Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2025

Boron-Based Poly(Asymmetric Substituted Glycolide) Nanospheres

Ayşenur Vardar,¹ Mehmet Onur Arıcan,² Sezgi Erdoğan,² Taner Erdoğan,^{2,3} Ufuk Yıldız,¹ Asgar Kayan, ¹ Olcay Mert^{1,2}*

¹ Department of Chemistry, Kocaeli University, 41001 Kocaeli, Turkey

² Department of Polymer Sci. and Technol., Kocaeli University, 41001 Kocaeli, Turkey

³ Kocaeli Vocational School, Department of Chemistry and Chemical Processing Technologies,

Kocaeli University, Kocaeli 41140, Türkiye

Table of Contents

I.	ATR-FTIR Spectra of 4-6, 9-14, I-VI and 16-21	2
II.	NMR Spectra of 4-6, 9-14, I-V, 16-20 and HRMS Spectra of I-VI	6
III.	UV/Vis Spectra of 15-22	27
IV.	Particle Size Distribution Graphs of 16-21	34

Figure S1. ATR-FTIR spectra of hydroxy acids 4-6

Figure S2. ATR-FTIR spectra of intermediates 9-14

Figure S3. ATR-FTIR spectra of ASGs I-VI monomers

Figure S4. ATR-FTIR spectra of boron based BF₂I-PASGs 16-21 homopolymers

II. NMR Spectra of 4-6, 9-14, I-V, 16-20 and HRMS Spectra of I-VI

Figure S6. ¹³C NMR spectrum of hydroxy acid 4

Figure S8. ¹³C NMR spectrum of hydroxy acid 5

Figure S10. ¹³C NMR spectrum of hydroxy acid 6

Figure S11. ¹H NMR spectrum of intermediate 9

150130110908070605040302010(0)Figure S12. 13 C NMR spectrum of intermediate 9 (a mixture of diastereomers)¹

Figure S14. ¹³C NMR spectrum of intermediate 10 (a mixture of diastereomers)¹

Figure S16. ¹³C NMR spectrum of intermediate 11 (a mixture of diastereomers)¹

Figure S17. ¹H NMR spectrum of intermediate **12** (* indicates impurity)

Figure S18. ¹³C NMR spectrum of intermediate 12 (a mixture of diastereomers)¹

Figure S19. ¹H NMR spectrum of intermediate 13 (* indicates impurity)

Figure S20. ¹³C NMR spectrum of intermediate 13 (a mixture of diastereomers)¹

Figure S21. ¹H NMR spectrum of intermediate 14 (* indicates impurity)

Figure S22. ¹³C NMR spectrum of intermediate 14 (a mixture of diastereomers)¹

Figure S24. ¹³C NMR spectrum of I (PMG) (a mixture of diastereomers)¹

Figure S26. ¹³C NMR spectrum of II (PEG) (a mixture of diastereomers)¹

Figure S28. ¹³C NMR spectrum of III (IBMG) (a mixture of diastereomers)¹

Figure S30. ¹³C NMR spectrum of IV (IBEG) (a mixture of diastereomers)¹

Figure S32. ¹³C NMR spectrum of V (ILMG) (a mixture of diastereomers)¹

Figure S36. HRMS spectrum of IV (IBEG)

1: TOF MS ES+ 1.73e+003

Figure S39. ¹H NMR spectrum of 16 (BF₂I-PPMG)

Figure S40. ¹³C NMR spectrum of 16 (BF₂I-PPMG)

Figure S42. ¹³C NMR spectrum of 17 (BF₂I-PPEG)

Figure S43. ¹H NMR spectrum of 18 (BF₂I-PIBMG)

Figure S44. ¹³C NMR spectrum of 18 (BF₂I-PIBMG)

Figure S46. ¹³C NMR spectrum of 19 (BF₂I-PIBEG)

Figure S48. ¹³C NMR spectrum of 20 (BF₂I-PILMG)

III. UV/Vis Spectra of 15-22

Figure S49. Wavelength-absorption change at different concentrations, and concentrationabsorption change (inlet) for boron BF_2I 15 initiator

Figure S50. Wavelength-absorption change at different concentrations, and concentrationabsorption change (inlet) for BF_2I -PPMG 16

Figure S51. Wavelength-absorption change at different concentrations, and concentrationabsorption change (inlet) for BF_2I -PPEG 17

Figure S52. Wavelength-absorption change at different concentrations, and concentrationabsorption change (inlet) for BF_2I -PIBMG 18

Figure S53. Wavelength-absorption change at different concentrations, and concentrationabsorption change (inlet) for BF_2I -PIBEG 19

Figure S54. Wavelength-absorption change at different concentrations, and concentrationabsorption change (inlet) for BF_2I -PILMG 20

Figure S55. Wavelength-absorption change at different concentrations, and concentrationabsorption change (inlet) for BF_2I -PLA 22

IV. Particle Size Distribution Graphs of 16-21

Figure S56. Intensity-size graph of PTX-BF₂I-PPMG-NP 16

Figure S57. Intensity-size graph of PTX-BF₂I-PPEG-NP 17

Figure S58. Intensity-size graph of PTX-BF₂I-PIBMG-NP 18

Figure S59. Intensity-size graph of PTX-BF₂I-PIBEG-NP 19

Figure S60. Intensity-size graph of PTX-BF₂I-PILMG-NP 20

Figure S61. Intensity-size graph of PTX-BF₂I-PILEG-NP 21

Figure S62. Calculated UV absorption spectra of 15 and 16

Figure S63. Computed frontier molecular orbitals of 16

REFERENCES

(1) Yin, M.; Baker, G. L. Preparation and Characterization of Substituted Polylactides. *Macromolecules* **1999**, *32* (23), 7711-7718.