# Urea-induced platelike ZSM-5 zeolite with Si zoning for efficient alkylation of toluene with ethanol to *para*-ethyltoluene

Jialin Tan<sup>a, 1</sup>, Lei Miao<sup>b, c, 1</sup>, Yang Liu<sup>d</sup>, Shujing Chen<sup>a</sup>, Zhe Hong<sup>a, \*</sup>, Lihua Deng<sup>a</sup>,

Qun Yang <sup>a</sup>, Xianlong Gao <sup>b</sup>, Fangtao Huang <sup>b,\*</sup>, Zhirong Zhu <sup>b,\*</sup>

<sup>a</sup> College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang,

314001, China;

<sup>b</sup> School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China;

<sup>c</sup> Guangzhou Institute for Food Inspection, Guangzhou, 511400, China;

<sup>d</sup> International Innovation Institute, Beihang University, Hangzhou, 311115, China.

\* Corresponding authors.

E-mail addresses: 1961268317@qq.com (Zhe Hong); FangtaoHuang1993@163.com (Fangtao Huang); zhuzhirong@tongji.edu.cn (Zhirong Zhu).

<sup>1</sup>*These authors contributed equally to this work.* 

## **Table of Contents**

- **S1.** Experimental Procedures
- S2. Supplementary Figures
- S3. Supplementary Tables
- S4. Supplementary References

# **Experimental Procedures**

#### **Catalysts Characterization**

The X-ray powder diffraction patterns (XRD) were recorded on a Bruker AXS-D8 Advance powder diffractometer having Cu K $\alpha$  radiation foundation ( $\lambda = 1.54$  Å, 40 KV and 40 mA). The elemental composition of the samples was determined by a Malvern Panalytical multifunctional X-ray Fluorescence spectrometer (XRF), worked on a rhodium target and a power of 3kW. Scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy (EDS) elemental mappings were obtained via Hitachi S-5500 and FEI Scios 2 HiVac at 5 kV. Transmission electron microscope (TEM) was carried out on a Tecnai G2 F20 instrument operated at 20kV. NH<sub>3</sub>temperature programmed desorption (NH<sub>3</sub>-TPD) was performed using a Micromeritics AutoChem II 2920 equipped with a TCD detector. N<sub>2</sub> adsorption-desorption isotherms were tested using a Micrometrics ASAP 2020 at -196 °C. The Brunauer-Emmett-Teller (BET) was used to calculate the specific surface area and the t-plot method was used to calculate the micropore volumes. Pyridine-adsorbed infrared (Py-IR) were carried out on a Perkin-Elmer 200 FT-IR spectroscope, the adsorption spectra was obtained at 150 °C. The amount of Brønsted and Lewis acid sites was calculated from the corrected

integral areas of IR bands at 1540 cm<sup>-1</sup> and 1450 cm<sup>-1</sup>, using the extinction coefficients reported by Guisnet et al. <sup>1</sup>. The NMR experiment was carried on a Bruker AVANCE-III 500 MHz spectrometer (11.7 T) operating at a Larmor frequency of 130.4 MHz for the <sup>27</sup>Al nucleus. A 4 mm MAS NMR probe was used to approach the <sup>27</sup>Al single-pulse experiments. Thermo gravimetric-differential thermal analysis (TG) was carried out using a METTLER TGA/DSC1/1600T instrument at a temperature ramp from room temperature to 800°C in an air atmosphere. A comparison of the external surface acid sites was performed through a cracking reaction on a fixed-bed reactor operating at 350 °C, with a 1,3,5-triisopropylbenzene (TIPB) flow rate of 4.5 h<sup>-1</sup> mixed with N<sub>2</sub> (80 ml/min). The reaction products were then analyzed in real-time using an Agilent 5890.

The nature of organic species formed on the catalysts during the alkylation reaction was in situ monitored by the Perkin-Elmer 2000 FT-IR spectrometry. 10 mg of sample was pressed into a self-supporting wafer and placed in the chamber. The sample was activated in flowing N<sub>2</sub> (50 mL/min) at 450 °C for 1 h and cooled to 400 °C for taking a background spectrum. N<sub>2</sub> at flow rate of 50 mL/min was used as the carrier gas to transport the feed gas (toluene/ethanol molar ratio of 1:1) into the reaction chamber (WHSV =  $2.0 \text{ h}^{-1}$ ). At the preset reaction temperature, the reaction time was 60 min.

# **Catalytic Testing**

The alkylation of toluene with ethanol was performed in a fixed-bed reactor (50 cm length, 1.5 cm inner diameter) under atmospheric pressure. In a typical run, 2 g of

catalyst (sieved to 40~60 mesh) was charged into the reactor, followed by activation at 450 °C for 1 h with a flow of pure N<sub>2</sub> (50 ml/min). Then, a mixture of toluene and ethanol (T/E = 1:1) was fed into the reactor (WHSV = 2 h<sup>-1</sup>) at 400 °C with a co-fed N<sub>2</sub> flow of 40 ml/min. Analysis of the liquid products was attained using a gas chromatograph (Agilent Technologies GC5890) equipped with a FFAP capillary column (60 m x 0.32 mm x 0.5 µm) and a flame ionization detector (FID). The gaseous product was analyzed in another gas chromatograph (Agilent Technologies GC5890) with flame ionization detector and HP-5 (30 m × 0.32 mm × 0.25 µm) column. The conversion of toluene ( $C_T$ ) and the product selectivity ( $S_i$ ) were defined as following:

$$C_{T} (\%) = \frac{\text{toluene}_{\text{in}} - \text{toluene}_{\text{out}}}{\text{toluene}_{\text{in}}} \times 100 \%$$

 $\frac{n_i}{n_{total} \times 100\%}$ 



**Figure S1.** TIPB cracking reaction over the prepared *y*Si-Z5-0.18 catalysts.



**Figure S2.** Detailed catalytic performance (including toluene conversion, ethyltoluene selectivity, *para*-ethyltoluene selectivity and products distribution) of ZSM-5 catalysts with different length of *b*-axis. Reaction conditions: 400 °C, toluene/ethanol ratio = 1.0, WHSV = 2.0 h<sup>-1</sup>.



Figure S3. Characterization of coke amount by TG techniques over spent catalysts.

| Table S1. The yield of Z5-0.18 samples after each CLD cycle |                                  |  |  |  |  |
|-------------------------------------------------------------|----------------------------------|--|--|--|--|
| CLD cycles                                                  | Yield of the zeolite product (%) |  |  |  |  |
| After 1 cycle                                               | 92.5                             |  |  |  |  |
| After 2 cycles                                              | 84.2                             |  |  |  |  |
| After 3 cycles                                              | 78.5                             |  |  |  |  |

**Table S2.** Textural properties of the prepared ySi-Z5-0.18 catalysts.

| Sample -    | Specific                    | surface area       | $(m^2/g)^a$      | Pore volume (cm $^3/g$ ) <sup>b</sup> |                    |                   |  |
|-------------|-----------------------------|--------------------|------------------|---------------------------------------|--------------------|-------------------|--|
|             | $\mathbf{S}_{\mathrm{BET}}$ | S <sub>micro</sub> | S <sub>ext</sub> | V <sub>total</sub>                    | V <sub>micro</sub> | V <sub>meso</sub> |  |
| 1Si-Z5-0.18 | 373                         | 341                | 32               | 0.205                                 | 0.161              | 0.059             |  |
| 2Si-Z5-0.18 | 326                         | 312                | 14               | 0.168                                 | 0.157              | 0.026             |  |
| 3Si-Z5-0.18 | 225                         | 221                | 4                | 0.144                                 | 0.131              | 0.008             |  |

<sup>a</sup> Calculated by the BET method and *t*-plot method.

<sup>b</sup> Calculated by the *t*-plot method.

|             | Acidity by Py-IR (mmol/g) |         |                 |      |  |  |
|-------------|---------------------------|---------|-----------------|------|--|--|
| Sample      | Total (1                  | .00 °C) | Strong (300 °C) |      |  |  |
|             | BASs                      | LASs    | BASs            | LASs |  |  |
| 1Si-Z5-0.18 | 0.15                      | 0.04    | 0.09            | 0.01 |  |  |
| 2Si-Z5-0.18 | 0.12                      | 0.02    | 0.07            | 0.01 |  |  |
| 3Si-Z5-0.18 | 0.08                      | 0.01    | 0.02            | 0.01 |  |  |

**Table S3.** The concentration of BASs and LASs on the prepared ySi-Z5-0.18 catalysts.

| Coscous and ust distribution from motheral (mal 0/) à |                 |                               |                               |                               |       |        |
|-------------------------------------------------------|-----------------|-------------------------------|-------------------------------|-------------------------------|-------|--------|
| Catalysts                                             | CH <sub>4</sub> | C <sub>2</sub> H <sub>6</sub> | C <sub>2</sub> H <sub>4</sub> | C <sub>3</sub> H <sub>6</sub> | C4-C5 | Others |
| Z5-0                                                  | 2.7             | 0.7                           | 80.8                          | 8.6                           | 4.7   | 2.5    |
| Z5-0.09                                               | 1.3             | 0.4                           | 82.1                          | 9.4                           | 3.5   | 3.3    |
| Z5-0.18                                               | 0.9             | 0.3                           | 84.7                          | 7.6                           | 4.1   | 2.4    |

Reaction conditions: 400 °C, toluene/ethanol ratio = 1.0, WHSV = 2.0 h<sup>-1</sup>.

<sup>a</sup> Determined at 8 h time-on-stream.

|             | Condition            |     |                             | Catalytic performance        |                          |                                    | Ref.       |
|-------------|----------------------|-----|-----------------------------|------------------------------|--------------------------|------------------------------------|------------|
| Sample      | Temperatur<br>e (°C) | T/E | WHS<br>V (h <sup>-1</sup> ) | Toluene<br>conversion<br>(%) | ET<br>selectivity<br>(%) | <i>p</i> -ET<br>selectivity<br>(%) |            |
| 3Si-Z5-0.18 | 400                  | 1   | 2.0                         | 17.9                         | 88.7                     | 96.2                               | This paper |
| H-ultraist  | 400                  | 2   | 1.0                         | 39.3                         | 77.8                     | 40.1                               | (2)        |
| MFI-2000    | 400                  | 1   | 2.0                         | 14.2                         | 95.0                     | 100.0                              | (3)        |
| Mg-ZSM-5    | 400                  | 2   | 2.0                         | 12.3                         | 80.0                     | 89.7                               | (4)        |
| Ga-ZSM-5    | 375                  | 6   | 7.0                         | 12.0                         | 92.0                     | 70.0                               | (5)        |
| ZSM-5       | 375                  | 1   | 2.0                         | 44.2                         | 86.6                     | 56.6                               | (6)        |
| Al-MFI      | 350                  | 6   | 6.8                         | 15.1                         | 97.0                     | 75.2                               | (7)        |
| H-B/SIL     | 350                  | 3   | 4.2                         | 15.8                         | 99.0                     | 73.1                               | (8)        |
| A5-ZSM-5    | 325                  | 6   | 2.5                         | 17.5                         | 14.9                     | 81.3                               | (9)        |

Table S5. The alkylation performance of toluene with ethanol over different catalysts in literature

## References

 Emeis, C. A., Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. *J. Catal.* 1993, 2, 341-354.

(2) Aliev, I. A.; Akhmedov, E. I.; Mamedov, E. S.; Gakhramanov, T. O., Toluene ethylation with ethanol on cadmium-promoted high-silica zeolite. *Petroleum Chem.* **2010**, *50* (5), 373-375.

(3) Ogunbadejo, B. A.; Osman, M. S.; Arudra, P.; Aitani, A. M.; Al-Khattaf, S. S., Alkylation of toluene with ethanol to para-ethyltoluene over MFI zeolites: Comparative study and kinetic modeling. *Catal. Today* **2015**, *243*, 109-117.

(4) Bhandarkar, V.; Bhatia, S., Selective formation of ethyltoluene by alkylation of toluene with ethanol over modified HZSM-5 zeolites. *Zeolites* **1994**, *14* (6), 439-449.

(5) Parikh, P. A.; Subrahmanyam, N.; Bhat, Y. S.; Halgeri, A. B., Toluene ethylation with ethanol over Ga-MFI zeolite: a kinetic study. *Ind. Eng. Chem. Res.* **1992**, *31*(4), 1012-1016

(6) Walendziewski, J.; Trawczyński, J., Alkylation of Toluene with Ethanol. *Ind. Eng. Chem. Res.* 1996, *35* (10), 3356-3361.

(7) Parikh, P. A.; Subrahmanyam, N.; Bhat, Y. S.; Halgeri, A. B., Toluene ethylation over metallosilicates of MFI structure: Effects of acidity and crystal size on paraselectivity. *Catal. Lett.* **1992**, *14* (1), 107-113.

(8) Lee, C. S.; Park, T. J.; Lee, W. Y., Alkylation of toluene over double structure ZSM-5 type catalysts covered with a silicalite shell. *Appl. Catal., A* **1993,** *96* (2), 151-

161.

(9) Bhat, Y. S.; Das, J.; Rao, K. V.; Halgeri, A. B., Inactivation of External Surface of ZSM-5: Zeolite Morphology, Crystal Size, and Catalytic Activity. *J.Catal.* 1996, *159*(2), 368-374.