Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Ureate anion-catalyzed ring-opening polymerization (ROP) of CO₂-derived lactones: rapid catalysis through pK_a matching

Madhur M. Bhatt, [a] Arron C. Deacy, [a] and Ian A. Tonks*[a]

[a] Department of Chemistry
University of Minnesota – Twin Cities
207 Pleasant Street, Minneapolis, Minnesota, 55455, U.S
*E-mail: itonks@umn.edu

Table of Contents

Materials and Methods	.5
Synthesis and purification of DEtP – Modified procedure for obtaining high purity DEtP	.6
Synthesis of KBHT:	.7
Figure S1. ¹ H NMR spectrum of KBHT in d ₆ -DMSO	.7
Figure S2. 13 C NMR spectrum of KBHT in d $_6$ -DMSO	.8
Synthesis of KO ^{(CF3)t} Bu:	.9
Figure S3. ¹ H NMR spectrum of KO ^{(CF3)t} Bu in d ₆ -DMSO	.9
Figure S4. ¹³ C NMR spectrum of KO ^{(CF3)t} Bu in d ₆ -DMSO	10
Figure S5. ¹⁹ F NMR spectrum of KO ^{(CF3)t} Bu in d ₆ -DMSO	11
General polymerization condition:	12
Data analysis for measuring rates:	12
Figure S6. Example ¹ H NMR spectrum of reaction mixture containing DEtP and poly(DEtP) in CDCl ₃	
Table S1. Data table for polymerization of DEtP with U2 and KHMDS	14
Figure S7. Conversion vs time plot for the polymerization of DEtP	14
Figure S8. Full MALDI-TOF spectrum poly(DEtP)	15
Table S2. Conversion vs time for the polymerization of DEtP by U1 and KHMDS	16
Figure S9. Kinetic plot for the polymerization of DEtP by U1 and KHMDS	16
Table S3. Conversion vs time for the polymerization of DEtP by U2 and KHMDS	17
Figure S10. Kinetic plot for the polymerization of DEtP by U2 and KHMDS	17
Table S4. Conversion vs time for the polymerization of DEtP by U3 and KHMDS	18
Figure S11. Kinetic plot for the polymerization of DEtP by U3 and KHMDS	18
Table S5. Conversion vs time for the polymerization of DEtP by U4 and KHMDS	19
Figure S12. Kinetic plot for the polymerization of DEtP by U4 and KHMDS	19
Table S6. Conversion vs time for the polymerization of DEtP by U5 and KHMDS	20
Figure S13. Kinetic plot for the polymerization of DEtP by U5 and KHMDS	20
Table S7. Data table for polymerization of DEtP by KHMDS and Ureas	21
Figure S14. Plot of k_{obs} vs pK_a of urea catalysts for DEtP polymerizations with KHMDS as the base	21
Table S8: Conversion vs time for the polymerization of DEtP by U1 and KO ^t Bu	2 <i>2</i>
Figure S15. Kinetic plot for the polymerization of DEtP by U1 and KO ^t Bu	2 <i>2</i>
Table S9. Conversion vs time for the polymerization of DEtP by U2 and KO ^t Bu	23
Figure S16. Kinetic plot for the polymerization of DEtP by U2 and KO ^t Bu	23

Table S10. Conversion vs time for the polymerization of DEtP by U3 and KO ^t Bu24
Figure S17. Kinetic plot for the polymerization of DEtP by U3 and KO ^t Bu24
Table S11. Conversion vs time for the polymerization of DEtP by U4 and KO $^{\rm t}$ Bu25
Figure S18. Kinetic plot for the polymerization of DEtP by U4 and KO $^{\rm t}$ Bu25
Table S12. Conversion vs time for the polymerization of DEtP by U5 and KO $^{\rm t}$ Bu26
Figure S19. Kinetic plot for the polymerization of DEtP by U5 and KO $^{\rm t}$ Bu26
Table S13. Data table for polymerization of DEtP by KO ^t Bu and Ureas27
Figure S20. Plot of kobs vs pK _a of urea catalysts for DEtP polymerizations with KO ^t Bu as the base
Table S14. Conversion vs time for the polymerization of DEtP by U1 and $KO^{(CF3)t}Bu$ 28
Figure S21. Kinetic plot for the polymerization of DEtP by U1 and KO ^{(CF3)t} Bu28
Table S15. Conversion vs time for the polymerization of DEtP by U2 and $KO^{(CF3)t}Bu$ 29
Figure S22. Kinetic plot for the polymerization of DEtP by U2 and KO ^{(CF3)t} Bu29
Table S16. Conversion vs time for the polymerization of DEtP by U3 and $KO^{(CF3)t}Bu$ 30
Figure S23. Kinetic plot for the polymerization of DEtP by U3 and KO ^{(CF3)t} Bu30
Table S17. Conversion vs time for the polymerization of DEtP by U4 and $KO^{(CF3)t}Bu$ 31
Figure S24. Kinetic plot for the polymerization of DEtP by U4 and KO ^{(CF3)t} Bu31
Table S18. Conversion vs time for the polymerization of DEtP by U5 and $KO^{(CF3)t}Bu$ 32
Figure S25. Kinetic plot for the polymerization of DEtP by U5 and KO ^{(CF3)t} Bu32
Table S19. Data table for polymerization of DEtP by KO ^{(CF3)t} Bu and Ureas33
Figure S26. Plot of k_{obs} vs pK_a of urea catalysts for DEtP polymerizations with $KO^{(CF3)t}Bu$ as the base
Table S20. Conversion vs time for the polymerization of DEtP by U1 and KBHT34
Figure S27. Kinetic plot for the polymerization of DEtP by U1 and KBHT34
Table S21. Conversion vs time for the polymerization of DEtP by U2 and KBHT35
Figure S28. Kinetic plot for the polymerization of DEtP by U2 and KBHT35
Table S22. Conversion vs time for the polymerization of DEtP by U3 and KBHT36
Figure S29. Kinetic plot for the polymerization of DEtP by U3 and KBHT36
Table S23. Conversion vs time for the polymerization of DEtP by U4 and KBHT37
Figure S30. Kinetic plot for the polymerization of DEtP by U4 and KBHT37
Table S24. Conversion vs time for the polymerization of DEtP by U5 and KBHT38
Figure S31. Kinetic plot for the polymerization of DEtP by U5 and KBHT38
Table S25. Data table for polymerization of DEtP by KBHT and Ureas39

Figure S32. Plot of k _{obs} vs pK _a of urea catalysts for DEtP polymerizations with KBHT as the base39
Figure S33. Example ¹ H NMR spectrum of reaction mixture containing EtVP and poly(EtVP) in CDCl ₃ 40
Figure S34. ESI-MS Spectrum (Negative ion mode) of EHA at 7.2 μ M concentration41
Figure S35. ESI-MS Spectrum (Negative ion mode) of EHA at 14.4 μ M concentration42
Figure S36. ESI-MS Spectrum (Negative ion mode) of EHA at 21.5 μ M concentration43
Figure S37. ESI-MS Spectrum (Negative ion mode) of EHA at 28.6 μ M concentration44
Table S26. Ionization intensity for different concentrations of EHA in ESI-MS (Negative ion mode)44
Figure S38. Calibration curve: EHA concentration vs [M-H] ⁻ ion Intensity45
Table S27. Quantification of EHA in DEtP after successive distillations using ESI-MS45
DEtP ROP kinetic study after Doping with EHA46
Table S28. Conversion vs time for DEtP polymerization with 0 mol% EHA doping47
Figure S39. Kinetic Plot for DEtP polymerization with 0 mol% EHA doping47
Table S29. Conversion vs time for DEtP polymerization with 0.1 mol% EHA doping48
Figure S40. Kinetic Plot for DEtP polymerization with 0.1 mol% EHA doping48
Table S30. Conversion vs time for DEtP polymerization with 0.5 mol% EHA doping49
Figure S41. Kinetic Plot for DEtP polymerization with 0.5 mol% EHA doping49
Table S31. Conversion vs time for DEtP polymerization with 0.75 mol% EHA doping50
Figure S42. Kinetic Plot for DEtP polymerization with 0.75 mol% EHA doping50
Table S32. Polymerization of DEtP with KHMDS and KO ^t Bu in the absence of urea51
Table S33. Dispersity vs time for DEtP polymerization with KHMDS (with and without urea U2)51
Figure S43. SEC trace (RI) of poly(DEtP) polymerized using U2/KHMDS(1 mol%) and BDM (1 mol%) at 120 s52
Figure S44. SEC tr ace (MALS) of poly(DEtP) polymerized using U2/KHMDS(1 mol%)and BDM (0.2 mol %) at 30 min53
Figure S45. SEC trace (MALS) of poly(EtVP) polymerized using U2/KHMDS(1 mol%)and BDM (0.13 mol %) at 30 min54
References54

Materials and Methods

All air and moisture-sensitive manipulations were carried out using standard high vacuum line, Schlenk or cannula techniques or in an MBraun glovebox containing a nitrogen atmosphere. All polymerizations were carried out in a nitrogen-filled glovebox (MBraun) unless otherwise specified. All glassware was oven-dried overnight at 130 °C before use.

Solvents and reagents were purchased from MilliporeSigma, STREM, Oakwood Chemicals, Matheson, and Airgas and were used without further purification unless otherwise noted. Deuterated chloroform (CDCl₃) was purchased from Cambridge Isotope Laboratories and dried over anhydrous CaH₂ and distilled under a nitrogen atmosphere before use.

Ureas were synthesized according to a procedure developed by Waymouth and group. 1 EVP and EtVP were synthesized according to procedure developed by Tonks and group. 2

Size exclusion chromatography (SEC) was performed in tetrahydrofuran (THF) using a Thermo Separation Products AS1000 system equipped with a Waters 515 Pump connected in series with two Agilent PLgel MIXED-C columns and fitted with a Waters 2410 refractive index detector at 25 °C and a flow rate of 1 mL/min. Determination of molar masses and dispersities was made by calibration against polystyrene standards.

¹H NMR, ¹³C NMR, and ¹⁹F NMR were recorded on Bruker Avance III HD 400 MHz spectrometer. ¹H NMR spectra of all polymeric reaction mixtures were run with a relaxation delay of 10 seconds unless otherwise noted. Chemical shifts are reported with respect to tetramethylsilane (TMS).

Matrix-assisted laser desorption/ionization spectra were obtained using an Applied Biosysytems Sciex 5800 MALDI TOF/TOF system equipped with an Nd:YAG laser. MALDI data was processed using Sierra Analytics' Polymerix software.

A Sciex X500R quadrupole time-of-flight (qtof) mass spectrometer was used for accurate mass measurement of EHA.

Synthesis and purification of DEtP – Modified procedure for obtaining high purity DEtP

DEtP was synthesized using a modified literature procedure. **EVP** (60 g, 394 mmol), THF (60 mL) and 10 wt% Pd/C were added into a 300 mL Parr reactor with a magnetic stirring bar. The reactor was then pressurized with hydrogen gas to 500 psi and heated at 60 °C for 2 h until all the **EVP** is consumed. The reactor was placed in an ice bath and cooled to 20 °C, and then depressurized. The resulting solution was filtered through approximately 10 g silica gel. After removal of the solvent, the obtained mixture was purified by and vacuum distillation. The obtained **DEtP** was a colorless liquid with an isolated yield of approximately 80% in high purity according to ¹H NMR spectroscopy. To obtain "polymerization purity" **DEtP**, the isolated **DEtP** was stirred over CaH₂ overnight and then vacuum distilled. This process was repeated for a total of three times, after which it was stored under 3 Å molecular sieves for 3 days in a nitrogen glovebox before use.

Safety note: Avoid fully drying the Pd/C on the silica because of the fire risk.

¹H NMR (400 MHz, CDCl₃, δ, ppm): 4.20-4.13 (m, 1H), 2.39-2.27 (m, 1H), 2.08-1.37 (m, 8H), 0.98-0.91 (m, 6H); ¹³C NMR (101 MHz, CDCl₃, δ, ppm) 175.79, 173.93, 82.60, 79.34, 42.14, 39.73, 29.18, 28.32, 26.28, 24.90, 23.89, 22.92, 11.63, 11.09, 9.61, 9.27.

Synthesis of KBHT:

KBHT was synthesized using a modified literature procedure.³ Inside a glovebox, 1 equiv BHT (1 g, 4.5 mmol) was added to a round bottom flask along with 1 equiv. KHMDS (0.89 g, 4.5 mmol). 10 mL THF was then added to the flask and stirred at room temperature for 6 h, resulting in the formation of a white precipitate. The white precipitate (KBHT) was isolated via vacuum filtration and washed with 20 mL pentane three times before residual solvent was removed under vacuum.

¹H NMR (400 MHz, d₆-DMSO, δ, ppm): 6.17 (s, 2H), 1.73 (s, 3H),1.02 (s, 18H); ¹³C NMR (101 MHz, d₆-DMSO, δ, ppm) 168.27, 135.90, 124.05, 110.42, 35.05, 30.83, 21.99.

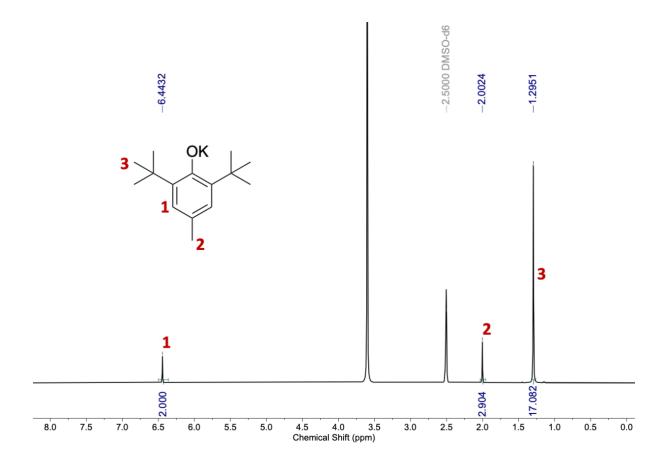


Figure S1. ¹H NMR spectrum of KBHT in d₆-DMSO

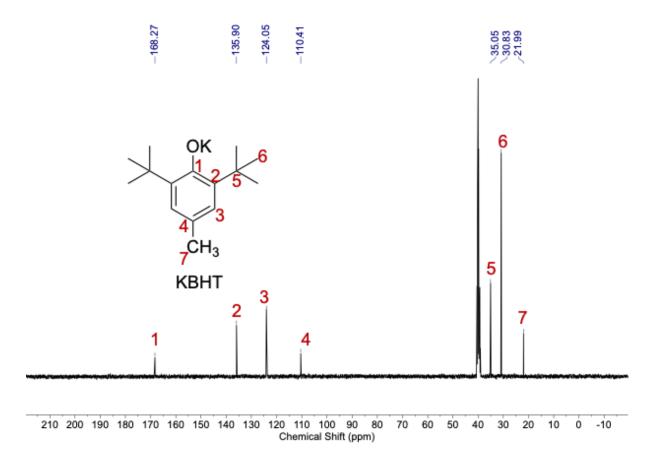


Figure S2. 13 C NMR spectrum of KBHT in d₆-DMSO

Synthesis of KO^{(CF3)t}Bu:

Inside a glovebox, 1 equiv of (1 g, 7.8 mmol) of 2-Trifluoromethyl-2-propanol was added to a round bottom flask.1 equiv (1.55 g, 7.8 mmol) of KHMDS was then added. 20 mL THF was then added to the reaction mixture and stirred overnight. The solvent was then evaporated under vacuum and white solid was washed with 0 mL pentane three times before residual solvent was removed under vacuum.

¹H NMR (400 MHz d₆-DMSO, δ, ppm): 1.06 (s, 3H) ¹³C NMR (101 MHz, d₆-DMSO, δ, ppm): 130.67, 70.25, 25.39 ¹⁹F NMR (376 MHz, d₆-DMSO, δ, ppm): 81.68.

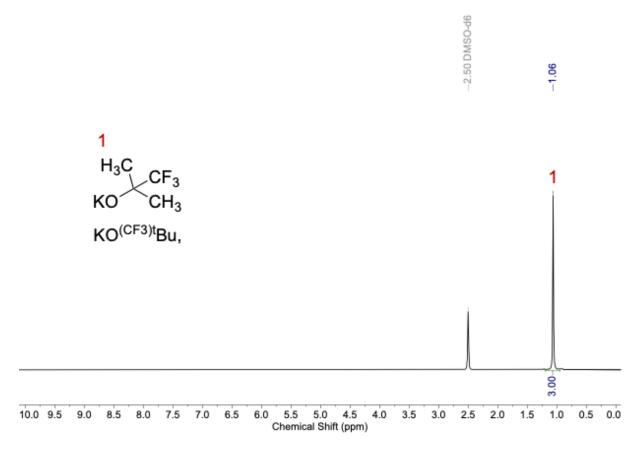


Figure S3. ¹H NMR spectrum of KO^{(CF3)t}Bu in d₆-DMSO

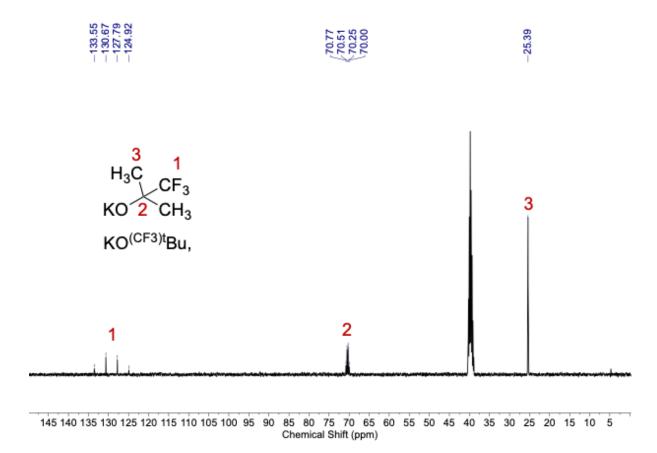
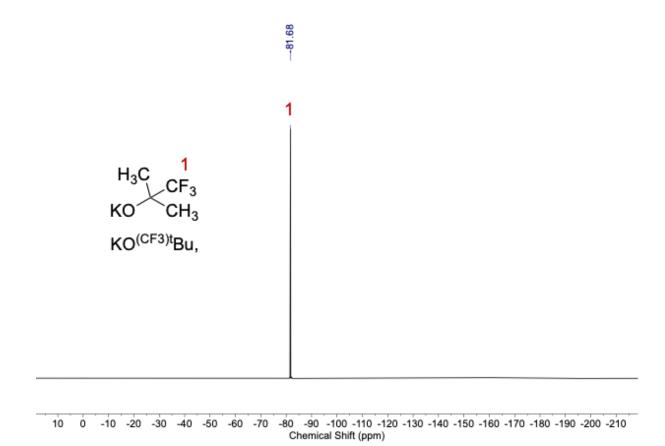
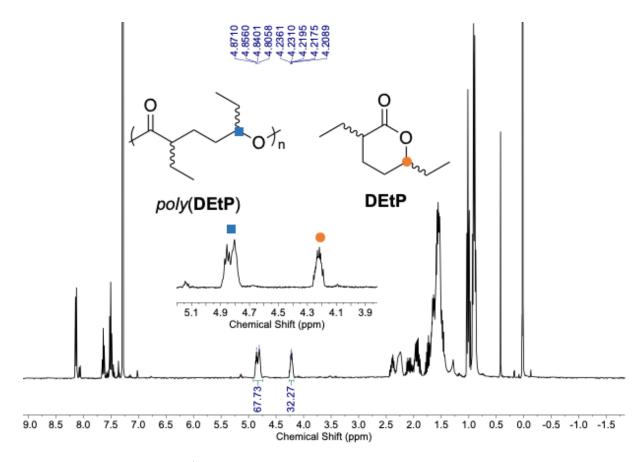


Figure S4. ^{13}C NMR spectrum of KO $^{(\text{CF3})t}$ Bu in d $_{6}\text{-DMSO}$




Figure S5. 19 F NMR spectrum of $KO^{(CF3)t}Bu$ in d_6 -DMSO

General polymerization condition:

0.016 mmol urea (0.01 equiv.) and 0.016 mmol base (0.01 equiv.) were added to a 4 mL vial equipped with a teflon-coated rare earth extra power stir bar. In another vial, a 0.016 mmol,1,4-benzenedimethanol (BDM, 0.01 equiv.) and 1.6 mmol **DEtP** (1 equiv.) were mixed until all the initiator is dissolved. The **DEtP**/BDM solution was then added to the reaction vial. Aliquots of the reactions were taken and immediately quenched by excess benzoic acid in CDCl₃ and were then removed from the glovebox for analysis by ¹H NMR spectroscopy.

Data analysis for measuring rates:

For the kinetics of polymerization of **DEtP**, aliquots were taken and quenched with benzoic acid in CDCl₃ at varying time intervals (time intervals vary significantly, as there is a huge variation in the rate depending upon the p K_a of Urea and p K_{a-H} of base). It was important to collect sufficient data points until at least 30 % conversion to analyze the rate of reaction. Conversion at a specific time was calculated from the relative integrals in the ¹H NMR spectrum of the resonances assigned to **DEtP** (4.22 ppm, 1H) and poly(DEtP) (4.79 ppm,1H). Monomer concentration was plotted vs. time and the slope of the linear regime in the plot of $ln\{([\textbf{DEtP}]_o - [\textbf{DEtP}]_{eq}) / ([\textbf{DEtP}]_t - [\textbf{DEtP}]_{eq})\}$ vs time is reported as the k_{obs} for each urea and base combination.

Figure S6. Example ¹H NMR spectrum of reaction mixture containing **DEtP** and *poly*(**DEtP**) in CDCl₃

Table S1. Data table for polymerization of **DEtP** with U2 and KHMDS.

Time (s)	Conv. (%)	<i>M</i> n Theo (kDa)	<i>M</i> n s∈c (kDa)	Đ	
20	5	0.7	-	-	
30	11	1.7	1.5	1.2	
40	18	2.8	3.5	1.1	
50	22	3.4	4.4	1.1	
60	29	4.5	5.2	1.1	
90	44	6.8	10.1	1.1	
120	58	9.1	11.5	1.1	
180	62	9.7	11.9	1.1	

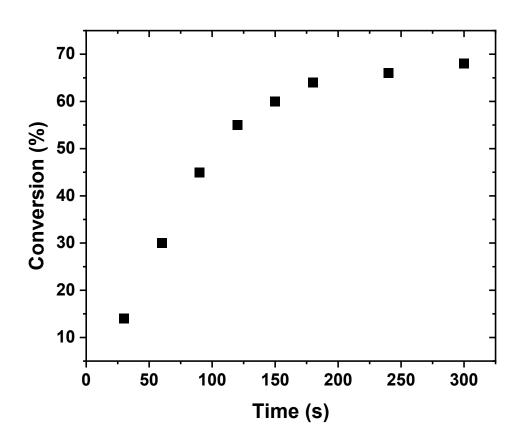
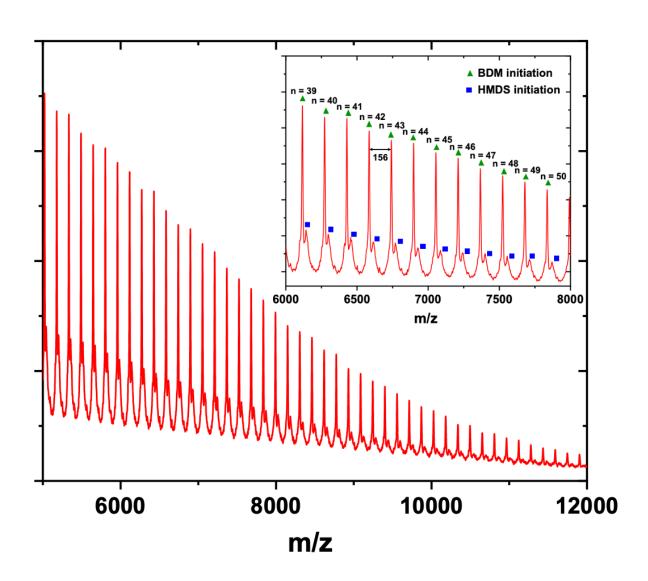



Figure S7. Conversion vs time plot for the polymerization of DEtP

Figure S8. Full MALDI-TOF spectrum *poly*(**DEtP**)

Table S2. Conversion vs time for the polymerization of DEtP by U1 and KHMDS

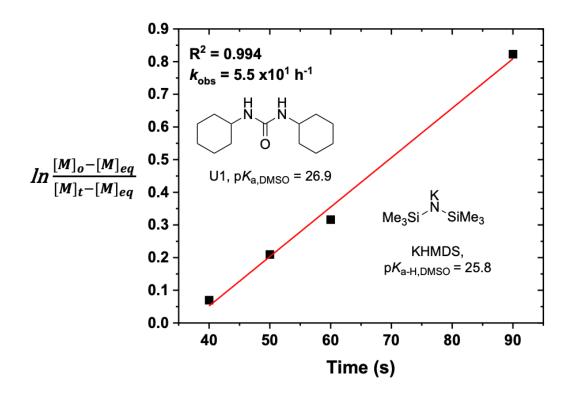


Figure S9. Kinetic plot for the polymerization of DEtP by U1 and KHMDS

Table S3. Conversion vs time for the polymerization of DEtP by U2 and KHMDS

Time (s)	Conversion (%)
15	5
30	10
45	18
60	26
90	38
150	54
180	63
240	67
270	71
300	72
600	74

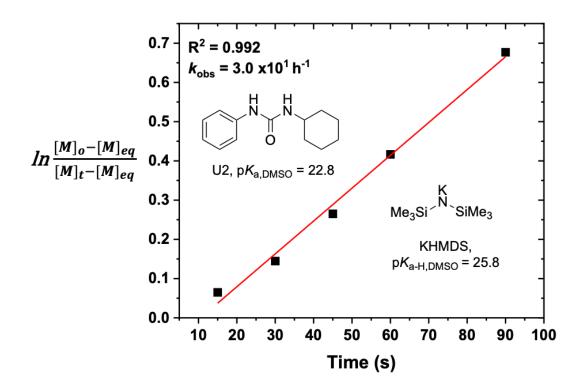


Figure S10. Kinetic plot for the polymerization of DEtP by U2 and KHMDS

Table S4. Conversion vs time for the polymerization of DEtP by U3 and KHMDS

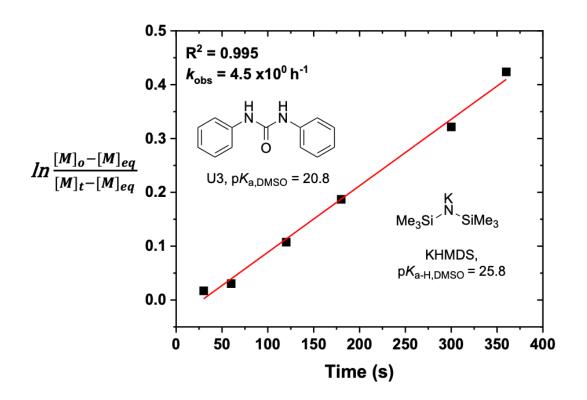
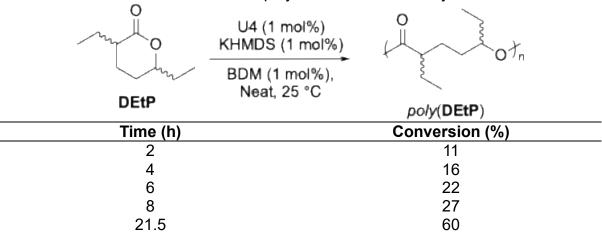



Figure S11. Kinetic plot for the polymerization of DEtP by U3 and KHMDS

Table S5. Conversion vs time for the polymerization of DEtP by U4 and KHMDS

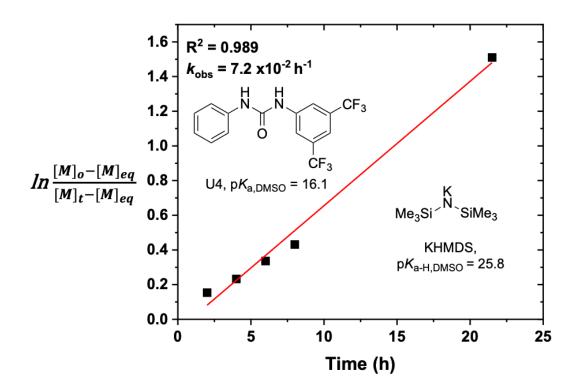
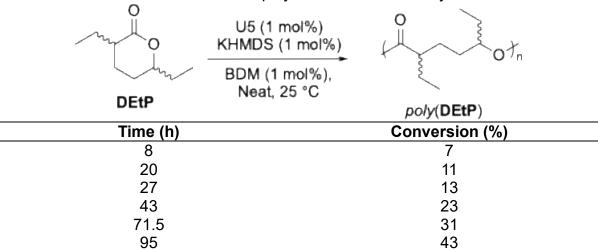



Figure S12. Kinetic plot for the polymerization of DEtP by U4 and KHMDS

Table S6. Conversion vs time for the polymerization of DEtP by U5 and KHMDS

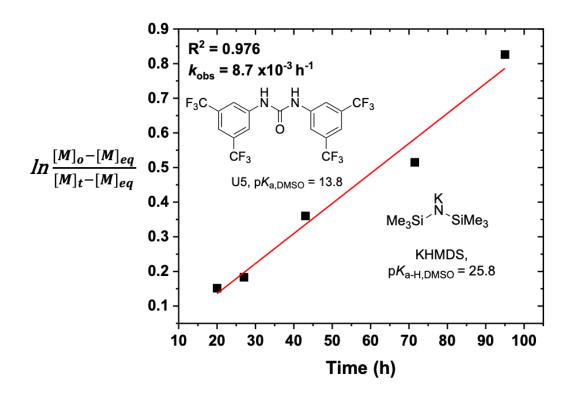
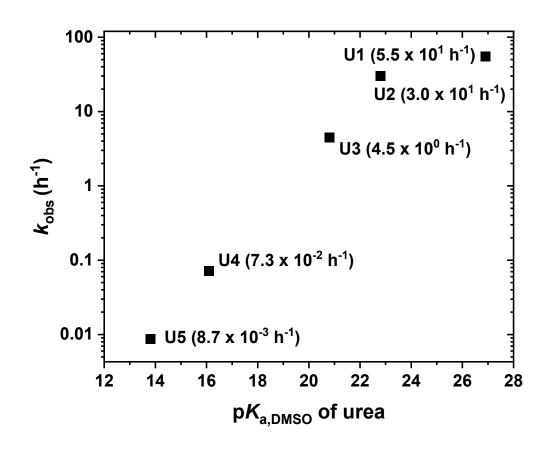
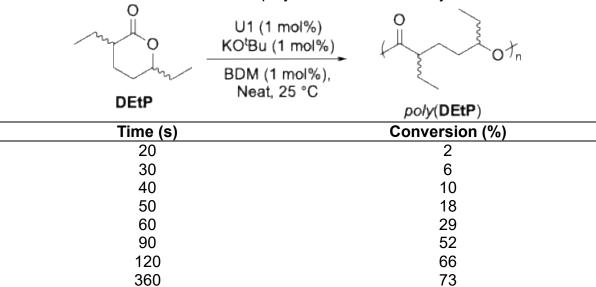



Figure S13. Kinetic plot for the polymerization of **DEtP** by U5 and KHMDS


Table S7. Data table for polymerization of DEtP by KHMDS and Ureas

poly(DEtP) Entry Catalyst Time Conv. M_{n, Theo} M_{n, SEC} Đ **K**obs h⁻¹ % kDa kDa 1 U1 77 5 min 5.5 x 10¹ 12.0 9.5 1.31 2 U2 74 10 min 3.0×10^{1} 11.5 12.5 1.24 3 4.5×10^{0} U3 60 20 min 9.4 9.1 1.21 4 U4 60 22 h 7.2 x 10⁻² 9.4 9.4 1.25 5 43 95 h 8.7×10^{-3} 8.7 1.43 U5 6.7

Figure S14. Plot of k_{obs} vs p K_{a} of urea catalysts for **DEtP** polymerizations with KHMDS as the base

Table S8: Conversion vs time for the polymerization of DEtP by U1 and KO^tBu

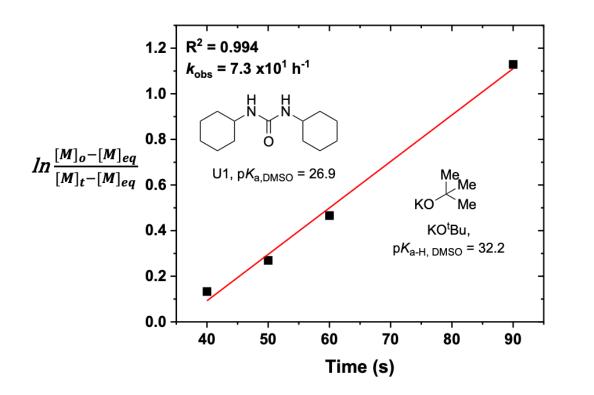
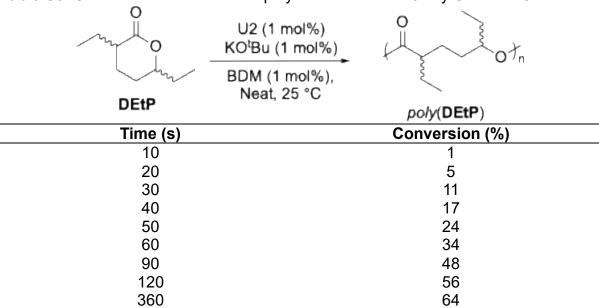



Figure S15. Kinetic plot for the polymerization of DEtP by U1 and KO^tBu

Table S9. Conversion vs time for the polymerization of DEtP by U2 and KO^tBu

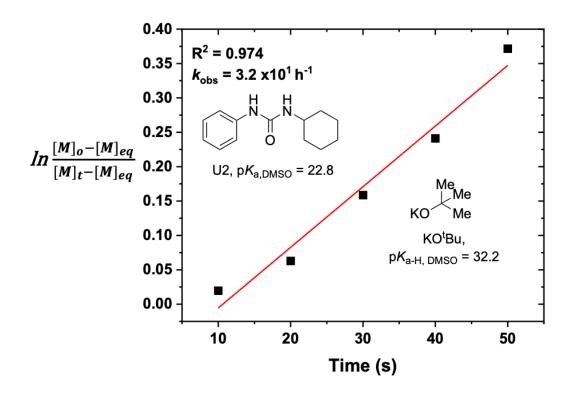
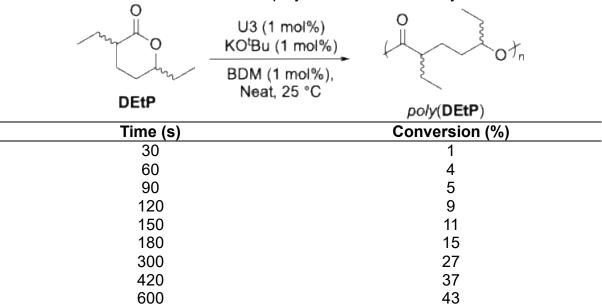



Figure S16. Kinetic plot for the polymerization of DEtP by U2 and KO^tBu

Table S10. Conversion vs time for the polymerization of DEtP by U3 and KOtBu

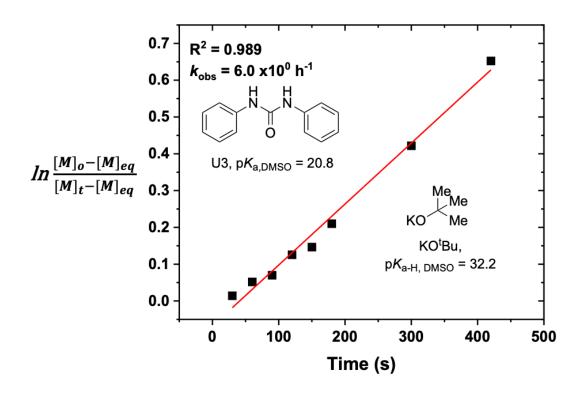
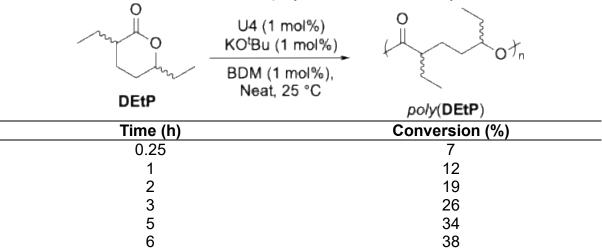
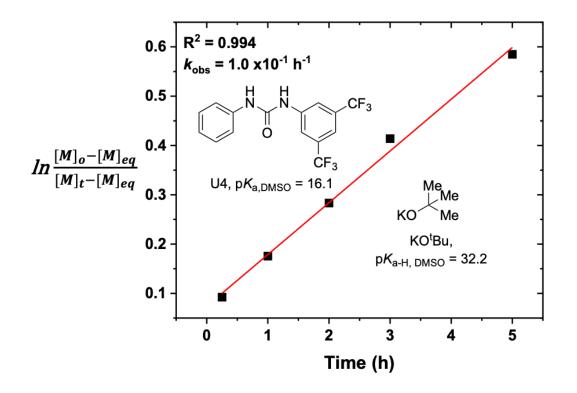




Figure S17. Kinetic plot for the polymerization of DEtP by U3 and KO^tBu

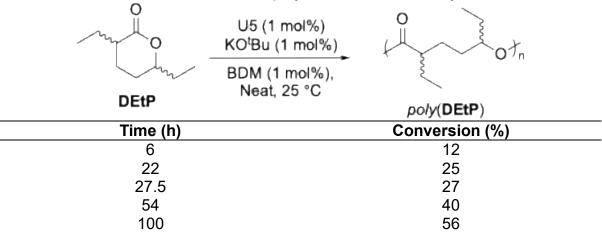

Table S11. Conversion vs time for the polymerization of **DEtP** by U4 and KO^tBu

Figure S18. Kinetic plot for the polymerization of **DEtP** by U4 and KO^tBu

Table S12. Conversion vs time for the polymerization of DEtP by U5 and KO^tBu

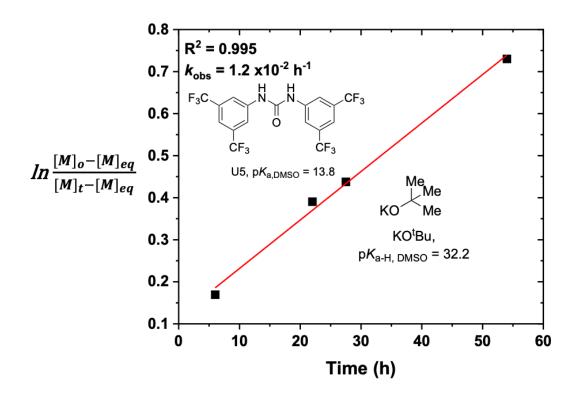
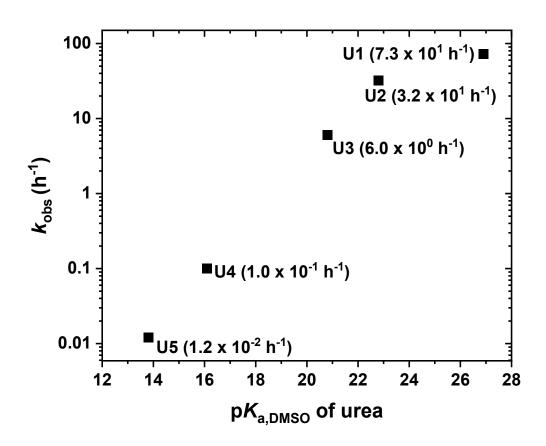
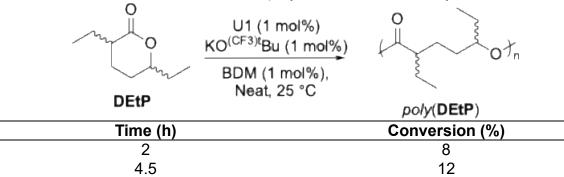
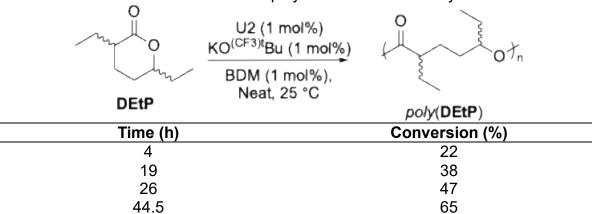



Figure S19. Kinetic plot for the polymerization of DEtP by U5 and KO^tBu


Table S13. Data table for polymerization of **DEtP** by KO^tBu and Ureas

poly(DEtP) Entry Catalyst Time Conv. M_{n, Theo} M_{n, SEC} Đ **K**obs h⁻¹ % kDa kDa 1 U1 73 3 min 7.3×10^{1} 12.0 10.5 1.21 2 U2 64 10 min 3.2×10^{1} 9.9 9.8 1.28 3 10 min 6.0×10^{0} U3 43 6.7 6.1 1.23 4 U4 38 6 h 1.0×10^{-1} 6.1 5.4 1.28 58 100 h 1.2 x 10⁻² 7.2 1.25 5 U5 9.0

Figure S20. Plot of kobs vs p K_a of urea catalysts for **DEtP** polymerizations with KO^tBu as the base


Table S14. Conversion vs time for the polymerization of **DEtP** by U1 and KO^{(CF3)t}Bu

$ln \frac{[M]_o - [M]_{eq}}{[M]_t - [M]_{eq}}$	0.6	$R^2 = 0.999$ $k_{\text{obs}} = 2.3 \text{ x} 10^{-2} \text{ h}^{-1}$	
	0.5 - -	H H H	1
	0.4 -	U1, pK _{a,DMSO} = 26.9	-
	0.3 -	Me CF ₃ KO Me	
	0.2 -	$KO^{(CF3)t}Bu$, - $pK_{a-H, DMSO} = 21.9$	
	0.1 -	_	
	Ċ	0 5 10 15 20 2	25
		Time (h)	

Figure S21. Kinetic plot for the polymerization of **DEtP** by U1 and KO^{(CF3)t}Bu

Table S15. Conversion vs time for the polymerization of DEtP by U2 and KO^{(CF3)t}Bu

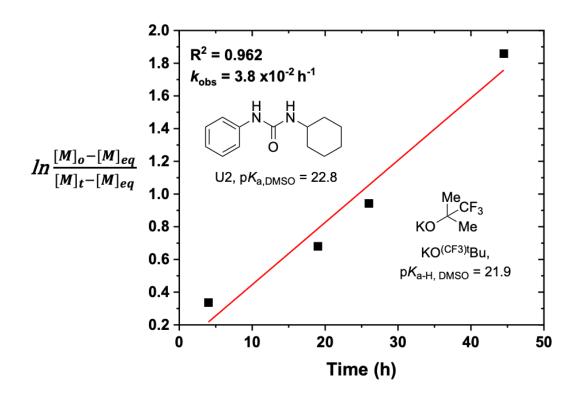
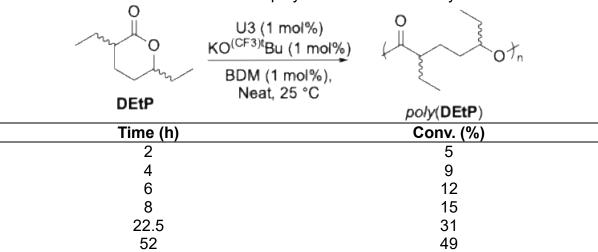



Figure S22. Kinetic plot for the polymerization of DEtP by U2 and KO^{(CF3)t}Bu

Table S16. Conversion vs time for the polymerization of DEtP by U3 and KO^{(CF3)t}Bu

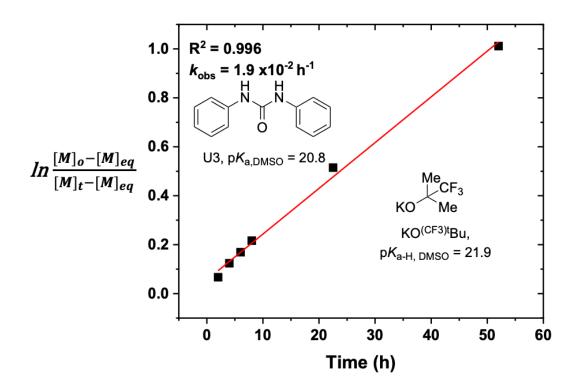
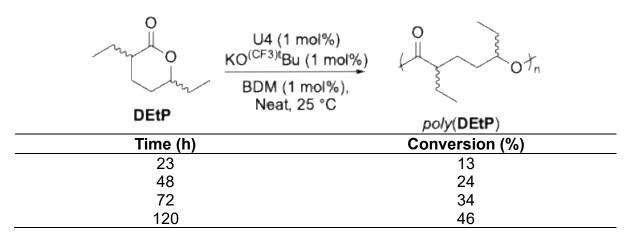



Figure S23. Kinetic plot for the polymerization of DEtP by U3 and KO^{(CF3)t}Bu

Table S17. Conversion vs time for the polymerization of DEtP by U4 and KO^{(CF3)t}Bu

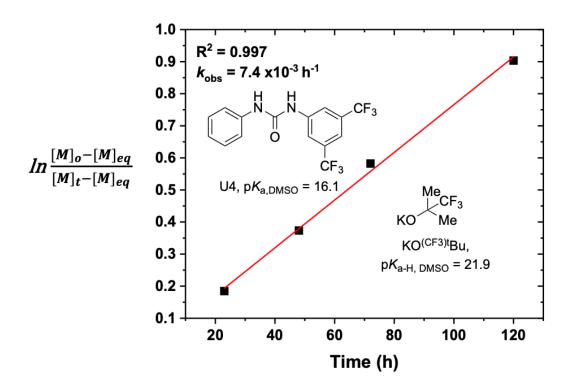
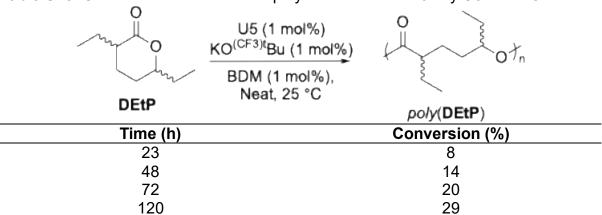



Figure S24. Kinetic plot for the polymerization of **DEtP** by U4 and KO^{(CF3)t}Bu

Table S18. Conversion vs time for the polymerization of DEtP by U5 and KO^{(CF3)t}Bu

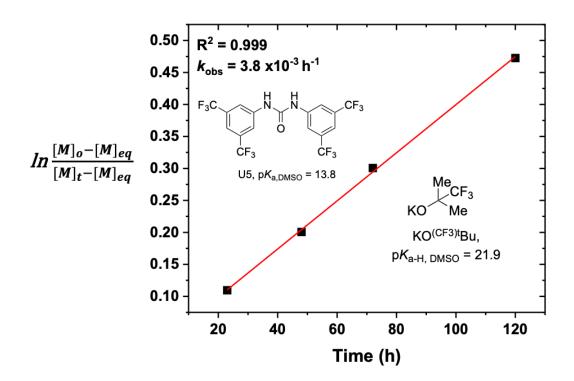
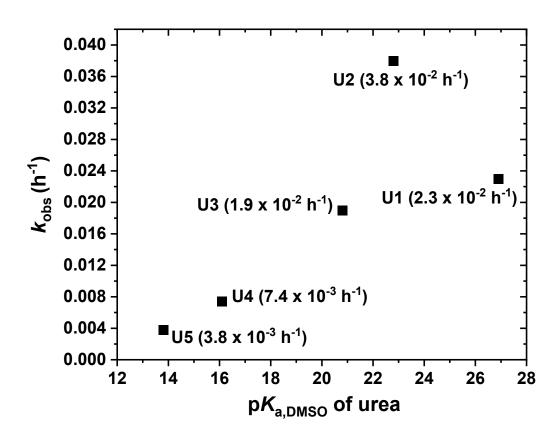
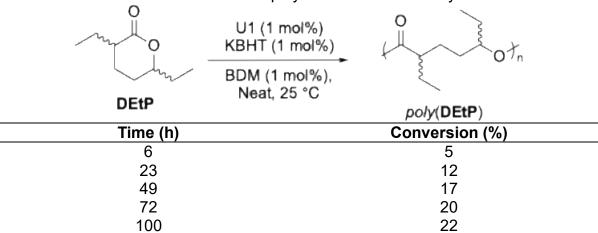



Figure S25. Kinetic plot for the polymerization of DEtP by U5 and KO^{(CF3)t}Bu


Table S19. Data table for polymerization of **DEtP** by KO^{(CF3)t}Bu and Ureas

poly(DEtP) Entry Catalyst Time Conv. M_{n, Theo} Đ **K**obs M_{n, SEC} h⁻¹ % kDa kDa U1 33 22 h 2.3 x 10⁻² 5.2 10.8 1.14 1 2 45 h 3.8×10^{-2} U2 65 10.1 7.7 1.11 3 1.9 x 10⁻² U3 49 52 h 7.6 9.2 1.17 4 U4 46 120 h 7.4×10^{-3} 7.2 10.7 1.13 29 120 h 3.8×10^{-3} 8.8 5 U5 4.5 1.14

Figure S26. Plot of k_{obs} vs p K_a of urea catalysts for **DEtP** polymerizations with $KO^{(CF3)t}Bu$ as the base

Table S20. Conversion vs time for the polymerization of DEtP by U1 and KBHT

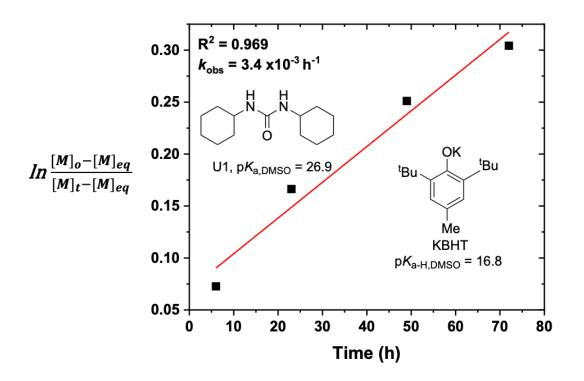
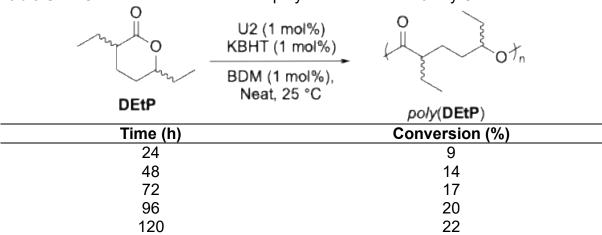



Figure S27. Kinetic plot for the polymerization of DEtP by U1 and KBHT

Table S21. Conversion vs time for the polymerization of DEtP by U2 and KBHT

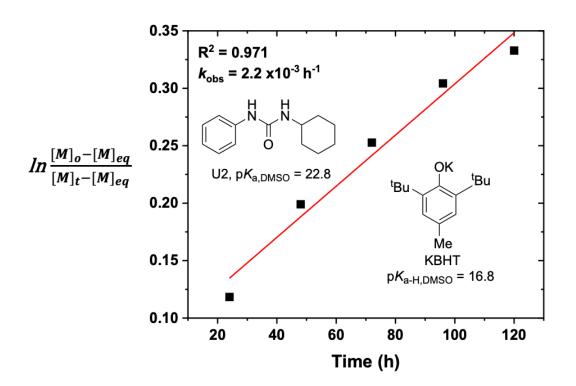
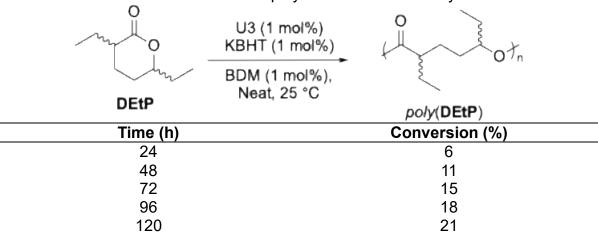



Figure S28. Kinetic plot for the polymerization of DEtP by U2 and KBHT

Table S22. Conversion vs time for the polymerization of DEtP by U3 and KBHT

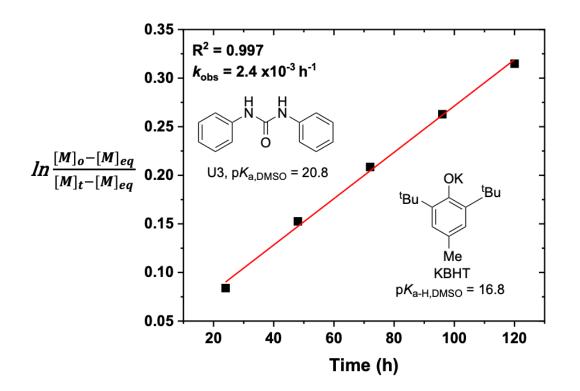
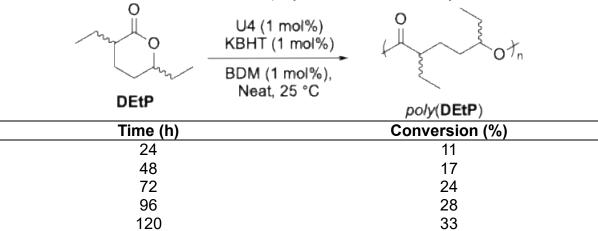



Figure S29. Kinetic plot for the polymerization of DEtP by U3 and KBHT

Table S23. Conversion vs time for the polymerization of DEtP by U4 and KBHT

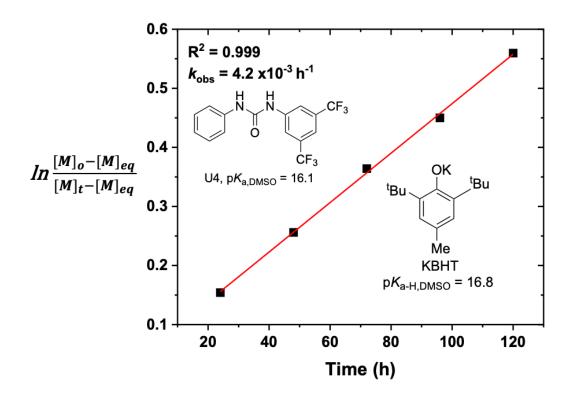
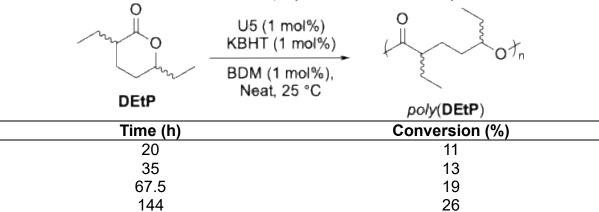
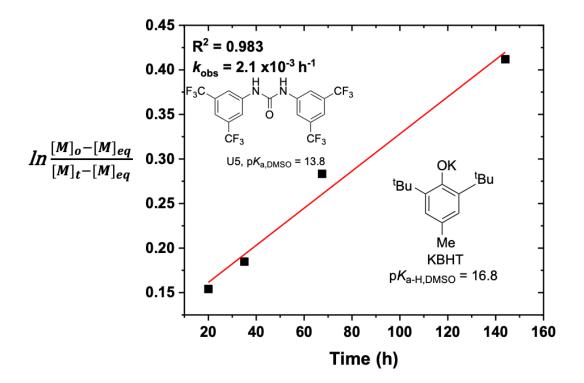
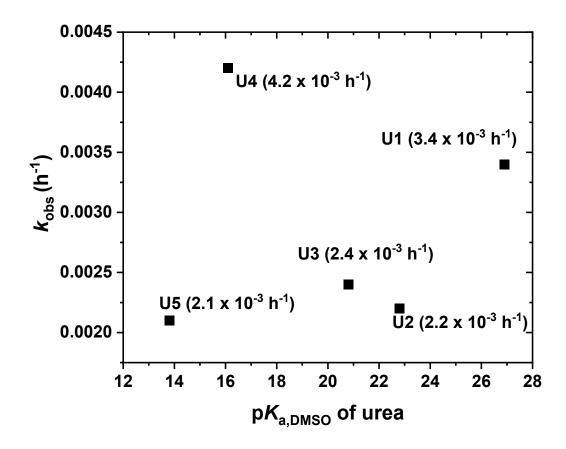



Figure S30. Kinetic plot for the polymerization of **DEtP** by U4 and KBHT

Table S24. Conversion vs time for the polymerization of DEtP by U5 and KBHT

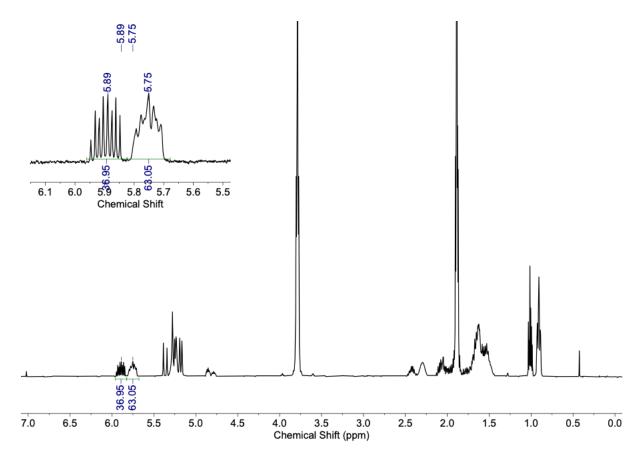

Figure S31. Kinetic plot for the polymerization of DEtP by U5 and KBHT

Table S25. Data table for polymerization of DEtP by KBHT and Ureas

					, , ,		
Entry	Catalyst	Conv.	Time	Kobs	M _{n, Theo}	M _{n, SEC}	Đ
		%		h ⁻¹	kDa	kDa	
1	U1	22	100 h	3.4 x 10 ⁻³	3.4	8.8	1.14
2	U2	22	120 h	2.2 x 10 ⁻³	3.4	4.2	1.14
3	U3	21	120 h	2.4 x 10 ⁻³	3.3	4.4	1.15
4	U4	33	120 h	4.2 x 10 ⁻³	5.2	5.8	1.14
5	U5	26	144 h	2.1 x 10 ⁻³	4.1	7.3	1.19

Figure S32. Plot of k_{obs} vs p K_{a} of urea catalysts for **DEtP** polymerizations with KBHT as the base

Figure S33. Example ¹H NMR spectrum of reaction mixture containing **EtVP** and *poly*(**EtVP**) in CDCl₃

Impurity Study:

Electrospray ionization mass spectrometry (ESI-MS) performed on unpurified DEtP samples demonstrated differential ionization behavior: EHA was detected exclusively in negative ion mode, whereas DEtP was observed only in positive ion mode.

The concentration of EHA in DEtP samples was estimated by generating a calibration curve. Standard solutions of EHA at known concentrations were prepared in MeOH, and the intensity of the EHA [M-H]⁻ peak (m/z 157.12) was measured for each standard. A linear regression curve was plotted from these data points, ensuring the intercept set to zero during the fitting process.

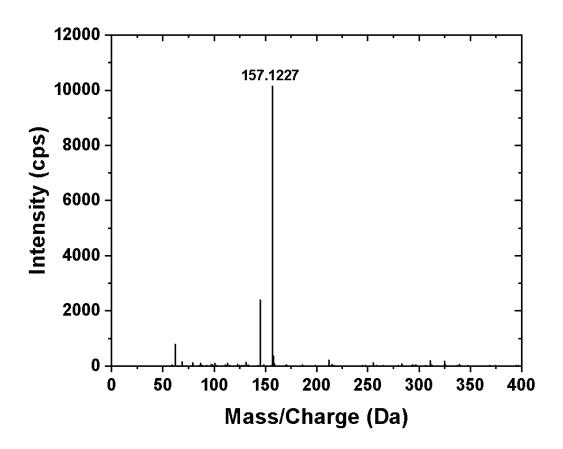


Figure S34. ESI-MS Spectrum (Negative ion mode) of EHA at 7.2 μM concentration

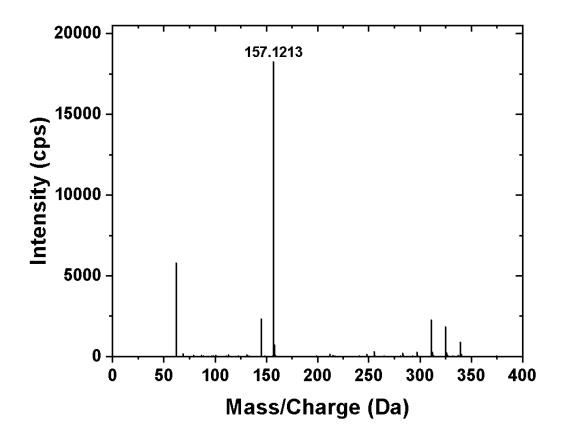


Figure S35. ESI-MS Spectrum (Negative ion mode) of EHA at 14.4 μM concentration

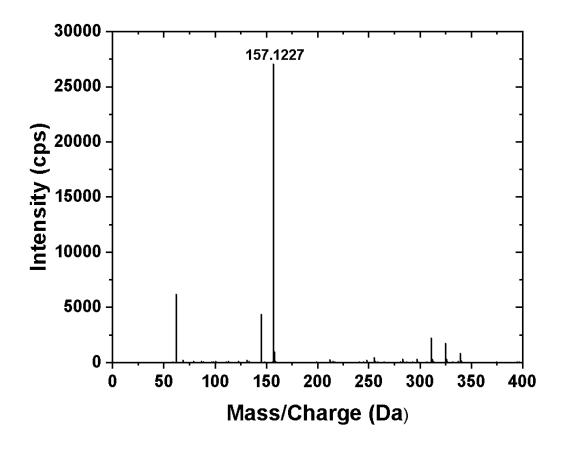


Figure S36. ESI-MS Spectrum (Negative ion mode) of EHA at 21.5 μ M concentration

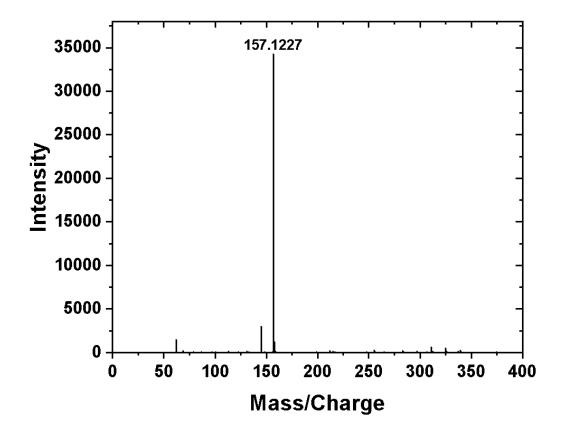
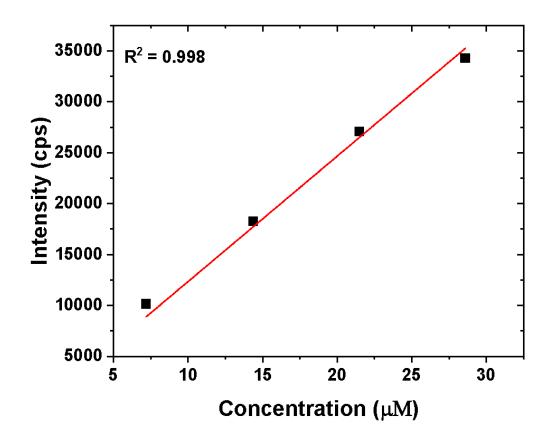



Figure S37. ESI-MS Spectrum (Negative ion mode) of EHA at 28.6 μM concentration

Table S26. Ionization intensity for different concentrations of EHA in ESI-MS (Negative ion mode)

Entry	Concentration (µM)	Ionization Intensity (cps)
1	7.2	10134
2	14.4	18234
3	21.5	27057
4	28.6	34255

Figure S38. Calibration curve: EHA concentration vs [M-H]⁻ ion Intensity.

Table S27. Quantification of EHA in DEtP after successive distillations using ESI-MS

Entry	Distillation Number	lonization Intensity (cps)	Concentration (μM)	mol % of EHA (%)
1	No distillation	7411	6.0	4.1
2	One distillation	387	0.3	0.2
3	Two distillations	0	0	0
4	Three distillations	0	0	0

DEtP ROP kinetic study after Doping with EHA

0.016 mmol U2 (0.01 equiv.) and 0.016 mmol KHMDS (0.01 equiv.) were added to a 4 mL vial equipped with a teflon-coated rare earth extra power stir bar. In another vial, 0.016 mmol,1,4-benzenedimethanol (0.01 equiv.), 2-ethylheptanoic acid (X mol%) and 1.6 mmol **DEtP** (1 equiv.) were mixed until all the initiator is dissolved. The **DEtP**/BDM/EHA solution was then added to the reaction vial. Aliquots of the reactions were removed and immediately quenched by excess benzoic acid in CDCl₃ and were then removed from the glovebox for analysis by ¹H NMR spectroscopy.

Table S28. Conversion vs time for DEtP polymerization with 0 mol% EHA doping

Time (s)	Conversion (%)	
15	5	
30	10	
45	18	
60	26	
90	38	
150	54	
180	63	
240	67	

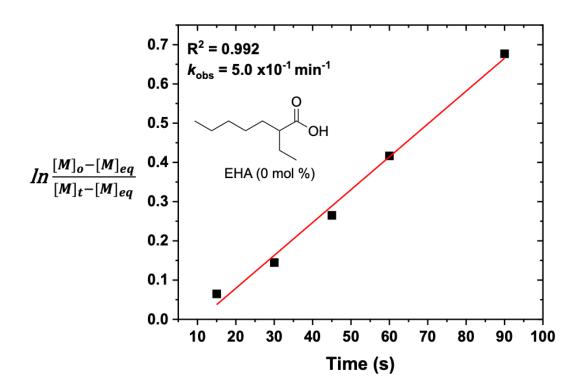
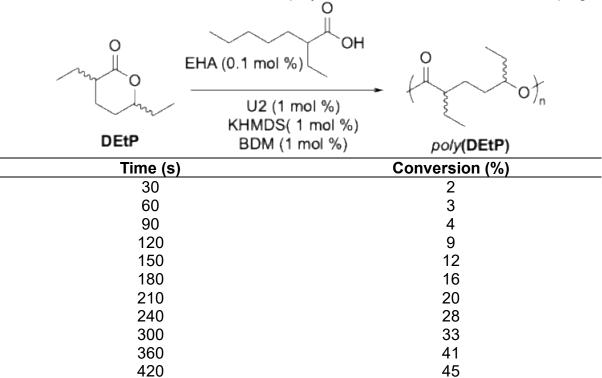



Figure S39. Kinetic Plot for DEtP polymerization with 0 mol% EHA doping

Table S29. Conversion vs time for DEtP polymerization with 0.1 mol% EHA doping

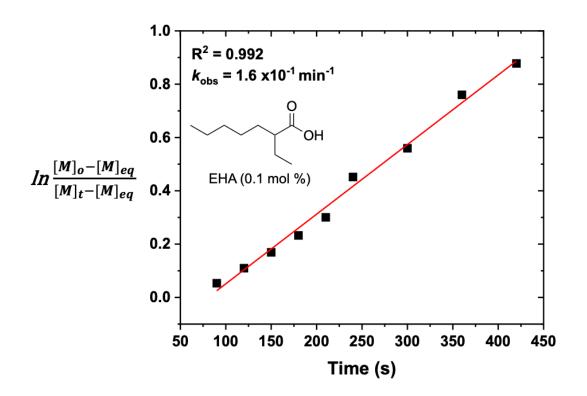
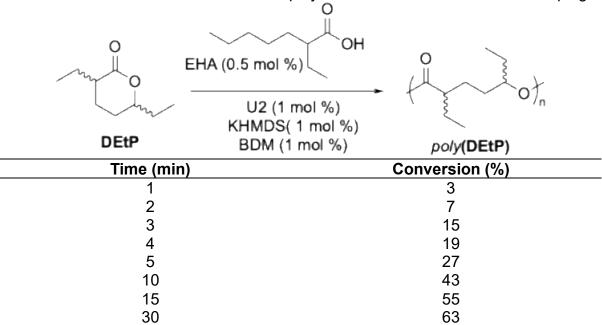



Figure S40. Kinetic Plot for DEtP polymerization with 0.1 mol% EHA doping

Table S30. Conversion vs time for DEtP polymerization with 0.5 mol% EHA doping

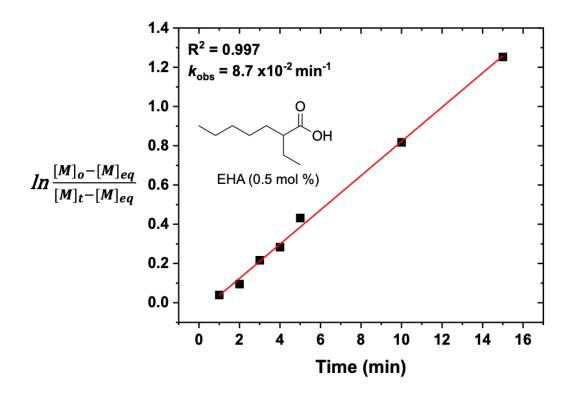
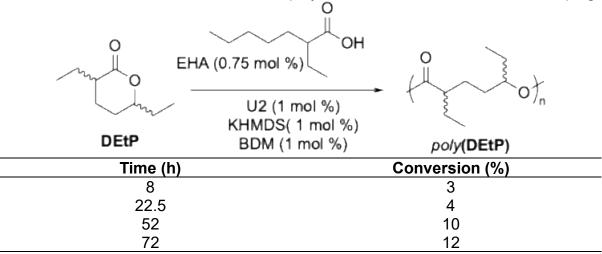



Figure S41. Kinetic Plot for DEtP polymerization with 0.5 mol% EHA doping

Table S31. Conversion vs time for DEtP polymerization with 0.75 mol% EHA doping

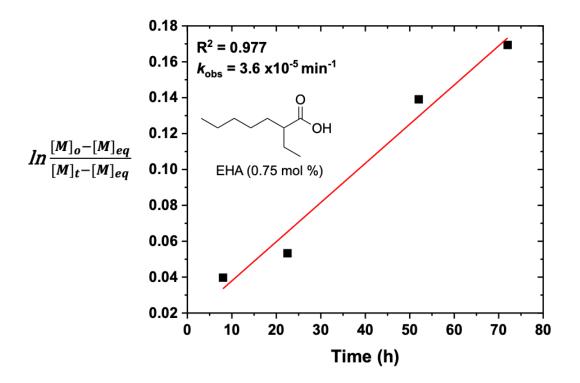
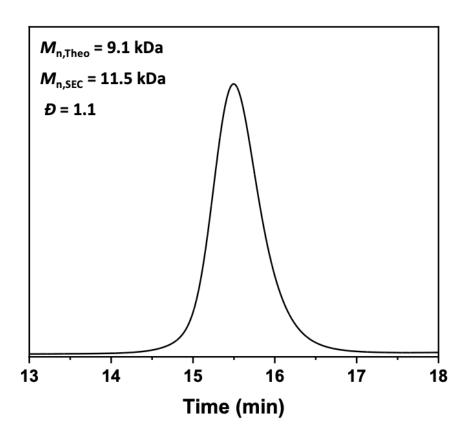
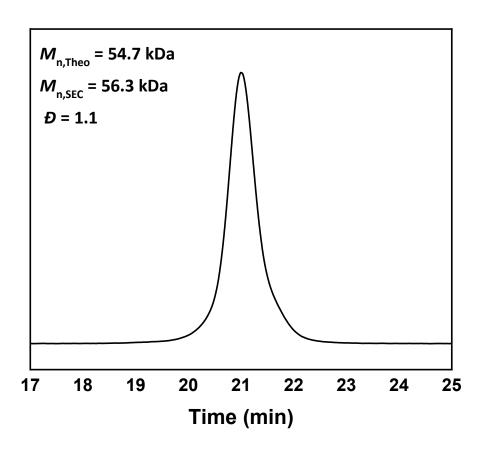


Figure S42. Kinetic Plot for DEtP polymerization with 0.75 mol% EHA doping


Table S32. Polymerization of **DEtP** with KHMDS and KO^tBu in the absence of urea

Đ **Entry Base** Conv Time M_{n, Theo} M_{n, SEC} % kDa kDa 1 KHMDS 76 2 min 11.8 10.7 1.36 2 KO^tBu 69 1 min 10.7


Table S33. Dispersity vs time for **DEtP** polymerization with KHMDS (with and without urea U2)

Entry	Time	Đ KHMDS+U2 ^[a]	Đ KHMDS ^[b]
1	1 min	1.21	1.38
2	10 min	1.24	1.38
3	30 min	1.26	1.43
4	6.5 h	1.33	1.43
5	24 h	1.36	1.47

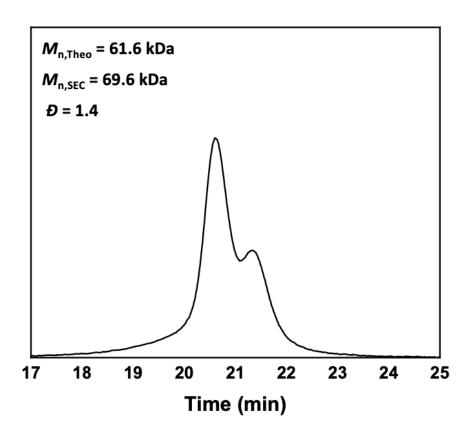

[a] Urea (1 mol %), [b] Urea (0 mol%)

Figure S43. SEC trace (RI) of poly(DEtP) polymerized using U2/KHMDS(1 mol%) and BDM (1 mol%) at 120 s

Figure S44. SEC tr ace (MALS) of poly(DEtP) polymerized using U2/KHMDS(1 mol%)and BDM (0.2 mol %) at 30 min.

Figure S45. SEC trace (MALS) of *poly*(**EtVP**) polymerized using U2/KHMDS(1 mol%)and BDM (0.13 mol %) at 30 min.

References

- (1) Lin, B.; Waymouth, R. M. Urea Anions: Simple, Fast, and Selective Catalysts for Ring-Opening Polymerizations. *J. Am. Chem. Soc.* **2017**, *139* (4), 1645–1652. https://doi.org/10.1021/jacs.6b11864.
- (2) Rapagnani, R. M.; Dunscomb, R. J.; Fresh, A. A.; Tonks, I. A. Tunable and Recyclable Polyesters from CO2 and Butadiene. *Nat. Chem.* **2022**, *14* (8), 877–883. https://doi.org/10.1038/s41557-022-00969-2.
- (3) Semeniuchenko, V.; Braje, W. M.; Organ, M. G. Sodium Butylated Hydroxytoluene: A Functional Group Tolerant, Eco-Friendly Base for Solvent-Free, Pd-Catalysed Amination. *Chem. Eur. J.* **2021**, 27 (49), 12535–12539. https://doi.org/10.1002/chem.202101617.