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Figure S1: Flow Diagram of the Property Prediction Models

We built two separate multilayer perceptron (MLP) models to predict glass transition temperature 

(Tg) and rubbery modulus (Er). Both models share the same architecture but are trained on different 

targets. Each network is implemented as a sequence of three hidden layers, where each layer consists of a 

Linear transformation, Batch Normalization, ReLU activation, and Dropout. The hidden layer sizes are 

256, 128, and 64 units, with dropout rates of 0.5, 0.4, and 0.3, respectively. Kaiming initialization is 

applied to all linear layers to improve training stability. The flow diagram of these models is illustrated in 

Figure S1. We extract input features from two monomers. For each monomer, we compute Morgan 

fingerprints (radius 2, size 200) and molecular descriptors using RDKit. The descriptors include 

molecular weight (MolWt), LogP, and topological polar surface area (TPSA). We combine the 

fingerprints and descriptors of both monomers, and we also include the mixing ratios. This gives 

us a 208-dimensional feature vector. We scale all features using StandardScaler. We use the mean 

squared error (MSE) as the loss function. Each model is trained separately using the AdamW 

optimizer (learning rate = 0.001). We apply

Input
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a ReduceLROnPlateau scheduler to lower the learning rate when validation loss stops improving. 

We split the dataset into 80% training and 20% validation. We save the model weights that give the best 

validation loss. The training and validation losses for each model are shown in Figure S2 (Tg) and Figure 

S3(Er). Both models show low loss, which means they can learn the property patterns from the data.
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Figure S2: Training and validation loss for Tg prediction model.
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Figure S3: Training and validation loss for Er prediction model.

2 Additional Case Studies in Conversational TSMPs Design

To further demonstrate the capabilities of our framework, we present additional user–model interactions 

for generating TSMPs. These examples show how the fine-tuned language model interprets natural 

language prompts that specify target properties or functional groups and returns structurally valid 

polymer candidates. Each example includes the user prompt, the model’s response, and the 

corresponding SMILES representations, with candidate polymers provided in each case. The examples 

are not filtered for uniqueness, and some outputs may therefore appear as duplicates. The primary 

objective is to illustrate the framework’s ability to capture user intent and produce chemically reasonable 

polymer structures in a conversational setting.

Examples S1-S3 present selected multi-turn dialogues, along with the corresponding 

polymer candidates generated by the GPT-4o-mini fine-tuned model.

Example S1
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User: I want to make a thermoset shape memory polymer

Assistant: Would you like to design your TSMP based on certain functional groups, or are you more 

interested in achieving specific chemical properties?

User: both

Assistant: I can help with various functional groups (like epoxy, imine, vinyl, thiol) and specific 

properties (Tg and Er). What’s your priority - groups or properties?

User: Please give me some TSMP with Tg = 100C and Er= 40MPa and vinyl(C=C) groups in 

monomer 1 and vinyl(C=C) groups in monomer 2

Assistant: Two TSMPs for you ( as I told model to generate two samples per query) Sample

: 1 Here’s a valid monomer pair designed with vinyl groups for crosslinking and optimized for your Tg 

and Er targets:

Monomer 1: CC(C)(c2ccc(OCC1CO1)cc2)c4ccc(OCC3CO3)cc4

Monomer 2: CC(N)COCC(C)OCC(C)OCC(C)OCC(C)N

Molecular structures of these monomers are given below:

Figure S4: Molecular structures of Example 1
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Example S2
User: Please suggest me some TSMPs

Assistant: What matters most for your TSMP design - the functional groups we use or the target 

properties?

User: Please focus on group based monomer pairs

Assistant: I can create TSMPs using functional groups such as epoxy (C1OC1), imine (NC), vinyl (C=C), 

or thiol (CCS), while meeting specific Tg/Er requirements.

User: Please give me some TSMP with epoxy(C1OC1) groups in monomer 1 and imine (NC) groups in 

monomer 2

Assistant: Two TSMPs for you (as I told model to generate two samples per query) Sample: 1 

Here’s a pair of monomers fulfilling the criteria of epoxy groups and imine groups:

Monomer 1: Cc1cc(OCCOCC2CO2)ccc1OCCOCC4CO4

Monomer 2: CC1(C)CC(N)CC(C)(CN)C1

Molecular structures of these monomers are given below:

Figure S5: Molecular structures of Example 2
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Example S3

User: I want to make a thermoset shape memory polymer
Assistant: Do you have particular functional groups in mind, or are you looking for a certain 

property set?

User: Please focus on property based monomer pairs

Assistant: I’ll need your target values for Tg (glass transition temp) and Er (rubbery modulus) 

to proceed.

User: Please give me some TSMP with Tg = 100C and Er= 100MPa

Assistant: Two TSMPs for you ( as I told model to generate two samples per query) Sample: 1 

Both monomers I suggested are compatible and can be easily accessed: Monomer 1: 

CC(C)(c2ccc(OCC1CO1)cc2)c4ccc(OCC3CO3)cc4

Monomer 2: CCCC(=O)OCC(CC)(COC(=O)CCS)COC(=O)CCS

Molecular structures of these monomers are given below:

Figure S6: Molecular structures of Example 3
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Example S4–S6 showcase representative multi-turn conversations, each followed by the 

polymer structures predicted by the DeepSeek model.

Example 4

User: What would be a good TSMP combination for my project?

Assistant: What’s more important for your TSMP - certain functional groups or specific properties like Tg and 

Er?

User: I’d rather focus on Tg and Er requirements.

Assistant: I’ll need two properties to design your TSMP - what glass transition temperature (Tg) and 

rubbery modulus (Er) would you like?

User: Generate a thermoset shape memory polymer with Tg = 100°C and Er = 40 MPa.

Assistant: Output Here is a TSMP designed for Tg = 100C and Er = 40Mpa: Monomer 1: 

C=C(C)C(=O)OCCOCCOCCOCCOCCOCCOCCOCCOC(=O)C(=C)C

Monomer 2:  C=C(C)C(=O)OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOC(=O)C(=C)C

Molecular structures of these monomers are given below:

Figure S7: Molecular structures of Example 4

Example S5

User: I’m working on a thermoset shape memory polymer - what should I use? Assistant: 

What’s your priority - specific chemical groups or target properties? User: I want to design 

using particular groups while hitting certain property targets.

Assistant: I can create TSMPs using functional groups such as epoxy (C1OC1), imine (NC), vinyl (C=C), 

or thiol (CCS), while achieving your target Tg and Er specifications.

User: Generate a TSMP with Tg = 100°C and Er = 40 MPa, using functional groups 

epoxy(C1OC1) and imine (NC).
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Assistant:

Output Here’s a pair of monomers fulfilling the criteria of Tg = 100C, Er = 40MPa, and containing 

C1OC1/NC groups:

Monomer1:CC(C/C=CCC(=O)OCC(O)COc3ccc(C(C) 

(C)c2ccc(OCC1CO1)cc2)cc3)C(=O)OCC(O)COc6ccc(C(C)

(C)c5ccc(OCC4CO4)cc5)cc6 

Monomer 2: NCCOCCOCCN

Molecular structures of these monomers are given below:

Figure S8: Molecular structures of Example 5
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Example S6

User: I’m working on a thermoset shape memory polymer - what should I use? Assistant: What’s 

more important for your TSMP - certain functional groups or specific properties like Tg and Er?

User: I’d prefer to work with the chemical groups.

Assistant: I’ll need two chemical groups that are more reactive - I have several options. What types of 

groups are you interested in?

User: Design a thermoset shape memory polymer using monomers that include epoxy(C1OC1) in 

monomer1 and imine (NC) in monomer2.

Assistant:

Output Here’s a pair of monomers containing C1OC1 and NC groups, ideal for TSMP design:

Monomer 1: CC(C)(c2ccc(OCCOCCOCCOCC1CO1)cc2)c4ccc(OCCOCCOCCOCC3CO3)cc4

Monomer2:CC(N)COCC(C)OCC(C)OCC(C)OCC(C)OCC(C)OCC(C)OCCOCCOCCOCCO 

CCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCC 

OCCOCCOCCOCCOCCOCCOCC(C)OCC(C)OCC(C)OCC(C)OCC(C)N

Molecular structures of these monomers are given below:

Figure S9: Molecular structures of Example 6
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Example S7–S9 illustrate selected examples of multi-turn interactions, accompa- nied by 

the corresponding polymer candidates generated by the Llama3.2 model.

Example S7

User: I’m working on a thermoset shape memory polymer - what should I use? Assistant: To 

create your TSMP, I need two key properties: the molecular weight and structure. What values 

would you like for the chemical groups?

User: I want to focus on the chemistry side - functional groups.

Assistant: I can help design TSMPs using available groups such as vinyl (C=C), imine (C=N), or 

epoxy (C1OC1).

User: Design a thermoset shape memory polymer using monomers that include vinyl(C=C) in 

monomer1 and hydroxyl (=O) in monomer2.

Assistant:

Output Here’s a TSMP that includes the requested functional groups:

Monomer1(containsC=C):C=C(C)C(=O)OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOC 

COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOC(=O)C(=C)C

Monomer 2 (contains =O): C=C(C)C(=O)OCCOCCOCCOC(=O)C(=C)C

Molecular structures of these monomers are given below:

Figure S10: Molecular structures of Example 7
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Example S8

User: Hey, I’m looking to make a thermoset shape memory polymer - any ideas? Assistant: For 

your TSMP, are you more interested in the chemistry or the properties? User: Properties are more 

important for my application.

Assistant: We can work with any Tg and Er values - just key in your desired values. User: 

Generate a thermoset shape memory polymer with Tg = 150°C and Er = 30 MPa. Assistant:

Output Here’s a TSMP that matches your request: 

Monomer 1: CC(C)(c2ccc(OCC1CO1)cc2)c4ccc(OCC3CO3)cc4

Monomer2:CC(N)COCC(C)OCC(C)OCC(C)OCCOCCOCCOCCOCCOCC 

OCCOCCOCCOCCOCCOCC(C)OCC(C)OCC(C)N

Molecular structures of these monomers are given below:

Figure S11: Molecular structures of Example 8
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Example S9

User: I’d like to create a shape memory polymer - can you recommend some monomers? Assistant: 

For your TSMP, are you more interested in the chemistry (functional groups) or the properties (Tg/Er)?

User: Let’s create a TSMP with specific groups and property requirements.

Assistant: For your TSMP, I can use different functional groups (epoxy (C1OC1), imine (NC), 

vinyl (C=C), thiol (CCS)) and specify two key properties.

User: Generate a TSMP with Tg = 50°C and Er = 20 MPa, using functional groups vinyl(C=C) 

and hydroxyl(=O).

Assistant:

Output Here’s a valid monomer pair designed with the required functionalities:

Monomer1(rich in C=C): C=C(C)C(=O)OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO 

CCOCCOCCOCCOCCOCCOCCOC(=O)C(=C)C

Monomer 2 (rich in (=O)): C=C(C)C(=O)OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO

CCOCCOCCOCCOCCOCCOCCOCCOCCOC(=O)C(=C)C Molecular structures of these monomers are given 

below:

Figure S12: Molecular structures of Example 9
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3 Retrieval-based vs Fine-tuning Strategies
Due to space limitations, we do not include the full responses from the both models in the table and 
instead represent truncated sections with ellipses (‘. . . ’).

Table S1: Combined qualitative examples and conceptual comparison between the retrieval-based GPT-4o-mini 
setup and the fine-tuned model.

Query / Feature Fine-tuned Prompt2Poly ( GPT-
4o-mini based )

Task understanding Understands   polymer-design
objectives and generates new 
TSMPs aligned with target prop- 
erties.

Adaptivity Asks follow-up questions when in- put 
is incomplete; supports multi- turn 
reasoning.

Output type Generates valid, property-aligned 
SMILES sequences.

Interaction style Context-aware, iterative dialogue
generation.

Retrieval-based GPT-4o-mini + 
attached dataset-based
References or summarizes file 
content; lacks deep interpretation of 
design intent.

Cannot clarify missing property or 
group information; single-turn 
interaction.
Produces descriptive text or data 
references or SMILES from the at- 
tached file.
Static, one-step responses.

Please generate a TSMP 
with Tg=40C and 
Er=50MPa.

Generate a TSMP in- 
cluding Tg=100C and 
Er=100Mpa with Epoxy 
group and Imine

Here’s a monomer pair that 
includes the required func- tions 
and meets the tar- get 
properties: Monomer 1: 
CC(C)(c2ccc(OCCOCCOC COC- 
COCC2)CC1CO1)c4ccc......
Monomer  2: NCC- 
NCCN(CCNCCC(NCCN)....

Here’s a monomer pair that 
includes the required func- 
tions and meets the target 
properties: Monomer 1: 
O=C(OCC1CO1)C3CC2O 
C2CC3C(=O)OCC4CO4
Monomer 2: NCCOCCOCCN

To design a thermoset shape 
memory polymer (TSMP) with a 
glass transition temperature (Tg) of 
40◦C and a storage modu- lus (Er) 
of 50 MPa, we need to consider the 
selection of appro- priate monomers 
and crosslink- ing agents. Here are 
the steps and considerations for 
generating such a polymer.....
To create a thermoset shape mem- ory 
polymer (TSMP) system tar- geting a 
glass transition temper- ature (Tg) of 
140 ◦C and a re- covery stress (Er) 
of 40 MPa with C=C and CCS 
functional- ities, I propose the 
following novel monomer pair: 
**Monomer 1:** - Structure: C=C 
attached to rigid aromatic 
components to enhance Tg. - 
SMILES: C=CC1=CC2=C(C=.....
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4 Computational Resources and Environmental Impact

Table S2: Estimated Computational Cost and Energy Use for Fine-Tuning.

Model Platform GPU Type / API # GPUs  GPU-Hours  Power Draw (kW)  PUE  Energy (kWh)  CO2 (kg eq) Cost (USD)

GPT-4o-mini OpenAI API (cloud) Proprietary — — —  — — — $13.66 
DeepSeek R1 LONI Cluster (Linux) 4 × A100 80 GB PCIe  4 2.13 0.30 1.2 ≈ 0.77 ≈ 0.26 Free allocation
LLaMA-3.2 LONI Cluster (Linux) 4 × A100 80 GB PCIe 4 0.47 0.30 1.2 ≈ 0.17 ≈ 0.05 Free allocation

5 Comparative Overview of Generative Frameworks

Table S3: Conceptual Comparison Between VAE-, GAN-, and LLM-Based Models.

Model Type Input / Conditioning Property Control Novelty Diversity Interpretability Key Limitation

VAE Encoded molecular features or Indirect; requires conditional Moderate to Moderate; may col- Moderate (latent arithmetic Limited control over multiple
latent vectors head high—depends on 

latent regulariza- 
tion

lapse with strong 
regularization

partially interpretable) properties; restricted flexibility

GAN Random noise vector Indirect; guided through dis- 
criminator’s feedback

Low to Moderate 
when mode col- 
lapse is avoided

Variable; prone to 
mode collapse and 
instability

Low Training instability; lacks text or 
reasoning-based condition- ing

LLM (Prompt2Poly) Natural-language prompts Direct; interprets textual con- High—enabled by Moderate to high; High (prompt-based ex- Requires chemistry-aware
with property and group 
tokens

straints language-driven 
combinatorial rea- 
soning

supports constraint- 
guided structural di- 
versification

plainability and token-level 
reasoning)

prompt design; higher compu- 
tational demand


