Supporting Information

Unraveling Active Ensembles Consisting of Clusters and Single Atoms for Oxygen

Reduction: A Synergy of Machine Learning and DFT Calculations

Xinyi Li^a, Dongxu Jiao^a, Jingxiang Zhao^{*,b}, Xiao Zhao^{*, a}

a. Key Laboratory of Automobile Materials of MOE, School of Materials Science and

Engineering, Jilin University, Changchun 130012

b. College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic

and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University,

Harbin 150025, China

Email: xzhao417@jlu.edu.cn;

Table of Contents

Section	Title	Page
Computational	CHE model	<mark>S4</mark>
Details		
Computational	Dissolution Potential and notes	<mark>S5</mark>
Details		
Computational	Machine learning and Matlab	<mark>S6-S9</mark>
Details		
Figure S1	Configuration diagrams of Pt ₃ M-M'NC catalysts with	<mark>S10</mark>
	different distances and their corresponding energies.	
Figure S2	The electron localization function (ELF) maps of the (a)	<mark>S11</mark>
	Pt ₃ Mo-CoNC (b) Pt ₃ Ni-CoNC, (c) Pt ₃ Ni-ZnNC, and (d)	
	Pt ₃ V-ZnNC catalysts.	
Figure S3	The charge density difference for the Pt ₃ Mo-CoNC	<mark>S12</mark>
	catalyst.	
Figure S4	The charge density difference for the Pt ₃ Ni-ZnNC catalyst.	<mark>S13</mark>
Figure S5	The charge density difference for the Pt ₃ V-ZnNC catalyst.	<mark>S14</mark>
Figure S6	The charge density difference for the Pt ₃ Ni-CoNC	<mark>S15</mark>
	catalyst.	
Figure S7	AIMD energy distributions of Pt ₃ Ru-CoNC catalyst.	<mark>S16</mark>
Figure S8	AIMD energy distributions of Pt ₃ Re-CoNC catalyst.	<mark>S17</mark>
Figure S9	AIMD energy distributions of Pt ₃ La-ZnNC catalyst.	<mark>S18</mark>
Figure S10	AIMD energy distributions of Pt ₃ Ti-CoNC catalyst.	<mark>S19</mark>
Figure S11	AIMD energy distributions of Pt ₃ Cr-NiNC catalyst.	<mark>S20</mark>
Figure S12	AIMD energy distributions of Pt ₃ Sm-CoNC catalyst.	<mark>S21</mark>

Figure S13	Catalyst and intermediate configurations.	<mark>S22</mark>
Figure S14	Reaction pathways for 4e ⁻ ORR process.	<mark>S23</mark>
Table S1	Computed energies of catalysts and intermediates, and	<mark>S24</mark>
	corresponding ΔE_{ZPE} - $T\Delta S$ values.	
Table S2	Calculated energies of intermediates at different active	<mark>S25-S26</mark>
	sites.	
Additional	Atomic coordinates	<mark>S27-S37</mark>
information		

Computational Details

CHE model

The ORR process is commonly be expressed as $O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-$; it is also summarized as the following electron steps (1)-(4) in alkaline conditions, where * refer to the active sites, and OH*, O*, and OOH* represent the adsorbed intermediates. *+ $O_2(g) + H_2O(l) + e^- \rightarrow OOH^* + OH^-(1)$, OOH* + $e^- \rightarrow O^* + OH^-(2)$, O* + $H_2O + e^- \rightarrow OH^* + OH^-(3)$, OH* + $e^- \rightarrow * + OH^-(4)$.

The Gibbs free energy value (ΔG) of each elementary step is calculated using the equation: $\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S + \Delta G_U + \Delta G_{pH}$. In this equation, ΔE represents the reaction energy, which is directly obtained from DFT calculations. ΔE_{ZPE} and ΔS are the changes in zero-point energy and entropy, respectively, and are derived from vibrational frequency calculations and standard thermodynamic data. $\Delta G_U = -eU$, where U is the applied potential. ΔG_{pH} accounts for the pH correction in the electrolyte and is computed as $\Delta G_{pH} = -kT \ln 10 \times pH$, with a pH value of 14 in this case. The Gibbs free energy of O₂ (G_{O2}) is calculated using the energies of H₂O and H₂, that is: $G_{O2} = G_{H2O} - 2G_{H2} + 4.92$ eV. The overpotential, used to assess the performance of ORR, is then determined by the following equations::

$$\eta^{\text{ORR}} = \Delta G^{\text{max}}/e + 1.23$$

where ΔG represents the free energy changes of reaction (1-4), with 1.23 V corresponding to the equilibrium potential. A lower η value for a given catalyst indicates that less energy is required for ORR, thereby reflecting its higher catalytic activity for ORR.

Dissolution Potential

To evaluate the stability of the Pt₃M-M'NC ensemble, we computed the dissolution potentials (U_{diss} , V) of a metal single atom (M') in Pt₃M-M'NC, which is defined as: $U_{\text{diss}} = U_{M'}^{0} + \frac{\left[E_{M',\text{bulk}} - \left(E_{Pt_3M-M'NC} - E_{Pt_3M-NC}\right)\right]}{U_{M'}}, \qquad U_{M'}^{0}$

ne where *M* is the standard dissolution potential of M' in the bulk form, $E_{Pt_3M-M'NC}$ and E_{Pt_3M-NC} are the total energies of Pt_3M-M'NC and Pt_3M-NC, n is the coefficient for the aqueous dissolution reaction: M' + nH⁺ \leftrightarrow M'ⁿ⁺ + H₂.

Note 1 The calculation method for the distance between M'NC and the Pt_3M is based on the Cartesian coordinates of the M and M' atoms for candidates after structural relaxation.

Note 2 The 1521 catalysts consist of 39 single metals anchored on NC monolayers, forming 39 different substrate structures, categorized into four groups based on periodicity. These are: 4th period: ScNC, TiNC, VNC, CrNC, MnNC, FeNC, CoNC, NiNC, CuNC, ZnNC; 5th period: ZrNC, NbNC, MoNC, RuNC, RhNC, PdNC, AgNC; 6th period: HfNC, TaNC, WNC, ReNC, OsNC, IrNC, PtNC, AuNC, LaNC, CeNC, PrNC, NdNC, SmNC, EuNC, GdNC, TbNC, DyNC, HoNC, ErNC, TmNC, YbNC, LuNC. Moreover, in total, 39 distinct Pt₃M structures (where the selected metal is the same as the substrate single atom) are loaded onto 39 different substrates, forming 39 × 39 = 1521 catalyst configurations. For example, when M is Fe and M' is Co, the catalyst is defined as Pt₃Fe-CoNC.

Machine learning

import numpy as np

import pandas as pd

from sklearn.utils import shuffle

from sklearn.model_selection import cross_val_score, ShuffleSplit

from sklearn.metrics import mean_squared_error as mse

from sklearn.metrics import r2_score

from sklearn.model_selection import train_test_split

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

from sklearn.ensemble import GradientBoostingRegressor as GBR

GBR model

Machine learning (ML) is based on the gradient-boosted regression (GBR) algorithm. The training set $D = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$ is divided into J disjoint parts, where J is the number of leaf nodes in every regression tree. To minimize the loss function L, the decision tree parameter θ_m is defined as:

$$\theta_{m} = argmin_{\theta} \sum_{i=1}^{n} L(y_{i}, f_{m-1}(x_{i}) + t_{m}(x_{i}))$$

Where $t_m(x)$, $f_{m-1}(x)$ is the m_{th} and the (m-1)_{th} regression tree function after iterations. The GRB training process is summarized by four steps: (1) initializing a regression tree

$$argmin_{\theta} \sum_{i=1}^{n} L(y_i, c)$$

function i=1 where c is a constant number. (2) Calculate the negative gradient of the loss function as the estimated residual value $r_{mi} = [\partial L(y_i, f(x_i) / \partial f(x_i)]_{f(x)} = f_{m-1}(x)$. (3) Use the new data set (x_i, r_{mi}) to obtain the updated regression tree function $f_m(x)$. (4) Repeat steps (2) and (3) to reach the final regression model, which is determined by:

$$f_M(x) = \sum_{m=1}^M t(x;\theta m)$$

Matlab Code:

clc;

clear;

close all;

data = readtable('pre1.csv');

X = table2array(data(:, 1:end-1));

y = table2array(data(:, end));

[X, mu, sigma] = zscore(X);

 $X_poly = [X, X.^{2}, X.^{3}, X.^{4}, X(:, 3).^{2}.^{*}X(:, 4).^{2}, X(:, 4).^{2}.^{*}X(:, 2).^{2}, X(:, 3).^{*}X(:, 3).^{*}X$

2), X(:, 3).*X(:, 2).², X(:, 3).*X(:, 2).³];

mdl_poly = fitlm(X_poly, y);

y_pred_poly = predict(mdl_poly, X_poly);

 $r_squared_poly = 1 - sum((y - y_pred_poly).^2) / sum((y - mean(y)).^2);$

```
disp([num2str(r_squared_poly)]);
```

figure;

scatter(y, y_pred_poly, 'filled');

xlabel('actual value');

ylabel('estimated value');

title('xx');

grid on;

hold on;

plot([min(y), max(y)], [min(y), max(y)], 'r--', 'LineWidth', 2);

legend('estimated value vs. actual value', ' ideal angle ');

hold off;

figure;

```
plot(y, 'b-', 'LineWidth', 2);
```

hold on;

plot(y_pred_poly, 'r--', 'LineWidth', 2);

xlabel('index');

ylabel('value');

title('xx');

legend('actual value', 'estimated value');

grid on;

hold off;

% Coefficients of the extraction model

coefficients = mdl_poly.Coefficients.Estimate;

The precise mathematical relationship is : $Y = \beta_0 + \beta_1 \times X_1 + \beta_2 \times X_2 + \beta_3 \times X_3 + \beta_4 \times X_4 + \beta_5 \times (X_1^2) + \beta_6 \times (X_2^2) + \beta_7 \times (X_3^2) + \beta_8 \times (X_4^2) + \beta_9 \times (X_1^3) + \beta_{10} \times (X_2^3) + \beta_{11} \times (X_3^3) + \beta_{12} \times (X_4^3) + \beta_{13} \times (X_1^4) + \beta_{14} \times (X_2^4) + \beta_{15} \times (X_3^4) + \beta_{16} \times (X_4^4) + \beta_{17} \times (X_3^2 \times X_4^2) + \beta_{18} \times (X_4^2 \times X_2^2) + \beta_{19} \times (X_3 \times X_2) + \beta_{20} \times (X_3 \times X_2^2) + \beta_{21} \times (X_3 \times X_2^3)$

Figure S1. Configuration diagrams of Pt₃M-M'NC catalysts with different distances

and their corresponding energies.

CoNC, (c) Pt₃Ni-ZnNC, and (d) Pt₃V-ZnNC catalysts.

Figure S3. Charge density difference for the Pt₃Mo-CoNC catalyst.

Figure S4. Charge density difference for the Pt₃Ni-ZnNC catalyst.

Figure S5 Charge density difference for the Pt₃V-ZnNC catalyst.

Figure S6. Charge density difference for the Pt₃Ni-CoNC catalyst.

Figure S7. AIMD energy distributions of Pt₃Ru-CoNC catalyst.

Figure S8. AIMD energy distributions of Pt₃Re-CoNC catalyst.

Figure S9. AIMD energy distributions of Pt₃La-ZnNC catalyst.

Figure S10. AIMD energy distributions of Pt₃Ti-CoNC catalyst.

Figure S11. AIMD energy distributions of Pt₃Cr-NiNC catalyst.

Figure S12. AIMD energy distributions of Pt₃Sm-CoNC catalyst.

Figure S13 Catalyst and intermediate configurations.

Figure S14 Reaction pathways for 4e⁻ ORR process.

Note S3 We calculated the energies of the configurations of the intermediates at different sites, which are listed in Table S2. The results reveal that the energy of the structure in which the metal single atom (M') serves as the active site to adsorb *OH and *OOH is lower than that of the structure in which M (the metal of Pt_3M) and Pt serve as the active sites. Thus, the *OOH and *OH prefer to adsorb on the metal single-atom sites, while *O is more likely to adsorb on the Pt sites.

Table S1 Computed energies of catalysts and intermediates, and corresponding ΔE_{ZPE} -

 $T\Delta S$ values.

Structures	Energy (eV)	$\Delta E_{\rm ZPE}$ - $T\Delta S$	Gibbs free energy (eV)
Pt ₃ Ni-ZnNC	<mark>-923.474</mark>	<mark>0.000</mark>	<mark>-923.474</mark>
Pt ₃ Ni-ZnNC-OOH [*]	<mark>-937.996</mark>	<mark>0.402</mark>	<mark>-937.594</mark>
Pt ₃ Ni-ZnNC-O*	<mark>-927.659</mark>	<mark>0.039</mark>	-927.620
Pt ₃ Ni-ZnNC-OH*	<mark>-933.804</mark>	0.303	<mark>-933.501</mark>
Pt ₃ Ni-CoNC	<mark>-929.588</mark>	<mark>0.000</mark>	<mark>-929.588</mark>
Pt ₃ Ni-CoNC-OOH*	<mark>-944.498</mark>	0.472	<mark>-944.026</mark>
Pt ₃ Ni-CoNC-O [*]	<mark>-934.369</mark>	<mark>0.049</mark>	<mark>-934.320</mark>
Pt₃Ni-CoNC-OH [*]	<mark>-939.882</mark>	0.333	<mark>-939.549</mark>
Pt ₃ V-ZnNC	<mark>-933.346</mark>	0.000	<mark>-933.346</mark>
Pt ₃ V-ZnNC-OOH*	<mark>-948.005</mark>	<mark>0.498</mark>	<mark>-947.507</mark>
Pt ₃ V-ZnNC-O*	<mark>-937.597</mark>	0.020	-937.577
Pt ₃ V-ZnNC-OH [*]	<mark>-943.667</mark>	0.320	-943.347
<mark>Pt₃Mo-CoNC</mark>	<mark>-940.542</mark>	<mark>0.000</mark>	<mark>-940.542</mark>
Pt ₃ Mo-CoNC-OOH*	<mark>-955.883</mark>	0.473	<mark>-955.410</mark>
Pt ₃ Mo-CoNC-O*	<mark>-946.060</mark>	<mark>0.018</mark>	<mark>-946.042</mark>
Pt₃Mo-CoNC-OH*	-951.011	0.423	<mark>-950.588</mark>

Structures	Active site	Energy (eV)
	Zn	<mark>-937.996</mark>
Pt ₃ Ni-ZnNC-OOH [*]	Ni	-937.752
	Pt	<mark>-937.486</mark>
	Zn	<mark>-933.804</mark>
Pt ₃ Ni-ZnNC-OH*	Ni	<mark>-933.389</mark>
	Pt	-933.025
	Zn	-927.320
Pt ₃ Ni-ZnNC-O [*]	Ni	-927.527
	Pt	-927.659
	Co	<mark>-944.498</mark>
Pt ₃ Ni-CoNC-OOH [*]	Ni	<mark>-944.024</mark>
	Pt	<mark>-944.536</mark>
	Co	<mark>-939.882</mark>
Pt ₃ Ni-CoNC-OH [*]	Ni	<mark>-939.406</mark>
	Pt	<mark>-939.804</mark>
	Co	-934.007
Pt ₃ Ni-CoNC-O*	Ni	<mark>-934.204</mark>
	Pt	-934.369
	Zn	-948.005

Table S2 Calculated energies of intermediates at different active sites.

Pt ₃ V-ZnNC-OOH*	V	<mark>-947.548</mark>
	Pt	<mark>-947.904</mark>
	Zn	<mark>-943.667</mark>
Pt ₃ V-ZnNC-OH [*]	V	<mark>-943.558</mark>
	Pt	<mark>-943.429</mark>
	Zn	-937.028
Pt ₃ V-ZnNC-O*	V	<mark>-937.336</mark>
	Pt	-937.597
	Co	<mark>-955.883</mark>
Pt₃Mo-CoNC-OOH*	Mo	-955.701
	Pt	<mark>-955.732</mark>
	Co	<mark>-951.011</mark>
Pt₃Mo-CoNC-OH [*]	Mo	-950.967
	Pt	-950.852
	Co	<mark>-945.968</mark>
<mark>Pt₃Mo-CoNC-O*</mark>	Mo	<mark>-945.900</mark>
	Pt	<mark>-946.060</mark>

<mark>Atomic coordinates:</mark> 1. Pt₃Ni-CoNC

<mark>1.0</mark>					
17.2199993134			34	0.000000000	0.000000000
-8.6099996567			57	14.9129568585	0.000000000
0.000000000			00	0.000000000	15.0000000000
С	N	Co	Ni	Pt	
92	4	1	2	<mark>6</mark>	
Cartesia1	1				
0.0	016875	616		1.361254679	1.989149898
1.2	242164	707		0.647371449	1.985549927
2.4	<mark>462890</mark>	396		1.363193440	1.967850029
3.6	<mark>593000</mark>	995		0.660345730	2.034149989
4.9	909938	304		1.383027609	2.060400099
6.1	<mark>163037</mark>	773		0.728647051	2.116950005
7.3	<mark>373001</mark>	005		1.506357805	2.133150101
8.6	5 <mark>28338</mark>	618		0.806940122	2.163449898
9.8	882557	529		1.508296456	2.148450091
11.(093640	041		0.730138372	2.154899910
12.3	346222	851		1.389589332	2.130000070
13.5	5 <mark>65743</mark>	684		0.664223087	2.131950036
14.7	<mark>794993</mark>	044		1.368860282	2.085149959
16.0	013135	978		0.649459265	2.056649923
-1.2	202214	293		3.503799304	1.988999918
0.0	014206	419		2.782012195	1.951799914
1.2	232607	555		3.491421406	1.902449951
2.4	<mark>456777</mark>	398		2.779178663	1.927050054
3.6	5 <mark>68807</mark>	077		3.499623560	1.991250068
4.8	890566	054		2.798714723	2.039399967
6.(098204	700		3.506483503	2.074500024
11.1	158387	539		3.511404796	2.093549967
12.3	<mark>366714</mark>	509		2.805723776	2.094899788
13.5	590884	737		3.513492556	2.060400099
14.8	800933	993		2.790810789	2.047649994
-2.4	24317	688		5.645896154	2.019149959
-1.2	11254	882		4.925153260	1.980900094
0.0	06801	899		5.636948673	1.960049942
1.2	227097	241		4.912626253	1.913850009
2.4	<mark>45298</mark> 8	729		5.645747267	1.977450103
3.6	6 <mark>7431</mark> 7	134		4.917249326	2.050049677
4.9	901328	158		5.637992665	2.053650096
6.1	101992	471		4.933951853	2.062650025
11.1	155201	233		4.937829155	2.074949965
12.3	362323	605		5.638439772	2.059350014

13.587612856	4.927837682	2.043450102
-3.663468492	7.779641964	2.076150030
-2.433616350	7.073364727	2.044349983
-1.225117075	7.794853393	2.063099965
0.008782066	7.069338538	2.017050013
1.248880357	7.776659766	1.985399947
2.465387030	7.075899817	1.904099956
3.693603295	7.771589586	2.080049962
4.921648153	7.049652924	2.063549906
6.168634560	7.716112714	2.063700110
7.374895789	6.941533823	2.067300081
8.626960784	7.647811949	2.071050033
9.879371416	6.943323586	2.073599920
11.091487440	7.720288680	2.071799934
12.340282607	7.055767095	2.067450061
-4.910713294	9.886544441	2.093849927
-3.673197725	9.198013278	2.102549896
-2.447478287	9.924871233	2.155949995
-1.232090381	9.212329604	2.170350105
0.003530275	9.939038226	2.312700078
1.245436812	9.217251341	2.180099934
2.475288376	9.953056776	2.108999938
3.703591115	9.210093178	2.139149979
4.959962594	9.896089250	2.135849968
6.179483010	9.150441230	2.088749930
7.409076950	9.843148357	2.086200044
8.627478085	9.095561686	2.071050033
9.847515289	9.842700361	2.069400027
11.080725721	9.150291009	2.075399905
-6.138499180	12.004184606	2.071499974
-4.903222749	11.313864125	2.101350054
-3.671906139	12.047730022	2.144099995
-2.439213522	11.356515326	2.191200033
-1.212201728	12.091276326	2.225699946
0.012829386	11.381419119	2.252699956
1.237171278	12.093364309	2.192850038
2.471414773	11.367252126	2.136149928
3.711426078	12.053844638	2.143950015
4.942397949	11.321469395	2.139749900
6.180171206	12.008062796	2.126700059
7.405374241	11.277028876	2.098499984
8.629027424	11.995833565	2.074650005

9.853714183	11.275537333	2.067300081
-7.362583191	14.138079748	2.030100077
-6.135657870	13.431503402	2.055750042
-4.908819536	14.155528491	2.074650005
-3.666654348	13.475347482	2.129700109
-2.438695964	14.211749357	2.150100097
-1.201870067	13.523516859	2.195099965
0.018253354	14.271997745	2.193299979
1.238633887	13.523666191	2.192249671
2.477096879	14.213240900	2.173949853
3.707207094	13.476391917	2.163600102
4.950663996	14.157615585	2.151449919
6.178105592	13.433740717	2.128650025
7.406580251	14.138825519	2.083499953
8.630835926	13.421064378	2.060700282
7.317639156	2.889534412	2.110949904
9.937747201	2.891473285	2.120699957
7.323407863	5.555225353	2.074650005
9.933270849	5.559103099	2.082750052
8.628080577	4.223051099	2.102399915
3.426263091	6.888294710	5.698349923
0.553106195	6.913945164	4.051950127
3.608795608	8.838313159	4.312650114
0.928846731	9.319106493	4.344300181
3.524503170	9.062156630	6.806250215
1.002203990	8.834137194	6.800550073
1.173715366	6.313847488	6.311249882
2.374723777	5.303495002	4.234350175

$\frac{2. Pt_3V-ZnNC}{1.0}$

1.0)							
		<mark>17.219</mark>	99931	34		0.0000000000	0.0000000	<mark>000</mark>
	-8.6099996567				14.9129568585	0.0000000	<mark>)00</mark>	
		0.000	00000	00		0.0000000000	15.0000000	<mark>000</mark>
	С	Ν	Zn	Pt	V			
	92	4	1	6	2			
<mark>Ca</mark>	rtesian	L						
	0.0	29618	400		1.37	7957206	1.941149980	
	1.2	50774	596		0.66	52284436	1.971300021	
	2.4	. <mark>66937</mark>	138		1.38	3027609	1.976849958	
	3.6	<mark>94378</mark>	638		0.67	74363891	2.041649893	
	4.9	08905	433		1.39	97045825	2.081549987	

6.153050402	0.719401017	2.142599970
7.359655408	1.487418296	2.182950005
8.632471995	0.805747076	2.200200185
9.909335004	1.487269186	2.194050103
11.118006201	0.716567596	2.138099894
12.363615319	1.396449275	2.090549916
13.579605556	0.676600873	2.048700079
14.808941518	1.381685397	1.999049932
16.027170573	0.664819637	1.980149969
-1.186199628	3.519308730	1.912349984
0.027207598	2.798863833	1.894199923
1.239840025	3.518562958	1.858949997
2.456777269	2.804530675	1.924649924
3.662693887	3.527809104	1.964100078
4.877220521	2.816461020	2.054250017
6.086667156	3.510659246	2.120549977
11.185767314	3.511106576	2.147400007
12.395385998	2.815118809	2.083949894
13.611635047	3.524975572	2.014650106
14.819617149	2.803486684	1.969650015
-2.407097654	5.660511144	1.959000081
-1.192743133	4.942601115	1.906650066
0.017994704	5.660212924	1.87500000
1.236051485	4.939171366	1.824150011
2.453849615	5.655291632	1.873950027
3.664071689	4.940066025	1.945199892
4.878942806	5.643957504	2.059799954
6.086150881	4.959601862	2.122950107
11.180773019	4.957663212	2.128650025
12.390994580	5.651414331	2.058599889
13.608362396	4.940811796	2.005799934
-3.647712477	7.791721863	2.033099905
-2.421820926	7.082461540	1.988399997
-1.212030064	7.802310220	2.015250027
0.012570479	7.082461540	1.963950098
1.241992754	7.796642711	1.993949935
2.454280699	7.078733127	1.963649914
3.693431374	7.801713780	2.149649933
4.918376528	7.068741654	2.167500034
6.168978915	7.756079493	2.110349983
7.366543524	6.984334356	2.143650055
8.637379688	7.670032209	2.122050002

9.911315556	6.987017889	2.130899951
11.116456990	7.753395071	2.086350024
12.358793329	7.069934533	2.056649923
-4.896851293	9.903993185	2.068500146
-3.661229867	9.209793625	2.064749971
-2.436887718	9.930984071	2.109299898
-1.223480749	9.216505569	2.119499892
0.010762233	9.945898614	2.276099995
1.257748897	9.234699195	2.212950066
2.492250016	9.958277177	2.080650106
3.706432168	9.240068040	2.053049952
4.948253515	9.914878427	2.032649964
6.177416370	9.176985898	2.057100087
7.412865875	9.864324181	2.054399997
8.633591789	9.116588178	2.077650055
9.856640940	9.861491316	2.067900002
11.097256276	9.175047247	2.069550008
-6.131353118	12.017457385	2.065500095
-4.896420593	11.325943136	2.083799914
-3.665449107	12.052950423	2.120699957
-2.433530133	11.360690403	2.151149958
-1.205400342	12.092319873	2.187600061
0.018770143	11.389919493	2.209350094
1.243800744	12.098881596	2.151299939
2.479249223	11.372770302	2.084849998
3.716248067	12.060705025	2.053650096
4.946358795	11.334592842	2.027399987
6.185596200	12.024019108	2.034599930
7.411918516	11.297906925	2.041049972
8.635484969	12.011789876	2.042849958
9.859569236	11.292240305	2.057550028
-7.355953212	14.151948966	2.018549815
-6.130577872	13.443583301	2.052450031
-4.905719319	14.166563066	2.072550058
-3.667257097	13.480269219	2.120100036
-2.441020229	14.209809818	2.151750103
-1.199545289	13.523666191	2.181750163
0.021353058	14.269909762	2.187450081
1.243025818	13.525902617	2.153700069
2.489409477	14.209512931	2.118749991
3.716334284	13.484444295	2.075249925
4.957121541	14.169993260	2.053650096

6.185509470	13.447460603	2.035949975
7.414587648	14.153588952	2.013150081
8.638154101	13.437021578	2.023799792
7.264428944	2.848971194	2.191499993
10.006282727	2.846138107	2.220749930
7.268389406	5.623675895	2.194950208
10.003957179	5.626658537	2.176050022
8.633849413	4.239306075	2.299949974
3.946823938	7.786949459	4.373250157
0.673559961	9.457648452	4.355700016
3.346104447	8.709017345	6.674250215
0.765946013	9.127922306	6.845400184
0.646094226	6.650880685	6.407250613
1.918824340	4.829113614	4.977749884
3.028653479	6.458503174	6.358349919
1.562456439	7.178948293	4.155749828

<mark>3. Pt₃Mo-CoNC</mark>

1.0 17.2199993134 0.000000000 0.0000000000 -8.6099996567 14.9129568585 0.000000000 0.0000000000 0.0000000000 15.0000000000 C N Co Pt Mo 92 4 1 6 2

Cartesian

Curvestun		
0.031684783	1.391378872	1.960049942
1.256371094	0.679732569	1.997399926
2.477957829	1.398835366	2.004750073
3.708240703	0.691215529	2.052150071
4.927158338	1.413450022	2.074200064
6.177158328	0.748928716	2.122950107
7.389532458	1.521867232	2.153099924
8.641426431	0.820361733	2.180399895
9.893577963	1.524104213	2.149799913
11.108191039	0.750867366	2.106000111
12.358190324	1.418073095	2.049000040
13.576591396	0.694049005	2.024249956
14.806443922	1.398238815	1.975800097
16.028375589	0.677943028	1.982399896
-1.187577238	3.534818157	1.898100078
0.028327006	2.813627488	1.914599910
1.246555708	3.528703763	1.911900043

2.470036714	2.817952341	1.977900043
3.685510195	3.537800798	2.021099925
4.907785960	2.828838695	2.056050003
6.120848831	3.533774165	2.094600052
11.164586305	3.536756807	2.062949985
12.379543895	2.831224897	2.019299939
13.599064183	3.539888559	1.964849979
14.814020490	2.820934983	1.942200065
-2.411316574	5.675275021	1.908000112
-1.192657173	4.956768553	1.859249957
0.021955550	5.672143047	1.829850040
1.240701040	4.950206829	1.890599951
2.463923395	5.665283104	2.020799965
3.690934933	4.947820627	2.055450082
4.908130571	5.648878796	2.120100036
6.120848574	4.955277454	2.119499892
11.161572818	4.957216104	2.057100087
12.375927147	5.662896902	2.012249976
13.597600163	4.955873893	1.957949996
-3.649951102	7.802160888	2.036099955
-2.423198216	7.096777865	1.952999979
-1.207810567	7.818862971	1.956000030
0.015239868	7.102295597	1.871849969
1.244661373	7.811407033	1.944749951
2.465215109	7.098269408	1.995299980
3.707551962	7.815731441	2.169300020
4.935423872	7.075303377	2.230649963
6.195239666	7.747579119	2.126700059
7.395386677	6.971956681	2.150700018
8.646850207	7.674803725	2.137050033
9.897625540	6.973149560	2.126700059
11.107330313	7.745640469	2.093549967
12.355004660	7.076198036	2.047050074
-4.893923895	9.911747787	2.107049972
-3.658216765	9.221874413	2.094150111
-2.433788784	9.945302174	2.136750072
-1.215731747	9.230821894	2.107649893
0.017650349	9.951565233	2.269649953
1.264550796	9.239918708	2.175149918
2.505337540	9.966627330	2.080650106
3.722188824	9.250954171	2.045100108
4.967108335	9.923678354	2.022299990

6.196013565	9.176091683	2.050200105
7.424919822	9.872078783	2.056349963
8.646075794	9.126282319	2.103599980
9.865165125	9.871781008	2.097900063
11.098203636	9.175495243	2.101500034
-6.125756267	12.033413696	2.081549987
-4.890393876	11.338172368	2.115449980
-3.660369494	12.068012520	2.146199942
-2.427675594	11.373217409	2.187450081
-1.197651083	12.104250441	2.217449918
0.026777026	11.397525652	2.238000110
1.253788050	12.108724181	2.182650045
2.490958815	11.383507102	2.104500085
3.724858469	12.075915565	2.063850090
4.956776673	11.346374077	2.025600001
6.192914375	12.041169187	2.032350004
7.418547468	11.309091721	2.038049921
8.643406662	12.023720444	2.050350085
9.868695400	11.304767312	2.072400078
-7.350012327	14.169396820	2.032949924
-6.121795677	13.460285385	2.063099965
-4.894612732	14.183415371	2.077500075
-3.655461287	13.497717073	2.127899900
-2.426297663	14.232627406	2.148600072
-1.190848670	13.537534520	2.194500044
0.029273725	14.282735433	2.194800004
1.252496336	13.540218942	2.172750011
2.490184403	14.236504707	2.121750042
3.717798432	13.502190814	2.079600021
4.958068388	14.186248236	2.045100108
6.187318486	13.464908457	2.032200024
7.417600621	14.167458170	2.016450092
8.643664286	13.450741464	2.032200024
7.330037329	2.900570098	2.133600041
9.957119964	2.901464980	2.131049931
7.333136776	5.589077960	2.168549895
9.954106862	5.591911270	2.116350085
8.647367508	4.247806449	2.472000048
4.108691592	7.785756580	4.337549955
0.838269695	9.266612708	4.332899898
3.445635726	8.601047577	6.683849841
0.918859424	9.150291897	6.842249930

0.460893090	6.688013709	6.577650011
0.993421924	4.560083852	5.141850114
2.841988452	6.341287704	6.022350043
1.633488920	6.799413672	4.192800075

4. Pt₃Ni-ZnNC

1.0							
	17.2199993134				0.0000000000	0.000000000	
	-8.6099996567					14.9129568585	0.000000000
	0.0000000000				0.0000000000	15.0000000000	
	С	Ν	Zn	Pt	Ni		
	92	4	1	6	2		
Cart	tesian	L					
	0.0	05079	870		1.	344701372	1.921950057
	1.2	.30455	018		0.	631563747	<u>1.953149959</u>
	2.4	53161	162		1.	349026114	1.948800087
	3.6	79311	236		0.	641704552	2.019750103
	4.9	00725	730		1.	363789880	2.057849988
	6.1	<u>39618</u>	300		0.	688382108	2.138850018
	7.3	44329	901		1.	463259275	2.221049890
	8.6	16457	/105		0.	776815928	2.245050073
	9.8	<mark>90048</mark>	3137		1.	466391026	2.224199921
	11.0	93640	9426		0.	691364694	2.138400078
	12.3	32791	101		1.	370799044	2.060249895
	13.5	54894	721		0.	647222339	2.028900012
	14.7	80786	882		1.	352008644	1.967700049
	16.0	01339	559		0.	632309352	1.964250058
	-1.2	13493	378		3.	487245886	1.882499903
	0.0	04218	984		2.	765011226	1.874100007
	1.2	23308	829		3.	479192841	1.857599951
	2.4	49803	065		2.	767099208	1.908150092
	3.6	64329	827		3.	477254191	1.970700100
	4.8	81697	642		2.	778582224	2.028600052
	6.1	05867	/101		3.	472332899	2.116200104
	11.1	29199	646		3.	476955971	2.104950026
	12.3	53197	569		2.	786784156	2.013899982
	13.5	72890	034		3.	495149598	1.939799935
	14.7	85952	2776		2.	775002920	1.920899972
	-2.4	35166	202		5.	631281609	1.940850019
	-1.2	17195	766		4.	909494724	1.900200024
	0.0	00688	3709		5.	618009275	1.916249916
	1.2	15043	294		4.	896818384	1.868700050

2.446187086	5.626509649	1.969799995
3.671217687	4.902634781	2.029950097
4.894526259	5.623527007	2.003100067
6.112583296	4.937083383	2.084550038
11.130232453	4.940811796	2.081849948
12.354057557	5.627404308	1.996949986
13.574439116	4.916056447	1.941900104
-3.667429274	7.768606500	2.042400017
-2.442054190	7.058451517	2.012549937
-1.232177112	7.777852645	2.089800015
0.001377675	7.047564941	2.068800107
1.240959178	7.759956794	2.086350024
2.467195276	7.063820362	1.899600103
3.685423978	7.749965766	1.940700039
4.908301978	7.036678810	1.979550049
6.147970725	7.719393576	2.058750093
7.349409963	6.947499107	2.137499973
8.620848106	7.643188876	2.152500004
9.892631374	6.952569731	2.140799984
11.096137509	7.727148178	2.072099894
12.333566412	7.044731632	2.030400038
-4.914674012	9.879684942	2.078099996
-3.677761192	9.186232043	2.092349902
-2.452644631	9.909063365	2.165550068
-1.238462479	9.194434641	2.200499922
-0.005423968	9.930388521	2.329650074
1.236051485	9.207855863	2.253450081
2.476063816	9.932029396	2.157300040
3.694723602	9.177731669	2.113799974
4.939986954	9.881772925	2.143199891
6.166481190	9.143432399	2.099099904
7.397022489	9.829428471	2.107199952
8.621192974	9.080499589	2.112900093
9.842263242	9.833603548	2.079300061
11.079434007	9.150142565	2.069550008
-6.151844969	11.989421173	2.063549906
-4.914415682	11.301337118	2.095649913
-3.682238570	12.027747077	2.135999948
-2.448511863	11.338023036	2.190149948
-1.222447686	12.072336928	2.221350074
0.002239074	11.366357022	2.248350084
1.229163368	12.073232032	2.171849906

2.462201879	11.354278011	2.114249915
3.701008713	12.037589662	2.082600072
4.931032198	11.308048174	2.097600102
6.167084195	11.991061160	2.080950066
7.393493241	11.261817447	2.086949944
8.615424138	11.979429257	2.061000019
9.841832157	11.261817447	2.061599940
-7.378597728	14.122570543	2.005499974
-6.150983570	13.414502654	2.041349933
-4.924058634	14.136588204	2.056649923
-3.684218737	13.450592132	2.113500014
-2.458327250	14.179538069	2.151299939
-1.218745490	13.499655724	2.197950035
0.004735259	14.249479710	2.211600021
1.227183458	13.500848603	2.171849906
2.467883472	14.181476720	2.130150050
3.697736575	13.455215205	2.085750103
4.936973467	14.141061945	2.059350014
6.163210079	13.415994198	2.050350085
7.391426601	14.121824772	2.012849897
8.615681762	13.402572976	2.026650086
7.270025603	2.823768293	2.249099985
9.965299538	2.827049154	2.248350084
7.282251599	5.586841090	2.167650014
9.964094169	5.595192132	2.180700079
8.621450855	4.221410669	3.016650081
3.582104286	9.372196719	4.317900091
0.880889081	9.440647705	4.395149946
3.564195799	9.289877403	6.821700186
1.064885232	8.909894786	6.845700145
1.444585845	6.423308800	6.266099811
2.618817486	5.412508762	4.198500216
3.575474563	7.243968641	5.466299951
0.788934114	7.034889047	4.023000151