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1. Experimental Section
1.1 Materials and methods

NH4VO; (99%), C,HgN, (99%), CH30H (99.5%), and Zn(CF3S03), (98.0%) were all from
Shanghai McLean Biochemical Technology Co. Acetylene were purchased form black Taiyuan
Liyuan Lithium Battery Technology Center Co, Ltd. N-methylpyrrolidone (NMP, 99.9%),
ethanol, polyvinylidene fluoride (PVDF)were all purchased form National Medicine Chemical
Reagent Co, Ltd. Graphene oxide were purchased from Frontier Nano Materials Technology
Co., Ltd.

X-ray powder diffraction (XRD) patterns of all samples were gained by a Miniflex
diffractometer with Cu-Ko radiation (A= 1.54 A). The Fourier Transform infrared spectroscopy
(FT-IR) were determined on a Bruker Vertex 70 IR spectrometer in the range of 400-4000 cm™!.
Thermogravimetric analysis (TGA) was performed on a NETZSCH STA 449 FS5
thermogravimetric analyzer under nitrogen atmosphere at 6 °C min~!. X-ray photoelectron
spectroscopy (XPS, ESCALAB Xi) was carried out with an Al-Ko radiation source. The
morphology and microstructure of the samples were analyzed by scanning electron microscopy
(SEM, Zeiss/sigma 500) and transmission electron microscopy (TEM, JEOL JEM-2100 F). The

electron paramagnetic resonance (EPR) spectrum was obtained using Bruker EMXplus.

1.2 Synthesis
1.2.1. Synthesis of [(C,N,Hg)4(CH30)sV01,]-4CH;0H (V8)

V8 precursor was prepared according to the literature [1]. NH;VO; (0.2257 g, 1.93 mmol),
15 mL methanol, and 450 puL ethanediamine were added successively into a 25 mL white

Teflon-lined vessel and stirred thoroughly for ca. 2 h at RT and then heated at 100 °C for 3
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days. After cooling to RT, black shuttle-shaped crystals of V8 were obtained after repeated
washing with methanol, filtering, and drying.
1.2.2. Synthesis of V,03/VN

V8 precursor (0.5 g) was put into a tube furnace and heated in the Ar atmosphere (99.999%)
at 900 °C for 4 h with a heating rate of 5 °C min~!, giving rise to the black powder product
V,03/VN (ca.0.46 g).
1.2.3. Synthesis of V,03;/VN@GO

Graphene oxide (0.02 g) was dissolved in 10 mL of deionized water and sonicated for 12 h
to form a homogeneous solution, and then V,03/VN product (0.1 g) was added and sonicated
for another 30 min. The above solution was freeze-dried for three days to obtain

V,05/VN@GO.

1.3 Electrochemical tests

The active materials, acetylene black and PVDF were added to NMP at a mass ratio of 7:2:1
and stirred for 12 h, then the obtained slurry was coated on titanium foil and dried at 70 °C for
12 hin a vacuum oven, giving the cathode. The average active material loading was 1 mg cm ™.
The button cells (CR2032) were assembled in air with zinc foil as the anode, 3 M Zn(CF;S03),
as the electrolyte, and glass fiber as the separator. The cyclic voltammetry curves (CV) and
electrochemical impedance spectroscopy (EIS) were tested using the CHI 760E electrochemical
workstation. Constant current charge-discharge tests were conducted on the battery automated

testing system (LAND, CT2100A, Wuhan, China) in the voltage range of 0.2-1.6 V.
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1.4 Measurements of galvanostatic intermittent titration (GITT)
The GITT test was carried out at a current density of 0.1 A g~! with a constant current charge
of 5 min and the relaxation of 10 min, respectively. The diffusion coefficient of zinc ions can

be formulated as follows:
282
_ (4L°AEY)
(mTAE %)

Where D stands for the ionic diffusion coefficient, L represents the thickness of the electrode,
referring to the diffusion length of zinc ions, 7 is the relaxation time of the current, AEs and AE;
corresponds to the voltage changes caused by the charge and discharge of pulse and constant

current, respectively [2].
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2.Supplementary Characterization
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Figure S1. Experimental and simulated X-ray powder diffraction patterns for V8.
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Figure S2. Fourier transform infrared of V,03/VN@GO.
V,0,/VN@GO
0.0 ‘ Pore Dlameter:3.4 nm
g 0.003 1
=
w |
" 0.002 -
&
=]
=
> 0.0014 |
2 J
0.000 -

20

L)
40 60 80 100

Pore diameter (nm)

Figure S3 corresponding pore size distribution of V,03/VN@GO.
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Figure S4 corresponding pore size distribution of V,03/VN.
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Figure S5. XPS survey spectra of V,03/VN and V,03;/VN@GO.
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Figure S6. C 1s spectrum of V,03/VN@GO.
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Figure S7. SEM images of V,03/VN.
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Figure S9. Graphene oxide thickness in TEM images of V,0;/VN@GO.
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3. Supplementary measurements

Figure S10. CV curves of V,03/VN at 0.5 mV s,
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Figure S11. GCD curves of V,03/VN@GO at 0.5 A g'!.
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Figure S12. Cycle capacity of V,05/VN@GO, V,03/VN, V,0;@GO and VN@GO cathodes

at0.5A g ' (a)and 10 A g'! (b).
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Figure S13. The diffusion coefficients of Zn?* in V,0;3/VN during charging and discharging

Processces.
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Figure S14. Linear relationship between Z’ and o ” of pristine V,03/VN and V,03/VN@GO.
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Figure S15. Photograph of connected Zn//V,03/VN@GO batteries powering LED lights.
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4. Theoretical calculations

Density functional theory (DFT) calculations were performed using the projector augmented
plane-wave method [3] within the Vienna Ab initio Simulation Package (VASP) [4, 5]. The
generalized gradient approximation (GGA) was used in the scheme of Perdew-Burke-Ernzerhof
(PBE) to describe the exchange-correlation functional [6]. The cut-off energy for plane wave
was set to 480 eV. The energy criterion was set to 10 eV in iterative solution of the Kohn-
Sham equation. All the structures were relaxed until the residual forces on the atoms have
declined to less than 0.05 eV/A. To prevent interaction between periodic units in the vertical
direction, a vacuum space of 20 A was employed. A Monkhorst-Pack scheme with a k-points
mesh of 3 x 2 x 1 was used. The diffusion barrier of adsorbed hydrogen at different adsorption

sites were explored by using the Nudge Elastic Band (CI-NEB) method [7].

Figure S16. (a) Theoretical models of V,03/VN. Top (b) and side (c) views of the theoretical

models for V,03/VN@GO.
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Figure S17. Structural diagrams of Zn>" adsorbed on V,03/VN (a) and V,0:/VN@GO (b)

cathodes.

Figure S18. The migration pathways for Zn?" in V,03/VN (a) and V,03;/VN@GO cathodes

along a-axis.
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Figure S19. Calculated Zn?* diffusion barriers in V,03;/VN@GO and V,03/VN@GO cathodes

along a-axis.
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5. Zinc ion storage mechanism
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Figure S20. Ex situ XRD patterns after 50 cycles.

Figure S22. SEM image of V,0;/VN@GO electrode charged to 1.6 V.
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Figure S23. Elemental mapping images of V,05/VN@GO.
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Figure S24. All-elements XPS spectra of V,03/VN@GO at different charging and discharging

states.
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Figure S25. Diagram of Zn?" ion storage mechanism in V,03/VN@GO.
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