Supplementary Informati This journal is © The Ro	ion (SI) for Polymer Chemistry. yal Society of Chemistry 2025
·	
	Supporting information
Surfactant-fr	ee synthesis of polyethylene nanoparticles: toward more realistic
	model nanoplastics
Lea Jacquin ^a , Edgar i Brunel ^a	Espinosa ^a , Pierre-Yves Dugas ^a , Muriel Lansalot ^a , Elodie Bourgeat Lami ^a , Vincent Monteil ^a , Fabrice

Table of contents

1.	Ki	netic study on radical emulsion polymerization of ethylene	3
	•	Table S1: Kinetics of radical emulsion polymerization of ethylene at 100 bar with an anionic or cationic initiator	3
	•	Figure S1 : Effect of reaction time on particle diameter, particle number and polymer content during radical emuls	ion
		polymerization of ethylene using APS and AIBA as initiators, without surfactant	3
	•	Figure S2: (Cryo)-TEM images of anionic PE nanoparticles obtained by radical emulsion polymerization with different	
		ethylene pressures	4
	•	Table S2 : SAXS goodness-of-fit parameters for free-radical ethylene emulsion polymerization	5
	•	Table S3 : Successive seeding of surfactant-free PE latex at P _{ethylene} = 100 bar	5
	•	Figure S3: SAXS curves of anionic PE NPs obtained by successive latex seedings	6
	•	Table S4: SAXS goodness-of-fit parameters for successive seeding of surfactant-free PE latex	6
2.	Ra	dical emulsion copolymerization of ethylene with vinyl acetate	7
	•	Figure S4: TEM images of EVA copolymer nanoparticles obtained by radical emulsion copolymerization of ethylene and	۷Ac
		with different VAc molar fractions	7
	•	Figure S5 : SAXS curves of EVA copolymer nanoparticles obtained by radical emulsion polymerization with different v	√Ac
		molar fractions	8
	•	Table S5 : Characterization parameters of EVA nanoparticles based on SAXS curve fits	9
	•	Table S6: Influence of ethylene pressure on the synthesis of anionic EVA nanoparticles by surfactant-free radical emuls	
		polymerization of ethylene	9
	•	Figure S6: TEM images of EVA copolymer nanoparticles obtained by radical emulsion polymerization at different ethylogeness.	ene
		pressures	. 10
3.	Ra	adical emulsion copolymerization of ethylene with carbon monoxide	.11
•	•	Figure S7 : SAXS curves of ECO copolymer nanoparticles obtained by radical emulsion polymerization with a) differ	
	•	ethylene pressures and b) different carbon monoxide pressures	
	•	Table S7 : SAXS goodness-of-fit parameters for ethylene-carbon monoxide copolymers	
	•	Figure S8: FTIR spectra of ECO copolymers obtained by surfactant-free radical emulsion copolymerization of ethylene	
		CO at different CO pressures	
		r	

1. Kinetic study on radical emulsion polymerization of ethylene

Table S1: Kinetics of radical emulsion polymerization of ethylene at 100 bar with an anionic or cationic initiator

Time (hours)	PC ^[a] (%)	ζ ^[b] (mV)	Z _{ave} ^[c] (nm)	PdI ^[d]	<i>N</i> _p ^[e] (mL ⁻¹)	D _n ^[f] (nm)	$D_{\rm w}/D_{\rm n}^{\rm [f]}$	D _{SAXS} [g] (nm)	$\sigma^{[g]}$	7 _m [h] (°C)	τ _c [i] (°C)	Х _с [i] (%)	<i>M</i> _n ^[k] (g mol ⁻¹)	$M_{ m w}^{[k]}$ (g mol ⁻¹)	Ð ^[k]
1*	0.3	-42	50	0.02	4.3x10 ¹³	47	1.03	47	0.01	93	73	25	3 200	29 800	9.4
2*	0.6	-39	68	0.01	4.4x10 ¹³	65	1.02	nd	nd	93	76	26	2 200	10 500	4.7
3*	1.2	-47	71	0.01	7.3x10 ¹³	64	1.04	nd	nd	92	75	27	2 400	11 800	5.0
4*	2.0	-42	82	0.01	6.3x10 ¹³	78	1.02	77	0.03	91	72	24	2 800	24 600	8.9
5*	1.9	-42	96	0.01	4.5x10 ¹³	83	1.01	85	0.03	94	78	30	3 500	17 000	4.8
6*	1.3	-45	98	0.02	3.1x10 ¹³	91	1.01	86	0.02	93	74	25	3 600	15 200	4.2
1**	0.7	36	46	0.03	1.6x10 ¹⁴	41	1.09	44	0.08	90	74	20	2 900	8 200	2.8
2**	1.1	44	59	0.03	1.1x10 ¹⁴	55	1.07	55	0.08	93	71	22	3 400	9 700	2.8
3**	1.3	43	54	0.04	1.7x10 ¹⁴	46	1.07	52	0.06	90	67	23	3 400	9 900	2.9
4**	1.4	44	50	0.05	2.5x10 ¹⁴	48	1.03	53	0.06	91	72	24	4 900	13 600	2.8
5**	1.5	38	58	0.05	1.7x10 ¹⁴	49	1.02	nd	nd	92	71	25	3 200	12 100	3.8
6**	2.1	48	61	0.04	2.1x10 ¹⁴	51	1.04	58	0.06	93	73	30	4 300	12 900	2.9

Synthesis conditions: *[APS] = 1 g L⁻¹, [NaHCO₃] = 1 g L⁻¹, 75 °C, 250 RPM, 4 h, pH = 7.5 and **[AlBA] = 1 g L⁻¹, 75 °C, 250 RPM, 4 h, pH = 8. ^[a] Polymer content, determined by gravimetry using equation (4), ^[b] Zeta potential of particles in deionized water, determined using equation (2), ^[c] Hydrodynamic diameter and polydispersity index determined by DLS, ^[d] Particle number, determined using equation (1), ^[e] Number-average diameter and associated dispersity, determined by TEM using equation (5), ^[f] Average diameter and log-normal standard deviation, determined by SAXS using equation (7), ^[g] Melting temperature, determined by DSC, ^[h] Crystallization temperature, determined by DSC, ^[i] Crystallinity, determined by DSC using equation (12), ^[i] Molar masses in number, in weight and dispersity, determined by HT-SEC.

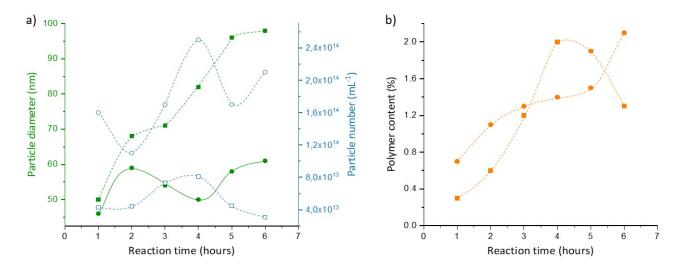


Figure S1 : Effect of reaction time on a) particle diameter (■ NPs APS and ● NPs AIBA), and particle number (□ NPs APS and ○ NPs AIBA), and b) on polymer content (■ NPs APS and ● NPs AIBA) during radical emulsion polymerization of ethylene using APS and AIBA as initiators, without surfactant. Synthesis conditions: (●, ○) [AIBA] = 1 g L⁻¹, 75 °C, P_{ethylene} = 100 bar, 250 RPM, pH = 8; and (■, □) [APS] = 1 g L⁻¹, [NaHCO₃] = 1 g L⁻¹, 75 °C, P_{ethylene} = 100 bar, 250 rpm-1, pH = 7.8

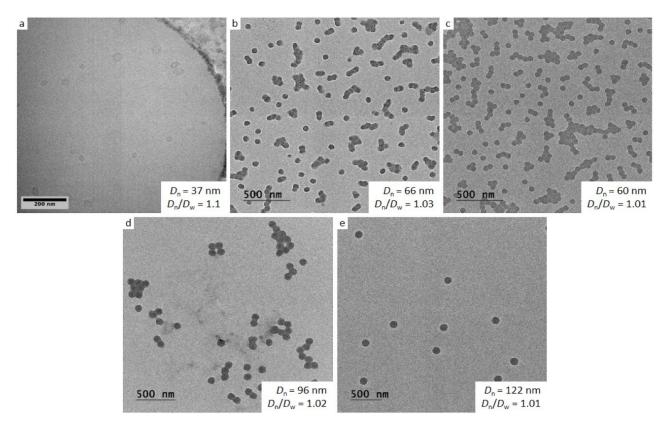


Figure S2: (Cryo)-TEM images of anionic PE nanoparticles obtained by radical emulsion polymerization with different ethylene pressures. a) 50 bar, b) 75 bar, c) 100 bar, d) 150 bar, e) 200 bar. Synthesis conditions: [APS] = 1 g L⁻¹, [NaHCO₃] = 1 g L⁻¹, 75 °C, 250 RPM, 4 h, pH = 7.5

Goodness-of-fit parameters for SAXS analyses were calculated as follows: The $R_{\rm f}$ factor was measure of model quality which is defined as

$$R_{f} = \frac{\sum_{i=1}^{N} ||I_{exp}(q)| - |I_{th}(q)||}{\sum_{i=1}^{N} |I_{exp}(q)|}$$
(S1)

Theoretical values of $R_{\rm f}$ range from 0 (perfect agreement of calculated and observed intensities) to infinity. $R_{\rm f}$ factors greater than 0.5 indicate very poor agreement between observed and calculated intensities. Models refining to $R_{\rm f} < 0.05$ are often considered to be good. Weighted $R_{\rm f}$ factors $R_{\rm w}$ are also often used to track least-squares refinement, since the functions minimized are weighted according to estimates of the precision of the measured quantity. The weighted residuals are defined as:

$$R_{w} = \sqrt{\frac{\sum_{i=1}^{N} \left(\frac{\left|\left|I_{exp}(q)\right| - \left|I_{th}(q)\right|\right|}{\Delta I(q)}\right)^{2}}{\sum_{i=1}^{N} \frac{I(q)_{exp}^{2}}{\Delta I(q)^{2}}}}$$
(S2)

The interpretation of the parameters $R_{\rm n}$ and $R_{\rm w}$ can be summarized as:

- R_f , $R_w > 0.3$: questionable
- $0.1 > R_f$, $R_w > 0.3$: may be acceptable
- $R_{\rm f}$, $R_{\rm w}$ < 0.1: believable

Table S2 : SAXS goodness-of-fit parameters for free-radical ethylene emulsion polymerization

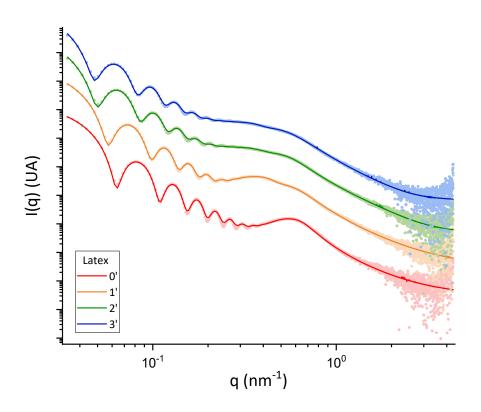
P _{ethylene} (bar)	R_f	R_{w}
50*	0.043556	0.091436
75*	0.091436	0.119614
100*	0.021452	0.013532
150*	0.013556	0.051321
200*	0.010065	0.057555
50**	0.039646	0.023999
75**	0.032639	0.033186
100**	0.039646	0.023999
150**	0.060087	0.049668
175**	0.008526	0.014610
200**	0.071856	0.063044

Synthesis conditions: *[APS] = 1 g L⁻¹, [NaHCO₃] = 1 g L⁻¹, 75 °C, 250 RPM, 4 h, pH = 7.5 and **[AIBA] = $\frac{1}{2}$ g L⁻¹, 75 °C, 250 RPM, 4 h, pH = 8.

Table S3 : Successive seeding of surfactant-free PE latex at $P_{\rm ethylene}$ = 100 bar

Latex	N _p ^{i [a]} (mL ⁻¹)	N _p ^{f [b]} (mL ⁻¹)	PC ^[c] (%)	ζ ^[d] (mV)	Z _{ave} ^[e] (nm)	PDI ^[e]	D _n ^[f] (nm)	$D_{\rm w}/D_{\rm n}^{\rm [f]}$	D _{SAXS} [g] (nm)	σ ^[g]	7 _m [h]	τ _c [i] (°C)	X _c ^[i] (%)	M _n ^[k] (g mol ⁻¹)	M _w ^[k] (g mol ⁻ 1)	Đ ^[k]
0	0	3.2x10 ¹³	5.2	-51	153	0.02	133	1.02	nd	nd	102	84	39	3 200	24 000	7.6
1	1.2x10 ¹³	1.2x10 ¹³	4.1	-47	197	0.03	151	1.11	nd	nd	99	81	36	1 200	17 400	14.9
2	5.8x10 ¹²	1.1x10 ¹³	3.9	-46	214	0.06	160	1.36	nd	nd	99	79	35	1 500	14 900	9.8
3	4.5x10 ¹²	1.1x10 ¹³	3.9	-47	197	0.12	129	1.52	nd	nd	98	79	37	1 300	13 200	10.2
4	5.8x10 ¹²	1.4x10 ¹³	3.8	-44	181	0.13	124	1.66	nd	nd	98	76	33	1 000	12 500	12.2
0′	0	2.4x10 ¹³	4.6	-52	160	0.01	146	1.01	72	0.04	97	78	29	7 300	23 900	3.2
1′	2.1x10 ¹³	1.9x10 ¹³	5.3	-53	180	0.02	152	1.01	80	0.06	97	79	30	3 700	14 000	3.8
2′	1.5x10 ¹³	1.6x10 ¹³	5.6	-54	199	0.03	168	1.01	92	0.06	97	78	29	4 700	16 200	3.4
3′	1.1x10 ¹³	1.1x10 ¹³	4.5	-54	208	0.02	187	1.02	96	0.07	99	75	29	4 400	28 100	6.4

Synthesis conditions: Latex 0: [APS] = 1 g L⁻¹, [NaHCO₃] = 1 g L⁻¹, P_{ethylene} = 150 bar, 75 °C, 250 RPM, 6 h, pH = 7.8, Latex 1-4: [APS] = 1 g L⁻¹, [NaHCO₃] = 1 g L⁻¹, P_{ethylene} = 100 bar, 75 °C, 250 RPM, 4 h, pH = 7.8, PC_{initial} = 2 %. Latex 0': [APS] = 1 g L⁻¹, [NaHCO₃] = 1 g L⁻¹, P_{ethylene} = 200 bar, 75 °C, 250 RPM, 6 h, pH = 7.8 and Latex 1'-3': [APS] = 0.5 g L⁻¹, [NaHCO₃] = 0.5 g L⁻¹, P_{ethylene} = 100 bar, 75 °C, 250 RPM, 4 h, pH = 7.8, PC_{initial} = 4 %. [a] Initial particle number, determined using equation (1), [c] Final polymer content, determined by gravimetry using equation (4), [d] Zeta potential of particles in deionized water using equation (2), [e] Hydrodynamic diameter and polydispersity index, determined by DLS, [f] Number average diameter and associated dispersity, determined by TEM using equation (5), [g] Average diameter and log-normal standard deviation, determined by SAXS using equation (7), [h] Melting temperature, determined by DSC, [i] Crystallization temperature, determined by DSC, [ii] Crystallization temperature, determined by HT-SEC.



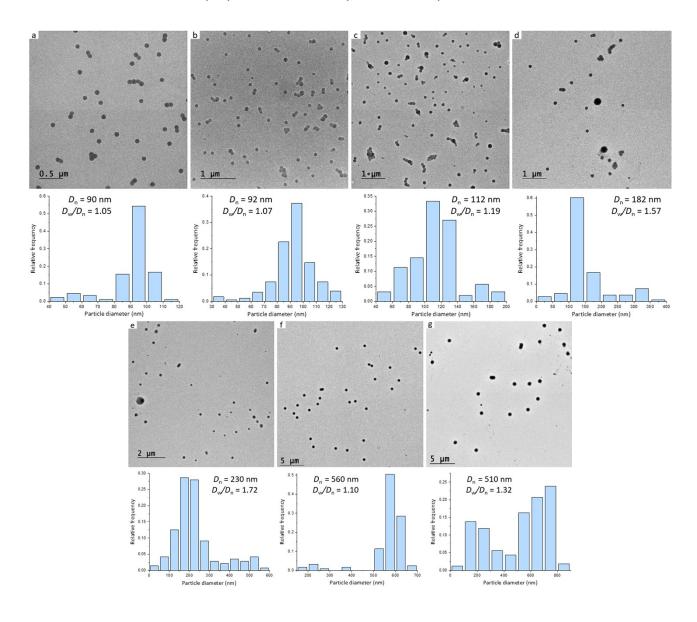

Figure S3: SAXS curves of anionic PE NPs obtained by successive latex seedings. Dashed lines represent raw datas, while solid lines correspond to fitted curves (a multiplicative factor was applied to the intensity for clarity). Synthesis conditions: Latex 0': [APS] = 1 g L⁻¹, [NaHCO₃] = 1 g L⁻¹, $P_{\text{ethylene}} = 200 \text{ bar}$, 75 °C, 250 RPM, 6 h, pH = 7.8 and Latex 1'-3': [APS] = 0.5 g L⁻¹, [NaHCO₃] = 0.5 g L⁻¹, $P_{\text{ehylene}} = 100 \text{ bar}$, 75 °C, 250 RPM, 4 h, pH = 7.8, PC_{initial} = 4 %

Table S4: SAXS goodness-of-fit parameters for successive seeding of surfactant-free PE latex

Latex	R_f	R _w
0′	0.018509	0.036237
1′	0.025081	0.034454
2′	0.058907	0.053440
3′	0.063759	0.053137

Synthesis conditions: Latex 0': [APS] = 1 g L⁻¹, [NaHCO₃] = 1 g L⁻¹, P_{ethylene} = 200 bar, 75 °C, 250 RPM, 6 h, pH = 7.8 and Latex 1'-3': [APS] = 0.5 g L⁻¹, P_{ethylene} = 100 bar, 75 °C, 250 RPM, 4 h, pH = 7.8, P_{Cinitial} = 4 %

2. Radical emulsion copolymerization of ethylene with vinyl acetate

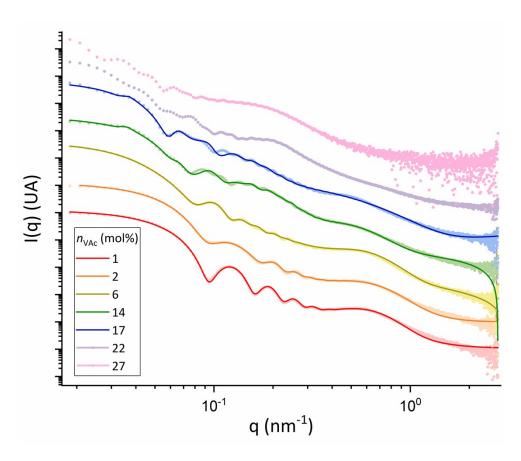


Figure S5: SAXS curves of EVA copolymer nanoparticles obtained by radical emulsion polymerization with different VAc molar fractions. Dashed lines represent raw datas, while solid lines correspond to fitted curves (a multiplicative factor was applied to the intensity for clarity). Synthesis conditions: [APS] = 1 g L^{-1} , [NaHCO₃] = 1 g L^{-1} , P_{ethylene} = 100 bar, 75 °C, 250 RPM, 4 h, pH = 7.8

The SAXS profiles display well-defined oscillations, characteristic of monodisperse systems. However, the positions of the scattering minima do not fit a single population, but rather suggest a mixture of monodisperse particle populations. The four curves corresponding to the lowest %VAc were therefore fitted using several monodisperse sphere form factors:

$$I(q,R,\Delta\eta) = N - \pi R^3 - \frac{1}{(qR)^3}$$
(S3)

with N the number of particle (cm⁻³), R is the sphere radius (nm) and $^{\Delta\eta}$ scattering length density difference between particle and the solvent ($^{\Delta\eta}=\eta_c-\eta_{sol}$ with: $\eta_{c=}$ 9.25 x10¹⁰ cm⁻² and $^{\eta}_{sol}=$ 9.44x10¹⁰ cm⁻²). The results are presented in $Table \, S3 \, below, \, where \, x_{nb} \, and \, x_v \, are \, the \, proportions \, of \, each \, population \, in \, number \, and \, volume, \, calculate \, using \, the \, formulas \, and \, volume, \, calculate \, and \, volume, \, calculate \, and \, calculate \, and \, calculate \, and \, calculate \, and \, calculate$ below:

$$x_{nb}^{i} = \frac{N_{i}}{\sum_{i}^{N_{i}}} \times 100$$

$$x_{v}^{i} = \frac{N_{i}R_{i}^{3}}{\sum_{i}^{N_{i}}R_{i}^{3}} \times 100$$
(S5)

$$x_{v}^{i} = \frac{N_{i}R_{i}^{3}}{\sum_{i}N_{i}R_{i}^{3}} \times 100 \tag{S5}$$

Table S5: Characterization parameters of EVA nanoparticles based on SAXS curve fits

n _{vac^[a] (mol%)}	R ^[a] (nm)	N _{nb} ^[b] (%)	N _v ^[c] (%)	$R_f^{[d]}$	R _w ^[d]
1	47.55	100	100	0.035757	0.029989
	55.76	8.59	229.99		
2	45.27	33.44	62.43	0.014423	0.016453
	18.67	578.97	7.59	_	
	89.88	0.72	15.86		
6	60.95	8.00	54.88	0.022725	0.023441
б	45.36	6.63	18.73	- 0.022735	0.023441
	16.02	84.65	10.53	_	
	141.68	0.03	13.03		
	123.37	0.06	15.65	_	
14	66.56	0.82	34.17	0.085609	0.10727
	50.52	0.70	12.76	_	
	12.04	98.40	24.38	_	

[[]a] Particle radius, [b] Number and [c] volume distributions, i.e. percentage that each size class occupies of the overall distribution, [d] Goodness-of-fit parameters

Table S6: Influence of ethylene pressure on the synthesis of anionic EVA nanoparticles by surfactant-free radical emulsion polymerization of ethylene

C _{VAc} (mol L ⁻¹)	P _{ethylene} (bar)	PC ^[a] (%)	Z _{ave} [b] (nm)	PDI ^[b]	<i>D</i> _n ^[c] (nm)	$D_{\rm w}/D_{\rm n}^{\rm [c]}$	n _{vac} ^[d] (mol%)	<i>T</i> _m ^[e] (°C)	τ _g ^[f] (°C)	X _c ^[g] (%)	$M_{n}^{[h]}$ (g mol ⁻¹)	M _w ^[h] (g mol⁻¹)	Đ ^[h]	CI ^[i]
	50	4.1	277	0.15	340	1.42	32.0	9	-10	2	1 700	13 900	7.9	5.3
0.47	100	3.2	163	0.06	182	1.57	14.0	65	-20	19	1 900	17 900	9.5	3.5
0.47	150	2.9	172	0.03	119	1.15	9.0	90	-29	22	2 500	23 100	9.4	1.6
	200	4.5	165	0.06	126	1.33	6.0	96	-29	32	2 400	28 000	11.9	1.4
	50	1.2	95	0.07	nd	nd	1.8	93	-30	22	1 800	16 000	9	0.9
0.43	100	1.0	118	0.03	94	1.04	1.5	90	-32	22	1 500	12 700	8	0.8
0.12	150	2.4	137	0.01	115	1.02	0.4	96	-35	26	1 800	31 600	18	0.2
	200	4.1	170	0.01	138	1.20	0.5	100	-40	33	2 600	24 200	9	0.2

Synthesis conditions: [APS] = 1 g L⁻¹, [NaHCO₃] = 1 g L⁻¹, 75 °C, 250 RPM, 4 h, pH = 7.8. [a] Final polymer content, determined by gravimetry using equation (4), [b] Hydrodynamic diameter and polydispersity index, determined by DLS, [c] Number-average diameter and associated dispersity, determined by TEM using equation (5), [e] Vinyl acetate molar fraction in the copolymer, determined by ¹H NMR using equation (14), ^{|f]} Melting temperature, determined by DSC, [g] Crystallization temperature, determined by DSC, [g] Crystallization rate, determined by DSC using equation (12), [h] Molar masses in number, in weight and dispersity, determined by HT-SEC, [i] Carbonyl index, determined by FTIR using equation (13).

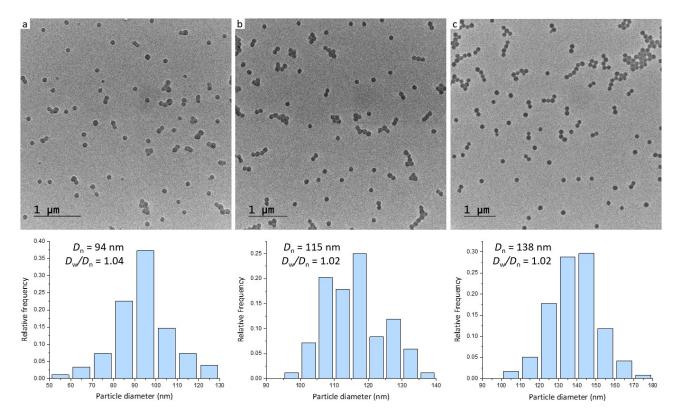


Figure S6: TEM images of EVA copolymer nanoparticles obtained by radical emulsion polymerization at different ethylene pressures. a) $P_{\text{ethylene}} = 100$ bar, b) $P_{\text{ethylene}} = 150$ bar, c) $P_{\text{ethylene}} = 200$ bar. Synthesis conditions: [APS] = 1 g L⁻¹, [NaHCO₃] = 1 g L⁻¹, [VAc] = 0.12 mol L⁻¹, 75 °C, 250 RPM, 4 h, pH = 7.8

3. Radical emulsion copolymerization of ethylene with carbon monoxide

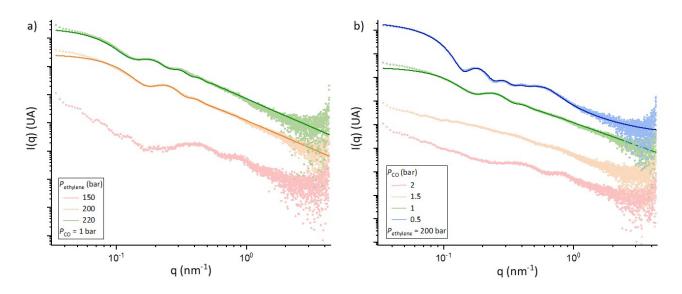


Figure S7 : SAXS curves of ECO copolymer nanoparticles obtained by radical emulsion polymerization with a) different ethylene pressures and b) different carbon monoxide pressures. Dashed lines represent raw datas, while full lines correspond to fitted curves (a multiplicative factor was applied to the intensity for clarity). Synthesis conditions: [APS] = 1 g L⁻¹, [NaHCO₃] = 1 g L⁻¹, 75 °C, 250 RPM, 6 h, pH = 7.8

Table S7: SAXS goodness-of-fit parameters for ethylene-carbon monoxide copolymers

P _{co} (bar)	Р _{етн} (bar)	R_f	R _w
0.5	200	0.03078	0.03336
1	200	0.03829	0.01953
1.5	200	0.09476	0.07046
2	200	0.14937	0.10036
1	150	0.03078	0.03336
1	220	0.09476	0.07065

Synthesis conditions: [APS] = 1 g L^{-1} , [NaHCO₃] = 1 g L^{-1} , 75 °C, 250 RPM, 6 h, pH = 7.8

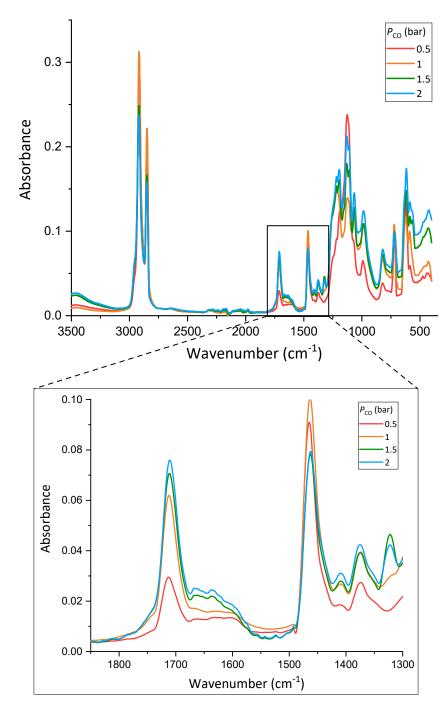


Figure S8: FTIR spectra of ECO copolymers obtained by surfactant-free radical emulsion copolymerization of ethylene and CO at different CO pressures. Synthesis conditions: [APS] = 1 g L⁻¹, [NaHCO₃] = 1 g L⁻¹, P_{ethylene} = 200 bar 75 °C, 250 RPM, 6 h, pH = 7.8