6.94 (m, 4H), 3.90 (s, 6H). 13C NMR (100 MHz, Chloroform-d) δ 188.48, 163.58, 143.01, 

135.89, 130.95, 130.89, 129.52, 128.11, 122.83, 113.93, 55.53.  

Scheme S4. The synthetic route to monomer 1d. 

 

The synthesis of model compound 5-oxo-3,5-diphenyl-2-(p-tolyl)pentanenitrile 5: Magnetic stir 

bar, chalcone (208 mg, 1 mmol), 4-methylbenzyl cyanide (157 mg, 1.2 mmol), DBU (30 μL, 0.2 

mmol) and 1 mL of DMSO were added into a 10 mL Schlenk tube. After reacting for 24 h, 50 mL 

of water was added. Dichloromethane was used to extract the solution for three times (3 × 50 mL). 

The organic layers were combined, and the solvent was removed by vacuum rotary evaporation. 

Then, the crude product was purified by silica gel column chromatography with petroleum 

ether/CH2Cl2 mixture (v/v, 1/1) as eluent. A transparent liquid was obtained in 94.1% yield. IR (KBr 

disk), ν (cm-1): 3030, 2923, 2239, 1682, 1597, 1514, 1449, 1211, 987, 816, 749, 689. 1H NMR (400 

MHz, Chloroform-d) δ 8.03 – 7.82 (m, 2H), 7.65 – 7.38 (m, 3H), 7.33 – 7.19 (m, 4H), 7.15 – 6.95 

(m, 5H), 4.52 – 4.08 (m, 1H), 3.98 – 3.63 (m, 2H), 3.57 – 3.21 (m, 1H), 2.44 – 2.17 (m, 3H). 13C 

NMR (100 MHz, Chloroform-d) δ 197.64, 139.70, 138.47, 138.18, 137.87, 136.64, 133.53, 131.09, 

129.33, 128.62, 128.32, 127.98, 127.65, 119.56, 45.34, 42.79, 41.70, 21.09.  

Synthesis of PAANs 

The typical procedure of synthesis of P1a2a. 1a (203.1 mg, 0.6 mmol), 2a (93.7 mg, 0.6 mmol), 

and DBU (17.8 μL, 0.12 mmol) were added into a 25 mL Schlenk tube equipped with a magnetic 

stir bar. 1 mL of DCM was then injected into the tube and stirred at room temperature for 24 h in 

air. The polymerization solution was diluted with 4.0 mL of DCM, which was precipitated by adding 

the mixture dropwise into 100 mL of methanol. The precipitates were filtered and washed with 

methanol for three times (3 × 20 mL), and dried under vacuum to a constant weight.  

Large scale synthesis of P1a2a. (2E,2'E)-3,3'-(1,3-Phenylene)bis(1-phenylprop-2-en-1-one) 1a 

(9.196 g, 27 mmol), 1,4-phenylenediacetonitrile 2a (4.278 g, 27 mmol) and DBU (806.7 μL, 5.4 

mmol) were added into a 250 mL double necked flask equipped with a magnetic stir bar in air. 45 

mL of DCM were then injected into the tube and stirred at room temperature for 24 h. The 

polymerization solution was then precipitated by adding the mixture dropwise into 1000 mL of 

methanol through a cotton filter. The precipitates were filtered and washed with methanol for three 

times (3 × 100 mL), and dried under vacuum to a constant weight to afford polymer P1a2a as a 

grayish solid in 99.9 % yield. Mw = 19 600, Mw/Mn = 1.65. 
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Table S1. Effect of solvents on the polymerization of 1a and 2a. 

entry a) solvent yield [%] Mn
 b) Mw

 b) PDI b) 

1 DMSO 64.8 6600 8900 1.35 

2 DMAc 63.2 6100 7800 1.29 

 3 DMF 65.3 6400 8600 1.34 

4 MeCN 77.2 7000 10 500 1.49 

5 THF 84.5 6700 9500 1.41 

6 CHCl
3
 79.2 6300 8600 1.37 

7 DCM 83.4 6900 10 100 1.47 

a) Carried out in different solvents at ambient condition in the presence of DBU for 24 h. [1a]: [2a]: 

[DBU] = 1.0: 1.0: 0.4. [1a] = 0.2 mmol;
 
b) Estimated by GPC in DMF based on PMMA standard 

samples. Mw = weight-average molecular weight; polydispersity index (PDI) = Mw/Mn; Mn = 

number-average molecular weight. 
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Figure S1. GPC curves of P1a2a prepared in different solvents.  
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Table S2. Effect of different bases on the polymerization of 1a and 

2a. 

entry a) base yield [%] Mn
 b) Mw

 b) PDI b) 

1 DBU 81.4 6700 9600 1.45 

2 TEA 

No polymer 3 DABCO 

4 DMAP 

a) Carried out in DCM at ambient condition in the presence of different bases for 24 h. [1a]: [2a]: 

[catalyst] = 1.0: 1.0: 0.4. [1a] = 0.2 mmol; b) Estimated by GPC in DMF based on PMMA standard 

samples. Mw = weight-average molecular weight; polydispersity index (PDI) = Mw/Mn; Mn = 

number-average molecular weight. 

 

 

6 8 10

R
e

fr
a

c
ti

v
e

 i
n

d
e

x
 

Time (min)

 DBU

 

Figure S2. GPC curves of P1a2a prepared under the bases of DBU.  
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Table S3. Effect of concentration on the polymerization of 1a and 2a. 

entry a) [1a] [M] yield [%] Mn
 b) Mw

 b) PDI b) 

1 0.1 37.5 4400 5000 1.13 

2 0.2 82.3 7300 11 000 1.50 

3 0.3 86.9 15 800 27 400 1.73 

4 0.4 91.6 17 000 28 900 1.72 

5 0.5 89.6 19 000 38 200 1.97 

6 0.6 91.5 19 000 40 100 2.07 

7 0.7 94.0 17 500 39 100 2.23 

8 0.8 93.3 17 100 42 100 2.46 

a) Carried out in DCM at ambient condition in the presence of DBU at different monomer 

concentration for 24 h. [1a]: [2a]: [DBU] = 1.0: 1.0: 0.4. [1a] = 0.1 - 0.8 mmol; b) Estimated by GPC 

in DMF based on PMMA standard samples. Mw = weight-average molecular weight; polydispersity 

index (PDI) = Mw/Mn; Mn = number-average molecular weight. 
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Figure S3.  GPC curves of P1a2a prepared in different concentration.  
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Table S4. Effect of catalyst ratio on the polymerization of 1a and 2a. 

entry a) [DBU]/ [1a] yield [%] Mn
 b) Mw

 b) PDI b) 

1 0.1 96.0 12 800 23 000 1.80 

2 0.2 95.8 16 600 33 500 2.02 

3 0.3 98.1 15 300 32 100 2.10 

4 0.4 94.3 16 200 38 000 2.35 

a) Carried out in DCM at ambient condition in the presence of different DBU ratio for 24 h. [1a]: 

[2a] = 1.0: 1.0. [1a] = 0.6 mmol; b) Estimated by GPC in DMF based on PMMA standard samples. 

Mw = weight-average molecular weight; polydispersity index (PDI) = Mw/Mn; Mn = number-average 

molecular weight. 

 

 

Figure S4. GPC curves of P1a2a prepared with different catalyst ratio. 
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Table S5. Effect of time on the polymerization of 1a and 2a. 

entry a) t [h] yield [%] Mn
 b) Mw

 b) PDI b) 

1 6 94.7 8500 12 800 1.50 

2 12 95.1 12 200 18 000 1.48 

3 18 93.3 12 500 22 100 1.77 

4 24 92.1 17 300 31 300 1.81 

a) Carried out in DCM at ambient condition in the presence of DBU for different reaction time. 

[1a]: [2a]: [DBU] = 1.0: 1.0: 0.2. [1a] = 0.6 mmol; b) Estimated by GPC in DMF based on 

PMMA standard samples. Mw = weight-average molecular weight; polydispersity index (PDI) 

= Mw/Mn; Mn = number-average molecular weight. 
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Figure S5. GPC curves of P1a2a prepared at different time durations. 
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Figure S6. GPC curves of different PAANs. 

 

Characterization data of PAANs 

Characterization data for P1a2a. A grayish solid was obtained in 95.8% yield. Mw = 33 500, 

Mw/Mn = 2.02. IR (KBr disk), ν (cm-1): 3058, 2904, 2239 (C≡N), 1684, 1597, 1448, 1213, 1001, 

756, 690. 1H NMR (400 MHz, Chloroform-d) δ 8.19 – 7.67, 7.67 – 7.30, 7.26 – 6.31, 4.67 – 3.95, 

3.94 – 2.98. 13C NMR (100 MHz, Chloroform-d) δ 138.66, 138.50, 136.41, 133.44, 128.78, 128.55, 

127.99, 119.15.  

Characterization data for P1a2b. A white solid was obtained in 96.6% yield. Mw = 37 100, Mw/Mn 

= 1.67. IR (KBr disk), ν (cm-1): 3057, 2926, 2239 (C≡N), 1683, 1596, 1448, 1211, 988, 756, 689. 

1H NMR (400 MHz, Chloroform-d) δ 8.22 – 7.67, 7.47, 7.26 – 6.60, 4.30, 3.97 – 3.09. 13C NMR 

(100 MHz, Chloroform-d) δ 197.33, 137.74, 136.47, 133.55, 128.76, 128.48, 128.02, 119.03, 44.93, 

42.55, 41.37.  

Characterization data for P1a2c. A white solid was obtained in 95.6% yield. Mw = 47 800, Mw/Mn 

= 1.64. IR (KBr disk), ν (cm-1): 3028, 2901, 2239 (C≡N), 1683, 1596, 1498, 1447, 1211, 1002, 757, 

689. 1H NMR (400 MHz, Chloroform-d) δ 8.21 – 7.70, 7.69 – 7.26, 7.22 – 6.74, 4.73 – 4.15, 4.08 

– 3.17. 13C NMR (100 MHz, Chloroform-d) δ 197.43, 139.58, 137.25, 136.46, 134.57, 133.68, 

128.79, 128.72, 128.03, 127.10, 126.75, 119.03, 44.92, 42.55, 41.58.  

Characterization data for P1a2d. A white solid was obtained in 89.7% yield. Mw = 12 500, Mw/Mn 

= 1.50. IR (KBr disk), ν (cm-1): 2935, 2840, 2239 (C≡N), 1674, 1600, 1510, 1259, 1170, 1025, 833, 

708. 1H NMR (400 MHz, Chloroform-d) δ 7.82, 6.89, 4.26, 3.94 – 2.93. 13C NMR (100 MHz, 

Chloroform-d) δ 195.71, 195.13, 163.87, 163.71, 130.86, 130.33, 129.56, 119.26, 113.91, 55.50, 

45.28, 42.50.  

Characterization data for P1b2a. A white solid was obtained in 90.2% yield. Mw = 37 000, Mw/Mn 

= 1.74. IR (KBr disk), ν (cm-1): 3058, 2927, 2239 (C≡N), 1684, 1596, 1448, 1213, 1001, 755, 690. 

1H NMR (400 MHz, Chloroform-d) δ 8.22 – 7.68 (m, 4H), 7.62 – 7.31, 7.27 – 6.39, 4.58 – 3.96, 
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3.93 – 2.90. 13C NMR (100 MHz, Chloroform-d) δ 197.12, 136.46, 134.98, 133.48, 128.71, 128.03, 

119.32, 45.20, 42.74, 41.35.  

Characterization data for P1b2b. A white solid was obtained in 88.1% yield. Mw = 25 700, Mw/Mn 

= 1.67. IR (KBr disk), ν (cm-1): 3058, 2926, 2239 (C≡N), 1683, 1596, 1448, 1212, 1001, 756, 690. 

1H NMR (400 MHz, Chloroform-d) δ 8.15 – 7.67, 7.58 – 7.17, 7.15 – 6.54, 4.58 – 3.95, 3.92 – 3.13. 

13C NMR (100 MHz, Chloroform-d) δ 197.31, 196.82, 136.44, 133.47, 128.69, 128.00, 44.84, 42.68, 

41.39.  

Characterization data for P1b2c. A white solid was obtained in 95.5% yield. Mw = 60 200, Mw/Mn 

= 1.89. IR (KBr disk), ν (cm-1): 3028, 2901, 2238 (C≡N), 1682, 1595, 1497, 1448, 1210, 1002, 755, 

689. 1H NMR (400 MHz, Chloroform-d) δ 8.14 – 7.68, 7.68 – 7.28, 7.24 – 6.83, 4.60 – 4.01, 4.00 

– 3.08. 13C NMR (100 MHz, Chloroform-d) δ 197.22, 139.67, 137.21, 136.45, 133.61, 133.43, 

128.98, 128.75, 128.51, 128.03, 127.20, 126.91, 119.05, 44.85, 42.75, 41.61.  

Characterization data for P1b2d. A white solid was obtained in 92.6% yield. Mw = 12 200, Mw/Mn 

= 1.58. IR (KBr disk), ν (cm-1): 2935, 2840, 2239 (C≡N), 1675, 1600, 1510, 1419, 1260, 1170, 

1027, 833, 707. 1H NMR (400 MHz, Chloroform-d) δ 8.16 – 7.60, 7.49 – 6.59, 4.53 – 3.97, 3.94 – 

2.90. 13C NMR (100 MHz, Chloroform-d) δ 195.63, 163.75, 130.84, 130.37, 129.58, 119.43, 113.87, 

55.48, 45.32, 42.72, 40.97.  

Characterization data for P1c2a. A white solid was obtained in 83.1% yield. Mw = 24 000, Mw/Mn 

= 1.67. IR (KBr disk), ν (cm-1): 3059, 2922, 2239 (C≡N), 1685, 1597, 1448, 1213, 1001, 755, 690. 

1H NMR (400 MHz, Chloroform-d) δ 8.15 – 7.65, 7.61 – 7.26, 7.10 – 6.44, 4.60 – 3.91, 3.89 – 3.04, 

2.31 – 1.82. 13C NMR (100 MHz, Chloroform-d) δ 196.67, 136.50, 133.41, 128.68, 128.02, 119.39, 

45.27, 42.76, 41.41, 21.06.  

Characterization data for P1c2b. A white solid was obtained in 86.0% yield. Mw = 18 700, Mw/Mn 

= 1.56. IR (KBr disk), ν (cm-1): 3058, 2920, 2240 (C≡N), 1684, 1597, 1448, 1213, 1001, 756, 690. 

1H NMR (400 MHz, Chloroform-d) δ 8.07 – 7.64, 7.62 – 7.25, 7.16 – 6.38, 4.49 – 3.93, 3.92 – 3.06, 

2.35 – 1.85. 13C NMR (100 MHz, Chloroform-d) δ 197.34, 136.45, 133.46, 128.68, 127.99, 119.09, 

44.78, 42.66, 41.44, 21.09.  

Characterization data for P1c2c. A white solid was obtained in 95.6% yield. Mw = 35 800, Mw/Mn 

= 1.83. IR (KBr disk), ν (cm-1): 3027, 2919, 2239 (C≡N), 1683, 1596,1498, 1448, 1210, 1002, 755, 

689. 1H NMR (400 MHz, Chloroform-d) δ 8.19 – 7.68, 7.68 – 7.26, 7.25 – 6.66, 4.56 – 4.00, 4.00 

– 3.14, 2.31 – 1.87. 13C NMR (100 MHz, Chloroform-d) δ 197.26, 139.80, 138.62, 137.35, 136.48, 

134.81, 133.58, 128.75, 128.47, 128.03, 126.92, 119.24, 44.84, 42.76, 42.63, 41.61, 21.15.  

Characterization data for P1c2d. A white solid was obtained in 85.0% yield. Mw = 9100, Mw/Mn 

= 1.33. IR (KBr disk), ν (cm-1): 2935, 2841, 2239 (C≡N), 1675, 1600, 1510, 1260, 1170, 1027, 833, 

708. 1H NMR (400 MHz, Chloroform-d) δ 8.19 – 7.58, 7.53 – 7.15, 7.10 – 6.48, 4.70 – 3.95, 3.95 

– 2.98, 2.36 – 1.82. 13C NMR (100 MHz, Chloroform-d) δ 195.21, 163.75, 130.84, 130.37, 129.63, 

119.52, 113.86, 55.48, 45.38, 42.74, 41.00, 21.09.  

Characterization data for P1d2a. A pale-pink solid was obtained in 90.3% yield. Mw = 20 800, 

Mw/Mn = 1.66. IR (KBr disk), ν (cm-1): 3060, 2931, 2238 (C≡N), 1681, 1597, 1448, 1213, 989 754, 

689. 1H NMR (400 MHz, Chloroform-d) δ 8.15 – 7.70, 7.63 – 7.30, 7.27 – 6.21, 4.63 – 3.98, 3.97 

– 3.06. 13C NMR (100 MHz, Chloroform-d) δ 197.21, 136.42, 133.62, 128.77, 127.99, 119.19, 45.17, 

42.52.  

Characterization data for P1d2b. A pale-pink solid was obtained in 95.1% yield. Mw = 28 200, 

Mw/Mn = 1.92. IR (KBr disk), ν (cm-1): 3060, 2928, 2238 (C≡N), 1682, 1596, 1449, 1213, 1001, 
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754, 689. 1H NMR (400 MHz, Chloroform-d) δ 8.31 – 7.68, 7.66 – 7.29, 7.21 – 6.14, 5.39 – 4.18, 

4.17 – 3.09. 13C NMR (100 MHz, Chloroform-d) δ 197.58, 136.29, 133.60, 131.85, 129.59, 128.74, 

128.14, 119.39, 44.51, 41.45, 39.00.  

Characterization data for P1d2c. A pale-pink solid was obtained in 95.8% yield. Mw = 34 000, 

Mw/Mn = 1.62. IR (KBr disk), ν (cm-1): 3028, 2930, 2237 (C≡N), 1681, 1596, 1448, 1211, 1002, 

754, 689. 1H NMR (400 MHz, Chloroform-d) δ 8.17 – 7.76, 7.74 – 7.29, 7.24 – 6.32, 5.47 – 4.21, 

4.19 – 3.28. 13C NMR (100 MHz, Chloroform-d) δ 197.66, 136.75, 136.34, 133.65, 131.97, 129.40, 

128.74, 128.17, 126.87, 120.85, 119.65, 118.22, 44.52, 41.69, 39.22.  

Characterization data for P1d2d. A pale-pink solid was obtained in 85.5% yield. Mw = 16 600, 

Mw/Mn = 1.40. IR (KBr disk), ν (cm-1): 2936, 2840, 2238 (C≡N), 1671, 1600, 1510, 1261, 1170, 

1028, 833. 1H NMR (400 MHz, Chloroform-d) δ 8.33 – 7.29, 7.22 – 6.13, 5.55 – 4.20, 4.29 – 2.85. 

13C NMR (100 MHz, Chloroform-d) δ 195.82, 163.78, 132.28, 130.50, 128.16, 120.10, 113.78, 

55.48, 44.60, 41.08, 39.22.  

 

 

Figure S7. Large-scale preparation of P1a2a. 
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Figure S8. HRMS test of model compound 5. 
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Figure S9. FT-IR spectra of 1a (A), 2b (B) and P1a2b (C). 
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Figure S10. FT-IR spectra of 1a (A), 2c (B) and P1a2c (C). 
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Figure S11. FT-IR spectra of 1a (A), 2d (B) and P1a2d (C). 
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Figure S12. FT-IR spectra of 1b (A), 2a (B) and P1b2a (C). 
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Figure S13. FT-IR spectra of 1b (A), 2b (B) and P1b2b (C). 
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Figure S14. FT-IR spectra of 1b (A), 2c (B) and P1b2c (C). 
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Figure S15. FT-IR spectra of 1b (A), 2d (B) and P1b2d (C). 
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Figure S16. FT-IR spectra of 1c (A), 2a (B) and P1c2a (C). 
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Figure S17. FT-IR spectra of 1c (A), 2b (B) and P1c2b (C). 
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Figure S18. FT-IR spectra of 1c (A), 2c (B) and P1c2c (C). 
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Figure S19. FT-IR spectra of 1c (A), 2d (B) and P1c2d (C). 
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Figure S20. FT-IR spectra of 1d (A), 2a (B) and P1d2a (C). 
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Figure S21. FT-IR spectra of 1d (A), 2b (B) and P1d2b (C). 

 



19 

 

4000 3000 2000

Wavenumber (cm-1)

2000 1600 1200 800 400

AA

C

B

 

Figure S22. FT-IR spectra of 1d (A), 2c (B) and P1d2c (C). 
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Figure S23. FT-IR spectra of 1d (A), 2d (B) and P1d2d (C). 
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Figure S24. 1H NMR spectra of model compound 5. 
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Figure S25. 1H NMR spectra of 1a (A), 2b (B) and P1a2b (C) in CDCl3. 

The solvent peaks are marked with asterisks.  
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Figure S26. 13C NMR spectra of 1a (A), 2b (B) and P1a2b (C) in 

CDCl3. The solvent peaks are marked with asterisks.  
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Figure S27. 1H NMR spectra of 1a (A), 2c (B) and P1a2c (C) in CDCl3. 

The solvent peaks are marked with asterisks.  
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Figure S28. 13C NMR spectra of 1a (A), 2c (B) and P1a2c (C) in CDCl3. 

The solvent peaks are marked with asterisks.  
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Figure S29. 1H NMR spectra of 1a (A), 2d (B) and P1a2d (C) in CDCl3. 

The solvent peaks are marked with asterisks.  
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Figure S30. 13C NMR spectra of 1a (A), 2d (B) and P1a2d (C) in 

CDCl3. The solvent peaks are marked with asterisks.  
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Figure S31. 1H NMR spectra of 1b (A), 2a (B) and P1b2a (C) in CDCl3. 

The solvent peaks are marked with asterisks.  
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Figure S32. 13C NMR spectra of 1b (A), 2a (B) and P1b2a (C) in 

CDCl3. The solvent peaks are marked with asterisks.  
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Figure S33. 1H NMR spectra of 1b (A), 2b (B) and P1b2b (C) in 

CDCl3. The solvent peaks are marked with asterisks.  
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Figure S34. 13C NMR spectra of 1b (A), 2b (B) and P1b2b (C) in 

CDCl3. The solvent peaks are marked with asterisks.  
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Figure S35. 1H NMR spectra of 1b (A), 2c (B) and P1b2c (C) in CDCl3. 

The solvent peaks are marked with asterisks.  
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Figure S36. 13C NMR spectra of 1b (A), 2c (B) and P1b2c (C) in 

CDCl3. The solvent peaks are marked with asterisks.  
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Figure S37. 1H NMR spectra of 1b (A), 2d (B) and P1b2d (C) in 

CDCl3. The solvent peaks are marked with asterisks.  
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Figure S38. 13C NMR spectra of 1b (A), 2d (B) and P1b2d (C) in 

CDCl3. The solvent peaks are marked with asterisks.  
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Figure S39. 1H NMR spectra of 1c (A), 2a (B) and P1c2a (C) in CDCl3. 

The solvent peaks are marked with asterisks.  
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Figure S40. 13C NMR spectra of 1c (A), 2a (B) and P1c2a (C) in CDCl3. 

The solvent peaks are marked with asterisks.  
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Figure S41. 1H NMR spectra of 1c (A), 2b (B) and P1c2b (C) in CDCl3. 

The solvent peaks are marked with asterisks.  
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Figure S42. 13C NMR spectra of 1c (A), 2b (B) and P1c2b (C) in 

CDCl3. The solvent peaks are marked with asterisks.  
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Figure S43. 1H NMR spectra of 1c (A), 2c (B) and P1c2c (C) in CDCl3. 

The solvent peaks are marked with asterisks.  
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Figure S44. 13C NMR spectra of 1c (A), 2c (B) and P1c2c (C) in CDCl3. 

The solvent peaks are marked with asterisks.  
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Figure S45. 1H NMR spectra of 1c (A), 2d (B) and P1c2d (C) in CDCl3. 

The solvent peaks are marked with asterisks.  
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Figure S46. 13C NMR spectra of 1c (A), 2d (B) and P1c2d (C) in 

CDCl3. The solvent peaks are marked with asterisks.  
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Figure S47. 1H NMR spectra of 1d (A), 2a (B) and P1d2a (C) in CDCl3. 

The solvent peaks are marked with asterisks.  
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Figure S48. 13C NMR spectra of 1d (A), 2a (B) and P1d2a (C) in 

CDCl3. The solvent peaks are marked with asterisks.  
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Figure S49. 1H NMR spectra of 1d (A), 2b (B) and P1d2b (C) in 

CDCl3. The solvent peaks are marked with asterisks.  

 



46 

 

3

4

3

4(B)

(A)

(C)

*

1

1

2

2

*

200 180 160 140 120 100 80 60 40 20 0

Chemical shift (ppm)

5 6

7

5

6

7*

 

Figure S50. 13C NMR spectra of 1d (A), 2b (B) and P1d2b (C) in 

CDCl3. The solvent peaks are marked with asterisks.  
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Figure S51. 1H NMR spectra of 1d (A), 2c (B) and P1d2c (C) in CDCl3. 

The solvent peaks are marked with asterisks.  
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Figure S52. 13C NMR spectra of 1d (A), 2c (B) and P1d2c (C) in 

CDCl3. The solvent peaks are marked with asterisks.  
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Figure S53. 1H NMR spectra of 1d (A), 2d (B) and P1d2d (C) in 

CDCl3. The solvent peaks are marked with asterisks.  
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Figure S54. 13C NMR spectra of 1d (A), 2d (B) and P1d2d (C) in 

CDCl3. The solvent peaks are marked with asterisks.  
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Figure S55. HMBC spectrum of model compound 5 in CDCl3. 

 

Figure S56. The probable mechanism of the C(sp3)-H Michael 

polyaddition 
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Figure S57. TGA curves of P1a-1d/2a-2d. 
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Figure S58. DSC curves of P1a-1d/2a-2d. 
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Figure S59. PL spectra of 1a, 2a, model compound 5, and P1a2a in DMF 

(c = 1.0 × 10-3 M, λex = 380 nm). 
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Figure S60. PL spectra of P1a2a in solid state with different excitation 

wavelengths. Inset: CIE coordination of P1a2a in solid state. (Excitation 

ranges: λex = 300 − 580 nm). 
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Figure S61. PL spectra of P1b2a in solid state with different excitation 

wavelengths. Inset: CIE coordination of P1b2a in solid state. 

(Excitation ranges: λex = 340 − 620 nm).  
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Figure S62. PL spectra of P1c2a in solid state with different excitation 

wavelengths. Inset: CIE coordination of P1c2a in solid state. 

(Excitation ranges: λex = 320 − 600 nm).  

 



55 

 

400 500 600 700 800

C
IE

 Y

CIE X

P
L

 I
n

te
n

s
it

y
 (

a
u

)

Wavelength (nm)

 360

 380

 400

 420

 440

 460

 480

 500

 520

 540

 560

 580

lex/ nm

 

Figure S63. PL spectra of P1d2a in solid state with different excitation 

wavelengths. Inset: CIE coordination of P1d2a in solid state. 

(Excitation ranges: λex = 360 − 580 nm).  
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Figure S64. PL spectra of P1a2b in DMF (c = 1.0 × 10-3 M) with different 

excitation wavelengths. Inset: CIE coordination of P1a2b in DMF. 

(Excitation ranges: λex = 280 − 400 nm).  
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Figure S65. PL spectra of P1a2c in DMF (c = 1.0 × 10-3 M) with 

different excitation wavelengths. Inset: CIE coordination of P1a2c in 

DMF. (Excitation ranges: λex = 280 − 400 nm).  
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Figure S66. PL spectra of P1a2d in DMF (c = 1.0 × 10-3 M) with 

different excitation wavelengths. Inset: CIE coordination of P1a2d in 

DMF. (Excitation ranges: λex = 300 − 480 nm).  
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Figure S67. PL spectra of P1b2b in DMF (c = 1.0 × 10-3 M) with 

different excitation wavelengths. Inset: CIE coordination of P1b2b in 

DMF. (Excitation ranges: λex = 280 − 400 nm).  
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Figure S68. PL spectra of P1b2c in DMF (c = 1.0 × 10-3 M) with 

different excitation wavelengths. Inset: CIE coordination of P1b2c in 

DMF. (Excitation ranges: λex = 280 − 400 nm).  
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Figure S69. PL spectra of P1b2d in DMF (c = 1.0 × 10-3 M) with 

different excitation wavelengths. Inset: CIE coordination of P1b2d in 

DMF. (Excitation ranges: λex = 400 − 520 nm). 
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Figure S70. PL spectra of P1c2b in DMF (c = 1.0 × 10-3 M) with 

different excitation wavelengths. Inset: CIE coordination of P1c2b in 

DMF. (Excitation ranges: λex = 300 − 460 nm).  
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Figure S71. PL spectra of P1c2c in DMF (c = 1.0 × 10-3 M) with 

different excitation wavelengths. Inset: CIE coordination of P1c2c in 

DMF. (Excitation ranges: λex = 300 − 460 nm).  
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Figure S72. PL spectra of P1c2d in DMF (c = 1.0 × 10-3 M) with 

different excitation wavelengths. Inset: CIE coordination of P1c2d in 

DMF. (Excitation ranges: λex = 420 − 500 nm). 

 



60 

 

400 500 600 700 800

C
IE

 Y

CIE X

P
L

 I
n

te
n

s
it

y
 (

a
u

)

Wavelength (nm)

 300

 320

 340

 360

 380

lex/ nm

 

Figure S73. PL spectra of P1d2b in DMF (c = 1.0 × 10-3 M) with 

different excitation wavelengths. Inset: CIE coordination of P1d2b in 

DMF. (Excitation ranges: λex = 300 − 380 nm). 

400 500 600 700 800

C
IE

 Y

CIE X

P
L

 I
n

te
n

s
it

y
 (

a
u

)

Wavelength (nm)

 320

 340

 360

 380

 400

lex/ nm

  

Figure S74. PL spectra of P1d2c in DMF (c = 1.0 × 10-3 M) with 

different excitation wavelengths. Inset: CIE coordination of P1d2c in 

DMF. (Excitation ranges: λex = 320 − 400 nm). 
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Figure S75. PL spectra of P1d2d in DMF (c = 1.0 × 10-3 M) with 

different excitation wavelengths. Inset: CIE coordination of P1d2d in 

DMF. (Excitation ranges: λex = 350 − 400 nm).  
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Figure S76. CIE coordination of power P1a2a-1d2d (λex = 360 nm). 

Blue mark P1a2a-d; Orange mark P1b2a-d; Green mark P1c2a-d; Red 

mark P1d2a-d. 
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Figure S77. DLS data of P1a2a under different concentration.  
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Figure S78. DLS data of P1a2a (1.0 × 10-3 M in DMF) under different 

molecular weights.  
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Figure S79. PL spectra of the P1a2a (1.0 × 10-3 M in DMF) probe with 

different concentration of Fe3+ (λex = 365 nm).  
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