Supplementary Information

Targeting catabolite control protein A from *Staphylococcus aureus* by auranofin

Wenjing Lin^{‡[a]}, Jingjing Chen^{‡[a]}, Ziying Huang^{‡[a]}, Haijun Li^[a], Yushou Chen^[a], Xuemin Duan^[a,c], Yanshi Xiong^[a], Bingjie Han^{*[b]}, Guijuan Jiang^{*[a]}, Jintao Wang^{*[a]} and Xiangwen Liao^{*[a]}

E-mail: hanbj@mail2.sysu.edu.cn

‡ These authors contribute equally to this work

[[]a] School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China E-mail: <u>liao492008522@163.com</u>, jintaochem@163.com or jgjchem@163.com

[[]b] Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China

[[]c] Jinggangshan University, ji'an, 343000, China

^{*}Correspondence author: X. Liao, ORCID: 0000-0002-8637-0146

Strains, plasmids and primers.

Strains, plasmids and primers are listed in Table S1. The *Escherichia coli* (*E. coli*) XL1-Blue and BL21(DE₃) strains was employed for CcpA expression and purification. *Staphylococcus aureus* (*S. aureus*) strains were cultured in TSB medium. Custom polyclonal antisera to *S. aureus* CcpA were prepared by immunizing rabbit with purified CcpA protein.

Purification of CcpA proteins

CcpA proteins from *S. aureus* were purified by reference method^[1].

S. aureus mutant construction

The *S. aureus* mutant was obtained as previously described^[1]. Primers used to generate flanking DNA fragments for allelic replacement are listed in Table S1.

Fluorescence Thermal shift analysis (FTSA)

Briefly, 20 μ L reactions buffer (3O-C12HSL, 100 μ M; auranofin, 50 μ M); purified CcpA, 10 μ M; SYPRO dye, 1:125 ν/ν) was transferred into a 8-tube strip. Then the melting curves of CcpA was recorded after incubated for 30 min at 4°C using Real-Time PCR. The temperature were elevated from 25 to 99°C at a rate of 1°C/min and the transition midpoint (T_m) values of the protein were quantified.

Cellular thermal shift assay (CETSA)

S. aureus was co-incubated with auranofin at 37 °C for 150 min. Afterwards, collected the bacteria and then washed with PBS. After equally divided into 10 aliquots in a volume of 50 μ L, bacteria was heated individually for 3 min at different temperatures and then cooled using ice. After repeated this steps 3 times, three intense freeze-thaw cycles were conducted using liquid nitrogen to lyse the bacterial cells. The resulting solution were centrifuged at 15000×g at 4 °C for 10 min to remove the denatured proteins. At last, the soluble CcpA in the supernatants were quantified through western blotting.

β-Gal assays

The S. aureus RN4220 or mutant strains containing the lacZ reporter plasmid

(pALC-*pckA::lacZ* or pALC-*hla::lacZ*) were used for this assay. In brief, overnight culture of the bacteria was diluted into fresh glucose-replete LB medium (containing 50 mM Hepes, 10 mM glucose). The culture was grown at 37°C until at OD₆₀₀ reached to 1.0. The bacteria were then treated with auranofin and cultured for 3 h. Subsequently, the bacteria were collected and cell density was recorded. After cell lysis, the β -Gal activity of the cell lysate was determined using the 4-methylumbelliferyl- β -d-galactoside as substrates. Fluorescence at 460 nm was monitored for 30 min to determine the produced 7-hydroxy-4-methylcoumarin with an excitation wavelength of 365nm. At last, the fluorescence was normalized to bacterial density to obtain the relative β -Gal activity.

Transcriptomics analysis

Bacteria at logarithmic phase was diluted 100 times with TSB, then auranofin was added. After co-incubated in a shaker at 37 °C for 8 h, collected the bacteria and then wash 3 times with sterile PBS at 4 °C. Afterwards, collected bacterial precipitation. The resulted bacteria were frozen in liquid nitrogen for 15 minutes and stored at -80°C. At last, all samples was employed for transcriptomic analysis.

Inhibition of hemolytic toxin secretion

The effect of auranofin on the release of hemolytic toxin from *S. aureus* was investigated by rabbit red blood cells. The *S. aureus* was cultured in TSB medium until OD₆₀₀ reached 1. Then the bacterial suspension were diluted with fresh TSB medium at a ratio of 1:100. Take out 3 mL diluted bacterial suspension and 1 mL auranofin into 10 mL shaker tube, incubated at 37 °C with 220 rpm. After 20 h, the bacterial solution was centrifuged at 5000 rpm for 2 min to retain the supernatant. Fresh rabbit blood cell were centrifuged for 2 min at 2000 rpm and washed with sterile PBS 3 times. Subsequently, 1 mL sterile PBS, 50 µL rabbit blood cell and 100 µL bacterial supernatant were added into 1.5 mL centrifuged to remove the supernatant and the absorbance value of OD₅₄₃ was measured as a measure of the amount of α -hemolysin.

Figure S1 The pathway map for the downstream gene-gene (*pckA* and *hla*) interaction network of CcpA.

Figure S2. (A) After treated with auranofin, the survival rate of *G. mellonella* which infected by *S. aureus* or $ccpA::ccpA^{2CS}$ mutant; (B) The results of overall log-rank test; (C) Pairwise comparison analysis among groups. (In the log-rank test graph, only three decimal places are retained; P<0.05 indicates a significant difference)

Figure S3. (A) The survival rate of *S. aureus*-infected *G. mellonella* after treated with kanamycin in the presence of auranofin during 5 days; **(B)** The results of overall log-rank test; **(C)** Pairwise comparison analysis among groups. (In the log-rank test graph, only three decimal places are retained; P<0.05 indicates a significant difference)

Figure S4. (A) The survival rate of *S. aureus ccpA*^{2CS}-infected *G. mellonella* after treated with kanamycin in the presence of auranofin during 5 days; **(B)** The results of overall log-rank test; **(C)** Pairwise comparison analysis among groups. (In the log-rank test graph, only three decimal places are retained; P<0.05 indicates a significant difference)

Figure S5. (A) The survival rate of *S. aureus*-infected *G. mellonella* after treated with gentamicin in the presence of auranofin during 5 days; **(B)** The results of overall log-rank test; **(C)** Pairwise comparison analysis among groups. (In the log-rank test graph, only three decimal places are retained; P<0.05 indicates a significant difference)

Figure S6. (A) The survival rate of *S. aureus ccpA*^{2CS}-infected *G. mellonella* after treated with gentamicin in the presence of auranofin during 5 days; **(B)** The results of overall log-rank test; **(C)** Pairwise comparison analysis among groups. (In the log-rank test graph, only three decimal places are retained; P<0.05 indicates a significant difference)

Strain, plasmids	Application			
or primers				
<i>E.coli</i> strains				
BL21(DE ₃₎	Protein expression			
Staphylococcus aureus strains				
RN4220	Modification plus strain			
Newman	Wild-type strain. Used in CETSA, biofilm and erythrocyte lysis assay			
Newman <i>ccpA::ccpA^{2CS}</i>	Wild-type $ccpA$ gene was replaced by $ccpA^{2CS}$. Used in CETSA, biofilm			
	and erythrocyte lysis assay			
Plasmids				
pET47b				
pET47b-ccpA	Wild-type CcpA protein expression			
pET47b-ccpA ^{2CS}	CcpA ^{2CS} mutant protein expression			
pKOR1	S. aureus mutants construction			
Primers for <i>S. aureus</i> mutants construction				
pKOR1-ccpA::ccpA ^{2CS}	ATTGGTACCAAATATGCAAAACTTC	ATTGGATCCGGATTAAATGAT		
	GAGTTATTAAAAGAAG	GAA GAG AAT GGT CAA T		

Complex	S. aureus (µg/mL)	<i>S. aureus ccpA::ccpA</i> ^{2CS} (µg/mL)
Auranofin	0.195	0.39
Kanamycin	6.25	6.25
Gentamycin	0.78	1.56
Amikacin	6.25	12.5

Table S2 The minimum inhibitory concentration (MIC) of auranofin and some clinical antibiotics against *S. aureus* or *S. aureus* $ccpA::ccpA^{2CS}$ mutant.

Reference

[1] Liao X., *et al.* Identification of catabolite control protein A from *Staphylococcus aureus* as a target of silver ions. *Chem. Sci.* **8**, 8061-8066 (2017).