Supplementary Information (SI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2025

Supporting Information

Dual Atomic Defect Modulation in Three-Dimensional Mesoporous

Graphene for High-Performance Potassium Ion Hybrid Capacitors

Yize Wang,‡^{a,} Wenda Qiu,*‡^{b,c} Peijun Deng,^a Jing Fu,^a Guoxian Li,^a Chunjin Li,^a Mingzu Zhang,^b Pingji Yu,^b Huajie Feng,*^a and Xihong Lu^c

- ^a Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou 571158, Hainan, China
- ^b Guangdong Industry Polytechnic University, Guangzhou 510300, Guangdong, China
- ^c MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China

*Corresponding Author.

E-mail: qiuwd3@mail3.sysu.edu.cn (W.D. Qiu), Fenghuajiehk@163.com (H.J. Feng)

‡Yize Wang and Wenda Qiu contributed equally to this work.

Calculations:

Specific capacities (C_{cell-s}) of half-cells and PIHCs devices were estimated from the discharge curve using the following equations:

$$C_{cell-s} = \frac{\int_{0}^{\Delta t} I \times dt}{m}$$

where C_{cell-s} (mA h g⁻¹) is the specific capacity of the half-cells and PIHCs devices, I (mA) is the applied discharging current, Δt (h) is the discharging time and m (g) is the mass of the active material.

Specific energy density E and specific power density P of PIHCs devices were obtained from the following equations:

$$E = C_{cell-s} * \Delta V$$
 (2)
$$P = \frac{C_{cell-s} * \Delta V}{\Delta t}$$
 (3)

where E (Wh kg⁻¹) is the energy density, C_{cell-s} is the specific capacity obtained from Equation (1) and ΔV (V) is the voltage window. P (W kg⁻¹) is the specific power density and Δt (h) is the discharging time.

The chemical diffusion coefficient of k^+ can be calculated based on the following equation:

$$D_{GITT} = \frac{4}{\pi\tau} \left(\frac{n_m V_m}{s}\right)^2 \left(\frac{\Delta E_s}{\Delta E_t}\right)^2 \tag{4}$$

Here, τ (s) is the duration of the current pulse; $n_{\rm m}$ (mol) is the number of moles; $V_{\rm m}$ (cm³ mol⁻¹) is the molar volume of the electrode; S (cm²) is the electrode/electrolyte contact area; $\Delta E_{\rm s}$ is the steady state voltage change due to the current pulse, and $\Delta E_{\rm t}$ is the voltage change during the constant current pulse, eliminating the iR drop.

Figure S1. NP-3DPG powder on an evaporating dish.

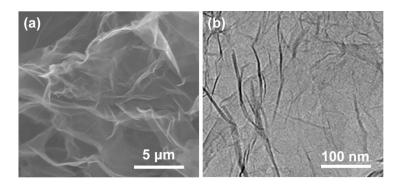


Figure S2. (a) SEM and (b) TEM of GO.

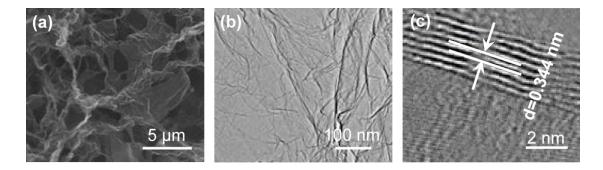


Figure S3. (a) SEM, (b) TEM, and (C) HRTEM of N-3DPG.

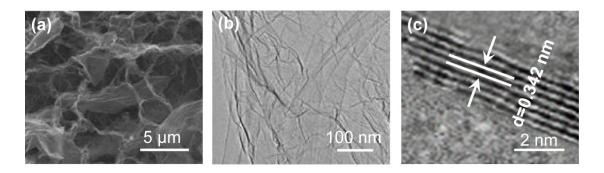
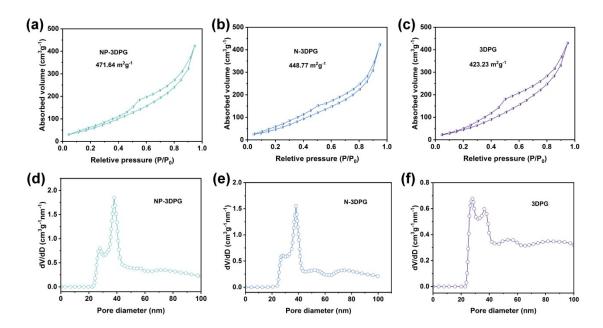
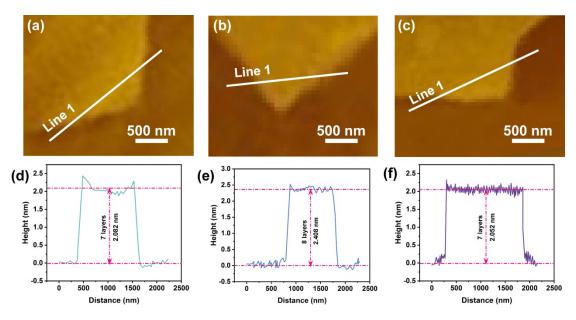




Figure S4. (a) SEM, (b) TEM, and (C) HRTEM of 3DPG.

Figure S5. Nitrogen adsorption–desorption isotherm of (a) NP-3DPG, (b) N-3DPG, and (c) 3DPG. Pore size distribution of (d) NP-3DPG, (e) N-3DPG, and (f) 3DPG.

Figure S6. AFM images of (a) NP-3DPG, (a) N-3DPG, and (c) 3DPG. Height profiles of (d) NP-3DPG, (e) N-3DPG, and (f) 3DPG.

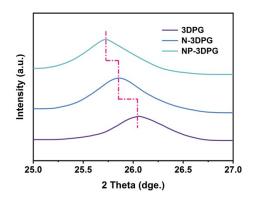


Figure S7. Partial enlarged XRD patterns of 3DPG, N-3DPG and NP-3DPG.

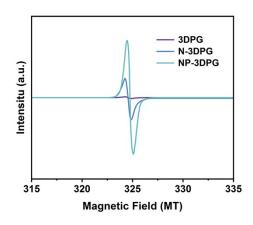


Figure S8. EPR spectra of NP-3DPG, N-3DPG and 3DPG.

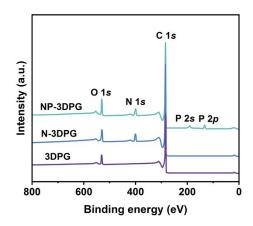


Figure S9. XPS survey spectrum of 3DPG, N-3DPG, and NP-3DPG.

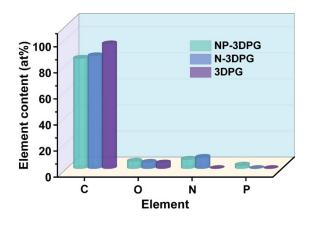


Figure S10. Element content of 3DPG, N-3DPG, and NP-3DPG.

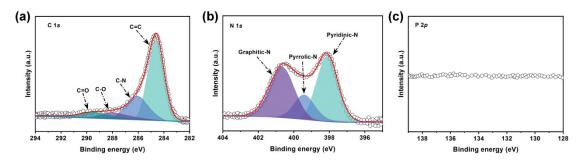


Figure S11. (a) C 1s, (b) N 1s, and (c) P 2p high-resolution XPS of N-3DPG.

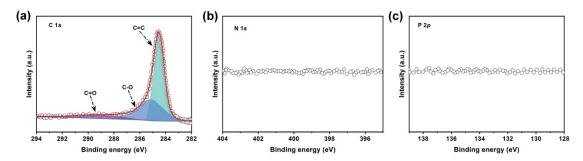


Figure S12. (a) C 1s, (b) N 1s, and (c) P 2p high-resolution XPS of 3DPG.

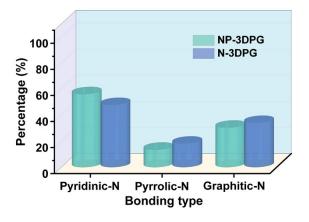


Figure S13. Percentage contents of nitrogen species in the N-3DPG and NP-3DPG.

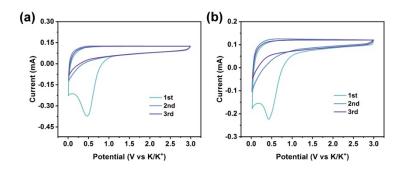
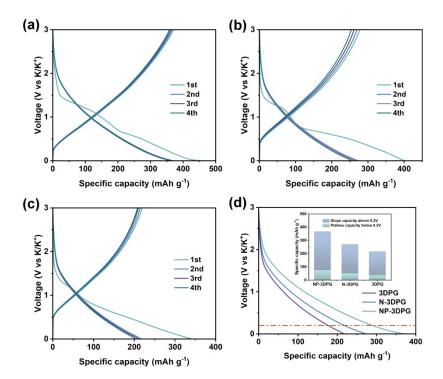
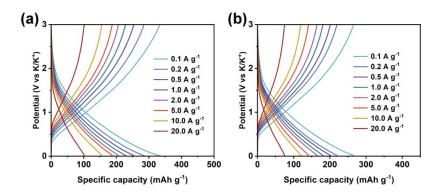
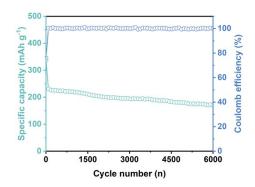
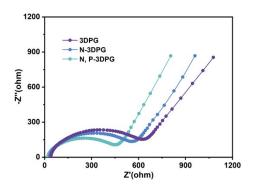
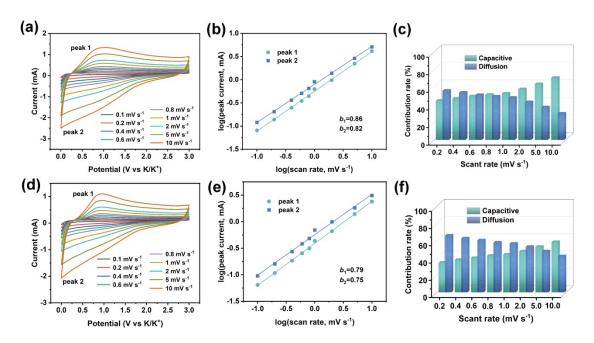
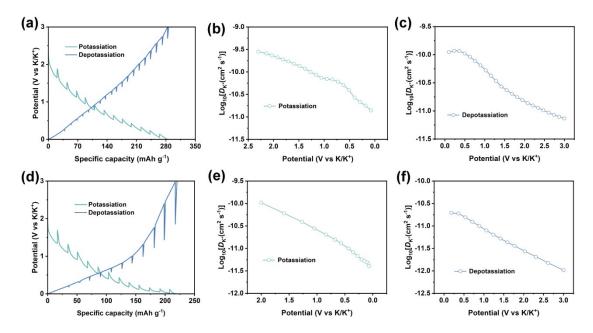



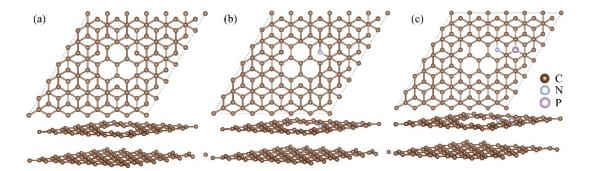
Figure S14. CV curves of (a) N-3DPG and (b) 3DPG electrode.

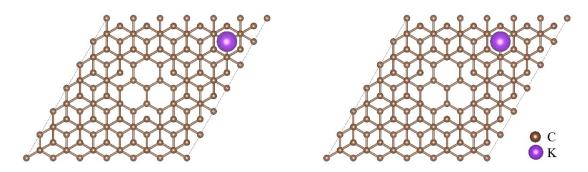
Figure S15. GCD profiles of the (a) NP-3DPG, (b) N-3DPG and (c) 3DPG electrodes at 0.2 A g⁻¹. (d) The discharge profiles of NP-3DPG, N-3DPG and 3DPG at second cycle (inset: the capacity contribution at each stage).

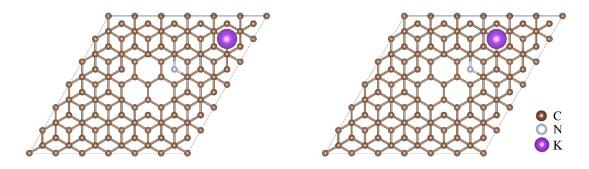




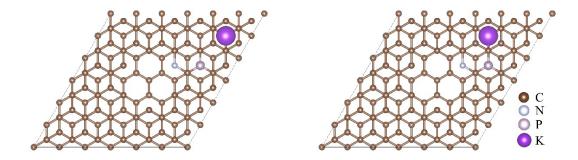

Figure S16. GCD curves at various current densities for (a) N-3DPG and (b) 3DPG.

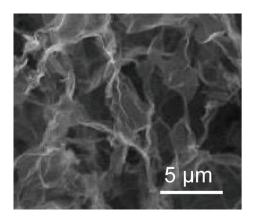

Figure S17. Long-term cycling performance of the NP-3DG at 5.0 A g^{-1} .

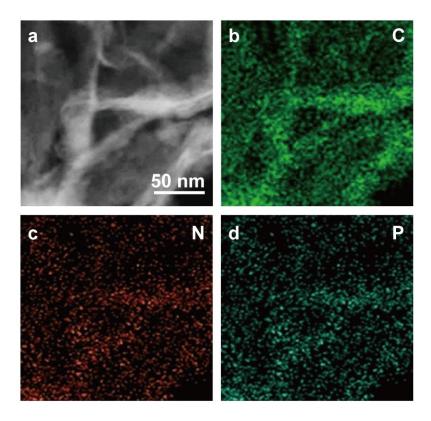

Figure S18. Electrochemical impedance spectra (EIS) of the 3DPG, N-3DPG and NP-3DPG electrodes.


Figure S19. CV curves of (a) N-3DPG and (d) 3DPG. *b*-value of (b) N-3DPG and (d) 3DPG. Diffusive and capacitive contributions of (c) N-3DPG and (f) 3DPG.


Figure S20. GITT profiles of (a) N-3DPG and (d) 3DPG; Potassiation D_k of (b) N-3DPG and (e) 3DPG; and depotassiation D_k of (c) N-3DPG and (f) 3DPG.


Figure S21. Top and side view of the optimized structure of (a) 3DPG, (b) N-3DPG and (c) NP-3DPG.


Figure S22. Illustration of the K ion diffusion path from one hollow position to the nearest hollow position in 3DPG.


Figure S23. Illustration of the K ion diffusion path from one hollow position to the nearest hollow position in N-3DPG.

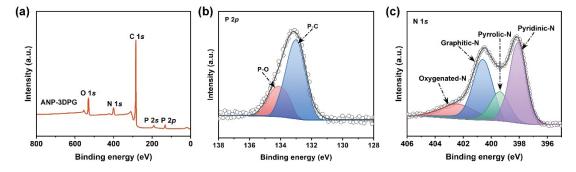

Figure S24. Illustration of the K ion diffusion path from one hollow position to the nearest hollow position in NP-3DPG.

Figure S25. SEM of ANP-3DPG.

Figure S26. (a) STEM image, (b) C, (c) N, and (d) P elemental mapping of ANP-3DPG.

Figure S27. (a) The survey XPS spectrum, (b) high-resolution P 2p spectra, (c) high-resolution N 1s spectra of ANP-3DPG.

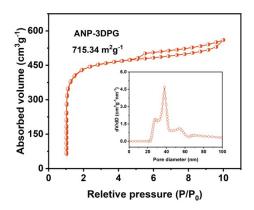
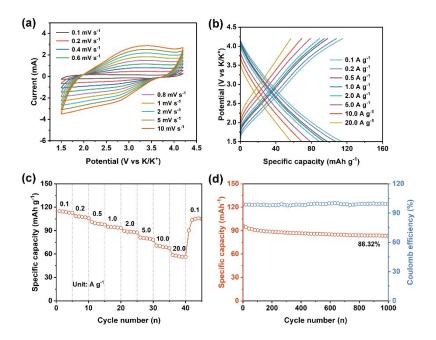



Figure S28. Nitrogen adsorption—desorption isotherm of ANP-3DPG.

Figure S29. Electrochemical performances of the ANP-3DPG cathode in K-half cells. (a) CV curves at different scan rates, (b) charge/discharge curves at various current densities, (c) rate property, and (g) cycling performance at 1.0 A g^{-1} .

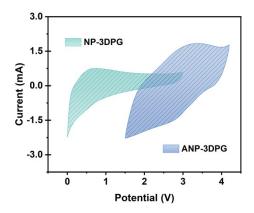
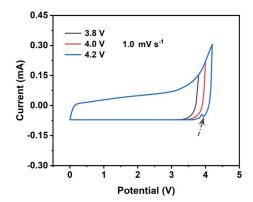
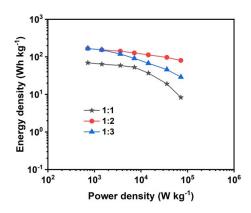




Figure S30. CV curves of the NP-3DPG and the ANP-3DPG electrodes in half cells at 1 mV $\rm s^{-1}.$

Figure S31. CV curves of ANP-3DPG//NP-3DPG PIHCs device in different potential windows at a scan rate of 1.0 mV s^{-1} .

Figure S32. Ragone plots of NP-3DPG//ANP-3DPG PIHCs device with different mass ratios of anode to cathode.

Table S1. Comparison of the initial coulombic efficiency of the carbonaceous electrodes for PIBs with our work.

Madasiala	Current density Initial coulombia		Deference	
Materials	$(A g^{-1})$	efficiency	Reference	
NP-3DPG	0.2	81.4%	This work	
PN-HPCNF	0.2	78.9%	[1]	
PDDA-NPCNs/Ti ₃ C ₂	0.1	73.2%	[2]	
nitrogen/oxygen codoped				
carbon hollow multihole	0.1	63.3%	[3]	
bowls				
oxygen/fluorine				
dualdoped porous	0.1	63%	[4]	
carbon				

S/O codoped porous	0.05	61.7%	[5]
carbon microspheres			
mesoporous graphitic	0.05	61.2%	[6]
carbon nanospring			
P-doped N-rich	0.2	56.9%	[7]
honeycomb-like carbon			
Sulfur-grafted hollow	0.025	51.4%	[8]
carbon spheres			
N-doped carbon	0.025	49%	[9]
nanofibers-650			
N/O dual-doped carbon	0.05	47.12%	[10]
network			
P-doped hard carbon	0.1	45.7%	[11]
rGO aerogel	0.1	44%	[12]
nitrogen-doped porous	0.1	43.1%	[13]
carbon			
graphitic carbon nanocage	0.05	40%	[14]
carbon nanosheets750	0.05	38%	[15]
nitrogen/oxygen in situ			
dual-doped hierarchical	0.05	25%	[16]
porous hard carbon			
S/N@C	0.05	24.6%	[17]

three-dimensional

nitrogen-doped framework	0.1	24.3%	[18]
carbon			
NHC ₂ -NH ₃ /Ar	0.1	15.8%	[19]
Hierarchical carbon	0.1	15%	[20]
nanotube-S4	0.1	1370	[20]
pyridinic N-contentdoped	0.02	10%	[21]
porous carbon monolith	0.02	1070	[21]

Table S2. Potassium storage performance of NP-3DPG compared with previously reported materials.

Materials	Rate capacity	Cycling stability	Ref.	
ND 2DDC	429.5 mA h g ⁻¹ at	236.5 mA h g ⁻¹ after 15000	This work	
NP-3DPG	20.0 A g ⁻¹	cycles at 5.0 A g ⁻¹	I nis work	
Nitrogen doped	75 mA h g^{-1} at 1 A	236 mA h g^{-1} after 100		
cup-stacked carbon	g-1	cycles at 0.02 A g ⁻¹	[22]	
tubes	y	cycles at 0.02 A g		
High pyridine N-	100 (11 -1 (0	221 (11 -1 6 200		
doped porous	182.6 mAh g ⁻¹ at 2	231.6 mAh g ⁻¹ after 200	[23]	
carbon	A g ⁻¹	cycles at 0.5 A g ⁻¹		
Co ₃ O ₄ –Fe ₂ O ₃ /C	278 mAh g ⁻¹ at 1 A	220 mAh g ⁻¹ after 50 cycles	[24]	

	g^{-1}	at 0.05 A g ⁻¹
Hyperporous	180 mAh g ⁻¹ at 1.6	210 mAh g ⁻¹ after 500
carbon sponge	A g ⁻¹	cycles at 1 A g ⁻¹
Nitrogen-doped	106 41 -1 41 4	204 41 -1 6 1000
bamboo-like	186 mAh g ⁻¹ at 1 A	204 mAh g ⁻¹ after 1000
carbon nanotubes	g ⁻¹	cycles at 0.5 A g ⁻¹
Chemically	127 m A h ~ 1 - 4 4 A	102.7 m A h a-l after 5000
activated hollow	137 mA h g ⁻¹ at 4A	192.7 mAh g ⁻¹ after 5000
earbon nanospheres	g-1	cycles at 2 A g ⁻¹
Sulfur/nitrogen	160 41 -1 -2	160 A1 -1 6 1000
codoped carbon	168 mA h g ⁻¹ at 2	168 mA h g ⁻¹ after 1000
nanofiber agerogel	A g ⁻¹	cycles at 2 A g ⁻¹
Hollow carbon	110 mAh g ⁻¹ at	150 mA h g ⁻¹ after 500
architecture	0.56 A g ⁻¹	cycles at 0.279 A g ⁻¹
Nitrogen doped	153 mA h g ⁻¹ at 2	146 mA h g ⁻¹ after 4000
carbon nanofibers	A g ⁻¹	cycles at 2 A g ⁻¹
CNC	$72 \text{ mA h g}^{-1} \text{ at } 10$	140 mA h g ⁻¹ after 3000
S-NC	A g ⁻¹	cycles at 2 A g ⁻¹
3D nitrogen-doped	111 mA h g ⁻¹ at 10	137 mA h g ⁻¹ after 1000
framework carbon	A g ⁻¹	cycles at 2 A g ⁻¹
NI domadaaalaa	$102.6 \text{ mA h g}^{-1} \text{ at } 2$	119.9 mA h g ⁻¹ after 1000
N-doped carbon	A g ⁻¹	cycles at 1 A g ⁻¹

$133 \text{ mA h g}^{-1} \text{ at } 10$	$111 \text{ mA h g}^{-1} \text{ after } 3000$	[15]	
A g ⁻¹	cycles at 5 A g ⁻¹	[13]	
$78 \text{ mA h g}^{-1} \text{ at } 10$	$111~\mathrm{mA~h~g^{-1}}$ after 1000	F2.1.7	
A g ⁻¹	cycles at 2 A g ⁻¹	[31]	
$158 \text{ mAh g}^{-1} \text{ at } 1 \text{ A}$	$108.4 \text{ mA h g}^{-1} \text{ after } 2000$		
σ^{-1}	cycles at 1 A σ^{-1}	[5]	
5	cycles at 171 g		
102 mA h g ⁻¹ at 2	$102 \text{ mA h g}^{-1} \text{ after } 500$	[22]	
A g ⁻¹	cycles at 2 A g ⁻¹	[32]	
$64 \text{ mA h g}^{-1} \text{ at } 4 \text{ A}$	$65 \text{ mA h g}^{-1} \text{ after } 900$	[1 7]	
g^{-1}	cycles at 2 A g ⁻¹	[17]	
\mathcal{E}	, c		
	A g ⁻¹ 78 mA h g ⁻¹ at 10 A g ⁻¹ 158 mAh g ⁻¹ at 1 A g ⁻¹ 102 mA h g ⁻¹ at 2 A g ⁻¹	A g ⁻¹ cycles at 5 A g ⁻¹ 78 mA h g ⁻¹ at 10 A g ⁻¹ cycles at 2 A g ⁻¹ 158 mAh g ⁻¹ at 1 A 108.4 mA h g ⁻¹ after 2000 g ⁻¹ cycles at 1 A g ⁻¹ 102 mA h g ⁻¹ at 2 102 mA h g ⁻¹ at 2 A g ⁻¹ cycles at 2 A g ⁻¹ 64 mA h g ⁻¹ at 4 A 65 mA h g ⁻¹ after 900	

Table S3. The comparison between NP-3DPG//ANP-3DPG PIHCs and other recently reported carbonaceous based PIHCs.

	M	Maximum	Cycles	
	Maximum	Power density	/Capacity	
Devices	Energy density	(W kg ⁻¹)/Energy	retention	Ref.
`	(Wh kg ⁻¹)/Power	density (Wh kg	(%)/current	
	density (W kg ⁻¹)	1)	(A g ⁻¹)	
MoP@NC-1//AC	69.7/100	2041.6/20	800/89.9/0.1	[33]

CTP@C//AC	80/32	5144/34	1000/75.9/5	[34]
NOHPC//HPAC	90.1/939.6	6217.5/52.93	6000/87.2/2	[35]
BSH//AC	94/188	599/13.3	1000/71.4/0.34	[36]
PNC//HPC	103/97.9	6106.2/44.1	5000/64/1	[37]
WS ₂ @NCNs//NCHS	103.4/235	2300/60	500/78/0.5	[38]
NHCS//ANHCS	114.2/100.5	8203/19.1	5000/80.4/2	[39]
NCNT//AC	115/116.8	1713.4/25.7	2000/81.6/1	[40]
N-MoSe ₂ /G//AC	119/39.6	7212/29	3000/75.2/1	[41]
N,S-3DHPC-600//AC-800	130.6/210	16800/56	5000/86.8/5	[42]
NbSe ₂ /NSeCNFs//AC	133/180	4000/18	10000/83/2	[43]
SHPNC//AC	135/112.6	~4000/20	3750/75.4/1	[44]
PN-PanC//PN-PanC	155.9/76.1	11309.1/22.0	40000/77/1	[45]
M-NC/ANC	157/37	2300/49	3000/80//0.5	[46]
P/O-PCS//AC	158/223	1380/11	30000/94.5/5	[47]
3DNFC//3DNFAC	163.5/210	21000/76.4	10000/91.7/2	[18]
ND 2DDC//AND 2DDC	177 4/700	72000/80.2	10000/97.2/2	This
NP-3DPG//ANP-3DPG	167.4/720	/ 2000/ 80.2	10000/87.3/2	work

References

- [1] X. Hu, G. Zhong, J. Li, Y. Liu, J. Yuan, J. Chen, H. Zhan, Z. Wen, Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor, Energy & Environmental Science, 13 (2020) 2431-2440.
- [2] R. Zhao, H. Di, X. Hui, D. Zhao, R. Wang, C. Wang, L. Yin, Self-assembled Ti 3 C 2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries, Energy & Environmental Science, 13 (2020) 246-257.
- [3] Z. Zhang, B. Jia, L. Liu, Y. Zhao, H. Wu, M. Qin, K. Han, W.A. Wang, K. Xi, L. Zhang, Hollow multihole carbon bowls: A stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries, ACS nano, 13 (2019) 11363-11371.
- [4] J. Lu, C. Wang, H. Yu, S. Gong, G. Xia, P. Jiang, P. Xu, K. Yang, Q. Chen, Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage, Advanced Functional Materials, 29 (2019) 1906126.
- [5] M. Chen, W. Wang, X. Liang, S. Gong, J. Liu, Q. Wang, S. Guo, H. Yang, Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries, Advanced Energy Materials, 8 (2018) 1800171.
- [6] Y. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou, J. Tian, N. Lin, Y. Qian, Water-induced growth of a highly oriented mesoporous graphitic carbon nanospring for fast potassium-ion adsorption/intercalation storage, Angewandte Chemie International Edition, 58 (2019) 18108-18115.

- [7] H. He, D. Huang, Y. Tang, Q. Wang, X. Ji, H. Wang, Z. Guo, Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage, Nano Energy, 57 (2019) 728-736.
- [8] J. Ding, H. Zhang, H. Zhou, J. Feng, X. Zheng, C. Zhong, E. Paek, W. Hu, D. Mitlin, Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes, Advanced Materials, 31 (2019) 1900429.
- [9] Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries, Nature communications, 9 (2018) 1720.
- [10] J. Ruan, Y. Zhao, S. Luo, T. Yuan, J. Yang, D. Sun, S. Zheng, Fast and stable potassium-ion storage achieved by in situ molecular self-assembling N/O dual-doped carbon network, Energy Storage Materials, 23 (2019) 46-54.
- [11] Y. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou, T. Li, Y. Han, Y. Wang, J. Tian, N. Lin, In Situ Revealing the Electroactivity of P□ O and P□ C Bonds in Hard Carbon for High-Capacity and Long-Life Li/K-Ion Batteries, Advanced Energy Materials, 9 (2019) 1901676.
- [12] L. Liu, Z. Lin, J.-Y. Chane-Ching, H. Shao, P.-L. Taberna, P. Simon, 3D rGO aerogel with superior electrochemical performance for K-Ion battery, Energy Storage Materials, 19 (2019) 306-313.
- [13] D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu, Y. Liu, Z. Liang, R. Peng, P. Si, J. Lou, Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries, Advanced Energy Materials, 8 (2018) 1802386.

- [14] B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang, T. Zhou, J. Mao, W.K. Pang, Z. Guo, A. Li, Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries, Advanced Energy Materials, 8 (2018) 1801149.
- [15] J. Chen, B. Yang, H. Hou, H. Li, L. Liu, L. Zhang, X. Yan, Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor, Advanced Energy Materials, 9 (2019) 1803894.
- [16] J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi, J. Feng, S. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage, Advanced Materials, 30 (2018) 1700104.
- [17] A. Mahmood, S. Li, Z. Ali, H. Tabassum, B. Zhu, Z. Liang, W. Meng, W. Aftab, W. Guo, H. Zhang, Ultrafast sodium/potassium-ion intercalation into hierarchically porous thin carbon shells, Advanced Materials, 31 (2019) 1805430.
- [18] B. Yang, J. Chen, L. Liu, P. Ma, B. Liu, J. Lang, Y. Tang, X. Yan, 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor, Energy Storage Materials, 23 (2019) 522-529.
- [19] W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang, F. Lv, K. Wang, Q. Sun, S. Guo, Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage, Energy & Environmental Science, 12 (2019) 1605-1612.
- [20] Y. Wang, Z. Wang, Y. Chen, H. Zhang, M. Yousaf, H. Wu, M. Zou, A. Cao, R.P. Han, Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode, Advanced Materials, 30 (2018)

1802074.

- [21] Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan, N. Xu, X. Shen, C. Yan, Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications, Advanced Materials, 29 (2017) 1702268.
- [22] X. Zhao, Y. Tang, C. Ni, J. Wang, A. Star, Y. Xu, Free-standing nitrogen-doped cup-stacked carbon nanotube mats for potassium-ion battery anodes, ACS Applied Energy Materials, 1 (2018) 1703-1707.
- [23] Y. Li, C. Yang, F. Zheng, X. Ou, Q. Pan, Y. Liu, G. Wang, High pyridine N-doped porous carbon derived from metal—organic frameworks for boosting potassiumion storage, Journal of Materials Chemistry A, 6 (2018) 17959-17966.
- [24] I. Sultana, M.M. Rahman, S. Mateti, V.G. Ahmadabadi, A.M. Glushenkov, Y. Chen, K-ion and Na-ion storage performances of Co 3 O 4–Fe 2 O 3 nanoparticle-decorated super P carbon black prepared by a ball milling process, Nanoscale, 9 (2017) 3646-3654.
- [25] Y. Liu, C. Yang, Q. Pan, Y. Li, G. Wang, X. Ou, F. Zheng, X. Xiong, M. Liu, Q. Zhang, Nitrogen-doped bamboo-like carbon nanotubes as anode material for high performance potassium ion batteries, Journal of Materials Chemistry A, 6 (2018) 15162-15169.
- [26] G. Wang, X. Xiong, D. Xie, Z. Lin, J. Zheng, F. Zheng, Y. Li, Y. Liu, C. Yang, M. Liu, Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries, Journal of Materials Chemistry A, 6 (2018)

- [27] C. Lv, W. Xu, H. Liu, L. Zhang, S. Chen, X. Yang, X. Xu, D. Yang, 3D sulfur and nitrogen codoped carbon nanofiber aerogels with optimized electronic structure and enlarged interlayer spacing boost potassium-ion storage, Small, 15 (2019) 1900816.
- [28] W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang, S. Guo, Short-range order in mesoporous carbon boosts potassium-ion battery performance, Advanced Energy Materials, 8 (2018) 1701648.
- [29] L. Tao, Y. Yang, H. Wang, Y. Zheng, H. Hao, W. Song, J. Shi, M. Huang, D. Mitlin, Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms, Energy Storage Materials, 27 (2020) 212-225.
- [30] C. Gao, Q. Wang, S. Luo, Z. Wang, Y. Zhang, Y. Liu, A. Hao, R. Guo, High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum, Journal of power sources, 415 (2019) 165-171.
- [31] J. Chen, B. Yang, H. Li, P. Ma, J. Lang, X. Yan, Candle soot: onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor, Journal of Materials Chemistry A, 7 (2019) 9247-9252.
- [32] P. Xiong, X. Zhao, Y. Xu, Nitrogen-doped carbon nanotubes derived from metal-organic frameworks for potassium-ion battery anodes, ChemSusChem, 11 (2018) 202-208.
- [33] W. Zong, N. Chui, Z. Tian, Y. Li, C. Yang, D. Rao, W. Wang, J. Huang, J. Wang,

- F. Lai, Ultrafine MoP nanoparticle splotched nitrogen-doped carbon nanosheets enabling high-performance 3D-printed potassium-ion hybrid capacitors, Advanced Science, 8 (2021) 2004142.
- [34] Z. Zhang, M. Li, Y. Gao, Z. Wei, M. Zhang, C. Wang, Y. Zeng, B. Zou, G. Chen, F. Du, Fast potassium storage in hierarchical Ca0. 5Ti2 (PO4) 3@ C microspheres enabling high-performance potassium-ion capacitors, Advanced Functional Materials, 28 (2018) 1802684.
- [35] Z. Pan, Y. Qian, Y. Li, X. Xie, N. Lin, Y. Qian, Novel bilayer-shelled N, Odoped hollow porous carbon microspheres as high performance anode for potassiumion hybrid capacitors, Nano-Micro Letters, 15 (2023) 151.
- [36] L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery–supercapacitor hybrid device, Advanced materials, 30 (2018) 1800804.
- [37] Z. Xie, J. Xia, D. Qiu, J. Wei, M. Li, F. Wang, R. Yang, Rich-phosphorus/nitrogen co-doped carbon for boosting the kinetics of potassium-ion hybrid capacitors, Sustainable Energy & Fuels, 6 (2022) 162-169.
- [38] Y. Li, Y. Yang, P. Zhou, T. Gao, Z. Xu, S. Lin, H. Chen, J. Zhou, S. Guo, Enhanced cathode and anode compatibility for boosting both energy and power densities of Na/K-ion hybrid capacitors, Matter, 1 (2019) 893-910.
- [39] D. Qiu, J. Guan, M. Li, C. Kang, J. Wei, Y. Li, Z. Xie, F. Wang, R. Yang, Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors, Advanced Functional Materials, 29 (2019) 1903496.

- [40] X. Li, M. Chen, L. Wang, H. Xu, J. Zhong, M. Zhang, Y. Wang, Q. Zhang, L. Mei, T. Wang, Nitrogen-doped carbon nanotubes as an anode for a highly robust potassium-ion hybrid capacitor, Nanoscale Horizons, 5 (2020) 1586-1595.
- [41] Y. Yi, Z. Sun, C. Li, Z. Tian, C. Lu, Y. Shao, J. Li, J. Sun, Z. Liu, Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors, Advanced Functional Materials, 30 (2020) 1903878.
- [42] B. Fan, J. Yan, A. Hu, Z. Liu, W. Li, Y. Li, Y. Xu, Y. Zhang, Q. Tang, X. Chen, High-performance potassium ion capacitors enabled by hierarchical porous, large interlayer spacing, active site rich-nitrogen, and sulfur Co-doped carbon, Carbon, 164 (2020) 1-11.
- [43] M. Chen, L. Wang, X. Sheng, T. Wang, J. Zhou, S. Li, X. Shen, M. Zhang, Q. Zhang, X. Yu, An ultrastable nonaqueous potassium-ion hybrid capacitor, Advanced Functional Materials, 30 (2020) 2004247.
- [44] H. Luo, M. Chen, J. Cao, M. Zhang, S. Tan, L. Wang, J. Zhong, H. Deng, J. Zhu,B. Lu, Hierarchically Porous Carbon as Anode for Highly Robust Potassium-IonHybrid Capacitors, Nano-Micro Lett, 12 (2020) 113.
- [45] G. Wang, W. Wang, X. He, J. Li, L. Yu, B. Peng, G. Zhang, Concurrent manipulation of anion and cation adsorption kinetics in pancake-like carbon achieves ultrastable potassium ion hybrid capacitors, Energy Storage Materials, 46 (2022) 10-19.
- [46] Y. Yi, Z. Zeng, X. Lian, S. Dou, J. Sun, Homologous Nitrogen-Doped Hierarchical Carbon Architectures Enabling Compatible Anode and Cathode for

Potassium-Ion Hybrid Capacitors, Small, 18 (2022) 2107139.

[47] S. Zhao, K. Yan, J. Liang, Q. Yuan, J. Zhang, B. Sun, P. Munroe, G. Wang, Phosphorus and oxygen dual-doped porous carbon spheres with enhanced reaction kinetics as anode materials for high-performance potassium-ion hybrid capacitors, Advanced Functional Materials, 31 (2021) 2102060.