

Supplementary Information for

**Investigation of C1 Polymerizability of Diazoacetamide: Alternating C1-cyclopolymerization of
Hetero-bis(diazocarbonyl) Compound Bearing Diazoacetate and Diazoacetamide Units**

Hiroaki Shimomoto,* Haruki Ichihara, Yuhi Ito, Akihiro Watanabe, Tomomichi Itoh, and Eiji Ihara*

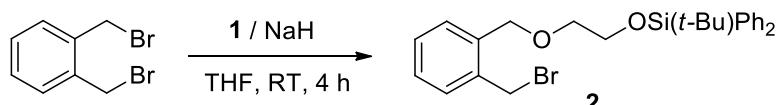
*Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3
Bunkyo-cho, Matsuyama 790-8577, Japan*

Phone & Fax: +81-89-927-9949; e-mail: shimomoto.hiroaki.mx@ehime-u.ac.jp (H. S.)

Phone & Fax: +81-89-927-8547; e-mail: ihara@ehime-u.ac.jp (E. I.)

Experimental Section

Materials

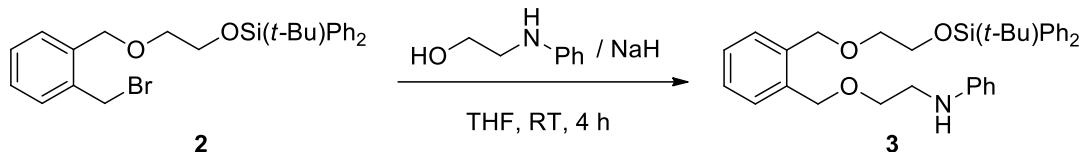

Tetrahydrofuran (THF, Kanto Chemical, >99.5%, dehydrated Super Plus grade) was used after passage through solvent purification columns (Nikko Hansen & Co., Glass Contour MINI). Diethyl ether (Kanto Chemical, >99.5%, dehydrated), *N,N*-dimethylformamide (Kanto Chemical, >99.5%, super dehydrated), chloroform (Junsei Chemical, 99%), dichloromethane (FUJIFILM Wako Pure Chemical, Guaranteed Reagent), acetonitrile (Kanto Chemical, >99.5%, super dehydrated), hexane (FUJIFILM Wako Pure Chemical, >96.0%), ethyl acetate (FUJIFILM Wako Pure Chemical, >99.5%), methanol (Yoneyama Yakuhin Kogyo, >99%), allylpalladium(II) chloride dimer (π -allylPdCl, Sigma-Aldrich, >98.0%), allyl[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]palladium(II) chloride [(NHC)Pd(nq), Sigma-Aldrich, >98.0%], sodium tetraphenylborate (NaBPh₄, Tokyo Chemical Industry, >99.5%), ethylene glycol (Nacalai Tesque, >99.0%), imidazole (Tokyo Chemical Industry, >98.0%), *tert*-butyldiphenylchlorosilane (*t*-BuPh₂SiCl, Kanto Chemical, >95.0%), *o*-xylylenedibromide (Tokyo Chemical Industry, >98.0%), 2-anilinoethanol (Tokyo Chemical Industry, >98.0%), tetrabutylammonium fluoride (TBAF, *ca.* 1 M in THF, Tokyo Chemical Industry), pyridine (Kanto Chemical, >99.5%), bromoacetyl bromide (Sigma-Aldrich, >98.0%), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU, Tokyo Chemical Industry, >98%), aniline (FUJIFILM Wako Pure Chemical, >98%), salicylaldehyde (Tokyo Chemical Industry, >98%), *N*-methylaniline (Kanto Chemical, >98%), lithium aluminum hydride (LiAlH₄, Kanto Chemical, >92%), sodium hydride (NaH, Nacalai Tesque, with approx. 40% paraffin liquid), hydrochloric acid (Nacalai Tesque, 35–37%), Na₂SO₄ (Nacalai Tesque, > 98.5%), and CaH₂ (Nacalai Tesque, >90.0%) were used as received. *N,N*-ditosylhydrazine was synthesized according to the literature.¹

Synthesis of monomers and their precursors

Ethyl diazoacetate (EDA),² 2-diazo-*N*-methyl-*N*-phenylacetamide (**M1**),³ *N,N*-dibenzyl-2-diazoacetamide (**M2**)³ 2-diazo-1-(piperidin-1-yl)ethanone (**M3**),⁴ and *N-n*-hexyl diazoacetamide (**M4**)⁵ were synthesized according to the literatures. EDA was dried over CaH₂ and stored as a dichloromethane solution. The concentrations of EDA were determined with trichloroethylene (Katayama Chemical) as an internal standard by using ¹H NMR spectroscopy. **Caution!** Extra care must be taken for syntheses and handling of the diazocarbonyl compounds because of their potential explosiveness.

2-[(*tert*-Butyldiphenylsilyl)oxy]ethanol (**1**) was prepared according to the literature.⁶

Preparation of **2**.



Under a N₂ atmosphere, a THF (30 mL) suspension of NaH (0.69 g, 29 mmol) was placed in a round bottomed flask equipped with a three-way cock, and was cooled to 0 °C. At 0 °C, a THF (34 mL) solution of **1** (7.2 g, 24 mmol) was added dropwise to the suspension, and the mixture was warmed to room temperature and stirred for 10 min. At room temperature, a THF (24 mL) solution of *o*-xylylenedibromide (6.3 g, 24 mmol) was added dropwise, and the mixture was stirred at room temperature for 4 h. H₂O (90 mL) was added to quench the remaining NaH, and THF was removed using an evaporator. After CH₂Cl₂ (90 mL) was added to the residual aqueous suspension, the mixture was transferred to a separatory funnel, with which the organic layer was separated using additional CH₂Cl₂ (90 mL × 2) and washed with

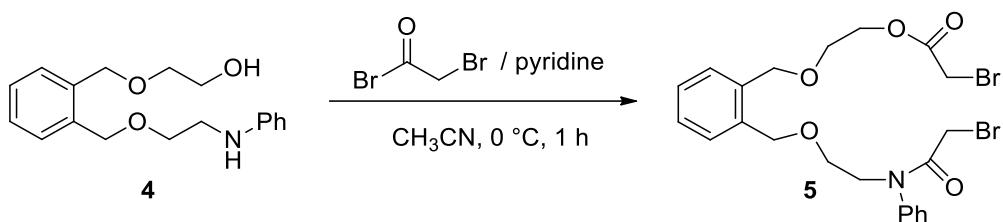
saturated aqueous NaCl solution and water. The organic layer was dried over Na_2SO_4 . After the volatiles were removed under reduced pressure, the residue was subjected to purification with preparative recycling SEC using CHCl_3 as an eluent to afford **2** as pale yellow viscous oil (5.6 g, 12 mmol) in 49% yield.

^1H NMR (500 MHz, CDCl_3 , δ): 7.71–7.28 (m, 14H, Ar- H), 4.70 (s, 2H, PhCH_2), 4.63 (s, 2H, PhCH_2), 3.85 (t, J = 5.0 Hz, 2H, OCH_2), 3.65 (t, J = 5.0 Hz, 2H, OCH_2), 1.06 (s, 9H, *t*-Bu).

Preparation of 3.

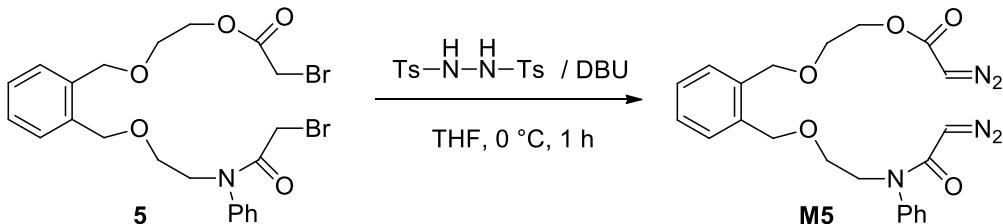
Under a N_2 atmosphere, a THF (10 mL) suspension of NaH (0.097 g, 4.0 mmol) was placed in a round bottomed flask equipped with a three-way cock, and was cooled to 0 °C. At 0 °C, 2-anilinoethanol (0.50 mL, 4.0 mmol) was added dropwise to the suspension, and the mixture was warmed to room temperature and stirred for 10 min. At room temperature, a THF (14 mL) solution of **2** (0.97 g, 2.0 mmol) was added dropwise, and the mixture was stirred at room temperature for 4 h. H_2O (24 mL) was added to quench the remaining NaH, and THF was removed using an evaporator. After CH_2Cl_2 (24 mL) were added to the residual aqueous suspension, the mixture was transferred to a separatory funnel, with which the organic layer was separated using additional CH_2Cl_2 (24 mL \times 2) and washed with saturated aqueous NaCl solution and water. The organic layer was dried over Na_2SO_4 . After the volatiles were removed under reduced pressure, the residue was subjected to purification with flash chromatography using CHCl_3 as an eluent to afford **3** as yellow viscous oil (1.0 g, 1.9 mmol) in 93% yield.

^1H NMR (500 MHz, CDCl_3 , δ): 7.71–6.60 (m, 19H, Ar- H), 4.62 (s, 2H, PhCH_2), 4.61 (s, 2H, PhCH_2), 4.03 (s, 1H, NH), 3.83 (t, J = 5.3 Hz, 2H, OCH_2), 3.66 (t, J = 5.3 Hz, 2H, OCH_2), 3.59 (t, J = 5.0 Hz, 2H, OCH_2), 3.29 (t, J = 5.3 Hz, 2H, NCH_2), 1.06 (s, 9H, *t*-Bu).


Preparation of 4.

Under a N_2 atmosphere, a THF (10 mL) solution of **3** (0.47 g, 0.86 mmol) was placed in a round bottomed flask equipped with a three-way cock. At room temperature, TBAF (1 M THF solution, 0.3 mL, 3 mmol) was added dropwise to the solution, and the mixture was stirred for 3 h at room temperature. After H_2O (10 mL) was added, THF was removed using an evaporator. The resulting residue was transferred to a separatory funnel with CHCl_3 (10 mL), and the organic layer was separated using additional CHCl_3 (10 mL \times 2) and washed with saturated aqueous NaCl solution and water. The organic layer was dried over Na_2SO_4 . After the volatiles were removed under reduced pressure, the residue was subjected to purification with flash chromatography on silica gel using a gradient mixture of hexane and AcOEt (hexane/AcOEt = 1:0–3:1) as an eluent to afford **4** as yellow viscous oil (0.19 g, 0.62 mmol) in 71% yield.

^1H NMR (500 MHz, CDCl_3 , δ): 7.39–7.36 (m, 2H, Ar- H), 7.33–7.30 (m, 2H, Ar- H), 7.18–7.15 (m, 2H, Ar- H), 6.72–6.69 (m, 1H, Ar- H), 6.63–6.61 (m, 2H, Ar- H), 4.63 (s, 2H, PhCH_2), 4.63 (s, 2H, PhCH_2), 4.17 (br-s, 1H, NH), 3.72 (m, 2H, OCH_2), 3.72 (m, 2H, OCH_2), 3.59 (t, J = 4.5 Hz, 2H, OCH_2), 3.22 (t, J = 5.3 Hz, 2H, NCH_2), 2.49 (br-s, 1H, OH)

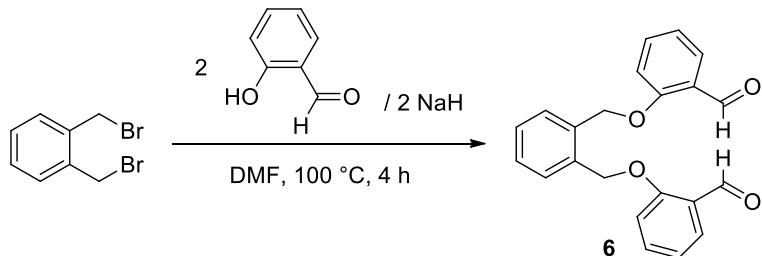

Preparation of 5.

Under a N_2 atmosphere, an acetonitrile (25 mL) solution of **4** (1.0 g, 3.4 mmol) and pyridine (0.83 mL, 10 mmol) was placed in a round bottomed flask equipped with a three-way cock and was cooled to 0°C . At 0°C , bromoacetyl bromide (0.75 mL, 8.6 mmol) was added dropwise to the solution, and the mixture was stirred at 0°C for 1 h. After H_2O (25 mL) was added, acetonitrile was removed using an evaporator. The residual aqueous suspension was transferred to a separatory funnel with CHCl_3 (25 mL), with which the organic layer was separated using additional CHCl_3 (25 mL \times 2) and washed with saturated aqueous NaCl solution and water. The organic layer was dried over Na_2SO_4 . After the volatiles were removed under reduced pressure, the residue was subjected to purification with preparative recycling SEC using CHCl_3 as an eluent to afford bis-bromoacetylated compound **5** as dark brown viscous oil (1.8 g, 3.3 mmol) in 96% yield.

^1H NMR (500 MHz, CDCl_3 , δ): 7.43–7.26 (m, 9H, Ar- H), 4.60 (s, 2H, PhCH_2), 4.57 (s, 2H, PhCH_2), 4.33 (t, J = 4.8 Hz, 2H, OCH_2), 3.95 (t, J = 5.8 Hz, 2H, OCH_2), 3.85 (s, 2H, COCH_2), 3.68 (t, J = 4.8 Hz, 2H, OCH_2), 3.66 (t, J = 5.8 Hz, 2H, NCH_2), 3.64 (s, 2H, COCH_2)

Preparation of M5.

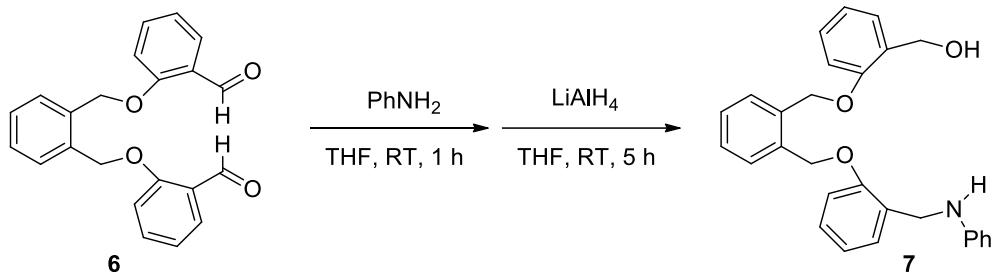
Under a N_2 atmosphere, a THF (40 mL) solution of **5** (1.8 g, 3.3 mmol) and N,N' -ditosylhydrazine (6.7 g, 20 mmol) was placed in a round bottomed flask equipped with a three-way cock and was cooled to 0°C . At 0°C , DBU (7.4 mL, 49 mmol) was added dropwise to the solution, and the mixture was stirred at 0°C for 1 h. After saturated NaHCO_3 aqueous solution (40 mL) was added, THF was removed using an evaporator. The residual aqueous suspension was transferred to a separatory funnel with CHCl_3 (40 mL), with which the organic layer was separated using additional CHCl_3 (40 mL \times 2) and washed with saturated aqueous NaCl solution and water. The organic layer was dried over Na_2SO_4 . After the volatiles were removed under reduced pressure, the residue was subjected to purification with flash chromatography using a mixture of hexane and AcOEt (hexane : AcOEt = 9 : 1–0 : 1) as an eluent to afford **M5** as yellow viscous oil (1.1 g, 2.6 mmol) in 78% yield.


^1H NMR (500 MHz, CDCl_3 , δ): 7.39–7.20 (m, 9H, Ar- H), 4.81 (br-s, 1H, $\text{N}_2\text{-CH-CON}_2$), 4.58 (s, 2H, PhCH_2), 4.57 (s, 2H, PhCH_2), 4.43 (s, 1H, $\text{N}_2\text{-CH-CON}$), 4.31 (t, J = 4.8 Hz, 2H, OCH_2), 3.97 (t, J = 5.8 Hz, 2H, OCH_2), 3.67 (t, J = 5.8 Hz, 2H, NCH_2), 3.65 (t, J = 4.8 Hz, 2H, OCH_2).

^{13}C NMR (126 MHz, CDCl_3 , δ): 167.0 (br, $\text{N}_2\text{-CH-CON}_2$), 166.0 ($\text{N}_2\text{-CH-CON}$), 142.0 [Ar-C, quaternary (q.)], 136.6 (Ar-C, q.), 135.9 (Ar-C, q.), 129.8 (Ar-C), 128.8 (Ar-C), 128.6 (Ar-C), 128.2 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 70.9 (CH_2), 70.5 (CH_2), 68.3 (CH_2), 67.9 (CH_2), 64.1 (CH_2), 49.1 (CH_2), 47.6 ($\text{N}_2\text{-CH-CON}$), 46.5 (br, $\text{N}_2\text{-CH-CON}_2$)

CO_2).

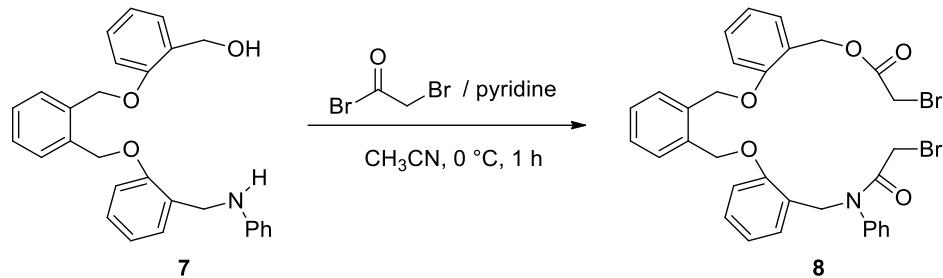
Elemental analyses: Anal. Calcd for $\text{C}_{22}\text{H}_{23}\text{N}_5\text{O}_5 + 1/2 \text{H}_2\text{O}$: C, 59.32; H, 5.43; N, 15.72. Found: C, 59.32; H, 5.37; N, 14.76.


Preparation of 6.

Under a N_2 atmosphere, a DMF (40 mL) suspension of NaH (0.34 g, 14 mmol) and *o*-xylylenedibromide (1.5 g, 5.7 mmol) was placed in a round bottomed flask equipped with a three-way cock and was cooled to 0 °C. At 0 °C, salicylaldehyde (1.5 mL, 14 mmol) was added dropwise to the suspension, and the mixture was stirred at 100 °C for 4 h. After H_2O (20 mL) and CH_2Cl_2 (60 mL) were added, the mixture was transferred to a separatory funnel, with which the organic layer was separated using additional CH_2Cl_2 (60 mL × 2) and washed with saturated aqueous NaCl solution and water. The organic layer was dried over Na_2SO_4 . After the volatiles were removed under reduced pressure, the residue was subjected to purification with preparative recycling SEC using CHCl_3 as an eluent to afford **6** as a colorless solid (2.0 g, 5.7 mmol) in quantitative yield.

^1H NMR (400 MHz, CDCl_3 , δ): 10.5 (s, 2H, COH), 7.84–7.82 (m, 2H, Ar-H), 7.57–7.50 (m, 4H, Ar-H), 7.46–7.42 (m, 2H, Ar-H), 7.07–7.03 (m, 4H, Ar-H), 5.32 (s, 4H, PhCH_2).

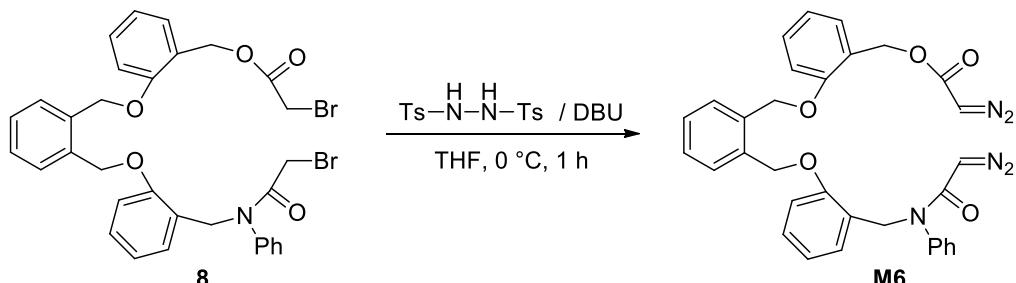
Preparation of 7.


Under a N_2 atmosphere, a THF (35 mL) solution of **6** (2.0 g, 5.7 mmol) was placed in a round bottomed flask equipped with a three-way cock. At room temperature, aniline (0.52 mL, 5.7 mmol) was added dropwise to the solution, and the mixture was stirred at room temperature for 1 h. After H_2O (35 mL) was added, THF was removed using an evaporator. The residual aqueous suspension was transferred to a separatory funnel with CHCl_3 (35 mL), with which the organic layer was separated using additional CHCl_3 (35 mL × 2) and washed with saturated aqueous NaCl solution and water. The organic layer was dried over Na_2SO_4 . After the volatiles were removed under reduced pressure to afford a crude mixture containing the desired mono-imine, which was subjected to the reduction with LiAlH4.

Under a N_2 atmosphere, a THF (35 mL) suspension of LiAlH4 (0.65 g, 17 mmol) was placed in a round bottomed flask equipped with a three-way cock and was cooled to 0 °C. At 0 °C, a THF solution (24 mL) of the above-obtained crude mixture was added dropwise to the suspension, and the mixture was stirred at room temperature for 5 h. The mixture was cooled to 0 °C, and H_2O (30 mL) was carefully added very slowly to quench the remaining LiAlH4. The resulting mixture was filtered through Celite, and THF was removed using an evaporator from the filtrate. The residual

aqueous suspension was transferred to a separatory funnel with CH_2Cl_2 (30 mL), with which the organic layer was separated using additional CH_2Cl_2 (30 mL \times 2). The organic layer was dried over Na_2SO_4 . After Na_2SO_4 was removed by filtration, volatiles were removed under reduced pressure. The residue was subjected to purification with flash chromatography using a mixture of hexane and AcOEt (hexane : AcOEt = 1:0–0:1) as an eluent to afford **7** as a yellow solid (1.1 g, 2.5 mol) in 44% yield.

^1H NMR (400 MHz, CDCl_3 , δ): 7.53–7.49 (m, 2H, Ar-*H*), 7.41–7.38 (m, 2H, Ar-*H*), 7.36–7.30 (m, 2H, Ar-*H*), 7.25–7.20 (m, 2H, Ar-*H*), 7.15–7.11 (m, 2H, Ar-*H*), 7.00–6.90 (m, 4H, Ar-*H*), 6.70–6.66 (m, 1H, Ar-*H*), 6.59–6.57 (m, 2H, Ar-*H*), 5.23 (s, 2H, PhCH_2), 5.22 (s, 2H, PhCH_2), 4.68 (s, 2H, OCH_2), 4.34 (s, 2H, NCH_2), 4.11 (br-s, 1H, NH), 2.17 (br-s, 1H, OH).

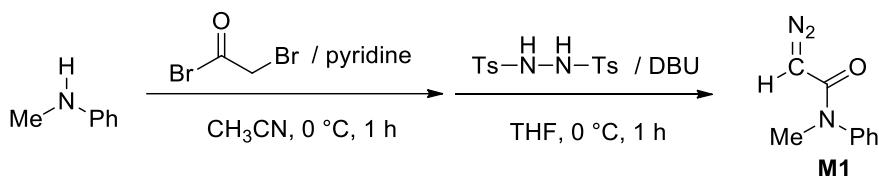

Preparation of 8.

Under a N_2 atmosphere, an acetonitrile (15 mL) solution of **7** (0.52 g, 1.2 mmol) and pyridine (0.30 mL, 3.7 mmol) was placed in a round bottomed flask equipped with a three-way cock and was cooled to 0 °C. At 0 °C, bromoacetyl bromide (0.27 mL, 3.1 mmol) was added dropwise to the solution, and the mixture was stirred at 0 °C for 1 h. After H_2O (15 mL), acetonitrile was removed using an evaporator. The residual aqueous suspension was transferred to a separatory funnel with CHCl_3 (15 mL), with which the organic layer was separated using additional CHCl_3 (15 mL \times 2) and washed with saturated aqueous NaCl solution and water. The organic layer was dried over Na_2SO_4 . After the volatiles were removed under reduced pressure, the residue was subjected to purification with preparative recycling SEC using CHCl_3 as an eluent to afford bis-bromoacetylated compound **8** as a dark brown solid (0.78 g, 1.2 mmol) in 95% yield.

^1H NMR (400 MHz, CDCl_3 , δ): 7.47–7.45 (m, 1H, Ar-*H*), 7.40–7.17 (m, 10H, Ar-*H*), 7.08–7.06 (m, 2H, Ar-*H*), 7.00–6.91 (m, 3H, Ar-*H*), 6.83–6.81 (m, 1H, Ar-*H*), 5.25 (s, 2H, CH_2), 5.08 (s, 2H, CH_2), 5.01 (s, 2H, CH_2), 4.98 (s, 2H, CH_2), 3.75 (s, 2H, CO-CH_2), 3.63 (s, 2H, CO-CH_2).

Preparation of 8.

Under a N_2 atmosphere, a THF (20 mL) solution of **8** (0.78 g, 1.2 mmol) and *N,N'*-ditosylhydrazine (2.4 g, 7.0 mmol) was placed in a round bottomed flask equipped with a three-way cock and was cooled to 0 °C. At 0 °C, DBU (2.6 mL, 18 mmol) was added dropwise to the solution, and the mixture was stirred at 0 °C for 1 h. After saturated NaHCO_3 aqueous solution (20 mL) was added, THF was removed using an evaporator. The residual aqueous suspension was


transferred to a separatory funnel with CHCl_3 (20 mL), with which the organic layer was separated using additional CHCl_3 (20 mL \times 2) and washed with saturated aqueous NaCl solution and water. The organic layer was dried over Na_2SO_4 . After the volatiles were removed under reduced pressure, the residue was subjected to purification with flash chromatography using a mixture of hexane and AcOEt (hexane : AcOEt = 1:9–4:6) as an eluent to afford **M6** as a yellow solid (0.50 g, 0.90 mmol) in 76% yield.

^1H NMR (400 MHz, CDCl_3 , δ): 7.47–7.45 (m, 1H, Ar-*H*), 7.42–7.40 (m, 1H, Ar-*H*), 7.34–7.16 (m, 9H, Ar-*H*), 7.05–7.03 (m, 2H, Ar-*H*), 6.99–6.93 (m, 2H, Ar-*H*), 6.91–6.89 (m, 1H, Ar-*H*), 6.84–6.82 (m, 1H, Ar-*H*), 5.25 (s, 2H, CH_2), 5.07 (s, 2H, CH_2), 5.03 (s, 2H, CH_2), 5.00 (s, 2H, CH_2), 4.69 (s, 1H, $\text{N}_2\text{-CH-CO}_2$), 4.46 (s, 1H, $\text{N}_2\text{-CH-CON}$).

^{13}C NMR (100 MHz, CDCl_3 , δ): 166.9 (br, $\text{N}_2\text{-CH-CO}_2$), 166.1 ($\text{N}_2\text{-CH-CON}$), 156.6 (Ar-C, q.), 156.4 (Ar-C, q.), 142.0 (Ar-C, q.), 135.2 (Ar-C, q.), 134.6 (Ar-C, q.), 130.1 (Ar-C), 130.1 (Ar-C), 129.9 (Ar-C), 129.5 (Ar-C), 128.7 (Ar-C), 128.6 (Ar-C), 128.5 (Ar-C), 128.3 (Ar-C), 128.0 (Ar-C), 126.2 (Ar-C, q.), 124.6 (Ar-C, q.), 121.3 (Ar-C), 121.1 (Ar-C), 111.9 (Ar-C), 111.8 (Ar-C), 68.1 (CH_2), 67.9 (CH_2), 62.2 (CH_2), 47.6 (CH_2), 47.6 ($\text{N}_2\text{-CH-CON}$), 46.4 ($\text{N}_2\text{-CH-CO}_2$).

Elemental analyses: Anal. Calcd for $\text{C}_{32}\text{H}_{27}\text{N}_5\text{O}_5 + 4 \text{ H}_2\text{O}$: C, 60.66; H, 5.57; N, 11.05. Found: C, 58.94; H, 4.54; N, 10.19.

*Preparation of 2-diazo-N-methyl-N-phenylacetamide (**M1**) from N-methylaniline with bromoacetylation followed by treatment with *N,N'*-ditosylhydrazine and DBU.*

Under a N_2 atmosphere, a CH_2Cl_2 (40 mL) solution of *N*-methylaniline (1.0 mL, 10 mmol) was placed in a round bottomed flask equipped with a three-way cock and was cooled to 0 °C. At 0 °C, bromoacetyl bromide (1.0 mL, 11 mmol) was added dropwise to the solution, and the mixture was warmed to room temperature and stirred at room temperature for 1 h. After saturated aqueous solution of NaHCO_3 (40 mL), the mixture was transferred to a separatory funnel, with which the organic layer was separated using additional CH_2Cl_2 (40 mL \times 2) and washed with saturated aqueous NaCl solution and water. The organic layer was dried over Na_2SO_4 . After the volatiles were removed under reduced pressure, *N,N'*-ditosylhydrazine (6.8 g 20 mmol) and THF (40 mL) was added to the residue under a N_2 atmosphere to form a suspension, which was cooled to 0 °C. At 0 °C, DBU (7.5 mL, 50 mmol) was added dropwise to the suspension, and the mixture was stirred at 0 °C for 1 h. After saturated NaHCO_3 aqueous solution (20 mL), THF was removed using an evaporator. The aqueous suspension was transferred to a separatory funnel with CHCl_3 (20 mL), with which the organic layer was separated using additional CHCl_3 (20 mL \times 2) and washed with saturated aqueous NaCl solution and water. The organic layer was dried over Na_2SO_4 . After the volatiles were removed under reduced pressure, the residue was subjected to purification with flash chromatography using a mixture of hexane and AcOEt (hexane : AcOEt = 1:9–4:6) as an eluent to afford **M1** as yellow viscous oil (1.7 g, 0.95 mmol) in 95% yield.

Polymerization

Copolymerization of EDA and **M1**.

As a typical example, a copolymerization procedure for run 5 in Table 1 is described as follows.

Under a N_2 atmosphere, a THF (5 mL) solution of (NHC)Pd(nq) (4.55 mg, 0.00800 mmol) was placed in a Schlenk tube, and was cooled to $-78^\circ C$. $NaBPh_4$ (3.29 mg, 0.00960 mmol) was added to the solution and the mixture was stirred for 15 min at $-78^\circ C$. At $-78^\circ C$, a THF (3 mL) solution of **M1** (46.0 mg, 0.285 mmol) and EDA (0.26 mL of 2.02 M solution of CH_2Cl_2 , 0.53 mmol) was added, and the mixture was warmed to $50^\circ C$ and stirred at $50^\circ C$ for 15 h. After volatiles were removed under reduced pressure, 1N $NaCl/MeOH$ solution (10 mL), 1H HCl aq. (10 mL), and $CHCl_3$ (20 mL) were added and the mixture was transferred to a separatory funnel, with which the organic layer was separated and washed with saturated aqueous $NaCl$ solution and water. The organic layer was dried over Na_2SO_4 . After Na_2SO_4 was removed by filtration and the volatiles were removed under reduced pressure, the residue was subjected to purification with preparative recycling SEC using $CHCl_3$ as an eluent to afford a copolymer in 41% yield (31.5 mg).

Polymerization of hetero-bis(diazocarbonyl) compound.

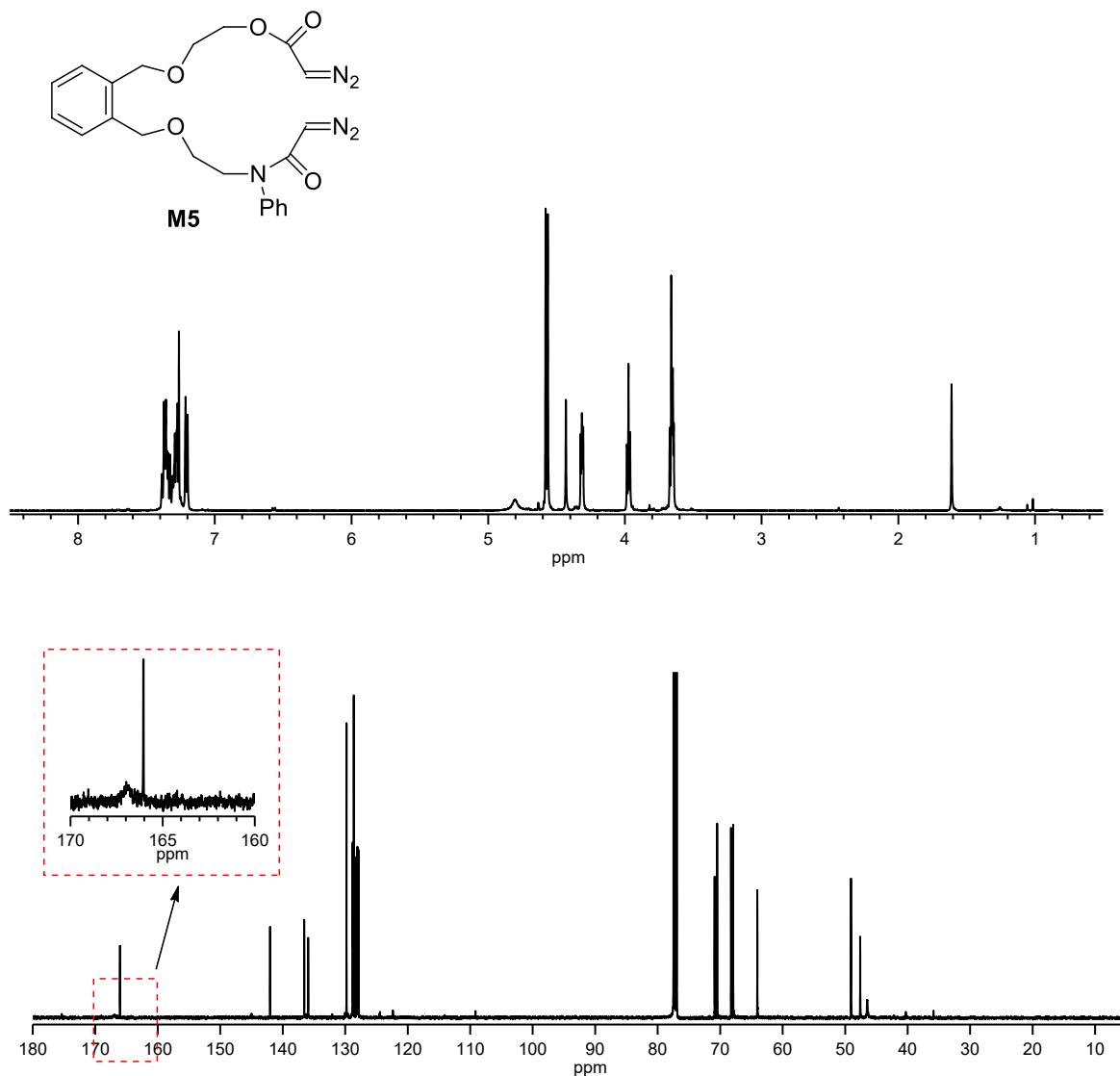
As a typical example, a polymerization procedure for run 9 in Table 2 is described as follows.

Under a N_2 atmosphere, a THF (2.0 mL) solution of $(\pi\text{-allyl}PdCl)_2$ (1.36 mg, 0.00372 mmol) was placed in a Schlenk tube, and was cooled to $-78^\circ C$. $NaBPh_4$ (4.4 mg, 0.0129 mmol) was added to the solution and the mixture was stirred for 10 min at $-78^\circ C$. At $-78^\circ C$, a THF (4.2 mL) solution of **M5** (81.9 mg, 0.187 mmol) was added, and the mixture was warmed to $50^\circ C$ and stirred at $50^\circ C$ for 15 h. After volatiles were removed under reduced pressure, 1N $NaCl/MeOH$ solution (10 mL), 1 N HCl aq. (10 mL), and $CHCl_3$ (20 mL) were added and the mixture was transferred to a separatory funnel, with which the organic layer was separated and washed with saturated aqueous $NaCl$ solution and water. The organic layer was dried over Na_2SO_4 . After Na_2SO_4 was removed by filtration and the volatiles were removed under reduced pressure, the residue was subjected to purification with preparative recycling SEC using $CHCl_3$ as an eluent to afford a copolymer in 26% yield (18.6 mg).

Measurements

The molar mass distributions of polymers were measured via SEC in THF (flow rate = 1.0 mL/min) at $40^\circ C$ on polystyrene gel columns [Styragel HR4 and Styragel HR2 (Waters, molar-mass exclusion limit = 600 kDa and 20 kDa for polystyrene, respectively)] connected to a pump (JASCO, PU-4180), a column oven (JASCO, CO-2065 Plus), an ultraviolet detector (JASCO, UV-4075), and a refractive index detector (JASCO, RI-2031 Plus). The number-average molar mass (M_n) and dispersity [D ; weight-average molar mass/number-average molar mass (M_w/M_n)] were calculated from the chromatographs on the basis of six poly(methyl methacrylate) (PMMA) standards (Shodex M-75; M_p = 2400–212000, $D < 1.1$) and dibutyl sebacate (molar mass = 314.5). The absolute molecular weight of the polymers was determined by SEC coupled with multiangle light scattering (SEC-MALS) on a Dawn HELEOS II 8+ (Wyatt Technology; $\lambda = 661.5\text{ nm}$). The refractive index increment (dn/dc) values were measured assuming 100% mass recovery.

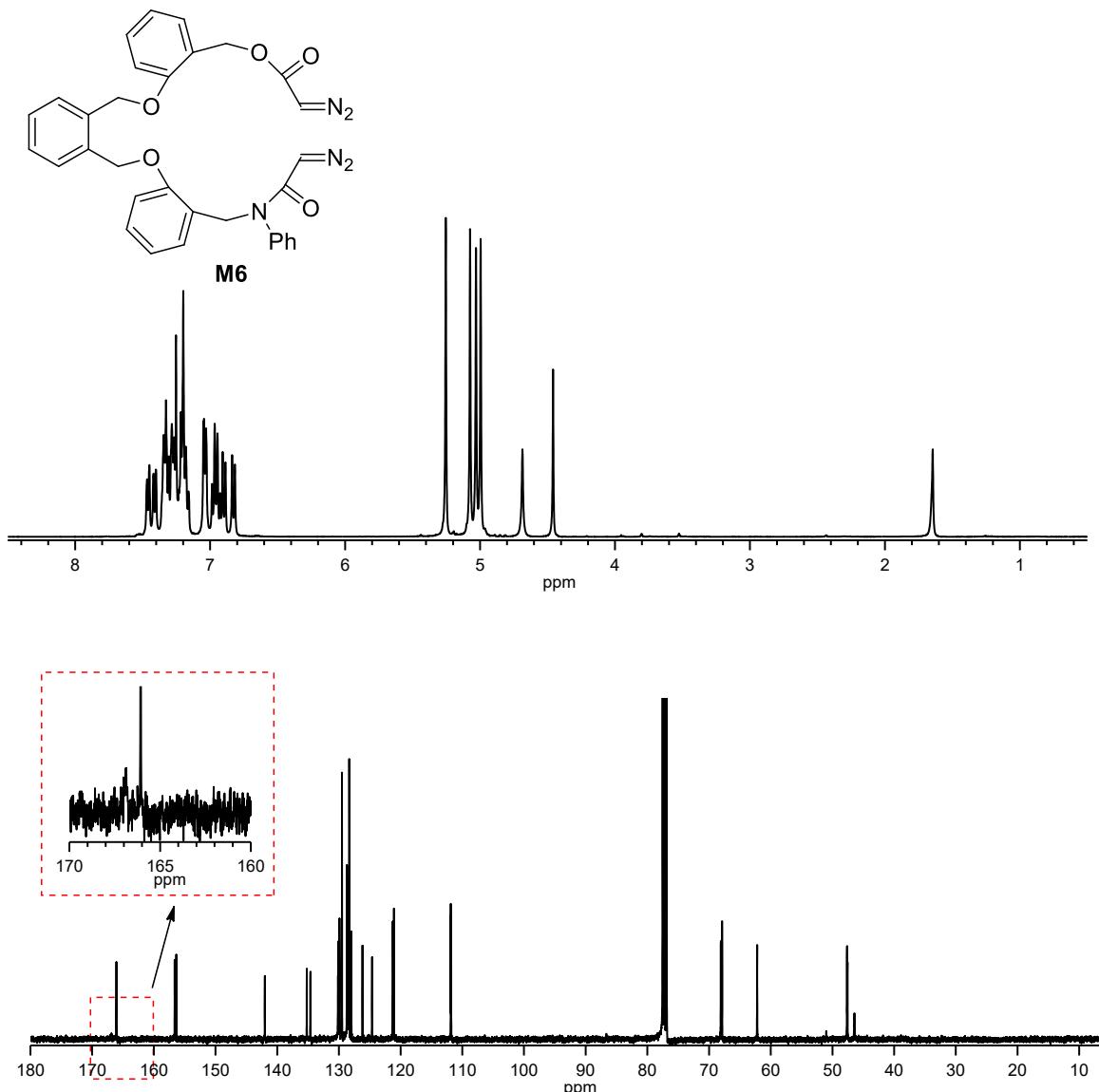
1H and ^{13}C NMR spectra were recorded on a Bruker Avance 400 (400 MHz for 1H and 100 MHz for ^{13}C) or Avance 500 (500 MHz for 1H and 126 MHz for ^{13}C) spectrometer at room temperature (monomers and their precursors) or at $50^\circ C$ (polymers).


MALDI-TOF-MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) data were recorded on a JMS-S3000 (JEOL, spiral mode) using super-DHB (Merck, a mixture of 2,5-dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid) as a matrix and sodium trifluoroacetate as an ion source. The calibration was carried out using poly(ethylene glycol) (M_n = 2700–3500).

Glass transition temperature (T_g) of polymers were determined by differential scanning calorimetry (DSC; Seiko

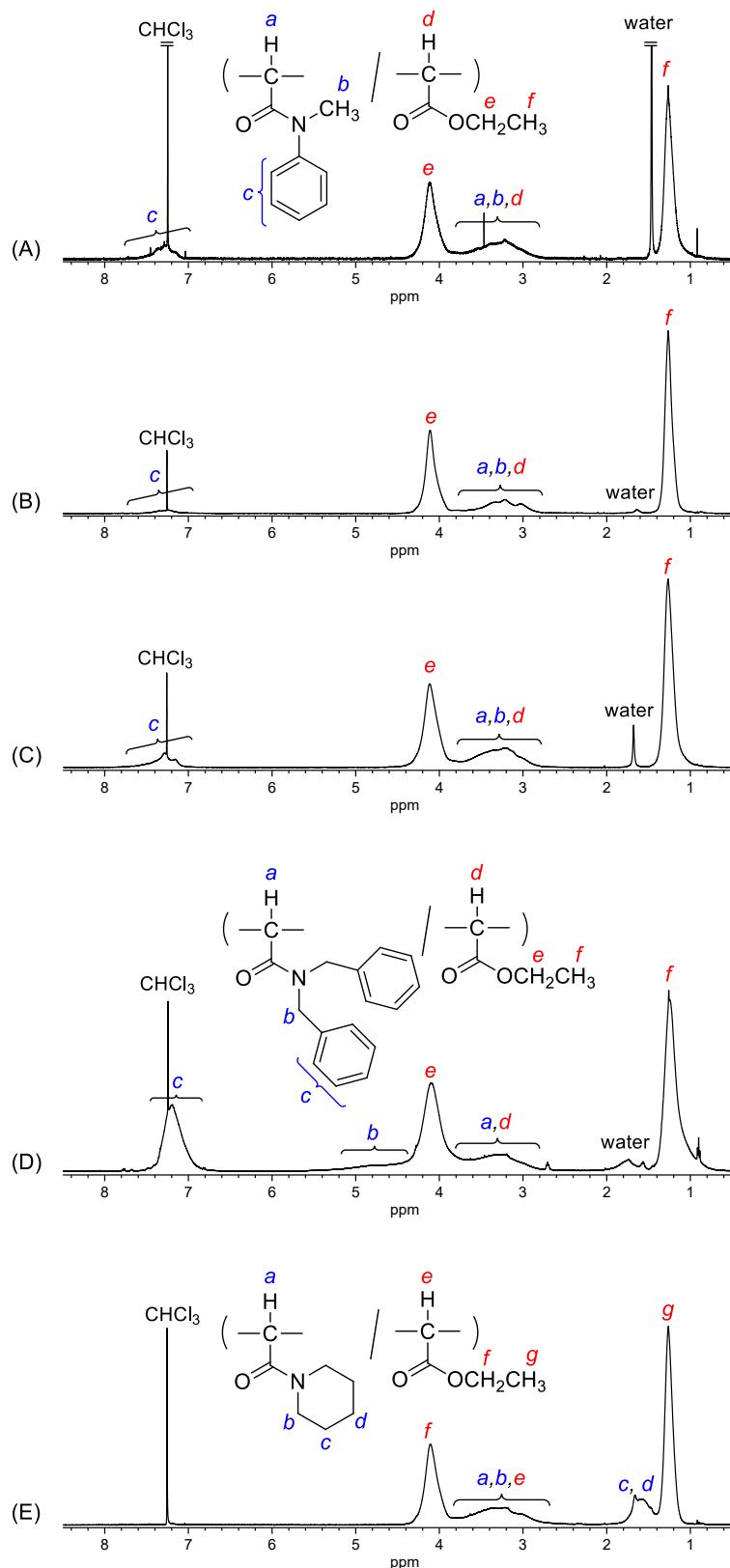
Instruments Inc., EXSTAR DSC6000). The heating and cooling rates were 10 °C/min. The T_g was defined as the temperature of the midpoint of a heat capacity change on the second heating scan.

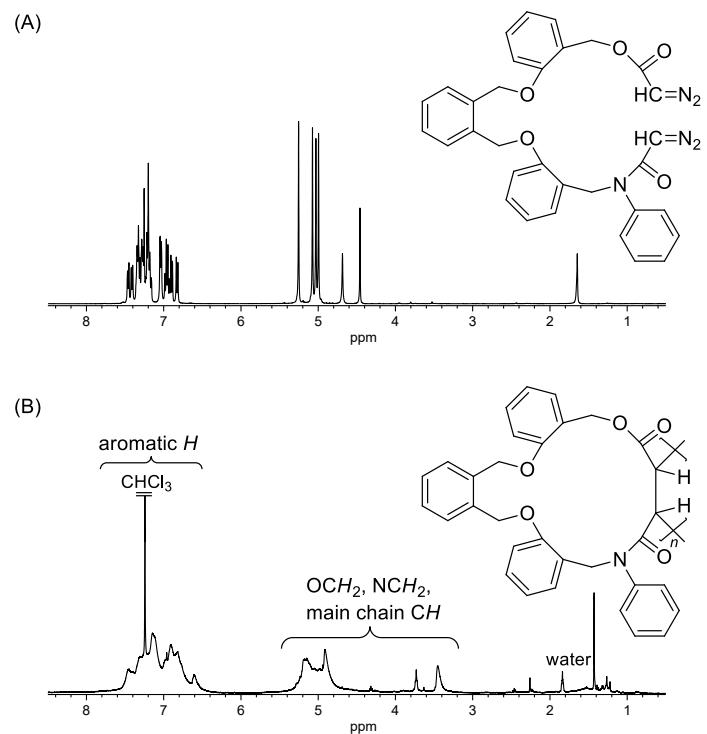
Fourier transform infrared (FTIR) spectra of the samples (in the form of KBr pellets) were recorded using a Spectrum Two (PerkinElmer) at room temperature.


Elemental analyses were performed on a YANAKO CHN Corder MT-5.

¹H NMR (500 MHz, CDCl₃, δ): 7.39–7.20 (m, 9H, Ar-H), 4.81 (br-s, 1H, N₂-CH-CO₂), 4.58 (s, 2H, PhCH₂), 4.57 (s, 2H, PhCH₂), 4.43 (s, 1H, N₂-CH-CON), 4.31 (t, J = 4.8 Hz, 2H, OCH₂), 3.97 (t, J = 5.8 Hz, 2H, OCH₂), 3.67 (t, J = 5.8 Hz, 2H, NCH₂), 3.65 (t, J = 4.8 Hz, 2H, OCH₂).

¹³C NMR (126 MHz, CDCl₃, δ): 167.0 (br, N₂-CH-CO₂), 166.0 (N₂-CH-CON), 142.0 [Ar-C, quaternary (q)], 136.6 (Ar-C, q), 135.9 (Ar-C, q), 129.8 (Ar-C), 128.8 (Ar-C), 128.8 (Ar-C), 128.6 (Ar-C), 128.2 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 70.9 (CH₂), 70.5 (CH₂), 68.3 (CH₂), 67.9 (CH₂), 64.1 (CH₂), 49.1 (CH₂), 47.6 (N₂-CH-CON), 46.5 (br, N₂-CH-CO₂).


Figure S1. ^1H (upper) and ^{13}C (lower) NMR spectra of **M5**.


¹H NMR (400 MHz, CDCl₃, δ): 7.47–7.45 (m, 1H, Ar-H), 7.42–7.40 (m, 1H, Ar-H), 7.34–7.16 (m, 9H, Ar-H), 7.05–7.03 (m, 2H, Ar-H), 6.99–6.93 (m, 2H, Ar-H), 6.91–6.89 (m, 1H, Ar-H), 6.84–6.82 (m, 1H, Ar-H), 5.25 (s, 2H, CH₂), 5.07 (s, 2H, CH₂), 5.03 (s, 2H, CH₂), 5.00 (s, 2H, CH₂), 4.69 (s, 1H, N₂-CH-CO₂), 4.46 (s, 1H, N₂-CH-CON).

¹³C NMR (100 MHz, CDCl₃, δ): 166.9 (br, N₂-CH-CO₂), 166.1 (N₂-CH-CON), 156.6 (Ar-C, q.), 156.4 (Ar-C, q.), 142.0 (Ar-C, q.), 135.2 (Ar-C, q.), 134.6 (Ar-C, q.), 130.1 (Ar-C), 130.1 (Ar-C), 129.9 (Ar-C), 129.5 (Ar-C), 128.7 (Ar-C), 128.6 (Ar-C), 128.5 (Ar-C), 128.3 (Ar-C), 128.0 (Ar-C), 126.2 (Ar-C, q.), 124.6 (Ar-C, q.), 121.3 (Ar-C), 121.1 (Ar-C), 111.9 (Ar-C), 111.8 (Ar-C), 68.1 (CH₂), 67.9 (CH₂), 62.2 (CH₂), 47.6 (CH₂), 47.6 (N₂-CH-CON), 46.4 (N₂-CH-CO₂).

Figure S2. ^1H (upper) and ^{13}C (lower) NMR spectra of **M6**.

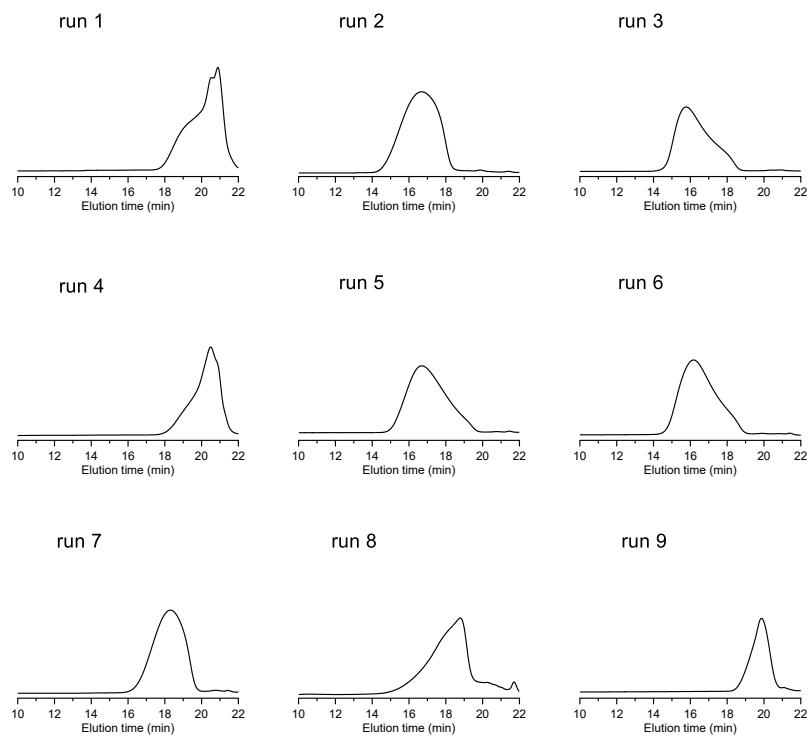
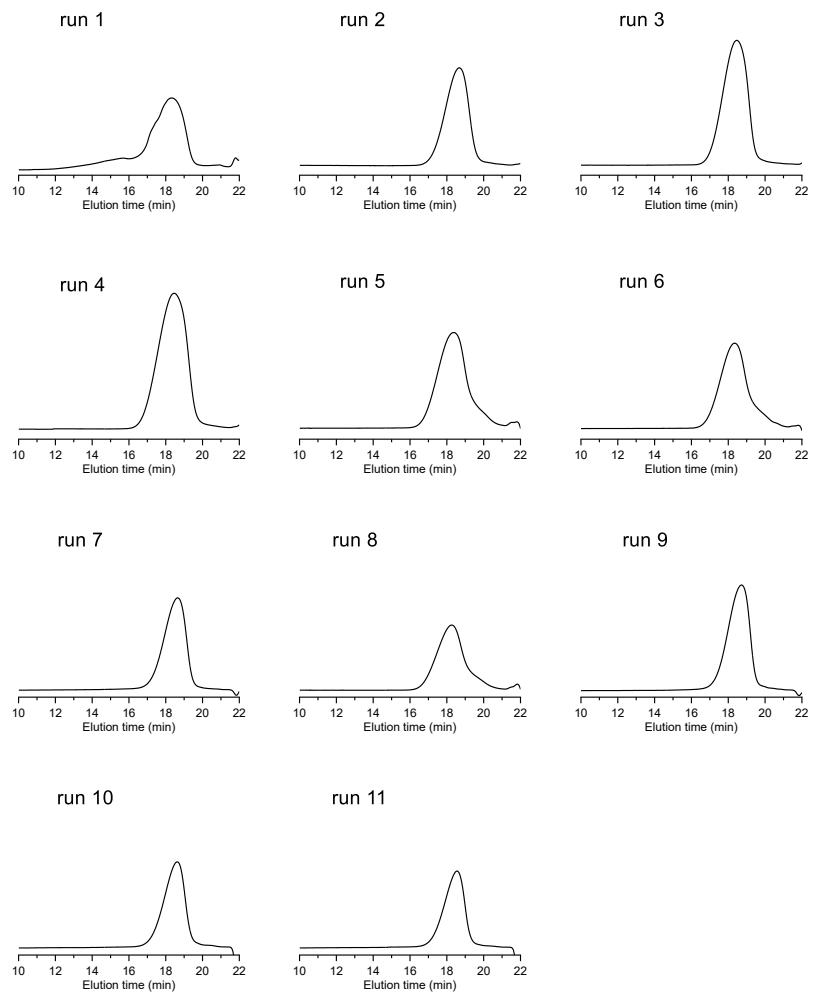
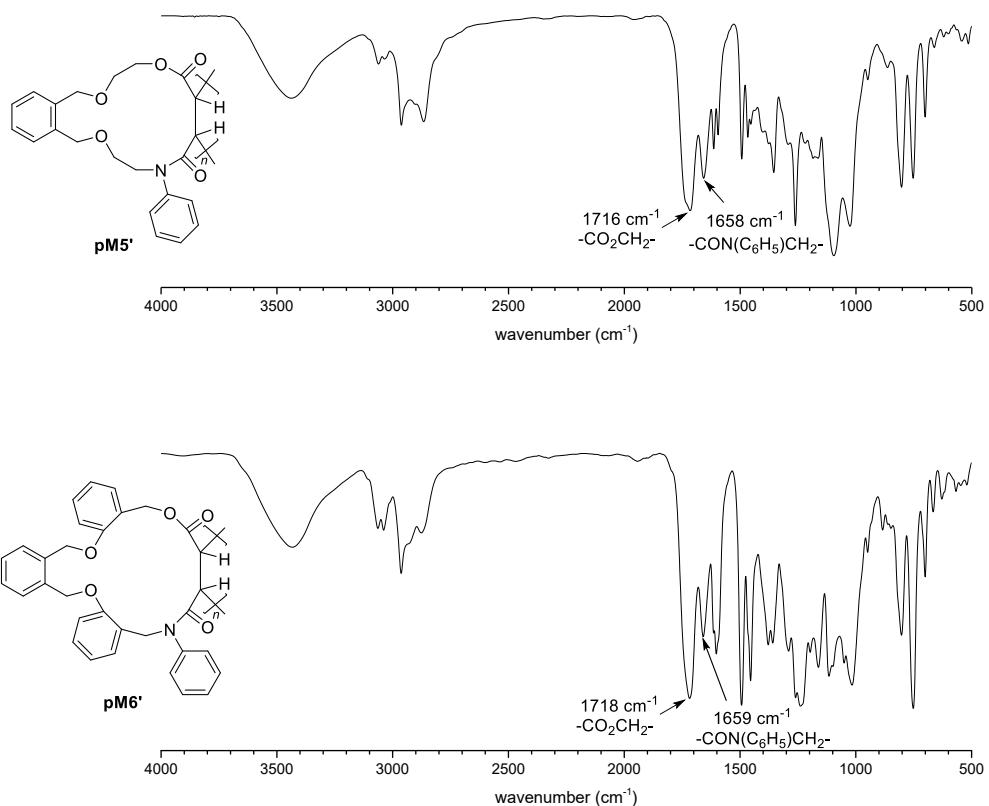


Figure S3. ^1H NMR spectra of (A) poly(**M1'**-co-EDA') obtained in run 2 in Table 1, (B) poly(**M1'**-co-EDA') obtained in run 3 in Table 1, (C) poly(**M1'**-co-EDA') obtained in run 6 in Table 1, (D) poly(**M2'**-co-EDA') obtained in run 7 in Table 1, and (E) poly(**M3'**-co-EDA') obtained in run 8 in Table 1.



Elemental analyses: Anal. Calcd for $[C_{32}H_{27}NO_5]_n + 4.5n H_2O$: C, 65.52; H, 6.19; N, 2.39. Found: C, 65.24; H, 5.12; N, 2.79.


Figure S4. 1H NMR of (A) **M6** and (B) **pM6'**.

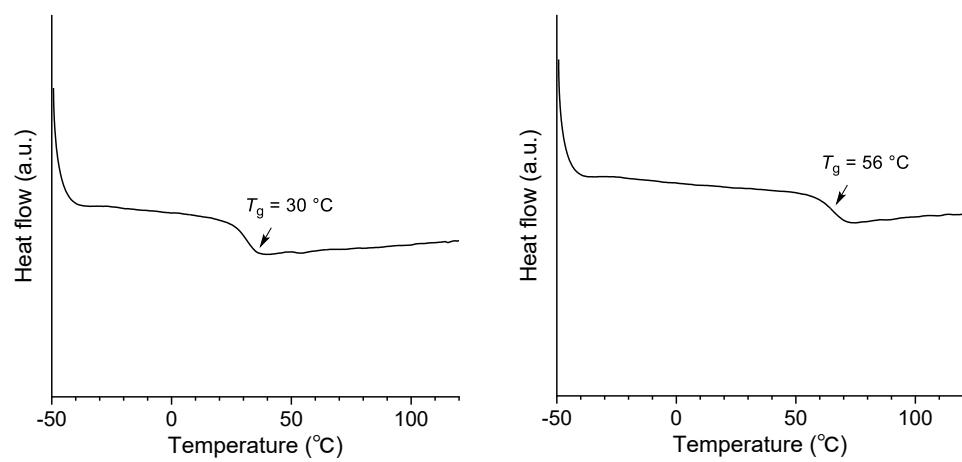

Figure S5. SEC traces of the polymeric products listed in Table 1.

Figure S6. SEC traces of the polymeric products listed in Table 2.

Figure S7. FTIR spectra of **pM5'** (upper, run 7 in Table 2) and **pM6'** (lower, run 11 in Table 2).

Figure S8. DSC thermograms of **pM5'** (left, run 7 in Table 2) and **pM6'** (right, run 11 in Table 2).

References

- (1) T. Toma, J. Shimokawa and T. Fukuyama, *N,N'*-Ditosylhydrazine: A Convenient Reagent for Facile Synthesis of Diazoacetates, *Org. Lett.*, 2007, **9**, 3195–3197.
- (2) N. E. Searle, *Organic Synthesis Collection Vol. 4*, N. Rabjohn, Ed., John Wiley and Sons: New York, 1963, pp 424–426.
- (3) T. Yokoi, H. Tanimoto, T. Ueda, T. Morimoto and K. Kakiuchi, Site-Selective Conversion of Azido Groups at Carbonyl α -Positions to Diazo Groups in Diazido and Triazido Compounds, *J. Org. Chem.*, 2018, **83**, 12103–12121.
- (4) A. Ouihia, L. Rene, J. Guilhem, C. Pascard and B. Badet, A New Diazoacylating Reagent: Preparation, Structure, and Use of Succinimidyl Diazoacetate, *J. Org. Chem.*, 1993, **58**, 1641–1642.
- (5) E. Ihara, T. Hiraren, T. Itoh and K. Inoue, Palladium-mediated Polymerization of Diazoacetamide, *Polym. J.*, 2008, **40**, 1094–1098.
- (6) A. Brunner and L. Hintermann, A Sequential Homologation of Alkynes and Aldehydes for Chain Elongation with Optional ^{13}C -Labeling, *Chem. Eur. J.*, 2016, **22**, 2787–2792.